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Chapter One  

The Scope of  

Mathematical Modeling 

 

 

 

Definition (1): A model is an object or concept that is used to represent something 
else.  It is reality scaled and converted to a form we can comprehend.  

For example, a model airplane, made of wood, plastic, and glue, is a model of 
the real aeroplane. Another example is the idea that, in politics, public opinion is 
like a pendulum because it changes periodically from left to right-wing ideas then 
back again in a way which reminds us of a pendulum swinging back and forth. In 
our terminology, we would say that a pendulum is a model for public opinion. 

A model airplane and pendulum are physical objects; so, they are not a 
mathematical model.   

What Is a Mathematical Model? 

The following is a possible informal definition of a mathematical model: 

Definition (2): A mathematical model is a translation of a real-world problem into 
mathematics notation by forming a mathematics problem corresponding to the real-
world problem. Then mathematics tools, ideas, concepts, and techniques are 
utilized to solve the mathematics problem. The obtained solution is translated back 
into the real-world. 

Or 

          A mathematical model is a model whose parts are mathematical concepts, 
such as constants, variables, functions, equations, inequalities, etc. 
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Example (1): To find out how an aircraft will behave in flight; we could make a 
physical model of the aircraft and test it under various weather conditions. There 
are a great many things one might want to know: Is the plane stable in the air? How 
fast can it go? How steeply can it climb? Etc. To focus our discussion, let’s 
consider the question of how great the lift force on the plane who it is takes off.  

The lift force is the force pushing up on the wings. This force is largely what 
determines how steeply the plane can climb. 

If we did experiments with a physical model, we could find out almost anything 
we want to know about it. 

For example, we could discover that the lift force was dependent on how fast 
the plane was moving.  

By flying the plane at different speeds, we could make a table of values 
relating lift force to velocity and a graph of this table of values that might look like 
figure (1).    

 

      Lift force ℓ 

 

 

 

 

 
 

 

  Velocity, 𝓋 

Figure (1.1): Physical model of the aircraft 

But there is an entirely different approach to this problem. One based on a 
mathematical model. This m. m. consists of a single equation which relates the lift 
force to other factors. It is  
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																															ℓ = 𝐶ℓ 	
𝜌
2 	𝑠𝓋

) 																																																																… (1) 

ℓ = lift force  

𝐶ℓ = lift coefficient depends on the shape of the plane 

𝜌 = density of the air 

𝓋 = velocity  

and 𝑠 =total surface area of the tops of the wings. 

We can estimate 𝑠 from the blueprints of the plane we propose to build. 𝜌 is a 
measurement we can make in the atmosphere. (It may differ a little from one 
airport to another.)  𝐶ℓ is known. Then the product 𝐶ℓ	(

.
)
)	𝑠 in equation (1) becomes 

a known constant. If we call this constant a, then equation (1) becomes an equation 
linking only two variables, ℓ an	𝓋: 

																															ℓ = 𝑎	𝓋) 																																																																… (2) 

Using this equation, we can generate the graph shown in figure (2) with a 
moment’s worth of calculation and plotting. 

   Lift force ℓ 

   

 

 

 

 

 

 
 

Velocity, 𝓋 

Figure (1.2): Mathematical model of the aircraft 
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Which approach is better, experiments on the physical model or predictions 
from the mathematical model? Building a physical model is the time consuming: it 
might take days to make a good model plane. It is also expensive. In both these 
respects, the mathematical model is superior. However, it has another advantage. It 
tells us things that our physical experiments do not. 

THE MODELING PROCESS 

It is useful to view mathematical modeling as a process as illustrated in 
Figure 1.2. The modeling process is represented by a loop, where the starting point 
is step 1, located in the box in the upper left-hand corner of Figure 1.2. 
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Steps in Building a Mathematical Model 

Abstract Three steps in mathematical modelling are discussed: formulation, 
mathematical manipulation, and evaluation. 

1) Formulation 
 

A) Stating the question. The question we start with is often too vague or too 
“big”. If it’s vague, make it precise. If it’s too big, subdivide it into manageable 
parts. 

B)  Identifying relevant factors. Decide which quantities and relationship are 
important for your question and which can be neglected. 

