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Nuclear Reactions



Elastic Collision in L- System (NON-RELATIVISTIC)
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Elastic collisiom in the laboratory frame of
reference(L-frame)

Consider the elastic collision between a particle of mass M, and velocity V, (in the L-
system) and a stationary target of mass M, (V,= 0). After the collision, the two particles
fly a part from the point of collision with the velocities V," and V,’ at the angles ©, and ©,
respectively with respect to the incident direction. Referring to Fig. (6.1), we get from the
laws of conservation of momentum along and perpendicular to the incident direction.

P,=P,'cos ©; + P,’cos 6, ---(6.4.1)
0=P,'sin©, +P,'sin B, ---(6.4.2)

Squaring and adding the above two Eqs. We get  P,* = PZ + P,? - 2P, P cos®, - (6.4.3)



We next apply the law of conservation of energy E, = E{ + E; --- (6.4.4)
I, p!2

PZ P
In terms of the momenta, we get —— = —2 2 .- (6.4.5)
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Substituting for P,? from Eq. (6.4.3), we get 2M, [ZM = ot Y o cosO,]
1 1 2 2 2

Or P'? (1 + Z—j) - 2P, P{ cos®, Pf( — Z—j) =0 -—- (6.4.6)

If we put r = M,/M,, the above Eq. becomes P'4 (1 + 1) -2 P; P{ cos®,+ Pf (1-r)=0 -
(6.4.7)

In terms of energies, we get, Eil [E1 (1+r1)-2/E{E{ cos©, +E; (1-r)
E
Or E—i (1+r)-2,/E; /E  cos®, +(1-r)=0--(6.4.8)
Eq. (6.4.8) is quadratic in / E; to solve this Eq. let 51 - %2 and Ei/E =X
Ey
Eq. (6.4.8) become, X? (1 +r)—2Xcos©; +(1+r)=0

—b+Vb?%-4ac
X= - , wherea=(1+r), b=-2cos6;andc=(1-r)
X = 2 c0s0,+/4 c0s20,—4 (1+7)(1-7) _ 2 c0s0,+/4 c0s20, —4 (1-12)
2(1+1) 2(1+1)
X = 2 Coseliz\/ c0s20,— (1-12) _ coseli\/ cos%6, — (1-r2)
2(1+1) (1+1)

o T coseli\/ cos?0,+ (r2—-1) .
If the target particle is heavier, there r > 1. Since \/E} / E1 = %, we have to choose the sign
) :



!

in Eq. (6.4.9) so that 1 5 0. we then have to take the (+) sign before the square root

Py
symbol

i E! 2 cos?0. (r2=1)+2cosO../ cos?0. +r2—1
Squaring we get, =t = 1 (r21) o - )
E1 (T+1)2

So that ratio of the energy received by the struck particle (M,) to the incident particle
energy becomes

1. Ej _ 1. 2 coszeli(rz— 1)+2 cosO,y/ cos20 + 12— 1)
E1 (T+1)2
E;—E; _ (r+1)2-2 co0s?0, (r?—1)-2cos0,y/ cos?6,+ 12— 1) _
E, (r+1)2 a
r2+2r+1 -2 cos?0, r?+1-2cos0, cos20 +r2—1)
(r+1)2
Ei—E;  2(r+1-cos?@,) 2 cos0 4/ cos20 +1r2—1)
— = > --- (6.4.10)
El (T+1)

The maximum energy is received for ©, = . We get in this case for r>>1 (i.e. M,>> M,)

E;—E; _ 2(r+1-cos?m) 2 cosmy cos? m+7r2—1) _2(r+1-(-1)?) 2(-1)y (-1)2 +12-1)

E; (r+1)2 (r+1)2
E;—E; _ 2(r+1-1) 2(-1)y1+7r?-1) 2 2r

E; (r+1)2 T (r+1)2
B A 2o Mh (64011
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Actually all values ©, are possible in this case. This type of scattering is observed when
Beta particles are scattered by nuclei as they pass through matter. The energy received by
the nucleus in such collision is negligibly small (r=M_,./ m,>>1). When (r <1) asin the
collision of a nuclear particle with an electron, the solution given by Eq. (6.4.9) can be real
only if cos?©,2 1 —-r? --- (6.4.12)
Both (+) and (-) signs are possible in Eq. (6.4.9). evidently 1 —sin?©, > 1 —r?
[-sin?©,2-r2]*(-1)
sin?0, < r? take the square root sin®, <r, or ©, < /2 since r< 1.
For r <<1, ©,—> 0. Thus a heavy projectile scattered by a very light target, such as an
electron, goes on almost undeviated. The energy given to the target nucleus for©, =0 is
(see Eq. (6.4.9))
Ei—E, 2+2Vr? 4

1E1 e iz " ez O 0 -—-(6.4.13)
In this case the energy given to the target becomes E; —E',= E % forr<<1

1 (r+1)2
(r+1)2=(0+1)2=12=1

E,—E,=4rE, = 4M—Mlz E, - (6.4.14)

The energy loss by the incident particles in a collision is small compared to the incident
energy.




