# Linear Algebra

Department of Mathematics, College of Education for Pure Sciences, Ibn ALHaitham, University of Baghdad, Iraq

تأليف: المدرس يوسف محد عثمان

الجبر الخطى ، الطبعة الاولى ، ، العراق ، بغداد، ٢٠١٨

ترجمة : أ.د.نيران صباح جاسم

أساتذة المادة

أ.د.نيران صباح جاسم أ.م.د.سعاد جدعان جاسم أ.م.د.مي مجد هلال

# CHAPTER ONE MATRICES

#### **Definition:**

An array of **mn** numbers arranged in **m** rows and **n** columns is said to be  $\mathbf{m} \times \mathbf{n}$  matrix.

j-th column  $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a \\ a & a_{14} & a_{15} & \cdots & a \end{bmatrix}$ 

- $\mathbf{m} \times \mathbf{n}$  is the order (or size or dimension or degree) of the matrix
- The number which appears at the intersection of the i-th row and j-th column is usually referred as the (i,j)-th entry of the matrix A and denoted by  $a_{ij}$  and the matrix A denoted by  $[a_{ij}]_{m\times n}$  or  $A_{m\times n}$ .
- The entries  $a_{ij}$  of a matrix A may be real or complex (or any field).
- If all entries of the matrix are real, then the matrix is called real matrix.
- If all entries of the matrix are complex, then the matrix is called complex matrix.
- If  $A=[a_{ij}]_{m\times n}$  then  $-A=[-a_{ij}]_{m\times n}$ .

# **Examples:**

(1)  $A = \begin{bmatrix} 2 & -3 & 4 \\ 7 & 0 & -5 \end{bmatrix}$  is a real matrix, A has 2-rows and 3-columns.

$$a_{11} = 2$$
,  $a_{12} = -3$ ,  $a_{13} = 4$ ,  $a_{21} = 7$ ,  $a_{22} = 0$ ,  $a_{23} = -5$ 

(2)  $B = \begin{bmatrix} 0 & i & \frac{1}{2} \\ 2+i & 4 & -3 \\ -1 & -i & 2+3i \end{bmatrix}$  is a complex matrix, B has 3-rows and 3-columns.

# **Types of Matrices**

(1) **Equal Matrices:** The matrix  $A = [a_{ij}]_{m \times n}$  equal to the matrix  $B = [b_{ij}]_{m \times n}$  if they have the same size and the corresponding elements of A and B are equal  $a_{ii} = b_{ii}$ ,  $1 \le i \le m$  and  $1 \le j \le n$ .

**Examples:** (1) The matrices  $\begin{bmatrix} 1 & -2 & 3 \\ 0 & \frac{3}{2} & 0.25 \end{bmatrix}$  and  $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1.5 & \frac{1}{4} \end{bmatrix}$  are equal matrices.

- (2) The matrices  $\begin{bmatrix} 1 & 1 & 3 \\ 5 & 4 & 2 \end{bmatrix}$  and  $\begin{bmatrix} 1 & 1 & 3 \\ 2 & 0 & 5 \\ 5 & 4 & 2 \end{bmatrix}$  are not equal matrices.
- Square matrix: A matrix having n rows and n columns and we say that it is of

**Examples:** (1)  $\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}_{2 \times 2}$  square matrix of order 2.

(2)  $\begin{bmatrix} 5 & -6 & 9 \\ -3 & 2 & 1 \\ 0 & 8 & 0 \end{bmatrix}$  square matrix of order 3.

**Note:** The main diagonal in the square matrix contains the elements  $a_{ii}$  where i = 1,2,...,n (beginning from top left upper to bottom right).

(3) Zero matrix: the matrix all elements are zero denoted by  $O_{m\times n}$ .

Examples: (1)  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{2\times 2}$  square zero matrix of order 2. (2)  $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{2\times 4}$  zero matrix of order 2×4.

Identity Matrix: A square matrix all elements of the main diagonal are equal 1 and other elements are equal to 0 denoted by In.

**Other Definition:** A matrix  $A=[a_{ij}]_{n\times n}$  is said to be identity matrix if  $a_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq i \end{cases}$ 

Examples: (1) 
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 square identity matrix of order 2×2 (I<sub>2</sub>).  
(2)  $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$  square identity matrix of order 4×4 (I<sub>4</sub>).

Transpose of Matrix: The matrix resulting from replacing the rows of the matrix by the column of it and denoted by A' or  $A^{t}$  or  $A^{T}$ .

Examples: (1) If 
$$A = \begin{bmatrix} 2 & 0 & 3 & -1 \\ 4 & 1 & 5 & 7 \end{bmatrix}_{2\times 4}$$
 then  $A^{t} = \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ 3 & 5 \end{bmatrix}$ 

(2) If 
$$B = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 1 & 0 \\ 3 & 0 & -2 \\ 1 & 1 & -1 \\ 3 & 2 & 0 \end{bmatrix}$$
 then  $B^{t} = \begin{bmatrix} 2 & -1 & 3 & 1 & 3 \\ 0 & 1 & 0 & 1 & 2 \\ -1 & 0 & -2 & -1 & 0 \end{bmatrix}_{3\times5}$ .

(6) Symmetric Matrix: A square matrix A is called symmetric matrix if it is equal to its transpose (i.e.  $A = A^{t}$ ).

Examples: (1) 
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 and  $A^{t} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$  so A is symmetric matrix since  $A = A^{t}$ .

(2)  $B = \begin{bmatrix} 6 & 3 & -2 \\ 3 & 0 & 5 \\ 2 & 5 & -4 \end{bmatrix}$  and  $B^{t} = \begin{bmatrix} 6 & 3 & 2 \\ 3 & 0 & 5 \\ -2 & 5 & -4 \end{bmatrix}$  so B is not symmetric

matrix since  $B \neq B^t$ .

Skew Symmetric Matrix: A square matrix A is called skew symmetric matrix if it is equal to the negative of its transpose (i.e.  $A = -A^{t}$ ).

Examples: (1) 
$$A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & 3 \\ 1 & -3 & 0 \end{bmatrix}$$
,  $A^{t} = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$  and  $-A^{t} = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & 3 \\ 1 & -3 & 0 \end{bmatrix}$  so

A is skew symmetric matrix since  $A = -A^{t}$ .

(2) 
$$B = \begin{bmatrix} 0 & -8 \\ 8 & 1 \end{bmatrix}$$
,  $B^{t} = \begin{bmatrix} 0 & 8 \\ -8 & 1 \end{bmatrix}$  and  $-B^{t} = \begin{bmatrix} 0 & -8 \\ 8 & -1 \end{bmatrix}$  so B is not skew symmetric matrix since  $B \neq -B^{t}$ .

Note: All the elements of the main diagonal in the skew symmetric matrix are zero.

- (8) Conjugate Matrix: A matrix A is called conjugate matrix to the matrix B if the elements of the matrix A are the complex conjugated numbers with the elements of the matrix B and denoted by  $\overline{A}$ .
- **Examples:** (1) The matrix  $C = \begin{bmatrix} 2i & 4 \\ 1 & 3 \end{bmatrix}$  is conjugate matrix to the matrix  $D = \begin{bmatrix} -2i & 4 \\ 1 & 3 \end{bmatrix}$ .
  - [2] The conjugate matrix to the matrix  $A = \begin{bmatrix} 2-i & 1+i & i \\ 2-3i & 4+i & 2i \\ 1-2i & -i & -2i \end{bmatrix}$  is the matrix  $\overline{A} = \begin{bmatrix} 2+i & 1-i & -i \\ 2+3i & 4-i & -2i \\ 1+2i & i & 2i \end{bmatrix}$

**Note:** The conjugate transpose of the matrix is equal to the transpose conjugate matrix. i.e.  $(\overline{A})^t = (\overline{A}^t) = A^*$ .

Example: 
$$A = \begin{bmatrix} 1+i & 3 \\ -3 & -i \end{bmatrix} \Rightarrow A^{t} = \begin{bmatrix} 1+i & -3 \\ 3 & -i \end{bmatrix} \Rightarrow (\overline{A}^{t}) = \begin{bmatrix} 1-i & -3 \\ 3 & i \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 1-i & 3 \\ -3 & i \end{bmatrix} \Rightarrow (\overline{A})^{t} = \begin{bmatrix} 1-i & -3 \\ 3 & i \end{bmatrix} = (\overline{A}^{t})$$

(9) **Hermitian Matrix:** A square matrix A is called hermitian matrix if it is equal to its conjugate transpose (i.e.  $A = A^*$ ).

**Examples:** (1) 
$$A = \begin{bmatrix} 4 & 2i \\ -2i & 1 \end{bmatrix}$$
,  $A^t = \begin{bmatrix} 4 & -2i \\ 2i & 1 \end{bmatrix}$  and  $A^* = \overline{A^t} = \begin{bmatrix} 4 & 2i \\ -2i & 1 \end{bmatrix}$  so A is

hermitian matrix since  $A = A^*$ .

(2) 
$$B = \begin{bmatrix} 2 & 1-2i & 2 \\ 1-2i & 1 & -3i \\ 2 & 3i & 3 \end{bmatrix}, \quad B^{t} = \begin{bmatrix} 2 & 1-2i & 2 \\ 1-2i & 1 & 3i \\ 2 & -3i & 3 \end{bmatrix} \text{ and }$$

$$B^{*} = \overline{B^{t}} = \begin{bmatrix} 2 & 1+2i & 2 \\ 1+2i & 1 & -3i \\ 2 & 3i & 3 \end{bmatrix} \text{ so B is not hermitian matrix since}$$

$$B \neq B^*$$
.

(10) Skew Hermitian Matrix: A square matrix A is called skew hermitian matrix if it is equal to its negative conjugate transpose (i.e.  $A = A^*$ ).