C)  Mathematical description. Each important quantity should be represented by a 
suitable mathematical entity, e.g., a variable, a function, a geometric figure, etc. 
Each relationship should be represented by an equation, inequality, or other 
suitable mathematical assumption. 
  

2) Mathematical manipulation 

The mathematical formulation rarely gives us answers directly. We usually 
have to do some mathematics. This may involve a calculation, solving an equation, 
proving a theorem, etc. 

 

3) Evaluation  

In deciding whether our model is a good one, there are many things we could 
take into account. The most important question concerns whether or not the model 
gives correct answers. If the answers are not accurate enough or it the model has 
other shortcomings, then we should try to identify the sources of the shortcomings. 
Mistakes may have been made in the mathematical manipulation. But in many 
cases what is needed is a new formulation. After a new formulation, we will need 
to do new mathematical manipulation and new evaluation. Thus mathematical 
modelling can be a repeated cycle of the three modelling steps, as shown in the 
flowchart of a figure (3). 
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Start  

Formulation 

Mathematical manipulation 
 

Evaluation 

Stop  
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Figure (1.4): Steps of Mathematical Modelling 

 



CHAPTER ONE: THE SCOPE OF MATHEMATICAL MODLLING 

 

Page 8 of 23  Oct/2022 
 

Illustration 1           Galileo’s Gravitation Models 
 

1) Formulation:  
 

I) Stating the question.  

Two particular questions Galileo asked were: 

a) What formula describes how a body gains velocity as it falls? 
b) What formula describes how far a body falls in a given amount of time? 

 
II) Identifying relevant factors.  

Assumption 1  

If a body falls from rest, then its velocity at any point is proportional to the 
distance already fallen. 

 

 

 

 

 

 

 

III) Mathematical description. 

We will set up a distance scale to measure an object’s fall and use the variable 
𝑥 to measure distance along this scale. At a certain instant in time, say 𝑡 = 0, we 
begin observing the object’s fall. For convenience let 𝑥 = 0 at this initial point of 
observation. Let 𝑥(𝑡) denote the distance the object has fallen after 𝑡	seconds. 
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 Between the time instants𝑡3 and𝑡3 + ℎ the distance travelled is 𝑥(𝑡3 + ℎ) − 𝑥(𝑡3). 
Since the time elapsed is	ℎ seconds, the average velocity is  

𝑥(𝑡3 + ℎ) − 𝑥(𝑡3)
ℎ  

If we let ℎ → 0, this quotient approaches 89
8:

 evaluated at	𝑡3, a quantity we call the 
instantaneous velocity. We sometimes denote this 𝓋(𝑡3) instead of (𝑑𝑥/𝑑𝑡)|:>	. 

The same ideas apply to acceleration. Between time instants 𝑡3 and 𝑡3 + ℎ the 
change in velocity is 𝓋(𝑡3 + ℎ) − 𝓋(𝑡3). Since the time elapsed is	ℎ seconds, the 
average change in velocity is  

𝓋(𝑡3 + ℎ) − 𝓋(𝑡3)
ℎ  

Let ℎ → 0, we obtain (𝑑𝓋/𝑑𝑡)|:> which is the same as 
8?@A@BC

8:
= 8D9

8:D
 evaluated at 𝑡3. 

This is called the instantaneous acceleration at the time	𝑡3.  

The mathematical description of assumption 1 is 

																																												
𝑑𝑥
𝑑𝑡 = 𝑎𝑥																																																																 … (1) 

where a is a constant yet 𝑡3 be determined. 
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2) Mathematical manipulation  

𝑑𝑥
𝑑𝑡 = 𝑎𝑥										 

E
𝑑𝑥
𝑥 = E𝑎	𝑑𝑡	 

ln 𝑥 = 𝑎𝑡 + 𝑐	 

𝑒JK9 = 𝑒L:MN			 

𝑥 = 𝑒N𝑒L:							 

𝑥 = 𝑘𝑒L:								 

by	𝑥(0) = 0			 

					0 = 𝑘𝑒3	 → 𝑘 = 0 

													𝑥 = 0													for	all	t				 

This says that the object will never move, no matter how long we wait. 

Evaluation 

Since the conclusion is completely absurd and there are no mistakes in the 
mathematical manipulation, we need a reformulation 
 

1) Formulation (again) 

Assumption 2 

 If a body falls from rest, then its velocity at any point is proportional to the 
time it has been falling. In particular, for each second of fall, the object gains an 
extra 32 feet/second in velocity. 

