
الفصل السادس –المحاضرةالسادسة 

Nuclear Reactions
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Elastic Collision in L- System (NON-RELATIVISTIC)   

Consider the elastic collision between a particle of mass M1 and velocity V1 (in the L-
system) and a stationary target of mass M2 (V2= 0). After the collision, the two particles 
fly a part from the point of collision with the velocities V1′ and V2′ at the angles Ө1 and Ө2

respectively with respect to the incident direction. Referring to Fig. (6.1), we get from the 
laws of conservation of momentum along and perpendicular to the incident direction.

P1 = P1′cos Ө1 + P2′cos Ө2 --- (6.4.1)
0 = P1′sin Ө1 + P2′sin Ө2 --- (6.4.2)

Squaring and adding the above two Eqs. We get 𝑃2
′₂ = 𝑃1

2 + 𝑃1
′₂ - 2𝑃1𝑃1

′ cosӨ1 --- (6.4.3)



We next apply the law of conservation of energy E1 = 𝐸1
′ + 𝐸2

′ --- (6.4.4)

In terms of the momenta, we get 
𝑃1
2

2𝑀1
= 

𝑃1
′₂

2𝑀1
+ 

𝑃2
′₂

2𝑀2
--- (6.4.5)

Substituting for 𝑃2
′₂ from Eq. (6.4.3), we get 2M2 [

𝑃1
2

2𝑀1
=  

𝑃1
′₂

2𝑀1
+  

𝑃1
2

2𝑀2
+ 

𝑃1
2

2𝑀2
-
2𝑃1 𝑃1

′

2𝑀2
cosӨ1]

Or 𝑃′1
2 1 +

𝑀2

𝑀1
- 2𝑃1 𝑃1

′ 𝑐𝑜𝑠Ө1 +
𝑃1
2 1 −

𝑀2

𝑀1
= 0 --- (6.4.6)

If we put r = M2/M1, the above Eq. becomes 𝑃′1
2 1 + 𝑟 - 2 𝑃1 𝑃1

′ cosӨ1+ 𝑃1
2 (1 – r) = 0 ---

(6.4.7) 

In terms of energies, we get, 
1

𝐸1
[𝐸1

′ (1 + r) -2 𝐸1𝐸1
′ cosӨ1 + 𝐸1 (1 - r)

Or  
𝐸1
,

𝐸1
(1 + r) -2 𝐸1

, / 𝐸1 cosӨ1 + (1 – r) = 0 --- (6.4.8)

Eq. (6.4.8) is quadratic in 𝐸1 to solve this Eq.  let 
𝐸1
′

𝐸1
= X2 and  𝐸1

, / 𝐸1 = X

Eq. (6.4.8) become, X2 (1 + r) – 2 X cosӨ1 + (1 + r) = 0

X = 
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
,  where a = (1 + r),  b = -2 cosӨ1 and c = (1 – r)

X =    
2 cosӨ

1
± 4 𝑐𝑜𝑠2Ө

1
−4 1+𝑟 (1−𝑟)

2(1+𝑟)
=   

2 cosӨ
1
± 4 𝑐𝑜𝑠2Ө

1
−4 (1−𝑟2)

2(1+𝑟)

X =  
2 cosӨ

1
±2 𝑐𝑜𝑠2Ө

1
− (1−𝑟2)

2(1+𝑟)
=   

cosӨ
1
± 𝑐𝑜𝑠2Ө

1
− (1−𝑟2)

(1+𝑟)

𝐸1
, / 𝐸1 =   

cosӨ
1
± 𝑐𝑜𝑠2Ө

1
+ (𝑟2− 1)

(𝑟+1)
--- (6.4.9)

If the target particle is heavier, there r > 1. Since 𝐸1
, / 𝐸1 = 

𝑃1
′

𝑃1
, we have to choose the sign



in Eq. (6.4.9) so that  
𝑃1
′

𝑃1
> 0. we then have to take the (+) sign before the square root 

symbol

Squaring we get, 
𝐸1
′

𝐸1
=  

2 𝑐𝑜𝑠2Ө
1
+
𝑟2− 1 +2 cosӨ

1
𝑐𝑜𝑠2Ө

1
+ 𝑟2− 1)

(𝑟+1)2

So that ratio of the energy received by the struck particle (M2) to the incident particle 
energy becomes

1 -
𝐸1
′

𝐸1
= 1 -

2 𝑐𝑜𝑠2Ө
1
+
𝑟2− 1 +2 cosӨ

1
𝑐𝑜𝑠2Ө

1
+ 𝑟2− 1)