**Note:** All the elements of the main diagonal in the skew hermitian matrix are zero or pure imaginary numbers (complex number the real part of it must be equal to zero).

Examples :(1) 
$$A = \begin{bmatrix} 0 & -3i & 2 \\ 3i & 0 & -i \\ 2 & i & 0 \end{bmatrix}$$
,  $\overline{A} = \begin{bmatrix} 0 & 3i & 2 \\ -3i & 0 & i \\ 2 & -i & 0 \end{bmatrix}$  and  $(\overline{A})^t = \begin{bmatrix} 0 & -3i & 2 \\ 3i & 0 & -i \\ 2 & i & 0 \end{bmatrix} = A$ 

so A is not skew hermitian matrix since  $A \neq -A^*$ .

(2) 
$$B = \begin{bmatrix} 2i & 0 \\ 0 & -3i \end{bmatrix}$$
,  $\overline{B} = \begin{bmatrix} -2i & 0 \\ 0 & 3i \end{bmatrix}$ ,  $(\overline{B})^t = \begin{bmatrix} -2i & 0 \\ 0 & 3i \end{bmatrix}$  and  $-(\overline{B})^t = \begin{bmatrix} 2i & 0 \\ 0 & -3i \end{bmatrix} = B$  so B is skew hermitian matrix since  $B = -B^*$ .

- (11) Triangular Matrix: It is two kinds:
  - (a) Lower Triangular Matrix: A square matrix all its elements above the main diagonal are zeros, that is  $a_{ij} = 0$  for each i < j.

**Examples:** (1) 
$$\begin{bmatrix} 4 & 0 & 0 \\ 2 & -1 & 0 \\ 3 & 4 & 5 \end{bmatrix}$$
 square lower triangular matrix of order 3×3.

(2) 
$$B = \begin{bmatrix} 5 & 0 \\ 4 & -7 \end{bmatrix}$$
 square lower triangular matrix of order 2×2.

(b) Upper Triangular Matrix: A square matrix all its elements below the main diagonal are zeros, that is  $a_{ij} = 0$  for each i > j.

Examples: (1)  $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & 7 \\ 0 & 0 & 2 \end{bmatrix}$  square upper triangular matrix of order 3×3. (2)  $B = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$  square upper triangular matrix of order 2×2.

Note: the identity matrix is upper and lower triangular matrix.

(12) Diagonal Matrix: a square matrix A is called diagonal matrix if all elements are zero except the elements in the main diagonal (i.e.  $a_{ij} = 0$  if  $i \neq j$ ).

Other Definition: A square matrix which is upper and lower triangular matrix.

Examples: (1)  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  square matrix of order 3×3, diagonal matrix, lower and

upper triangular matrix, identity matrix.

- (2)  $B = \begin{bmatrix} 2 & 0 \\ 0 & -i \end{bmatrix}$  square matrix of order 2×2, diagonal matrix, lower and upper triangular matrix.
- (13) Scalar Matrix: A diagonal matrix is called scalar matrix if all main diagonal elements are equal.

Other Definition: A diagonal matrix  $A = [a_{ij}]_{n \times n}$  is called scalar matrix if

Examples: (1)  $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$  (2)  $\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}$ 

$$(2) \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}$$

(14) Row Matrix: An 1×n matrix has one row  $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$ .

**Examples:** (1)  $A = [3 \ 2 \ 1 \ 4]_{1\times 4}$  (2)  $A = [7 \ -5 \ 2 \ 3 \ 1]_{1\times 5}$ 

(15) Column Matrix: An m×1 matrix has one column 
$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
.

Examples: (1) 
$$B = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}_{3\times 1}$$

(2) 
$$B = \begin{bmatrix} -3 \\ 7 \\ 9 \\ 0 \end{bmatrix}_{4 \times 1}$$

Exercises: Classify the following matrices according to their types

$$\begin{pmatrix}
3 & 0 & 4 \\
0 & 1 & -2 \\
4 & -2 & 1
\end{pmatrix}$$

$$\begin{array}{c|cccc}
(7) & \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix}
\end{array}$$

(13) 
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 7 & 2 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 2 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 7
 \end{bmatrix}$$

$$\begin{array}{c|cccc}
(15) & 0 & 1 & 2 \\
1 & 0 & -1 \\
2 & 1 & 0
\end{array}$$

$$\begin{bmatrix}
 0 & 1-2i & 5i \\
 -1-2i & 0 & 3 \\
 5i & 3 & i
 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2i & 5i \\ 0 & 3 \\ 3 & i \end{bmatrix}$$
 (10) 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|c}
(16) & -1 \\
6 \\
8 \\
0
\end{array}$$

(5) 
$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
(11) & \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\end{array}$$

$$(6) \quad \begin{bmatrix} i & i \\ i & i \end{bmatrix}$$

# **Operations on Matrices**

**Addition of Matrices:** Matrices are said to be compatible with addition if and only if they have the same degree.

Let  $A = [a_{ij}]_{m \times n}$  and  $B = [b_{ij}]_{m \times n}$  be two matrices. The addition of A and B is denoted by A + B is also an  $m \times n$  matrix, and

by A + B is also an m × n matrix, and
$$A + B = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}$$

$$= [a_{ij} + b_{ij}]_{m \times n}$$

$$= [c_{ij}]_{m \times n} \quad \text{where} \quad a_{ij} + b_{ij} = c_{ij} \quad \text{for all possible values of i, j}$$

Examples:

(1) 
$$\begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 1+2 & 5+0 \\ 1+2 & 5+0 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 3 & 5 \end{bmatrix}$$

Examples:  
(1) 
$$\begin{bmatrix} 1 & 5 \\ 4 & 6 \end{bmatrix}_{2\times 2} + \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}_{2\times 2} = \begin{bmatrix} 1+2 & 5+0 \\ 4+(-1) & 6+0 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 3 & 6 \end{bmatrix}_{2\times 2}$$

(2) 
$$A = \begin{bmatrix} 1 & 5 \\ 4 & 6 \end{bmatrix}_{2 \times 2}, B = \begin{bmatrix} 1 & 5 \\ 4 & 6 \\ 2 & -1 \end{bmatrix}_{3 \times 2}$$

A + B not define since A and B have different size. Thus A and B cannot be added.

(3) 
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & -2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & 3 \\ 2 & -3 & 5 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & -2 \end{bmatrix}_{2\times 3} + \begin{bmatrix} -1 & 1 & 3 \\ 2 & -3 & 5 \end{bmatrix}_{2\times 3}$$

$$= \begin{bmatrix} 2 + (-1) & 0 + 1 & (-1) + 3 \\ 3 + 2 & 5 + (-3) & (-2) + 5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 5 & 2 & 3 \end{bmatrix}$$

$$B + A = \begin{bmatrix} -1 & 1 & 3 \\ 2 & -3 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} (-1) + 2 & 1 + 0 & 3 + (-1) \\ 2 + 3 & (-3) + 5 & 5 + (-2) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 5 & 2 & 3 \end{bmatrix}$$

We note that A + B = B + A. So Addition of matrices is commutative.

# **Properties of the Addition of Matrices**

**Theorem:** Let  $M_{m\times n}(F)$  be the set of all m×n matrices over F, where  $F = \mathbb{R}$  or  $\mathbb{C}$ . Then:

(1) A + B = B + A

- (The addition of matrices is commutative).
- (2) (A + B) + C = A + (B + C)
- (The addition of matrices is associative).
- (3) A + O = O + A = A.

**Proof** (1): Let A, B  $\in$  M<sub>m×n</sub>(F) such that A =  $[a_{ij}]_{m\times n}$  and B =  $[b_{ij}]_{m\times n}$ ,  $a_{ij}$ ,  $b_{ij}$   $\in$  F

$$\mathbf{A} + \mathbf{B} = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}$$

$$= [a_{ii} + b_{ii}]_{m \times n}$$

(definition the addition of matrices)

$$=[b_{ii}+a_{ii}]_{m\times n}$$

(the addition of numbers is commutative)

$$= [b_{ij}]_{m\times n} + [a_{ij}]_{m\times n}$$

(definition the addition of matrices)

= B + A

**Proof** (2): Let A, B, C  $\in$  M<sub>m×n</sub>(F) such that A =  $[a_{ij}]_{m\times n}$ , B =  $[b_{ij}]_{m\times n}$  and C =  $[c_{ij}]_{m\times n}$ ,

$$a_{ij}, b_{ij}, c_{ij} \in F$$

$$(A + B) + C = ([a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}) + [c_{ij}]_{m \times n}$$

=  $[a_{ij} + b_{ij}]_{m \times n} + [c_{ij}]_{m \times n}$  (definition the addition of matrices)

$$= [d_{ij}]_{m \times n} + [c_{ij}]_{m \times n} \qquad \text{where } d_{ij} = a_{ij} + b_{ij}$$

=  $[d_{ij} + c_{ij}]_{m \times n}$  (definition the addition of matrices)

$$= [(a_{ij} + b_{ij}) + c_{ij}]_{m \times n} d_{ij} = a_{ij} + b_{ij}$$

=  $[a_{ij} + (b_{ij} + c_{ij})]_{m \times n}$  (the addition of numbers is associative)

=  $[a_{ij}]_{m \times n}$  +  $[b_{ij} + c_{ij}]_{m \times n}$  (definition the addition of matrices)

=  $[a_{ij}]_{m \times n}$  +  $([b_{ij}]_{m \times n}$  +  $[c_{ij}]_{m \times n}$ ) (definition the addition of matrices)

= A + (B + C)

**Proof (3):** Let A,  $O \in M_{m \times n}(F)$  such that  $A = [a_{ij}]_{m \times n}$ ,  $O = [b_{ij}]_{m \times n}$ ,  $a_{ij} \in F$ ,  $b_{ij} = 0 \ \forall i, j$ 

$$A + O = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}$$

=  $[a_{ii} + b_{ij}]_{m \times n}$  (definition the addition of matrices)

 $= [a_{ij} + 0]_{m \times n} \qquad b_{ij} = 0 \ \forall \ i, j$ 

 $= [a_{ij}]_{m \times n}$ 

 $\supseteq A$ 

$$O + A = [b_{ij}]_{m \times n} + [a_{ij}]_{m \times n}$$
$$= [b_{ij} + a_{ij}]_{m \times n}$$

=  $[b_{ij} + a_{ij}]_{m \times n}$  (definition the addition of matrices)

$$= [0 + a_{ij}]_{m \times n} \qquad b_{ij} = 0 \ \forall \ i, j$$

 $= [a_{ii}]_{m \times n}$ 

= A

# **Multiplication of Matrix by Scalar:**

If  $A = [a_{ij}]_{m \times n}$  matrix, c is a scalar then the scalar multiple c A is the m×n matrix obtained from A by multiplying each entry of A (which is a scalar too) by c. Thus  $cA = [c \ a_{ij}]_{m \times n}$ .

