
Lecture 2

Computational and Errors

Numerical methods are procedures that allow for effi-
cient solution of a mathematically formulated problem
in a finite number of steps to within an arbitrary preci-
sion. Computers are needed in most cases. A very impor-
tant issue here is the errors caused in computations.
A numerical algorithm consists of a sequence of arith-
metic and logical operations which produces an approx-
imate solution to within any prescribed accuracy. There
are often several different algorithms for the solution of any
one problem. The particular algorithm chosen depends on
the context from which the problem is taken. In economics,
for example, it may be that only the general behavior of a
variable is required, in which case a simple, low accuracy
method which uses only a few calculations is appropriate.
On the other hand, in precision engineering, it may be es-
sential to use a complex, highly accurate method, regard-
less of the total amount of computational effort involved.
Once a numerical algorithm has been selected, a computer
program is usually written for its implementation. The pro-
gram is run to obtain numerical results, although this may
not be the end of the story. The computed solution could
indicate that the original mathematical model needs mod-
ifying with a corresponding change in both the numerical
algorithm and the program.
Although the solution of ’real problems’ by numerical tech-
niques involves the use of a digital computer or calculator,
Determination of the eigenvalues of large matrices, for ex-
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ample, did not become a realistic proposition until comput-
ers became available because of the amount of computation
involved. Nowadays any numerical technique can at least
be demonstrated on a microcomputer, although there are
some problems that can only be solved using the speed and
storage capacity of much larger machines.

There exist four possible sources of error:

1. Errors in the formulation of the problem to be solved.

(a) Errors in the mathematical model. For example,
when simplifying assumptions are made in the deriva-
tion of the mathematical model of a physical system.
(Simplifications).

(b) Error in input data. (Measurements).

2. Approximation errors

(a) Discretization error.

(b) Convergence error in iterative methods.

(c) Discretization/convergence errors may be estimated
by an analysis of the method used.

3. Roundoff errors: This error is caused by the computer
representation of numbers.

(a) Roundoff errors arise everywhere in numerical com-
putation because of the finite precision arithmetic.

(b) Roundoff errors behave quite unorganized.

4. Truncation error: Whenever an expression is approx-
imated by some type of a mathematical method. For
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example, suppose we use the Maclaurin series repre-
sentation of the sine function:

sinα =
∞∑

n=odd
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where Em is the tail end of the expansion, neglected in
the process, and known as the truncation error.

0.1 ERRORS AND STABILITY

The majority of numerical methods involve a large number
of calculations which are best performed on a computer or
calculator. Unfortunately, such machines are incapable of
working to infinite precision and so small errors occur in
nearly every arithmetic operation. Even an apparently sim-
ple number such as 2/3 cannot be represented exactly on
a computer. This number has a non-terminating decimal
expansion

0.66666666666666 · · ·
and if, for example, the machine uses ten-digit arithmetic,
then it is stored as

0.666 666 666 7

(In fact, computers use binary arithmetic. However, since
the substance of the argument is the same in either case, we
restrict our attention to decimal arithmetic for simplicity).
The difference between the exact and stored values is
called the rounding error which, for this example, is

−0.000 000 000 033 33...

Suppose that for a given real number α the digits after the
decimal point are

d1d2 · · · dndn+1 · · ·
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To round α to n decimal places (abbreviated to nD) we pro-
ceed as follows. If dn+1 < 5, then α is rounded down; all
digits after the nth place are removed. If dn+1 ≥ 5, then α
is rounded up; dn is increased by one and all digits after
the nth place are removed. It should be clear that in either
case the magnitude of the rounding error does not exceed
0.5× 10−n.
In most situations the introduction of rounding errors into
the calculations does not significantly affect the final re-
sults. However, in certain cases it can lead to a serious loss
of accuracy so that computed results are very different from
those obtained using exact arithmetic. The term instability
is used to describe this phenomenon.
There are two fundamental types of instability in numeri-
cal analysis - inherent and induced. The first of these is a
fault of the problem, the second of the method of solution.

Definition 2. A problem is said to be inherently unstable
(or ill - conditioned) if small changes in the data of the prob-
lem cause large changes in its solution.

This concept is important for two reasons. Firstly, the
data may be given as a set of readings from an analogue de-
vice such as a thermometer or voltmeter and as such cannot
be measured exactly. If the problem is ill-conditioned then
any numerical results, irrespective of the method used to
obtain them, will be highly inaccurate and may be worth-
less. The second reason is that even if the data is exact it
will not necessarily be stored exactly on a computer. Con-
sequently, the problem which the computer is attempting to
solve may differ slightly from the one originally posed. This
does not usually matter, but if the problem is ill-conditioned
then the computed results may differ wildly from those ex-
pected.
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Figure 1: sketche of example 0.3

Example 0.3. Consider the simultaneous linear equations

x+ y = 2

x+ 1.01y = 2.01

which have solution x = y = 1. If the number 2.01 is changed
to 2.02, the corresponding solution is x = 0, y = 2. We see
that a 0.5% change in the data produces a 100% change in the
solution. It is instructive to give a geometrical interpretation
of this result. The solution of the system is the point of inter-
section of the two lines y = 2−x and y = (2.01−x)/1.01. These
lines are sketched in figure 1. It is clear that the point of in-
tersection is sensitive to small movements in either of these
lines since they are nearly parallel. In fact, if the coefficient
of y in the second equation is 1.00, the two lines are exactly
parallel and the system has no solution. This is fairly typical
of ill-conditioned problems. They are often close to ’critical’
problems which either possess infinitely many solutions or
no solution whatsoever.
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Example 0.4. Consider the initial value problem

y′′ − 10y′ − 11y = 0; y(0) = 1, y′(0) = −1

defined on x ≥ 0. The corresponding auxiliary equation has
roots −1 and 11, so the general solution of the differential
equation is

y = Ae−x +Be11x

for arbitrary constants A and B. The particular solution which
satisfies the given initial conditions is

y = e−x

Now suppose that the initial conditions are replaced by

y(0) = 1 + δ, y′(0) = −1 + ϵ

for some small numbers δ and ϵ. The particular solution sat-
isfying these conditions is

y =

(
1 +

11δ

12
− ϵ

12

)
e−x +

(
δ

12
+

ϵ

12

)
e11x

and the change in the solution is therefore(
11δ

12
− ϵ

12

)
e−x +

(
δ

12
+

ϵ

12

)
e11x

The term
(δ + ϵ)e11x

12
is large compared with e−x for x > 0, indi-

cating that this problem is ill-conditioned.
To inherent stability depends on the size of the solution to
the original problem as well as on the size of any changes in
the data. Under these circumstances, one would say that the
problem is ill-conditioned.

We now consider a different type of instability which is
a consequence of the method of solution rather than the
problem itself.
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