(𝑟+1)2

𝐸1− 𝐸1
′

𝐸1
=

𝑟+1 2− 2 𝑐𝑜𝑠2Ө
1
−
𝑟2− 1 −2 cosӨ

1
𝑐𝑜𝑠2Ө

1
+ 𝑟2− 1)

𝑟+1 2 = 

𝑟2+ 2r +1 − 2 𝑐𝑜𝑠2Ө
1
−
𝑟2+ 1−2 cosӨ

1
𝑐𝑜𝑠2Ө

1
+ 𝑟2− 1)

𝑟+1 2

𝐸1− 𝐸1
′

𝐸1
=

2 r+1− 𝑐𝑜𝑠2Ө
1

−
2 cosӨ

1
𝑐𝑜𝑠2Ө

1
+ 𝑟2− 1)

𝑟+1 2 --- (6.4.10)

The maximum energy is received for Ө1 = π. We get in this case for r>>1 (i.e. M2>> M1)

𝐸1− 𝐸1
′

𝐸1
=

2 r+1− 𝑐𝑜𝑠2 π
−
2 cos π 𝑐𝑜𝑠2 π+ 𝑟2− 1)

𝑟+1 2 = 
2 r+1− (−1)2

−
2(−1) (−1)2 + 𝑟2− 1)

𝑟+1 2

𝐸1− 𝐸1
′

𝐸1
= 
2 r+1−1

+
2 −1 1 + 𝑟2− 1)

𝑟+1 2 = 
2
r
+
2𝑟

𝑟+1 2

𝐸1− 𝐸1
′

𝐸1
= 

4
r

𝑟+1 2 ≈ 
4

𝑟
= 
4𝑀1

𝑀2
--- (6.4.11)



Actually all values Ө1 are possible in this case. This type of scattering is observed when 
Beta particles are scattered by nuclei as they pass through matter. The energy received by 
the nucleus in such collision is negligibly small ( r = Mnuc / me >> 1). When (r  < 1) as in the 
collision of a nuclear particle with an electron, the solution given by Eq. (6.4.9) can be real 
only if cos2Ө1 ≥ 1 – r2 --- (6.4.12)
Both (+) and (-) signs are possible in Eq. (6.4.9). evidently 1 – sin2Ө1 ≥ 1 – r2

[ - sin2Ө1 ≥ - r2 ] * (-1)
sin2Ө1 ≤ r2 take the square root sinӨ1 ≤ r, or Ө1 < π/2 since r< 1.
For r <<1, Ө1―› 0. Thus a heavy projectile scattered by a very light target, such as an 
electron, goes on almost undeviated. The energy given to the target nucleus for Ө1 = 0 is 
(see Eq. (6.4.9))
𝐸1− 𝐸1

′

𝐸1
=  

2
r
± 2 𝑟2

𝑟+1 2 = 
4
r

𝑟+1 2 or  0   --- (6.4.13)

In this case the energy given to the target becomes E1 – E′1= E1
4
r

𝑟+1 2 for r << 1 

(r + 1)2 = (0 + 1)2 = 12 = 1

E1 – E′1= 4 r E1 =  
4𝑀2

𝑀1
E1 --- (6.4.14)

The energy loss by the incident particles in a collision is small compared to the incident 
energy.



Elastic Collision in C-System (NON-RELATIVISTIC)
(Fig. 6.3) Momentum diagram for collision between
two particles in the center of mass system

we now consider the collision between two particles from 
the point of view of an observer at rest relative to the 
center of mass C of the particles(Fig. 6.3). we shall denote 
the velocities and momenta in the C-System by the capital 
letters (V and P), while those in the L-System by the small 
letters (v and p) the energies and the angles of scattering 
will be denoted by E and Ө in the C-System and by Ԑ and ф 
in the L-System. The particle M2 is at rest in the L-System 
before collision (𝑣2 = 0). The velocity in the L-System of 
the center of mass is

𝑣𝑐 = 
𝑀1 𝑣1+𝑀2 𝑣2

𝑀1+𝑀2
= 

𝑀1 𝑣1

𝑀1+𝑀2
--- (6.4.15) 

the velocities of M1 and M2 in the C-System before collision are respectively

𝑉1 = 𝑣1 − 𝑣𝑐 = 
𝑀2 𝑣1

𝑀1+𝑀2
--- (6.4.16)