#### **Examples:**

$$(1) \ 2 \begin{bmatrix} -1 & 0 & i \\ 3 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 2i \\ 6 & 4 & 0 \end{bmatrix}$$

$$(3) \quad \mathbf{i} \begin{bmatrix} -1 & 0 & \mathbf{i} \\ 3 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -\mathbf{i} & 0 & -1 \\ 3\mathbf{i} & 2\mathbf{i} & 0 \end{bmatrix}$$

Prof. Dr. Virali, Sabah Jasim **Remark:** If  $A = [a_{ij}]_{m \times n}$ , then  $(-1) A = [(-1) a_{ij}]_{m \times n} = [-a_{ij}]_{m \times n}$ . The matrix (-1) A is denoted by -A and it is called the negative of A.

Also,  $A + (-A) = O_{m \times n}$ , i.e. A is the additive inverse of A.

**Proposition:** Given  $A \in M_{m \times n}(F)$ , there exists  $B \in M_{m \times n}(F)$  such that

$$A + B = O_{m \times n} = B + A$$

In fact A determines B uniquely and B = -A.

**Proof**: Let  $A = [a_{ij}]_{m \times n}$ , since B = -A, so  $B = [-a_{ij}]_{m \times n}$ 

$$A + B = [a_{ij}]_{m \times n} + [-a_{ij}]_{m \times n}$$

$$= [a_{ij} + (-a_{ij})]_{m \times n}$$
 (definition the addition of matrices)
$$= [a_{ij} - a_{ij}]_{m \times n}$$

$$= O_{m \times n}$$

$$\mathbf{B} + \mathbf{A} = [-a_{ij}]_{m \times n} + [a_{ij}]_{m \times n}$$

$$= [(-a_{ij}) + a_{ij}]_{m \times n}$$
 (definition the addition of matrices)
$$= [-a_{ij} + a_{ij}]_{m \times n}$$

$$= \mathbf{O}_{m \times n}$$

**Theorem:** Let A, B and C are three matrices of the same degree, then

$$(1) A + B = A + C \Leftrightarrow B = C$$

(2) 
$$B + A = C + A \Leftrightarrow B = C$$

#### **Proof (1):**

$$A + B = A + C \Leftrightarrow -A + (A + B) = -A + (A + C)$$
 (add (-A) to each side from left) 
$$\Leftrightarrow (-A + A) + B = (-A + A) + C$$
 (the addition of matrices is associative) 
$$\Leftrightarrow O + B = O + C$$
 
$$\Leftrightarrow B = C$$

#### Proof (2) (Home Work)

Subtraction of Matrices: Matrices are said to be compatible with subtraction if and only if they have the same degree.

Let  $A = [a_{ij}]_{m \times n}$  and  $B = [b_{ij}]_{m \times n}$  be two matrices. The subtraction of A and B is denoted by A - B is also an  $m \times n$  matrix, and

$$\begin{aligned} \mathbf{A} - \mathbf{B} &= \mathbf{A} + (-\mathbf{B}) \\ &= [a_{ij}]_{m \times n} + [-b_{ij}]_{m \times n} \\ &= [a_{ij} - b_{ij}]_{m \times n} \\ &= [c_{ij}]_{m \times n} \quad \text{where} \quad a_{ij} - b_{ij} = c_{ij} \quad \text{for all possible values of i, j} \end{aligned}$$

**Examples:** 

Examples:  
(1) 
$$\begin{bmatrix}
8 & 6 & -4 \\
1 & 10 & -1
\end{bmatrix} - \begin{bmatrix}
2 & 1 & -1 \\
3 & 0 & -2
\end{bmatrix} = \begin{bmatrix}
8 - 2 & 6 - 1 & -4 - (-1) \\
1 - 3 & 10 - 0 & -1 - (-2)
\end{bmatrix} = \begin{bmatrix}
6 & 5 & -3 \\
-2 & 10 & 1
\end{bmatrix}$$

(2) 
$$\begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 4 \\ 2 & -1 \\ 0 & 3 \end{bmatrix}$$
 not define since the matrices have different size.

(3) Let 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & \frac{1}{3} & -1 \\ \frac{1}{2} & 0 & -7 \end{bmatrix}$ , find  $A + 2B$ ,  $A - 2B$ 

$$2B = 2\begin{bmatrix} 2 & \frac{1}{3} & -1 \\ \frac{1}{2} & 0 & -7 \end{bmatrix} = \begin{bmatrix} 4 & \frac{2}{3} & -2 \\ 1 & 0 & -14 \end{bmatrix}$$

$$A + 2B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 4 & \frac{2}{3} & -2 \\ 1 & 0 & -14 \end{bmatrix} = \begin{bmatrix} 5 & \frac{2}{3} & -1 \\ 3 & -1 & -11 \end{bmatrix}$$

$$A - 2B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix} - \begin{bmatrix} 4 & \frac{2}{3} & -2 \\ 1 & 0 & -14 \end{bmatrix} = \begin{bmatrix} -3 & -\frac{2}{3} & 3 \\ 1 & -1 & 17 \end{bmatrix}$$

#### **Remarks:**

rof.Dr.Hirain Sabala Jasima (1) The subtraction of matrices is not commutative.

**Example:** If 
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 4 \\ -5 & 2 \end{bmatrix}$ 

$$A - B = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ 7 & 2 \end{bmatrix}$$

$$\mathbf{B} - \mathbf{A} = \begin{bmatrix} 0 & 4 \\ -5 & 2 \end{bmatrix} - \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 5 \\ -7 & -2 \end{bmatrix}$$

So we get that  $A - B \neq B - A$ 

(2) The subtraction of matrices is not associative.

**Example:** If 
$$A = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$$
,  $B = \begin{bmatrix} 4 & -1 \\ 2 & 5 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 & 2 \\ 1 & -3 \end{bmatrix}$ , then  $(A - B) - C \neq A - (B - C)$  apply that. (**Home work**)

**Theorem:** For any two matrices of the same degree B - A = -(A - B).

**Proof:** Let 
$$A = [a_{ij}]_{m \times n}$$
 and  $B = [b_{ij}]_{m \times n}$ 

From: Let 
$$A = [a_{ij}]_{m \times n}$$
 and  $B = [b_{ij}]_{m \times n}$ 

$$= -(A - B) = -([a_{ij}]_{m \times n} - [b_{ij}]_{m \times n})$$

$$= -[a_{ij} - b_{ij}]_{m \times n}$$
 (definition the subtraction of matrices)
$$= -[c_{ij}]_{m \times n}$$
 where  $c_{ij} = a_{ij} - b_{ij}$ 

$$= [-c_{ij}]_{m \times n}$$
 (replaced)
$$= [-a_{ij} + b_{ij}]_{m \times n}$$
 (the addition of numbers is commutative to the subtraction of matrices)
$$= [b_{ij} - a_{ij}]_{m \times n}$$
 (definition the subtraction of matrices)

$$= [-a_{ij} + b_{ij}]_{m \times n}$$

$$= [b_{ij} - a_{ij}]_{m \times n}$$
 (the addition of numbers is commutative)
$$= [b_{ij}]_{m \times n} - [a_{ij}]_{m \times n}$$
 (definition the subtraction of matrices)

**Theorem:** Let  $M_{m\times n}(F)$  be the set of all  $m\times n$  matrices over F, where  $F=\mathbb{R}$  or  $\mathbb{C}$ . Then for any scalars r, s and any A, B  $\in$  M<sub>m×n</sub>(F)

(1) 
$$r(A + B) = rA + rB$$

(2) 
$$(r + s) A = r A + sA$$

```
(3) r(sA) = (rs) A = s(rA)
```

**(4)** 
$$1 A = A$$

(5) 
$$0 A = 0$$

**(6)** 
$$r A = A r$$

**Proof** (1): Let  $A = [a_{ij}]_{m \times n}$ ,  $B = [b_{ij}]_{m \times n}$  and  $r \in F$ 

$$r(A + B) = r([a_{ij}]_{m \times n} + [b_{ij}]_{m \times n})$$

= 
$$r [a_{ii} + b_{ii}]_{m \times n}$$
 (definition the addition of matrices)

$$= \mathbf{r} [c_{ij}]_{m \times n}$$
 where  $c_{ij} = a_{ij} + b_{ij}$ 

$$= [r c_{ii}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

= 
$$[r (a_{ij} + b_{ij})]_{m \times n}$$
 (replaced)

= 
$$[r a_{ii} + r b_{ii}]_{m \times n}$$
 (distribution of multiplication over the addition in numbers)

= 
$$[r a_{ii}]_{m \times n}$$
 +  $[r b_{ii}]_{m \times n}$  (definition the addition of matrices)

= 
$$r [a_{ij}]_{m \times n} + r [b_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$= rA + rB$$