The mathematical description of this assumption is  
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𝑑𝑥
𝑑𝑡 = 32𝑡 

2) Mathematical manipulation  

E𝑑𝑥 = E32𝑡	𝑑𝑡 

𝑥 = 16𝑡) + 𝑐						 

								by	𝑥(0) = 0 → 𝑐 = 0 

𝑥 = 16𝑡)														 

3) Evaluation 

This law of falling bodies agrees well with observations in many circumstances. 
 

     Example:  

 

a) An object falls, starting at rest, for 2 seconds. How far does it fall and what is 
its velocity after 2 seconds? 

b) How long does it take an object to fall 144 feet? 

Solutions:  

a)							
𝑑𝑥
𝑑𝑡 = 32. 𝑡		

𝑑𝑥
𝑑𝑡 = 32.2 = 64			feet/second 

𝑥 = 16. 2) = 64			feet		 

b)						144 = 16𝑡)	 

											𝑡) = 9			seconds	 

										𝑡 = 3						seconds	
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Illustration 2         The Manufacturing Progress Curve 
 

    

If you have a complicated job to do and you have to do it many times, you’ll 
probably get better at it. Partly this is a matter of learning: practice does make 
perfect. But ingenuity will also play a role: you will invent shortcuts; devise new 
tools to assist you, etc. The same is true for a team of workers and managers 
assembling complex products, like airplanes or automobiles. T.P. wright studied 
this in aircraft assembly planes in 1936 and proposed the following model. Since 
then, it has been used in many branches of manufacturing. 

1) Formulation 
 

I) Stating the question. How does the time required to produce an airplane of a 
given type depend on the number of planes of that type already produced? 
 

II) Describing relevant factors: we consider only the time for assembly and the 
number already assembled. All other factors are ignored. For example, we 
don’t consider whether workers are given cash incentives for efficient work, 
even though this may be relevant. 

The assumption when the number of planes is doubled, the time for production 
decreases to about 80 percent of its former value. 

III) Mathematical description. 

Let 𝑇(𝑥) be the time required for the 𝑥	th	 plane write’s assumption means 
that, if the first plane took 100,000 worker-hours then the second would take 
80,000. the forth would need 64,000. In general, if the time for the first plane is 𝑇b, 
then the following table describes  

Plane no. 𝒙 1 2 4 8 … 

Hours 𝑻 𝑇b 0.8	𝑇b (0.8))	𝑇b (0.8)f	𝑇b … 

The formula we are looking for appears to be  
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																	𝑇 = (0.8)g	𝑇b 																																																														… (∗) 

where n is the number of doubling, starting with the number 1, required to obtain 𝑥. 
The formula doesn’t involve 𝑥 directly. Also, it doesn’t allow us to compute 𝑇 at 
any number of planes not a power of 2 like 3,5,… 

2) Mathematical manipulation 

The number of doublings to reach 𝑥, starting with 1 is, by definition, log) 𝑥. 
Thus, the equation (∗) can be rewritten 

𝑛 = log) 𝑥 	𝑖𝑓𝑓	𝑥 = 2g 
𝑇(𝑥) = 0.8JmnD 9	𝑇b 

Taking base-2 logarithms, we get  

log) 𝑇(𝑥) = (log)(𝑥))(log)(0.8)) + log 𝑇b 

		= log) 𝑥JmnD 3.o + log 𝑇b 

	log) 𝑇(𝑥) = 	 log) 𝑇b𝑥p																																					 

where 	𝛼 = log) 0.8 = logb3 0.8 / logb3 2 = −0.322 

																																						∴ 𝑇(𝑥) = 𝑇b𝑥p 																																																									… (∗∗) 

𝑇(𝑥) = 𝑇b𝑥s3.f))																								 

this is called the manufacturing progress curve for airplane, and 80% is called the 
progress rate. As figure  
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     Example: 

 

A new assembly process for airplanes, which uses more automated machine 
assembly and less human labor, is introduced. Consequently, the opportunities for 
learning decline and progress rate shifts from 80 to 90 percent. Assume the first 
plane made with the new process took 100,000 hours. 

a) What is the equation for 𝑇(𝑥)? 
b) How long does it take to produce the hundredth plane? 