𝑉2 = 𝑣2 − 𝑣𝑐 = −
𝑀1 𝑣1

𝑀1+𝑀2
--- (6.4.17)

The corresponding momenta are 

𝑃1 = 𝑀1𝑉1 =
𝑀1𝑀2 𝑣1

𝑀1+𝑀2
= µ 𝑣1 ---- (6.4.18)

𝑃2 = 𝑀2𝑉2 =
𝑀1𝑀2 𝑣1

𝑀1+𝑀2
= − µ 𝑣1 ---- (6.4.19)



Where µ = 𝑀1 𝑀2/(𝑀1 + 𝑀2) is the reduced mass. The two particles have equal and 
opposite momenta before collision. So that their total momentum 𝑃1 + 𝑃2 = 0. 
Conservation of momemtum then requires that the total momentum of the two particles 
after collision is also zero 𝑃1

′ + 𝑃2
′ = 𝑃1 + 𝑃2 = 0

We have denoted the momentum after collision by putting primes (′) above the 
corresponding quantities before collision. Sums of the K. E. before and after collision are 

𝐸1 + 𝐸2 = 
𝑃1
2

2 𝑀1
+

𝑃2
2

2𝑀2
= 
𝑃2

2µ
---- (6.4.20) 

𝐸1
′ + 𝐸2

′ =
𝑃1
′₂

2𝑀1
+

𝑃2
′₂

2𝑀2
=

𝑃′₂

2µ
---- (6.4.21)

Where |P1| = |P2| = |P| and |P′1| = |P′2| = |P′| 
since energy conservation requires that 𝐸1

′ + 𝐸2
′ = 𝐸1 + 𝐸2

we get P′ = P so that the magnitudes of momenta of the particles before and after collision 
are all equal
𝑃1 = 𝑃2 = 𝑃1

′ = 𝑃2
′ ---- (6.4.22)

The momentum diagram of the particles is shown in Fig. (6.3). the two particles fly apart 
from the point of collosion with equal and opposite momenta as shown so that Ө1 + Ө2 = π. 

The K. E. of the centre of mass is Ec= 
1

2
𝑀1 + 𝑀2 𝑣𝑐

2 =
𝑀1

𝑀1+𝑀2
Ԑ1 ---- (6.4.23)

Where Ԑ1 = 
1

2
𝑀1 𝑣1

2 is the K. E. of the L-System. The energy Ecgiven by Eq. (6.4.23) is not 

available for the production of any inelastic effect (e.g. reaction). The total amount of 

energy available for this purpose is      Ԑ1 -Ec =  Ԑ1 -
𝑀1

𝑀1+𝑀2
Ԑ1 = 

𝑀2

𝑀1+𝑀2
Ԑ1 = 

1

2
µ 𝑣1

2 ----

(6.4.24)



From the above discussions, it is clear that there is no change in the K. E. and momenta of 
the particles after collision in the C-System.
Nonelastic Collision: Nuclear reaction including inelastic scattering (e.g. PP′ , nn′ ) bbelong
to the this type of collision. The particles produced after collision are usually different from 
those before collision. If M3 and M4 are the masses of the two particles produced by thr
reaction and their K. E. are E3 and E4. We can write the energy conservation equation as M1

+ M2 + E1 + E2 = M3 + M4 + E3 + E4 --- (6.4.25)
Here the mass expressed in energy unite (i.e. Mc2), Q = M1 + M2 – M3 – M4

Where E2 = 0, then we get, Q + E1 = E3 + E4 --- (6.4.26)
Eq. (6.4.26) along with the momentun conservation eq. have to be used to find the 
energy of the reaction products.

6.5 Energtics of Nuclear Reactions
During a nuclear reaction, energy is either evolved or absorbed. Reactions in which 

energy is evolved are known as exoergic reactions while those requiring absorption of 
energy are called endoergic. The total amount of energy evolved or absorbed during a 
nuclear reaction is called the Q-value or simply the Q of the reaction. So by definition Q 
= EY + Ey - EX - Ex = EY +Ey - Ex --- (6.5.1)
If the target nucleus X is at rest. If the atomic masses are expressed in energy units Eq. 
(6.3.3) can be rewritten as MX + Mx + Ex = MY + My + EY + Ey

Then we get from Eq. (6.5.1) Q = MX + Mx – MY – My --- (6.5.2)



Written in terms of the binding energies of different nuclei, we can also write Q = BY + By –
BX – Bx --- (6.5.3) by definition (Q > 0) for an exorgic reaction, while (Q < 0) for an endorgic
reaction. There is a net deficit of energy in the latter case. Some energy must be supplied 
for the reaction to occur. This usually comes from the K. E. Ex of the projectile. Eq. (6.5.2) 
shows that for an exorgic reaction MX + Mx is greater than MY + My while for an endorgic
reaction MX + Mx is less than MY + My.

