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The total surface energy as E = -a,A%3, where a, is a constant = 13 MeV, E = -13A%/3 ----
(5.6.2) e S S A O G

s {:5‘{:3;- 2 A npclecn ad-the Swptacre tl a L A
——AUleus 1y erzelc \LJ/,;;» Elllsr 2 s £ o ,,ng‘,l;;«:if/ (% Y-
= S ‘Z_L‘H ene In 7;4‘, L L Cpr OV _-“/1;2/1',_., LULL G g _f\ o

e’ A enge s bind)i 19 €n €y s fecr o The laeGe »7 i S A
— le Luu;/( L~y )

L/ - g : . 7
e Sl T Ll ¢ L) r vt 7 t & s |
g 44 LD fl Oy _-“7’/[;./1;.‘;;__,!,;'_ r JLLl

: TN T
(iii) Coulomb Energy: The coulomb repulsion between the proton in the nucleus also tends
to weaken the nuclear binding. This repulsive force being of the long range type, can act
between all the proton pairs in the nucleus. The coulomb energy E. of a nucleus is the
work that must be done to bring together Z protons from in infinity into a spherical
aggregate the size of the nucleus. The potential energy of a pair of protons r apart is equal
to V= e?/(4ngyr). Since there are Z(Z-1)/2 pairs of protons E_=Z(Z-1)V/2 = -[ Z(Z-1)e?/8ng, ]
[1/r],, , where (1/r),, is the value of 1/r averaged over all proton pairs. If the protons are
uniformly distributed throughout a nucleus of radius R, (1/r),,is proportional to 1/R and
hence to 1/AY3. So that coulomb energy E_= -a,[Z(Z-1)/AY3], where a, is a constant = 0.72
MeV E_=-0.72[Z(Z-1)/AY3].

(iv) Asymmetry energy: In the light nuclei, there is a tendency for the neutron and proton
No. to be equal (N=Z) to form the most stable configurations. As we go to the heavier
nuclei, the increase in the number of protons tend to weaken the binding due to coulomb
repulsive force between them. So some extra neutrons must be present to provide
additional (n-n) bonds to compensate for this. However, this disturbs the conditiof of
equality of Z and N to form the most stable configuration when coulomb effect is ignored.



Thus due to this asymmetry in the neutron-proton numbers, there will be a reduction in
the binding energy by an amount E, proportional to (N-Z)? which shows that the effect is
the same, irrespective of whether the neutron No. is greater or less than the proton No.
further the effect should decrease for the heavier nuclei. Since N-Z =A- 27, we can write

the asymmetry energy as E_ = - a, [(A — 2Z)%/A].

(v) Pairing Energy: For a given A (even), the even Z even N (e-e) nuclei are more strongly
bound than the odd Z odd N (0-0) nuclei. If the binding energies of these nuclei are
compared with those of the neighboring odd A nuclei, both even Z odd N (e-0) and odd Z
even N (o-e), it is found that the bindings of the odd A nuclei are intermediate between
the (e-e) and (0-0) nuclei. The odd A nuclei are more strongly bound than the (0-0) nuclei
while they are less strongly bound than (e-e) nuclei. These observations show that we
must add a pairing energy term to the expression for E; which arises due to the pairing of
the nucleons of the same type with opposite spins. Such paring tends to increase the
strength of binding which thus becomes maximum for (e-e) nuclei in which all nucleus of
both types (P and n) are paired with oppositely aligned spin. In odd A nuclei, there is one
unpaired nucleon which is a neutron for (e-o0) nuclei and a proton for (0-e) nuclei. This
weakens the binding in such nuclei by about 2 to 3 MeV. Finally in (0-0) nuclei, there are
two unpaired nucleons, one proton and one neutron. As a result, the bindings of such
nuclei are further weakened by about 2 to 3MeV. The pairing energy term (A,Z) depends
on A only and is taken to be zero for odd A nuclei, positive for (e-e) nuclei and negative for
(0-0) nuclei, its given by s = a; A4 ---- (5.6.5), where a is constant, a.=+33
for (e-e) nuclei, a;=-33 for (0-0) nuclei, a;=0 for (0-e) or (e-o0) nuclei, We can write the
binding energy as Ez(A,Z)=E, - E.—E_—E, + s =a,A -a,A?3- a,22/AY3- a,(A-2Z)%/A+s ---
(5.6.6)