Solution: 

a) From eq. (**) we obtain  

𝑇(𝑥) = 100,000	𝑥p																								 

where 	𝛼 = log) 0.9 =
Jmnu> 3.v
Jmnu> )

= −0.152 

b) 𝑇(100) = 100,000	(100)s3.bx) 
 

										= 49,659	hours. 
 

Evaluation: 

∴ lim
9→|

𝑥s3.f)) = 0 

Formulation (again) 

𝑇(𝑥) = 𝑇} + 𝑇~(𝑥) 

𝑇(𝑥) = 𝑇} + 𝑇3𝑥p 

               

 

 ةیلاثم لمع فورظ تحت ةرئاطلا عیمجتل لمع تاعاس نم ىندلاا دحلا               میدقلا لیدوملا ىلعً ادامتعأ
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Macro and Micro Population Models  

 Model 1- Exponential Growth 

Macro and micro refer to the measurement of size but in different directions. 
One refers to large measurements, and one refers to small measurements. 

We illustrate this in the next sections by presenting models for population 
projection, each occupying a different position on the macro-micro spectrum. The 
first can be thought of as an answer to the question of how many people there will 
be in future. The second, the Leslie-matrix model, can be regarded as an answer to 
the question of how many people of various ages there will be in the future. The 
last, the sex and family-planning model, can be considered an answer to the 
question of the how many people there will be in your family in the future. 

We will use the variable 𝑡 to measure time in years, with 𝑡 = 0 denoting the 
present. Let 𝑃(𝑡) denote the size of population. Let 𝐵(𝑡) be the number of births in 
the 1-year interval between time 𝑡 and	𝑡 + 1 and let 𝐷(𝑡) denote the number of 
deaths between 𝑡 and	𝑡 + 1. The main assumption of our model is that certain rates 
stay the same. 

Definition  

	1.			
𝐵(𝑡)
𝑃(𝑡) 	is	called	the	birth	rate	for	the	time	

(𝑡)	to	(𝑡 + 1). 

2.			
𝐷(𝑡)
𝑃(𝑡) 	is	called	the	death	rate	for	the	time	interval	

(𝑡)	to	(𝑡 + 1). 

Assumptions  

1. The birth rate is the same for all intervals. Likewise, the death rate is the same 
for all intervals. This means that there is a constant 𝑏, called the birth rate, and 
a constant 𝑑, called the death rate so that, for all 𝑡 ≥ 0  
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																														𝑏 =
𝐵(𝑡)
𝑃(𝑡) 						and				𝑑 =

𝐷(𝑡)
𝑃(𝑡) 																																																		… (1) 

2. There is no migration into or out of the population; i.e., the only source of 
population change is birth and death.   

As a result of assumptions 1 and 2 we deduce that, for 𝑡 ≥ 0	 

𝑃(𝑡 + 1) = 𝑃(𝑡) + 𝐵(𝑡) − 𝐷(𝑡) 

																					= 𝑃(𝑡) + 𝑏𝑃(𝑡) − 𝑑𝑃(𝑡) 

																									= (1 + 𝑏 − 𝑑)𝑃(𝑡)			… (2) 

If 𝑡 = 0	in equation (2) gives 

																				𝑃(1) = (1 + 𝑏 − 𝑑)𝑃(0)																																																				… (3) 

Setting 𝑡 = 1	 in equation (2) and substituting equation (3) gives  

𝑃(2) = (1 + 𝑏 − 𝑑)𝑃(1)		𝑃(1) 

																								= (1 + 𝑏 − 𝑑)(1 + 𝑏 − 𝑑)𝑃(0)				 

			= (1 + 𝑏 − 𝑑))𝑃(0)			 

Continuing this way yields 

																		𝑃(𝑡) = (1 + 𝑏 − 𝑑):𝑃(0)																																																						… (4) 

for	𝑡 = 0,1,2, … 

The constant 1 + 𝑏 − 𝑑 is often abbreviated 𝑟	and called the growth rate, or in 
more high-flown language, the Malthusian parameter, in honor of Robert Malthus 
who first brought this model to popular attention. In term of 𝑟 eq. (4) becomes  

										𝑃(𝑡) = 𝑃(0)𝑟:												𝑡 = 0,1,2, …																																																							… (5) 

𝑃(𝑡) is an example of an exponential function. Any function of the form	𝐶𝑟:, 
where	𝐶 and 𝑟 are constant, is an exponential function. 
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   Example (1) 

 

Suppose the current population is 250,000,000 and the rates are 𝑏 = 0.02 and 𝑑 =
0.01. What will the population be in 10 year? 