Thershold Energy of an Endoergic Reaction

In view of the energy and momentum consevation laws, EY can be expressed in terms of Ex

and Ey. in Fig.(6.5) we get from the law of consveration of momentum a long and 

perpendicular to the direction of motion of the projectile (P = 2ME )

2Mx Ex = 2𝑀𝑦𝐸𝑦 cos Ө + 2𝑀𝑌𝐸𝑌 cos ф  --- (6.5.4)

0 = 2𝑀𝑦𝐸𝑦 sin Ө - 2𝑀𝑌𝐸𝑌 sin ф  --- (6.5.5)

Eq. (6.5.1) gives the law of conservation of energy Q = EY +Ey - Ex, squaring and adding Eq. 

(6.5.4) and (6.5.5) we get 
1

2𝑀𝑌
( 2 𝑀𝑌 𝐸𝑌 = 2 𝑀𝑥 𝐸𝑥 + 2 𝑀𝑦 𝐸𝑦 − 4 𝑀𝑥𝑀𝑦𝐸𝑥𝐸𝑦 cos Ө)

Or 𝐸𝑌 =
𝑀𝑥

𝑀𝑌
𝐸𝑥 + 

𝑀𝑦

𝑀𝑌
𝐸𝑦 -

2

𝑀𝑌
𝑀𝑥𝑀𝑦𝐸𝑥𝐸𝑦 cos Ө  ---(6.5.6)



Then from Eq. (6.5.1) and (6.5.6), we get Q= 𝐸𝑦 1 +
𝑀𝑦

𝑀𝑌
− 𝐸𝑥 1 −

𝑀𝑥

𝑀𝑌
−

2

𝑀𝑌
𝑀𝑥𝑀𝑦𝐸𝑥𝐸𝑦 cos Ө --- (6.5.7)

Eq. (6.5.7) is quadratic in 𝑍 = 𝐸𝑦 so that we can write aZ2 + bZ + c =0 --- (6.5.8)

Where a = 1 + 
𝑀𝑦

𝑀𝑌
,  b = -

2

𝑀𝑌
𝑀𝑥𝑀𝑦𝐸𝑥 cosӨ and c = −𝐸𝑥 1 −

𝑀𝑥

𝑀𝑌
− 𝑄

Eq. (6.5.8) has the solution Z = 
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
--- (6.5.9)

𝐸𝑦 = 
𝑀𝑌

2(𝑀𝑌+𝑀𝑦)
[
2

𝑀𝑌
𝑀𝑥𝑀𝑦𝐸𝑥 cosӨ ±(

4

𝑀𝑌
2𝑀𝑥𝑀𝑦𝐸𝑥cos Ө

2

+ 4
𝑀𝑌+𝑀𝑦

𝑀𝑌
(𝐸𝑥

𝑀𝑌−𝑀𝑥

𝑀𝑦
+ 𝑄) )]

𝐸𝑦 = 
1

(𝑀𝑌+𝑀𝑦)
[(𝑀𝑥𝑀𝑦𝐸𝑥)

1/2𝑐𝑜𝑠𝜃

± 𝑀𝑥𝑀𝑦 𝐸𝑥𝑐𝑜𝑠𝜃
2+𝑀𝑌(𝑀𝑌 +𝑀𝑦). (𝐸𝑥

𝑀𝑌−𝑀𝑥+𝑄𝑀𝑌

𝑀𝑌
)]

𝐸𝑦 = 
1

(𝑀𝑌+𝑀𝑦)
[(𝑀𝑥𝑀𝑦𝐸𝑥)

1/2𝑐𝑜𝑠𝜃 ± ൛𝑀𝑥𝑀𝑦𝐸𝑥𝑐𝑜𝑠
2𝜃 + 𝑀𝑌 +𝑀𝑦 . (𝐸𝑥 𝑀𝑌 −𝑀𝑥



Since both a and Q′ are positive 𝑍 = 𝐸𝑦 is imaginary in this case. This means that the 

reaction is not possible with Ex = 0. A minimum energy Ex = Emin is needed to initiate 
endorgic reaction. In this case the term under the square root sign in Eq. (6.5.9) must be 
zero so that we get b2 – 4ac = 0