Elastic Collision in C-System (NON-RELATIVISTIC)

(Fig. 6.3) Momentum diagram for collision between
two particles in the center of mass system

we now consider the collision between two particles from
the point of view of an observer at rest relative to the
center of mass C of the particles(Fig. 6.3). we shall denote

the velocities and momenta in the C-System by the capital
letters (V and P), while those in the L-System by the small
letters (v and p) the energies and the angles of scattering
will be denoted by E and © in the C-System and by € and ¢
in the L-System. The particle M, is at rest in the L-System

before collision (v, = 0). The velocity in the L-System of
the center of mass is

pe= AT ML (6.4.15)
1 2 1 2
the velocities of M, and M, in the C-System before collision are respectively
_ . _ M2 V1 L
Vi=v,— v, = YSTA (6.4.16)
_ _ - M]_ (%]} L
Vz =V Ve = Mo+ M, (6417)
The corresponding momenta are
_ _ M1 M2 V1 _ L
Pi=M,V; = M, W Uy (6.4.18)
P2 =M2V2 - M= % % (6419)

M.+ M,



Where u= My M,/(M; + M,) is the reduced mass. The two particles have equal and
opposite momenta before collision. So that their total momentum P; + P, = 0.
Conservation of momemtum then requires that the total momentum of the two particles
after collisionisalsozeroP; + P, =P, + P, =0
We have denoted the momentum after collision by putting primes (') above the
corresponding quantities before collision. Sums of the K. E. before and after collision are
B, + E,=2t 4 P2 P (540

2M; 2M, 2u

P,> P

= —(6.4.21)
2M1 2M2 2[.1

Where |P,| = |P,| = |P| and |P';| = |P’,| = |P’]
since energy conservation requires that E{ + E; = E; + E,

we get P’ = P so that the magnitudes of momenta of the particles before and after collision
are all equal

P,=P,=P/ =P, ---(6.4.22)

The momentum diagram of the particles is shown in Fig. (6.3). the two particles fly apart

from the point of collosion with equal and opposite momenta as shown so that ©, + 6, = 1.

The K. E. of the centre of mass is Ec=% (M; + M) v? = MﬂfM €, - (6.4.23)
1 2

Where €, = % My vlz is the K. E. of the L-System. The energy E_given by Eq. (6.4.23) is not

available for the production of any inelastic effect (e.g. reaction). The total amount of
M, M, 1

2
= € == pv?
Mot M, 1T mprm, 12 MU

energy available for this purposeis & -E.= €, -
(6.4.24)

)



From the above discussions, it is clear that there is no change in the K. E. and momenta of
the particles after collision in the C-System.

Nonelastic Collision: Nuclear reaction including inelastic scattering (e.g. PP', nn' ) bbelong
to the this type of collision. The particles produced after collision are usually different from
those before collision. If M; and M, are the masses of the two particles produced by thr
reaction and their K. E. are E; and E,. We can write the energy conservation equation as M,
+M,+E, +E,=M;+M, +E,+E, ---(6.4.25)

Here the mass expressed in energy unite (i.e. Mc?), Q=M; + M, — M, - M,

Where E, =0, then we get, Q+E, = E; + E, ---(6.4.26)
Eg. (6.4.26) along with the momentun conservation eq. have to be used to find the
energy of the reaction products.

6.5 Energtics of Nuclear Reactions

During a nuclear reaction, energy is either evolved or absorbed. Reactions in which
energy is evolved are known as exoergic reactions while those requiring absorption of
energy are called endoergic. The total amount of energy evolved or absorbed during a
nuclear reaction is called the Q-value or simply the Q of the reaction. So by definition Q
=E,+E, - Ey-E, =E, +E - E, - (6.5.1)
If the target nucleus X is at rest. If the atomic masses are expressed in energy units Eq.
(6.3.3) can be rewritten as My + M, + E, = My + M+ E, + E,
Then we get from Eq. (6.5.1) Q= My + M, = My - M, ---(6.5.2)



Written in terms of the binding energies of different nuclei, we can also write Q = By + B, —
B, — B, --- (6.5.3) by definition (Q > 0) for an exorgic reaction, while (Q < 0) for an endorgic
reaction. There is a net deficit of energy in the latter case. Some energy must be supplied
for the reaction to occur. This usually comes from the K. E. E, of the projectile. Eq. (6.5.2)
shows that for an exorgic reaction M, + M, is greater than My + M, while for an endorgic
reaction My + M, is less than M, + M,.