Solution:   

From equation (4) 

𝑃(10) = (1.01)b3(250,000,000) 

																									= (1.104622125)(250,000,000) 

= 276,155,531.25		 

Naturally, this result is absurd, since one can’t have 0.25 of a person. This is a good 
illustration that the fundamental assumption of the model is not exactly true, but 
only approximately. 

 
 

   Example (2) 
 

How many years will it take for the population of example 1 to double its initial 
size?   

Solution:   

We seek a value of 𝑡 for which  �(:)
�(3)

= 2. 

This requires that  
(1.01):𝑃(0)

𝑃(0) = 2 

⟹ (1.01): = 2 
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													⟹ 𝑡	 log(1.01) = log 2 

																														⟹ 𝑡 =
log 2

log(1.01) ≈ 69.66		years 
 

  Example (3) 
 

How many births will occur between 𝑡 = 10 and 𝑡 = 11? 

Solution:  

From equation (1),  

																	𝑏 =
𝐵(𝑡)
𝑃(𝑡) ⟹ 𝐵(𝑡) = 𝑏𝑃(𝑡)																																																						… (∗)	 

Substitute eq. (4) into (*), we get 

𝐵(𝑡) = 𝑏(1 + 𝑏 − 𝑑):𝑃(0)																		 

	∴ 𝐵(10) = 0.02(1.01)b3(250,000,000)										 

= 5,523,110.6																						 
 

 

           

           Exercises 

 

1) Suppose the current population is 1,500,000, 𝑏 = 0.03, and 𝑑 = 0.01. What is 
the population in 5 years? 

2) What can conclude about 𝑃(𝑡) if the birth rate equals the death rate? 
3) Show that, for any fixed number of years, say 𝑘, the percent by which the 

population increases in 𝑘 years is a function of 𝑘, 𝑏 and 𝑑 alone, it does not 
depend on the population size at the start of 𝑘 − year.  
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4) The crude birth rate 𝑏∗ differs from our birth rate 𝑏 in that births are computed 
per 1000 people in the population at the middle of the year in which those 

births occurred. Thus 𝑏∗ = 1000 �(:)
�?:MuDC

. find the formula relating 𝑏∗ to 𝑏 and 𝑑. 

 

Model 2- The Leslie Matrix 

 How many people aged 65 to 70 will there be in 10 years? This is often more 
useful to know than how many people there will be altogether. If we want to know 
how much social security will have to be paid out in 10 years or how many 
schools, nursing homes will be needed, we’ll need a model which recognizes and 
projects age groups.  

   Our model will have is that men are completely ignored. In our model we imagine 
the female population divided into age categories [0, ∆), [∆,2∆), … , [(𝑛 − 1)∆, 𝑛∆). 
Here ∆, which is the width of each age interval, can be any convenient number, and 
𝑛 is a number sufficiently large that only a negligible number of women survive 
beyond 𝑛∆ years. In practice ∆= 5 and 𝑛 = 20 are often used. 

We will use the variable 𝑡 to measure time (in years) with 𝑡 = 0 being the 
present. Our model will not be able to tell us the populations of the age groups for 
all times in the future, but only for a series of instants in the future spaced ∆ years a 
part: 𝑡 = ∆, 𝑡 = 2∆, etc. 

  Le t 𝐹�(𝑡) denote the number of females at time 𝑡 in the 𝑖	th age group, i.e., with 
ages in the interval [𝑖∆, (𝑖 + 1)∆). We define the column vector 𝐹⃑(𝑡) by  

𝐹⃑(𝑡) = �

𝐹3(𝑡)
𝐹b(𝑡)
⋮

𝐹gsb(𝑡)

� 

and call this the age distribution vector for time 𝑡. 𝐹(0) is the current age distribution 
and known to us from census data. Our task is to predict	𝐹(∆),	𝐹(2∆), … 
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A graphical representation of	𝐹(𝑡) is often made in the form of a “population 
pyramid” (figure (1)). 