**Proof (2):** Let  $A = [a_{ij}]_{m \times n}$  and  $r, s \in F$ 

$$(\mathbf{r} + \mathbf{s}) \mathbf{A} = (\mathbf{r} + \mathbf{s}) [a_{ij}]_{\mathbf{m} \times \mathbf{n}}$$

= 
$$[(r + s) a_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

= 
$$[r a_{ij} + s a_{ij}]_{m \times n}$$
 (distribution of multiplication over the addition in numbers)

= 
$$[r a_{ii}] + [s a_{ii}]_{m \times n}$$
 (definition the addition of matrices)

$$= r [a_{ii}] + s [a_{ii}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$= rA + sA$$

**Proof (3):** Let  $A = [a_i]_{m \times n}$  and  $r, s \in F$ 

$$r(sA) = r(s[a_{ij}])_{m \times n}$$

$$= r [s a_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

= 
$$[r(s a_{ii})]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$= [(rs) a_{ii}]_{m \times n}$$
 (the multiplication of numbers is associative)

$$(= (rs) [a_{ii}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$r(sA) = r(s[a_{ij}])_{m \times n}$$

$$= r [sa_{ii}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$= [r(sa_{ii})]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

 $= [(rs)a_{ij})]_{m\times n} \qquad \qquad \text{(the multiplication of numbers is associative)}$   $= [(sr) a_{ij})]_{m\times n} \qquad \qquad \text{(the multiplication of numbers is commutative)}$   $= [s (r a_{ij})]_{m\times n} \qquad \qquad \text{(the multiplication of numbers is associative)}$   $= s [r a_{ij}]_{m\times n} \qquad \qquad \text{(definition the multiplication of matrix by scalar)}$   $= s (r [a_{ij}]_{m\times n}) \qquad \qquad \text{(definition the multiplication of matrix by scalar)}$  = s (rA)

$$= s [r \ a_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

 $= s (r [a_{ij}]_{m \times n})$  (definition the multiplication of matrix by scalar)

 $= s (rA)$ 

Proof (4): Let  $A = [a_{ij}]_{m \times n}$ 
 $= [a_{ij}]_{m \times n}$  (definition the multiplication of matrix by scalar)

 $= [a_{ij}]_{m \times n}$  (definition the multiplication of matrix by scalar)

 $= [a_{ij}]_{m \times n}$   $= A$ 

**Proof (5):** Let 
$$A = [a_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)  $= O_{m \times n}$ 

**Proof (6):** Let 
$$A = [a_{ij}]_{m \times n}$$
,  $r \in F$ 

$$r A = r [a_{ij}]_{m \times n} = [r a_{ij}]_{m \times n} \qquad \text{(definition the multiplication of matrix by scalar)}$$

$$= [a_{ij} r]_{m \times n} \qquad \text{(the multiplication of numbers is commutative)}$$

$$= A r$$

# **Multiplication of Matrices**:

Two matrices are said to be compatible with multiplication if the number of the columns of the first matrix is equal to the number of the rows of the second matrix, i.e.

If 
$$A = [a_{ij}]_{m \times n}$$
,  $B = [b_{ij}]_{n \times p}$  then  $AB = C = [a_{ij}]_{m \times n}$   $[b_{ij}]_{n \times p} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right]_{m \times p}$ 

**Examples:** (1) Let 
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & 0 & -3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{bmatrix}$ , find AB and BA?

**Solution:** 

$$A B = \begin{bmatrix} 1 & -2 & -1 \\ 3 & 0 & -3 \end{bmatrix}_{2 \times 3} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{bmatrix}_{3 \times 2}$$

$$= \begin{bmatrix} 1(2) + (-2)(-1) + (-1)(0) & 1(0) + (-2)(1) + (-1)(-2) \\ 3(2) + 0(-1) + (-3)(0) & 3(0) + 0(1) + (-3)(-2) \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 6 & 6 \end{bmatrix}_{2 \times 2}$$

$$\mathbf{B} \mathbf{A} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{bmatrix}_{3 \times 2} \begin{bmatrix} 1 & -2 & -1 \\ 3 & 0 & -3 \end{bmatrix}_{2 \times 3}$$

$$= \begin{bmatrix} 3(2) + 0(-1) + (-3)(0) & 3(0) + 0(1) + (-3)(-2) \end{bmatrix} = \begin{bmatrix} 6 & 6 \end{bmatrix}_{2\times 2}$$

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{bmatrix}_{3\times 2} \begin{bmatrix} 1 & -2 & -1 \\ 3 & 0 & -3 \end{bmatrix}_{2\times 3}$$

$$= \begin{bmatrix} (2)(1) + 0(3) & 2(-2) + 0(0) & 2(-1) + 0(-3) \\ (-1)(1) + 1(3) & (-1)(-2) + 1(0) & (-1)(-1) + 1(-3) \\ 0(1) + (-2)(3) & 0(-2) + (-2)(0) & 0(-1) + (-2)(-3) \end{bmatrix} = \begin{bmatrix} 2 & -4 & -2 \\ 2 & 2 & -2 \\ -6 & 0 & 6 \end{bmatrix}_{3\times 3}$$

$$\text{ote that A B } \neq \text{B A.}$$

$$0 \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}_{2\times 2} \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}_{2\times 2} = \begin{bmatrix} 1(1) + 1(-1) & 1(0) + 1(3) \\ 2(1) + 1(-1) & 2(0) + 1(3) \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 1 & 3 \end{bmatrix}_{2\times 2}$$

Note that  $A B \neq B A$ .

$$(2) \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}_{2 \times 2} \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 1(1) + 1(-1) & 1(0) + 1(3) \\ 2(1) + 1(-1) & 2(0) + 1(3) \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 1 & 3 \end{bmatrix}_{2 \times 2}$$

(3) Let 
$$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 2 & 1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 5 & -2 \end{bmatrix}$ , find AB and BA if exist? (Home work)

[2] 
$$\begin{bmatrix} 2 & 1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & -1 & 2 \\ 1 & -2 & 1 \end{bmatrix}$ , find AB and BA if exist?

Solution:

Solution:
$$AB = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}_{2\times2} \begin{bmatrix} 2 & -1 & 2 \\ 1 & -2 & 1 \end{bmatrix}_{2\times3} = \begin{bmatrix} 1(2) + (-2)(1) & 1(-1) + (-2)(-2) & 1(2) + (-2)(1) \\ 2(2) + (-1)(1) & 2(-1) + (-1)(-2) & 2(2) + (-1)(1) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}_{2\times3}$$

BA not exists since the number of B columns is not equal to the number of A rows. **Remarks:** (1) Two matrices A and B are said to be commutative if AB = BA.

**Example:** Is the matrix  $A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$  commutative with the matrix  $B = \begin{bmatrix} 7 & 8 \\ 2 & 1 \end{bmatrix}$ ?

#### **Solution:**

$$AB = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}_{2 \times 2} \begin{bmatrix} 7 & 8 \\ 2 & 1 \end{bmatrix}_{2 \times 2}$$
$$= \begin{bmatrix} 2(7) + 4(2) & 2(8) + 4(1) \\ 1(7) + (-1)(2) & 1(8) + (-1)(1) \end{bmatrix} = \begin{bmatrix} 22 & 20 \\ 5 & 7 \end{bmatrix}_{2 \times 2}$$

Example: AB = 
$$\begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1(2) + 1(2) & -1(1) + 1(1) \\ -2(2) + 2(2) & -2(1) + 2(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

(3) The cancellation law not satisfies in matrices multiplication, i.e.

$$AB = AC \implies B = C$$

AB = AC 
$$\Rightarrow$$
 B = C  
Example: Let A =  $\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$ , B =  $\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$  and C =  $\begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$ 

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0(1) + 1(3) & 0(1) + 1(4) \\ 0(1) + 2(3) & 0(1) + 2(4) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

$$AC = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0(2) + 1(3) & 0(5) + 1(4) \\ 0(2) + 2(3) & 0(5) + 2(4) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

 $\overrightarrow{AB} = AC$  while  $B \neq C$ .

(4) If both matrices A and B are square matrix of the same order with real entries, then it is not necessary that  $(AB)^2 = A^2 B^2$ .

**Example:** Let 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix}$ 

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -2 & -2 \end{bmatrix}$$

$$(AB)^{2} = (AB) (AB) = \begin{bmatrix} -2 & 0 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ -2 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 8 & 4 \end{bmatrix}$$

$$A^{2} = AA = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$B^{2} = BB = \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -1 & 1 \end{bmatrix}$$

$$A^2 B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -4 & 4 \end{bmatrix}$$

We get that  $(AB)^2 \neq A^2 B^2$ .

Strain Sabah Jasim **Note that** this relation is true when the matrices are commutative, for example

consider 
$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & -3 \\ -2 & 2 \end{bmatrix}$  apply that  $(AB)^2 = A^2 B^2$  (**Home work**)

**Theorem:** Let A be a matrix of degree m×n, then

- (1)  $A I_n = A$
- (2)  $I_m A = A$
- (3) AO = O, OA = O

**Proof (1):** Let 
$$A = [a_{ij}]_{m \times n}$$
,  $I_n = [s_{ij}]_{n \times n}$  such that  $s_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ 

(i,j) element of 
$$AI_n = \sum_{k=1}^n a_{ik} s_{kj}$$

$$\begin{aligned}
& = a_{i1}s_{1j} + a_{i2}s_{2j} + \dots + a_{ij}s_{jj} + \dots + a_{in}s_{nj} \\
&= a_{i1}(0) + a_{i2}(0) + \dots + a_{ij}(1) + \dots + a_{in}(0) \\
&= a_{ij}(1) \\
&= a_{ij} \\
&= (i,j) \text{ element of A}
\end{aligned}$$

Degree of the matrix  $A = m \times n = Degree of the matrix <math>A_{m \times n} I_{n \times n}$ , so  $A I_n = A$ .