Thershold Energy of an Endoergic Reaction
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In view of the energy and momentum consevatlon Iaws E can be expressed in terms of E,
and E,. in Fig.(6.5) we get from the law of consveration of momentum a long and

perpendicular to the direction of motion of the projectile (P = +vV2ME)

V2My Ey = /2ME,, cos © +,/2MyEy cos ¢ ---(6.5.4)

0=/2MyE, sin © - \/2MyEy sin ¢ ---(6.5.5)

Eg. (6.5.1) gives the law of conservation of energy Q = E, +E, - E,, squaring and adding Eq.

(6.5.4) and (6.5.5) we get —— (2 My Ey = 2 My E, + 2 M, Ey, — 4,/[M,M,EE, cos ©)
Y

OrE, = Z—’;Ex A"Z Ey -1 2 MM, ELE, cos®© -(6.5.6)



Then from Eqg. (6.5.1) and (6.5.6), we get Q= E <1+M) Ex( __)_
Y

M—\/MxMyExEy cos 8 --- (6.5.7)
Y
Eq. (6.5.7) is quadratic in Z = /E,, so that we can write aZ*+ bZ + ¢ =0 --- (6.5.8)

2 M,
Wherea-1+— b-—MY1/MxMyExcoseandc=—Ex< —M—Y)— Q

_ \Vh2—
Eqg. (6.5.8) has the solution Z = bi b-dac (6.5.9)

_ My 2
JEy = 2y +11) [My,/M My E, cos© +(J M, M, Eycos ©
+J4{MY+My (B2 1))

y

- 1/2
VEy =5 ) (MM, E,) /2 cos6
My—Myx+QMy

+ \/MxM Eycos6? + My(My + M,). (E, v )]
Y

JE, = m[(M My Ex)Y2cos0 + {M, My E,cos?0 + (My + M,,). (Ex(My — M)



Since both a and Q' are positive Z = /Ey isimaginary in this case. This means that the

reaction is not possible with E, = 0. A minimum energy E, = E_.. is needed to initiate
endorgic reaction. In this case the term under the square root sign in Eq. (6.5.9) must be
zero so that we get b2—4ac=0

Substititing fora, bandc, we get—5 (M M Emm)cosze 4 (1+—){ Q—E,in(1— }
My
My+M
Emm( )—'4Q( = y)
min[M_12/ (MM, )cos?6 + M_,Z,(MY + M,)( My — M,)] =- M_Y Q(MY + My)

MY M,y

(M M, Eppin )cOS20 +4 (MY+My)

M, M 29 My
xMycos Y - MyMy+ MyMy— MyMy

Erminl 1=-QMy + My)

My My

MM, (1-sin?0) M,M
Emin[xyMY +MY_Mx+M - IJVIIx_'Q(MY‘FMy)

MxM, MyM MyM
Einl ;;Yy‘ ;IYySLn29+M + My — M, — ; =] =-Q(My + M,)

MxMy .
EpminlMy + My — M,- ve zsin?0] = - Q(My + M,)
— Q(My+My)
Eppin= o, - (6.5.11)
My +My—My— My sin20
Since Q <0, E;;, >0, using Q =My + M, - M, -M,
— Q(My+My)
Enmi --- (6.5.12
min~ M,— Q- xMySLnZB ( )




E.in depends on the angle at which the particle y is emitted. When © =0 i.e. y is emitted
in the forward direction, E,,;;;, has the lowest value and is known as the thershold energy
for the endoergic reaction and is usually written as E,, from Eq. (6.5.12) we get E,; = -

(My+ My)Q

--- (6.5.13)
Myx—Q
Since Q << M,, we can neglect it in the denominator of Eq. (6.5.13), also we can replace
M, +My in the numerator by M, +M,. so we get finally E,, =- Q M"AZ:IX =-Q(1+ Z—f{ ---

(6.5.13)

So by measuring the minimum energy E,;, at which an exoergic reaction is initiated it is
possible to determine the Q value of the reaction.