This is the semi empirical formula for the nuclear binding energy and is known as the
Bethe-Weizsacker formula. The atomic mass of an isotope can be written as M(A,Z) =Z M,
+NM_-E4(A,Z)  M(AZ) = ZM, + (A-Z)M_ —a,A + a,A?/3 + a,72/A3+ a,(A-22)2/A - 5 -
(5.6.7).
5.7 Applications of The Semi-Empirical Binding Energy Formula
Mass Parabola: Stability of nuclei against g- decay equation (5.6.7)
without the s term can be written as follows M(A,Z) = fA + pZ + qZ2 --- (5.7.1)
Where f, = A (M_—a, +a,) + a,A%/3

P=-43,— (M, —M,)

q= % (a,A?3 + 4a,)
Eqg. (5.7.1) is the Eq. is the Eq. to a parabola for a given A ( Z—Z)A =p+29Z--(5.7.2)

The lowest point of the parabola Z = Z, can be obtained by putting ( C;—AZ/I)A =0
This gives p + 2qZ, =0

orZ, ==- % = (M, — M, +4a,) A/ 2(a,;A?3 + 4a,) - (5.7.3)

putting Z=27, in Eq. (5.7.1) we get

M(A,Z,) = f, + pZ, + qZ,2

M(AZ,) =f,+p (-3-) + a (p¥/4q?)

M(A,Z,) =, - (p°/4q) - (5.7.4)



Hence M(A,Z,) - M(A,Z,) = p?/4q + pZ + qZ?

M(A,Z,) - M(A,Z,) = q (Z—2Z,)?

This proves that the mass parabola for a given isobar has the lowest point at Z = Z, since
the r.h.s. Eqg. (5.7.5) is positive. Since M(A,Z) has the smallest value for a given A when Z =
Z,, this nucleus would have the largest binding energy amongst the isobars for the given

A. (i.e.) Z, would give the value of Z for the most stable isobar. Putting the numerical
values of M_, M,,, a5 and a,in Eq. (5.7.3), we get Z, = A/ (1.98 + 0.015 A?/3) --- (5.7.6)

In Fig.(a) is shown the plot of M(A,Z) against Z for odd A isobars with (A=135). This is a
parabola for which the lowest point is at Z, = 56.85. The stable isobar that is observed at
this mass No. is 13°Ba for which (Z=56). The nuclides falling on either side of the stable
isobar are all unstable. Those on the lower Z side (Z<56) are g~ active while those on the
higher Z side (Z>56) are g* active or electron capturing. Each of these nuclei undergoes ;-
transformation into the product nucleus with Z one unit higher or lower respectively, as

shown in the Fig. - _
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Fig. (b) shows the two mass parabola for the even A isobars with A=102. The upper one is
for the odd Z odd N isobars, while the lower one is for the even Z even N isobars. The
most stable isobar in this case falls on the lower parabola. Using Eq. (5.7.6), we get
(2,=44.2) actually a stable nuclide °2Ru at (Z=44) iis observed at this mass No. resides,
another stable e-e nuclide 192Pd (Z=46) also exists at this A. the two stable isobars differ in
Z by two unit. The o-o isobar 92Rh with (Z=45) between these two falls on the upper
parabola and has an atomic mass greater than those of either of the above two. Hence
102Rh is not stable. It shows both g* and g activities. g* emission transforms it to °2Ru while
by g~ emission it transforms to 192Pd.

5.8 Nuclear shell structure

The liquid drop model can explain the observed variation of the nuclear binding energy
with the mass No. and the fission of the heavy nuclei. However, this model predicts very
closely spaced energy level in nuclei which is contrary to observation at law energies. The
low lying excited states in nuclei are actually quite widely spaced, which cannot be
explained by the liquid drop model. This and certain other properties of the nucleus
would require us to consider the motion of the individual nucleons in a potential well
which would give rise to the existence of a nuclear shell structure, similar to the electronic
shells in the atoms. There are strong reasons to believe that the nucleons in the nuclei are
arranged in certain discrete shells. The nuclei containing the following No. of protons and
neutrons exhibited very high stability .