**Proof (2):** (Home work)

**Proof** (3): Let  $A = [a_{ij}]_{m \times n}$ ,  $O = [f_{ij}]_{n \times p}$  such that  $f_{ij} = 0$  for all i and j

$$\mathbf{A}_{\mathbf{m} \times \mathbf{n}} \mathbf{O}_{\mathbf{n} \times \mathbf{p}} = \left[ \sum_{k=1}^{n} a_{i k} f_{k j} \right]_{\mathbf{m} \times \mathbf{n}}$$

Since  $f_{ij} = 0$  for all i and j, then  $a_{ik} f_{kj} = 0$ . So

$$A_{m\times n}\ O_{n\times p}=O_{m\times p}$$

Degree of the matrix  $A O = m \times p = Degree of the matrix O$ 

$$\therefore$$
 AO = O

In the same way we can prove that OA = O.

# Theorem: Associative law of multiplication

Let A, B and C matrices compatible with multiplication, then

- (1) (AB)C = A(BC)
- (2) r(AB) = (rA)B = A(rB), where r is a real number and A, B  $\in M_{n \times n}(F)$ ,  $F = \mathbb{R}$  or  $\mathbb{C}$ .

**Proof** (1): Let  $A = [a_{ij}]_{m \times p}$ ,  $B = [b_{jk}]_{p \times q}$  and  $C = [c_{ks}]_{q \times n}$ 

(AB) C = 
$$([a_{ij}]_{m \times p} [b_{jk}]_{p \times q}) [c_{ks}]_{q \times n}$$

$$= \left[\sum_{j=1}^{p} a_{ij} b_{jk}\right]_{m \times q} [c_{ks}]_{q \times n}$$

(definition the multiplication of matrices)

$$= \left[\sum_{k=1}^{q} \sum_{j=1}^{p} (a_{ij}b_{jk})c_{ks}\right]_{ms}$$

(definition the multiplication of matrices)

$$= \left[\sum_{j=1}^{p} \sum_{k=1}^{q} a_{ij} (b_{jk} c_{ks})\right]_{m \times n}$$

(the multiplication of numbers is associative)

 $A(BC) = [a_{ij}]_{m \times p} ([b_{jk}]_{p \times q} [c_{ks}]_{q \times n})$ 

$$= [a_{ij}]_{m \times p} \left[ \sum_{k=1}^{q} b_{jk} c_{ks} \right]_{p \times n}$$

(definition the multiplication of matrices)

$$= \left[\sum_{j=1}^{p} \sum_{k=1}^{q_j} a_{ij}(b_{jk}c_{ks})\right]_{m \times r}$$

(definition the multiplication of matrices)

$$\therefore$$
 (AB) C = A(BC)

**Proof** (2): Let  $A = [a_{ij}]_{n \times n}$ ,  $B = [b_{ij}]_{n \times n}$  and  $C = [c_{ij}]_{n \times n}$ , r is a real number

$$r(AB) = r([a_{ij}]_{n \times n}[b_{ij}]_{n \times n})$$

$$= r [c_{ij}]_{n \times n}$$

(definition the multiplication of matrices)

$$= [r c_{ij}]_{n \times n}$$

(definition the multiplication of matrix by scalar)

$$= \left[ r \sum_{k=1}^{n} a_{ik} b_{kj} \right]_{n \times n} \qquad \text{(definition the multiplication of matrices)}$$

$$= \left[ \sum_{k=1}^{n} r(a_{ik} b_{kj}) \right]_{n \times n} \qquad \text{(the multiplication of numbers is associative)}$$

$$= \left[ r a_{ij} \right]_{n \times n} [b_{ij}]_{n \times n} \qquad \text{(definition the multiplication of matrices)}$$

$$= (r [a_{ij}]_{n \times n}) [b_{ij}]_{n \times n} \qquad \text{(definition the multiplication of matrix by scalar)}$$

$$= (rA)B$$

As the same way we can prove

$$r(AB) = A(rB)$$
 and  $(rA)B = A(rB)$  (Home work)

#### Theorem: Distributive law of multiplication over addition

Let A, B and C matrices compatible with multiplication, then

(1) 
$$A(B + C) = AB + AC$$

(2) 
$$(B + C) A = BA + CA$$

**Proof** (1): Let 
$$A = [a_{ij}]_{m \times n}$$
,  $B = [b_{jk}]_{n \times p}$ ,  $C = [c_{ks}]_{n \times p}$ .

Suppose that B + C = D such that  $[b_{jk}]_{n \times p} + [c_{ks}]_{n \times p} = [b_{jk} + c_{ks}]_{n \times p} = [d_{ij}]_{n \times p}$ 

$$A (B + C) = A \cdot D$$

$$= \left[\sum_{k=1}^{n} a_{ik} d_{kj}\right]_{m \times n}$$

(definition the multiplication of matrices)

$$= \left[ \sum_{k=1}^{n} a_{ik} (b_{kj} + c_{kj}) \right]_{m \times p} \qquad d_{kj} = b_{kj} + c_{kj}$$

$$d_{\mathbf{k}\,\mathbf{j}} = b_{\mathbf{k}\,\mathbf{j}} + c_{\mathbf{k}\,\mathbf{j}}$$

$$= \left[\sum_{k=1}^{n} (a_{ik}b_{kj} + a_{ik}c_{kj})\right]_{m \times p}$$

(distribution of multiplication over the addition in numbers)

$$\begin{aligned} \mathbf{A} \left( \mathbf{B} + \mathbf{C} \right) &= \left[ \sum_{k=1}^{n} a_{i\,k} b_{k\,j} + \sum_{k=1}^{n} a_{i\,k} c_{k\,j} \right]_{\mathbf{m} \times \mathbf{p}} \\ &= \left[ \sum_{k=1}^{n} a_{i\,k} b_{k\,j} \right]_{\mathbf{m} \times \mathbf{p}} + \left[ \sum_{k=1}^{n} a_{i\,k} c_{k\,j} \right]_{\mathbf{m} \times \mathbf{p}} \end{aligned} \tag{definition the addition of matrices)}$$

$$= AB + AC$$

$$\therefore$$
 A (B + C) = AB + AC

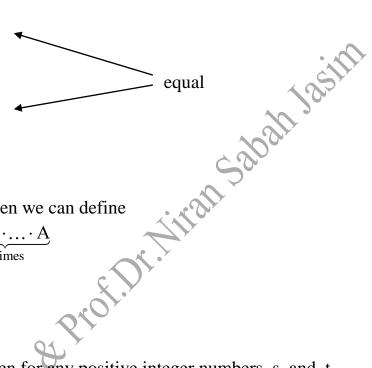
Degree of the matrix  $B + C = n \times p$ 

Degree of the matrix  $A(B + C) = m \times p$ 

Degree of the matrix  $AB = m \times p$ 

Degree of the matrix  $AC = m \times p$ 

Degree of the matrix  $AB + AC = m \times p$ 



(the multiplication of matrices is associative)

#### **Proof (2): (Home work)**

**Definition**: If A is any square matrix, then we can define

$$A^k = \underbrace{A \cdot A \cdot \ldots \cdot A}_{k \text{ times}}$$

Where k is any positive integer number.

**Note that**  $A^0 = I$ .

Theorem: If A is any square matrix, then for any positive integer numbers s and t

- $(1) \quad A^s \cdot A^t = A^{s+t}$
- (2)  $(A^{s})^{t} = A^{s t}$

We use the mathematical induction method in the proof.

# **Proof** (1):

When 
$$t = 1 \implies A^s \cdot A^1 = A^{s+1}$$

Suppose that the statement is true when  $t = k \implies A^s \cdot A^k = A^{s+k}$ 

Is the statement still true when t = k + 1?

**i.e.** 
$$A^s \cdot A^{k+1} = A^{s+k+1}$$

$$A^s \cdot A^{k+1} = A^s (A^k \cdot A)$$

$$= (A^s \cdot A^k) \cdot A$$

$$\mathbf{A} \mathbf{S} + \mathbf{k} + \mathbf{1}$$

# **Proof (2):**

When 
$$t = 1 \implies (A^s)^1 = A^s$$

Suppose that the statement is true when  $t = k \implies (A^s)^k = A^{s k}$ 

Is the statement still true when t = k + 1?

**i.e.** 
$$(A^s)^{k+1} = A^{s(k+1)}$$

$$(A^s)^{k+1} = (A^s)^k \cdot (A^s)^1$$

$$= A^{sk} \cdot A^{s}$$

$$= A^{sk+s}$$

$$= A^{s(k+1)}$$

**Example:** Let  $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ , compute  $A^2$ ,  $A^3$  and find  $A^k$  for any positive integer

$$A^{2} = A \cdot A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

number.