Substititing for a, b and c, we get 
4

𝑀𝑌
2 𝑀𝑥𝑀𝑦𝐸𝑚𝑖𝑛 𝑐𝑜𝑠2Ө = 4 (1 + 

𝑀𝑦

𝑀𝑌
) −𝑄 − 𝐸𝑚𝑖𝑛(1 −

𝑀𝑥

𝑀𝑌
4

𝑀𝑌
2 𝑀𝑥𝑀𝑦𝐸𝑚𝑖𝑛 𝑐𝑜𝑠2Ө +4 (

𝑀𝑌+𝑀𝑦

𝑀𝑌
) 𝐸𝑚𝑖𝑛(

𝑀𝑌−𝑀𝑥

𝑀𝑌
) = - 4 Q (

𝑀𝑌+𝑀𝑦

𝑀𝑌
)

𝐸𝑚𝑖𝑛[
4

𝑀𝑌
2 𝑀𝑥𝑀𝑦 𝑐𝑜𝑠2Ө + 

4

𝑀𝑌
2(𝑀𝑌 +𝑀𝑦)( 𝑀𝑌 −𝑀𝑥)] = -

4

𝑀𝑌
𝑄(𝑀𝑌 +𝑀𝑦)

𝐸𝑚𝑖𝑛[
𝑀𝑥𝑀𝑦𝑐𝑜𝑠

2𝜃

𝑀𝑌
+

𝑀𝑌−𝑀𝑌𝑀𝑥+𝑀𝑦𝑀𝑌−𝑀𝑦𝑀𝑥
2

𝑀𝑌
] = - 𝑄(𝑀𝑌 +𝑀𝑦)

𝐸𝑚𝑖𝑛[
𝑀𝑥𝑀𝑦(1−𝑠𝑖𝑛

2𝜃)

𝑀𝑌
+ 𝑀𝑌 −𝑀𝑥 +𝑀𝑦 −

𝑀𝑦𝑀𝑥

𝑀𝑌
= - 𝑄(𝑀𝑌 +𝑀𝑦)

𝐸𝑚𝑖𝑛[
𝑀𝑥𝑀𝑦

𝑀𝑌
-
𝑀𝑥𝑀𝑦

𝑀𝑌
𝑠𝑖𝑛2𝜃 + 𝑀𝑦 +𝑀𝑌 −𝑀𝑥 −

𝑀𝑦𝑀𝑥

𝑀𝑌
] = - 𝑄(𝑀𝑌 +𝑀𝑦)

𝐸𝑚𝑖𝑛[𝑀𝑦 +𝑀𝑌 −𝑀𝑥-
𝑀𝑥𝑀𝑦

𝑀𝑌
𝑠𝑖𝑛2𝜃] = - 𝑄(𝑀𝑌 +𝑀𝑦)

𝐸𝑚𝑖𝑛= 
− 𝑄(𝑀𝑌+𝑀𝑦)

𝑀𝑦+𝑀𝑌−𝑀𝑥−
𝑀𝑥𝑀𝑦

𝑀𝑌
𝑠𝑖𝑛2𝜃

--- (6.5.11)

Since Q < 0, Emin > 0, using Q = MX + Mx – MY – My

𝐸𝑚𝑖𝑛= 
− 𝑄(𝑀𝑌+𝑀𝑦)

𝑀𝑥−Q−
𝑀𝑥𝑀𝑦

𝑀𝑌
𝑠𝑖𝑛2𝜃

--- (6.5.12)



𝐸𝑚𝑖𝑛 depends on the angle at which the particle y is emitted. When Ө = 0 i.e. y is emitted 
in the forward direction, 𝐸𝑚𝑖𝑛 has the lowest value and is known as the thershold energy 
for the endoergic reaction and is usually written as Eth from Eq. (6.5.12) we get Eth = -
𝑀𝑦+𝑀𝑌 𝑄

𝑀𝑥−𝑄
--- (6.5.13)

Since Q << MX, we can neglect it in the denominator of Eq. (6.5.13), also we can replace 

My+MY in the numerator by Mx+MX. so we get finally Eth = - Q 
𝑀𝑥+𝑀𝑋

𝑀𝑋
= - Q (1 + 

𝑀𝑥

𝑀𝑋
)---

(6.5.13)
So by measuring the minimum energy Eth at which an exoergic reaction is initiated it is 
possible to determine the Q value of the reaction.