Solution:
$$A^{2} = A \cdot A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$A^{4} = A^{3} \cdot A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{4} = A^{3} \cdot A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{5} = A^{4} \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots$$

When k = 2n (even positive integer number)

$$A^{2} = A^{4} = \dots = A^{k=2n} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

When k = 2n - 1 (odd positive integer number)

$$A = A^{3} = \dots = A^{k=2n-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

**Theorem:** For any matrices A, B and C,

- (1)  $(A^t)^t = A$  (the transpose of transpose matrix is equal to the matrix itself)
- (2)  $(A \pm B)^{t} = A^{t} \pm B^{t}$
- (3)  $(\alpha A)^t = \alpha A^t$ , where  $\alpha$  is standard number
- $(4) O_{m\times n}^t = O_{n\times m}$
- (the transpose of identity matrix is equal to the identity matrix itself) (5)  $I_n^t = I_n$

**Proof** (1): Let  $A = [a_{ii}]_{m \times n}$ 

$$A^{t} = [a_{ii}]_{n \times m}$$
 (definition of matrix transpose)

$$A^{t} = [a_{ji}]_{n \times m}$$
 (definition of matrix transpose)  
 $(A^{t})^{t} = [a_{ij}]_{m \times n}$  (definition of matrix transpose)  
 $\therefore (A^{t})^{t} = A$ 

$$\therefore (A^t)^t = A$$

**Proof (2):** Let  $A = [a_{ij}]_{m \times n}$ ,  $B = [b_{ij}]_{m \times n}$ 

Suppose  $A \pm B = C = [c_{ij}]_{m \times n}$ 

$$(\mathbf{A} \pm \mathbf{B})^{t} = \mathbf{C}^{t} = [c_{ji}]_{n \times m}$$
 (definition of matrix transpose)  
=  $[a_{ji} \pm b_{ji}]_{n \times m}$   $c_{ji} = a_{ji} \pm b_{ji}$ 

$$= [a_{ji} \pm b_{ji}]_{n \times m}$$

$$= [a_{ji}]_{n \times m} \pm [b_{ji}]_{n \times m}$$

$$= [a_{ji}]_{n \times m} \pm [b_{ji}]_{n \times m}$$

$$(definition of matrix transpose)$$

$$(definition the addition and subtraction of matrices)$$

$$\therefore (A \pm B)^t = A^t \pm B^t$$

$$\therefore (A \pm B)^t = A^t \pm B^t$$

Generalization: For any compatible matrices with addition  $A_1, A_2, ..., A_n$ 

$$(A_1 + A_2 + ... + A_n)^t = A_1^t + A_2^t + ... + A_n^t$$

**Proof** (3):  $A = [a_{ij}]_{m \times n}$ 

$$\alpha A = \alpha [a_{ij}]_{m \times n}$$

= 
$$[\alpha a_{ij}]_{m \times n}$$
 (definition the multiplication of matrix by scalar)

$$(\alpha A)^t = [\alpha \ a_{ii}]_{n \times m}$$
 (definition the matrix transpose)

$$= \alpha [a_{ji}]_{n \times m}$$
 (definition the multiplication of matrix by scalar)

$$\therefore (\alpha A)^t = \alpha A^t$$

**Proof** (4): Let  $O = [f_{ij}]_{m \times n}$ , where  $f_{ij} = 0$  for all values of i and j

$$O_{m \times n} = [f_{ij}]_{m \times n}$$

By definition of matrix transpose, we get

$$O_{m\times n}^t = [f_{ji}]_{n\times m}$$
, where  $f_{ji} = 0$  for all values of i and j

$$: O_{m \times n}^t = O_{n \times m}$$

**Proof (5):** Let  $I_n = [s_{ij}]_{n \times n}$ , such that  $s_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ 

$$I_n = [s_{ij}]_{n \times n}$$

$$I_n^t = [s_{ii}]_{n \times n}$$
 (definition of matrix transpose)

$$s_{ii} = s_{ii} = 1$$

if 
$$i = \frac{1}{2}$$

$$s_{ii} = s_{ii} = 0$$

if 
$$i \neq j$$

$$\therefore I_n^t = I_n$$

Theorem: Let  $A = [a_{ij}]_{m \times n}$  and  $B = [b_{ij}]_{n \times p}$ , then  $(AB)^t = B^t A^t$ Proof:

Let  $A^t = C = [c_{ij}]_{n \times m} \longrightarrow (c_{ij} = a_{ji})$   $B^t = D = [d_{ij}]_{p \times n} \longrightarrow (d_{ij} = b_{ji})$   $AB = E = [e_{ij}]_{m \times p} \longrightarrow \left(e_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}\right)$   $AB = B = [e_{ij}]_{m \times p} \longrightarrow \left(e_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}\right)$ 

Let 
$$A^t = C = [c_{ij}]_{n \times m} \longrightarrow (c_{ij} = a_{ji})$$

$$B^{t} = D = [d_{ii}]_{n \times n} \longrightarrow (d_{ii} = b_{ii})$$

$$AB = E = [e_{ij}]_{m \times p} \longrightarrow \left(e_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}\right)$$

- (i,j) element of  $B^tA^t = (i,j)$  element of DC

$$=\sum_{k=1}^{n}d_{ik}c_{k}$$

$$= \sum_{k=1}^{n} b_{ki} a_{jk}$$

(replaced)

$$= \sum_{k=1}^{n} a_{jk} b_{kj}$$

(the multiplication of numbers is commutative)

Degree of the matrix  $AB = m \times p$ 

Degree of the matrix  $(AB)^t = p \times m$ 

equal  $\therefore (AB)^t = B^t A^t$ 

Degree of the matrix  $B^tA^t = p \times m$ 

#### **Problems:**

(1) Is the matrix A equal to the zero matrix if  $A^3 = O$ , where A is a matrix of order  $3 \times 3$ ?

**Solution:** 
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{3 \times 3} \neq O_{3 \times 3}$$
, but

$$\mathbf{A}^{3} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}_{3 \times 3}$$

- (2) For any n×n matrices A, B and C. Prove that
  - (a) -(-A) = A
  - **(b)** A (B C) = AB AC
  - (c) (A B) C = AC BC

(c) 
$$(A - B) C = AC - BC$$
  
**Proof (a):** Let  $A = [a_{ij}]_{n \times n} \implies -A = [-a_{ij}]_{n \times n} \implies -(-A) = -[-a_{ij}]_{n \times n} = [a_{ij}]_{n \times n} = A$ 

**Proof (b):** Let 
$$A = [a_{ij}]_{n \times n}$$
,  $B = [b_{ij}]_{n \times n}$ ,  $C = [c_{ij}]_{n \times n}$ 

A (B – C) = 
$$[a_{ij}]_{n\times n}$$
 (  $[b_{ij}]_{n\times n} - [c_{ij}]_{n\times n}$  )

(definition the subtraction of matrices) and  $d_{\rm ij} = b_{\rm ij} - c_{\rm ij}$  $= [a_{ii}]_{n\times n} [d_{ii}]_{n\times n}$ 

$$= \sum_{k=1}^{n} a_{ik} d_{kj}$$
 (definition the multiplication of matrices)

$$= \sum_{k=1}^{n} a_{ik} (b_{kj} - c_{kj}) \qquad d_{kj} = b_{kj} - c_{kj}$$

$$= \sum_{k=1}^{n} (a_{ik}b_{kj} - a_{ik}c_{kj})$$
 (distribution the multiplication over the addition in numbers)

$$= \sum_{k=1}^{n} a_{ik} b_{kj} - \sum_{k=1}^{n} a_{ik} c_{kj}$$

= 
$$[a_{ij}]_{n\times n}$$
  $[b_{ij}]_{n\times n}$  -  $[a_{ij}]_{n\times n}$   $[c_{ij}]_{n\times n}$  (definition the multiplication of matrices)  
= AB - AC

# Proof (c): Home work

- (3) Let A and B be  $n \times n$  matrices such that AB = BA. Prove that
  - (a) For any positive integer k,  $AB^k = B^k A$ .

**(b)** 
$$(A + B)^2 = A^2 + 2AB + B^2$$

**Proof (a):** If k = 1, then AB = BA by hypothesis

Suppose that the statement true for k = n, i.e.  $AB^n = B^nA$ 

To prove the statement true when k = n + 1, i.e. to prove  $AB^{n+1} = B^{n+1}A$ 

$$AB^{n+1} = A (B^nB)$$
 (by pervious theorem  $A^s A^t = A^{s+t}$ )

$$= (AB^n) B$$
 (the multiplication of matrices is associative)

$$= (B^{n}A) B \qquad (AB^{n} = B^{n}A)$$

$$= B^{n} (AB) \qquad (the multiplication of matrices is associative)$$

$$= B^{n} (BA) \qquad (AB = BA)$$

$$= (B^{n}B)A \qquad (the multiplication of matrices is associative)$$

$$= B^{n+1}A \qquad (by pervious theorem A^{s} A^{t} = A^{s+t})$$

#### **Proof (B):**

$$(A + B)^2 = (A + B) (A + B)$$
 (definition the power of the matrices)  
 $= AA + AB + BA + BB$   
 $= A^2 + AB + AB + B^2$   $AB = BA$   
 $= A^2 + 2AB + B^2$ 

Sabah Jasin (4) Find all matrices  $B \in M_{2\times 2}(\mathbb{R})$  such that B commutes (commutative) with  $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ .

**Solution:** Let 
$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 such that  $a, b, c, d \in \mathbb{R}$ 

$$AB = BA \implies \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \implies \begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix} = \begin{bmatrix} b & 0 \\ d & 0 \end{bmatrix} \implies b = 0 , a = d$$

$$\left\{ \begin{bmatrix} a & 0 \\ c & a \end{bmatrix}, a, c \in \Box \right\}.$$

(5) Let 
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
 and the polynomials  $f(x) = x^2 + 3x - 10$  and  $g(x) = x^2 + 2x - 11$ .

Find the values of each polynomial? Is the matrix A is a root of each polynomial? **Solution:** 

$$f(A) = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix}^{2} + 3 \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} - 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ 12 & -9 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ 12 & -9 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ 4 & 8 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 4 & -2 \end{bmatrix}$$

Hence, A is not a root of the polynomial f(x).

$$g(A) = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix}^{2} + 2 \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} - 11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 8 & -6 \end{bmatrix} - \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 8 & -6 \end{bmatrix} - \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix} = \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix} - \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Hence, A is a root of the polynomial  $g(x)$ .

Hence, A is a root of the polynomial g(x).

#### **Exercises:**

(1) Let 
$$A = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}_{1 \times 3}$$
 and  $B = \begin{bmatrix} 2 & 5 \\ 2 & -8 \\ -10 & 1 \end{bmatrix}_{3 \times 2}$ , find AB and BA if exists?

What do we conclude from this question?

(2) Let 
$$A = \begin{bmatrix} 6 & -2 & 0 \\ 4 & 2 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 5 & 0 & 3 \\ 0 & -1 & 3 \end{bmatrix}$ ,  $C = \begin{bmatrix} 1 & -3 & 0 \\ 0 & -4 & 0 \end{bmatrix}$ , find  $A^2$ ,  $3C$ ,  $A + 2B$ ,  $A + B$ ,  $B + A$ ,  $AC$ ,  $AB$ , then find the matrix  $D$  if  $\frac{1}{2}$   $(A - 2C) + D = 3B$ ?

(3) Let 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & -3 \\ -1 & 5 \end{bmatrix}$ , find

(a) 
$$(A + B)^2$$

(c) 
$$A^2 - B^2$$

(a) 
$$(A + B)^2$$
  
(b)  $A^2 + 2AB + B^2$ 

(c) 
$$A^2 - B^2$$
  
(d)  $(A + B) (A - B)$ 

What is the condition make the relation (a) = the relation (b) and the relation (c) = the relation (d)

(4) Let 
$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
. Prove that  $A^2 = I_3$ .

- (5) Construct a matrices  $A = [a_{ij}]_{2\times 3}$ ,  $B = [b_{ij}]_{3\times 4}$  and find AB, where  $a_{ij} = i 3j$  and  $b_{ij} = i^2 j^2$ .
- (6) Let  $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ , show that  $A^2 = 4 A + I_2$ .

(7) Compute AB and BA if exists

(a) 
$$A = \begin{bmatrix} 2 & -1 & 0 & 3 \\ 4 & -5 & 1 & 0 \end{bmatrix}$$
,  $B = \begin{bmatrix} 0 & -3 \\ 1 & -1 \\ 2 & 1 \\ -4 & 0 \end{bmatrix}$  (b)  $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & 2 \\ 3 & 4 \\ 1 & 2 \end{bmatrix}$ 

(8) If 
$$\begin{bmatrix} 3 & a+b \\ -c+d & 4 \end{bmatrix} + \begin{bmatrix} a & 5 \\ -4 & 6d \end{bmatrix} = \begin{bmatrix} 2 & a-b \\ c & 2c+d \end{bmatrix}$$
, find the values of a, b, c, d?

$$\begin{bmatrix} -c + d & 4 \end{bmatrix} \begin{bmatrix} -4 & 6d \end{bmatrix} \begin{bmatrix} c & 2c + d \end{bmatrix}$$
(9) Let  $A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & -1 & 2 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 0 \\ 2 & -2 \\ 3 & -1 \end{bmatrix}$  and  $C = \begin{bmatrix} -1 & 2 \\ 1 & 0 \\ 2 & -2 \end{bmatrix}$ . Prove that  $A (B + C) = AB + AC$ ?

$$A (B + C) = AB + AC$$
?

(10) Let 
$$A = \begin{bmatrix} 4 & -2 & 3 \\ 5 & 0 & 2 \end{bmatrix}$$
, then  $I_2 A = A$ .

(11) Let 
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$ . Prove that  $AB = O$ ?

(12) Let 
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & -2 & 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 2 & -2 \\ 3 & 4 & 5 \end{bmatrix}$  and  $C = \begin{bmatrix} -4 & -6 & 1 \\ 2 & 3 & 0 \end{bmatrix}$ , show that (a)  $A + B = B + A$  (b)  $A + (B + C) = (A + B) + C$  (13) If  $AB = BA$ , p integer number not negative, prove that  $(AB)^p = A^pB^p$ .

- (14) Let  $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$  and the polynomials  $f(x) = 2x^2 3x + 5$  and  $g(x) = x^2 + 3x 10$ .

Find the values of each polynomial? Is the matrix A is a root of each polynomial?

(15) Let 
$$A = \begin{bmatrix} 0 & 1 & -3 \\ 2 & -2 & 0 \\ 3 & 4 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -3 & 5 \\ 2 & 1 & 0 \end{bmatrix}$ , find

- (a) Third column from AB.
- **(b)** Second column from BA.
- (c) Third row from AB.
- The elements  $C_{33}$ ,  $C_{32}$ ,  $C_{22}$  from AB.

#### **Theorems:**

- (1) If A is a matrix of degree  $n \times n$ , then  $A + A^{t}$  is a symmetric matrix.
- (2) If A is a matrix of degree  $n \times n$ , then  $A A^{t}$  is a skew symmetric matrix.
- (3) If A is a diagonal matrix, then A<sup>t</sup> is also diagonal matrix.
- (4) If A is a symmetric matrix, then  $\alpha A$  is a symmetric matrix where  $\alpha$  is any standard number.
- (5) If A is a skew symmetric matrix, then  $\alpha A$  is a skew symmetric matrix where  $\alpha$  is any standard number.
- (6) Any square matrix can be written as a sum of two matrices one of them symmetric matrix and the other is skew symmetric matrix, i.e.

$$A = \frac{1}{2} (A + A^t) + \frac{1}{2} (A - A^t)$$

**Proof (1):** We must prove that  $A + A^{t} = (A + A^{t})^{t}$ 

We take the right hand side

$$(A + A^t)^t = A^t + (A^t)^t$$
 (by previous theorem  $(A \pm B)^t = A^t \pm B^t$ ))
$$= A^t + A$$
 (the transpose matrix is equal to the matrix itself)
$$= A + A^t$$
 (the addition of matrices is commutative)

Thus  $(A + A^t)$  is symmetric matrix

**Proof (2):** We must prove that  $A - A^{t} = -(A - A^{t})^{t}$ 

We take the right hand side

$$-(A-A^t)^t = -(A^t-(A^t)^t)$$
 (by previous theorem  $(A\pm B)^t = A^t\pm B^t$ ))
$$= -(A^t-A)$$
 (the transpose matrix is equal to the matrix itself)
$$= -A^t + A$$

$$= A + (-A^t)$$
 (the addition of matrices is commutative)
$$= A + A^t$$

Thus  $(A - A^t)$  is skew symmetric matrix

# Proof (3), Proof (4) and Proof (5) (Home work)

**Proof** (6): Let A = R + Q, where

A is square matrix, R symmetric matrix and Q is skew symmetric matrix.

$$A = R + Q \qquad ...(1) \qquad \text{(from hypothesis)}$$

$$A^t = (R + Q)^t \qquad \text{(by taking the transpose for each side)}$$

$$A^t = R^t + Q^t \qquad \text{(from previous theorem } (A \pm B)^t = A^t \pm B^t)$$

$$A^t = R - Q \qquad ...(2) \qquad \text{(since $R$ is symmetric matrix from hypothesis, and $Q$ is skew symmetric, so $R = R^t$ and $Q = -Q^t$)}$$

By adding the equations (1) and (2), we get

$$A + A^{t} = 2R \implies R = \frac{1}{2} (A + A^{t})$$

Since  $\frac{1}{2}$  (A + A<sup>t</sup>) is symmetric matrix, so R is symmetric matrix (proved earlier).

Subtraction equation (2) from equation (1), we get

$$A - A^t = 2Q \implies Q = \frac{1}{2} (A - A^t)$$

Since  $\frac{1}{2}(A - A^t)$  is skew symmetric matrix, so Q is skew symmetric matrix (proved earlier).

$$A = \frac{1}{2} (A + A^{t}) + \frac{1}{2} (A - A^{t})$$
 (replaced in (1))

$$A = R + Q$$

Example: Let  $A = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 6 \\ -2 & 2 & 1 \end{bmatrix}$ , find  $\frac{1}{2}$  (A + A<sup>t</sup>),  $\frac{1}{2}$  (A - A<sup>t</sup>), and show that  $A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t)$ .

Solution:  $A = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2$ 

$$A = \frac{1}{2}(A + A^{t}) + \frac{1}{2}(A - A^{t})$$

$$A + A^{t} = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 6 \\ -2 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 4 & -2 \\ 2 & 0 & 2 \\ 0 & 6 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -2 \\ 6 & 0 & 8 \\ -2 & 8 & 2 \end{bmatrix}$$

$$\frac{1}{2}(A + A^{t}) = \frac{1}{2} \begin{bmatrix} 2 & 6 & -2 \\ 6 & 0 & 8 \\ -2 & 8 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 0 & 4 \\ -1 & 4 & 1 \end{bmatrix}$$

$$A - A^{t} = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 6 \\ -2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 4 & -2 \\ 2 & 0 & 2 \\ 0 & 6 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 2 \\ 2 & 0 & 4 \\ -2 & -4 & 0 \end{bmatrix}$$

$$\frac{1}{2}(A - A^{t}) = \frac{1}{2} \begin{bmatrix} 0 & -2 & 2 \\ 2 & 0 & 4 \\ -2 & -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ -1 & -2 & 0 \end{bmatrix}$$

$$\frac{1}{2}(A - A^{t}) = \frac{1}{2} \begin{bmatrix} 0 & -2 & 2 \\ 2 & 0 & 4 \\ -2 & -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ -1 & -2 & 0 \end{bmatrix}$$

$$A = \frac{1}{2}(A + A^{t}) + \frac{1}{2}(A - A^{t}) = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 0 & 4 \\ -1 & 4 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ -1 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 6 \\ -2 & 2 & 1 \end{bmatrix} = A$$

**Example:** Is there exist a symmetric and skew symmetric matrix?

**Solution:** Let A be a symmetric and skew symmetric matrix.

Since A is symmetric matrix in hypothesis  $\Rightarrow$  A = A<sup>t</sup> (definition of symmetric matrix)

Since A is skew symmetric matrix in hypothesis  $\Rightarrow A = -A^t$  (definition of skew symmetric matrix)

By addition 
$$A + A = A^t + (-A^t)$$
 
$$2A = O_{n \times n}$$
 by divided each side by 2 
$$\therefore A = O_{n \times n}$$

**Theorem:** Let A be symmetric matrix. Prove that A<sup>n</sup> is symmetric matrix for any positive integer number n

**Proof:** We must prove that  $A^n = (A^n)^t$ . By using the mathematical induction method

When 
$$n = 1 \implies A = A^t$$

When 
$$n = 2 \implies A^2 = (A^2)^t$$
 since  $(A^2)^t = (A \cdot A)^t = A^t \cdot A^t = A \cdot A = A^2$ 

Suppose the statement is true for n = k, i.e.  $A^k = (A^k)^t$ 

To prove the statement is true when n = k + 1, i.e. to prove  $A^{k+1} = (A^{k+1})^t$ 

$$(A^{k+1})^t = (A^k \cdot A)^t$$
  
=  $A^t (A^k)^t$  (from previous theorem  $(AB)^t = B^t A^t$ ))  
=  $A \cdot A^k$   
=  $A^{k+1}$ 

... The statement is true for all positive integer values of n

**Definition:** The sum of the main diagonal elements of the square matrix say the trace of the matrix and denoted by Tr, i.e.  $Tr = \sum_{i=1}^{n} a_{ii}$ , where  $A = [a_{ij}]_{n \times n}$ .

Example: If  $A = \begin{bmatrix} 4 & 3 & 2 \\ 0 & 5 & -1 \\ 4 & -3 & 3 \end{bmatrix}$ , then the trace of A is

$$Tr(A) = \sum_{i=1}^{3} a_{ii} = a_{11} + a_{22} + a_{33} = 4 + 5 + 3 = 12$$

Example: If the trace of the matrix 
$$B = \begin{bmatrix} x^2 & 2 & 3 & -1 \\ 1 & 2x & 1 & 6 \\ 1 & 1 & -5 & 0 \\ -2 & 3 & 7 & 2x \end{bmatrix}$$
 equal to zero, find the

value of x

**Solution:** Tr (B) = 
$$x^2 + 2x - 5 + 2x = x^2 + 4x - 5$$
  
Since Tr (B) =  $0 \implies x^2 + 4x - 5 = 0$   
 $\implies (x + 5) (x - 1) = 0$   
 $\implies x = -5$ ,  $x = 1$ 

#### Theorem:

- 1. Tr (A) = Tr (A<sup>t</sup>), for a square matrix A.
- iran sabah Jasim 2. Tr(A + B) = Tr(A) + Tr(B), for any matrices A and B compatible with addition.
- 3. Tr (kA) = k(Tr A), where k is constant amount and A is a square matrix.
- **4.** Tr(AB) = Tr(BA), for any matrices A and B compatible with multiplication.

#### **Proof (1):**

Let 
$$A = [a_{ij}]_{n \times n}$$
, so  $A^{t} = [a_{ji}]_{n \times n}$ 

Tr A = 
$$\sum_{i=1}^{n} a_{ii}$$
 (definition the trace of the matrix)

$$\operatorname{Tr} A^{t} = \sum_{i=1}^{n} a_{ii}$$
 (definition the trace of the matrix)

$$\therefore \operatorname{Tr} A = \operatorname{Tr} A^{t}$$

**Proof (2):** Let A + B = C, where A = 
$$[a_{ij}]_{n\times n}$$
, B =  $[b_{ij}]_{n\times n}$ , C =  $[c_{ij}]_{n\times n}$ 

A + B =  $[a_{ij}]_{n\times n}$  +  $[b_{ij}]_{n\times n}$  =  $[c_{ij}]_{n\times n}$ , where  $a_{ij}$  +  $b_{ij}$  =  $c_{ij}$  for all values of i and j

Tr (A + B) = Tr C = 
$$\sum_{i=1}^{n} c_{ii}$$
 ...(1)

Tr A + Tr B = 
$$\sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$
  
=  $\sum_{i=1}^{n} (a_{ii} + b_{ii})$   
=  $\sum_{i=1}^{n} c_{ii}$  ...(2) Since  $a_{ij} + b_{ij} = c_{ij}$ 

From (1) and (2), we get

$$Tr(A + B) = TrA + TrB$$

**Generalization:**  $Tr(A_1 + A_2 + ... + A_k) = TrA_1 + TrA_2 + ... + TrA_k$ , where  $A_i$  matrix of degree  $n \times n$  and i = 1, 2, ..., k.

**Proof (3):** Let  $A = [a_{ii}]_{n \times n}$ , so  $kA = [k \ a_{ii}]_{n \times n}$ 

$$\operatorname{Tr}(kA) = \sum_{i=1}^{n} k a_{ii} = k \sum_{i=1}^{n} a_{ii} = k \operatorname{Tr}(A)$$

**Proof (4):** Let  $A = [a_{ij}]_{n \times n}$ ,  $B = [b_{ij}]_{n \times n}$ ,  $AB = [c_{ij}]_{n \times n}$ ,  $c_{ij} = \sum_{i=1}^{n} a_{ik} b_{kj}$ ,  $BA = [d_{ij}]_{n \times n}$ ,  $d_{ij} = \sum_{i=1}^{n} b_{ik} a_{ik}$ .  $\mathbf{BA} = [a, a]$   $\mathbf{ABA}$   $\mathbf{ABA}$   $\mathbf{ABA}$ 

$$d_{ij} = \sum_{i=1}^{n} b_{ik} a_{kj}$$

Tr (AB) = 
$$\sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} a_{ii} b_{ii}$$
 ...(1)

Tr (BA) = 
$$\sum_{i=1}^{n} d_{ii} = \sum_{i=1}^{n} b_{ii} a_{ii} = \sum_{i=1}^{n} a_{ii} b_{ii}$$
 ...(2)

From (1) and (2), we get Tr(AB) = Tr(BA).

#### Theorem:

(1) For any matrix A, AA<sup>t</sup> symmetric matrix.

(The proof home work)

(2) If A is a skew symmetric matrix, then  $AA^{t} = A^{t}A$ .

(The proof home work)

# **Properties of the Symmetric Matrix:**

- (1) A is symmetric matrix if and only if A<sup>t</sup> is symmetric matrix.
- (2) If A and B are symmetric matrices, then (A + B) is symmetric matrix.
- (3) If A and B are symmetric matrices, then AB is symmetric matric if and only if AB = BA, i.e. AB symmetric matrix  $\Leftrightarrow AB = BA$ .

# Proof (1): (Home work)

**Proof (2):** Let A and B are symmetric matrices, so  $A = A^{t}$ ,  $B = B^{t}$ , we must prove

$$A + B = (A + B)^t$$

$$(A + B)^t = A^t + B^t$$
 (by previous theorem  $(A \pm B)^t = A^t \pm B^t$ )

$$= A + B$$
 (by hypothesis  $A = A^t$ ,  $B = B^t$ )

 $\therefore$  A + B symmetric matrix

**Proof (3):** Let A and B are symmetric matrices, so  $A = A^{t}$ ,  $B = B^{t}$ ,

 $\Rightarrow$  Suppose that AB symmetric matrix, to prove that AB = BA

$$AB = (AB)^{t}$$
 (definition of symmetric matrix)  
 $= B^{t} A^{t}$  (by previous theorem  $(AB)^{t} = B^{t} A^{t}$ )  
 $= BA$  (replaced)

$$\therefore AB = BA$$

 $\leftarrow$  Suppose that AB = BA, to prove AB symmetric matrix

$$AB = BA$$
  
 $= B^{t}A^{t}$  (replaced)  
 $= (AB)^{t}$  (by previous theorem  $(AB)^{t} = B^{t}A^{t}$ )  
 $\therefore AB$  is symmetric matrix

Sabah Jasim **Remark:** The opposite of second property is not true, i.e. if (A + B) is symmetric matrix that is not necessary that the matrices A and B are symmetric matrices.

**Example:** 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ -3 & 5 & 3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 4 & -3 \\ 0 & -1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$  are not symmetric matrices, but

$$A + B = \begin{bmatrix} 2 & 4 & -3 \\ 4 & -2 & 5 \\ -3 & 5 & 6 \end{bmatrix}$$
 is symmetric matrix.

# **Properties of the Skew Symmetric Matrix:**

- (1) A is a skew symmetric matrix if and only if A<sup>t</sup> is a skew symmetric matrix.
- (2) If A and B are skew symmetric matrices, then (A + B) is a skew symmetric matrix.
- (3) If A and B are skew symmetric matrices, then AB is a skew symmetric matric if and only if AB = -BA, i.e. AB is a skew symmetric matrix  $\Leftrightarrow AB = -BA$ .

# **Proof (1): (Home work)**

**Proof** (2): Let A and B are skew symmetric matrices, so  $A = -A^{t}$ ,  $B = -B^{t}$ , we must prove  $A + B = -(A + B)^t$ 

$$-(A + B)^{t} = -(A^{t} + B^{t})$$
 (by previous theorem  $(A \pm B)^{t} = A^{t} \pm B^{t}$ )
$$= -(-A + -B)$$
 (by hypothesis  $A = -A^{t}$ ,  $B = -B^{t}$ )
$$= A + B$$
 (by previous theorem  $-(-A) = A$ )

 $\therefore$  A + B skew symmetric matrix

# **Proof (3): (Home work)**

**Remark:** The opposite of second property is not true, i.e. if (A + B) is a skew symmetric matrix that is not necessary that the matrices A and B are skew symmetric matrices.

Give example (Home work)

#### **Exercises:**

- (1) If A is a square matrix of degree n, p is a positive integer number and k real number, then  $(kA)^p = k^p A^p$ .
- (2) Let A and B are matrices such that AB = A and BA = B, show that  $(A^t)^2 = A^t$  and  $(B^t)^2 = B^t$ .
- (3) Find all matrices A of degree  $2\times 2$  with complex entries such that  $A^2 = -I_2$ .

Answer: 
$$A = \begin{bmatrix} \pm i & 0 \\ 0 & \mp i \end{bmatrix}$$
.