 

 

 

 

 

 
 

 

Figure (1) 
Population pyramid 

  Obviously, to do this trick of prediction, it is necessary to have some 
information about birth and death rates for the various age groups. Therefore let 𝑑� 
be the death rate for 𝑖	th age group; specifically, 𝑑� is the fraction of the 𝑖	th age 
group which, on account of death, will not be present in (𝑖 + 1)𝑠𝑡 age group ∆ 
years later. The fraction surviving is therefore	1 − 𝑑�, which we denote	𝑃�. This 
survival rate (𝑃�) is assumed to be in effect for all future times. 

This means 

𝐹�Mb(𝑡 + ∆) = (1 − 𝑑�)𝐹�(𝑡) 

																																													= 𝑃�	𝐹�(𝑡)																						… (1)	 

for 𝑡 = 0, ∆,2∆, …. 

Let 𝑚� denoted the ∆–year maternity rate for the 𝑖	th group. This means that for 
any 𝑡 value, the average women in the	𝑖	th age group at time	𝑡 will, by having 
babies in between times	𝑡 and	𝑡 + ∆, contribute 𝑚� children to the lowest age group 
at time (𝑡 + 1). The 𝑚� are assumed constant in time.  
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Thus, the number of newborns (age 0) at time 𝑡 + ∆ is 

																			𝐹3(𝑡 + ∆) = �𝑚�

gsb

��3

𝐹�(𝑡) 																																				… (2) 

Equations (1) and (2) can be written as a single matrix equation  

�

𝐹3(𝑡 + ∆𝑡)
𝐹b(𝑡 + ∆𝑡)

⋮
𝐹gsb(𝑡 + ∆𝑡)

� =

⎣
⎢
⎢
⎢
⎡
𝑚3		
𝑝3		
0		
⋯		
0		

𝑚b		
0		
𝑝b		
⋯		
0		

	

𝑚)		
0		
0		
⋯		
0		

⋯		
⋯		
⋯		
⋯		
⋯		

	

							𝑚gsb
											0
											0
												⋯
𝑝gs)		0 ⎦

⎥
⎥
⎥
⎤
�

𝐹3(𝑡)
𝐹b(𝑡)
⋮

𝐹gsb(𝑡)

�																									… (3) 

which is valid for	𝑡 = 0, ∆,2∆, … up to the latest time one wishes to project to. 

The 𝑛 × 𝑛 matrix is called the Leslie Matrix denoted by	M. Equation (3) can then 
be abbreviated 

𝐹⃑(𝑡 + ∆) = 𝑀𝐹⃑(𝑡)															𝑡 = 0,1,2, …																																																		… (4)	 

Particular instances of equation (4) for 𝑡 = 0 and 𝑡 = ∆ 

𝐹⃑(∆) = 𝑀𝐹⃑(0) 

𝐹⃑(2∆) = 𝑀𝐹⃑(∆) 

																= 𝑀𝑀𝐹⃑(0) 

															= 𝑀)𝐹⃑(0) 

Likewise,  

𝐹⃑(3∆) = 𝑀𝑀)𝐹⃑(0) 

									= 𝑀f𝐹⃑(0) 
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In general,  

𝐹⃑(𝑘∆) = 𝑀¡𝐹⃑(0)					𝑘 = 0,1, … 

 
 

  Example (1) 
 

Imagine a population divided into three age groups. Initially (𝑡 = 0) the population 
of females is divided into three age groups, as in the pyramid below. 

 

 

 

 

Suppose that, as one-time unit passes, everyone in the oldest group dies and one-
quarter of those in each of the other age groups dies. Suppose also that the age-
specific maternity rates are 𝑚3 = 0,𝑚b = 1 and 𝑚) = 2. Find the age distribution 
vectors 𝐹(∆) and 𝐹(2∆) and represent them as population pyramids. 

Solution: 

The information given about mortality implies 𝑝3 =
f
¢
 and 𝑝b =

f
¢
. Therefore, the 

Leslie matrix is  

𝑀 =

⎣
⎢
⎢
⎢
⎡
0 1 2
3
4 0 0

0
3
4 0⎦

⎥
⎥
⎥
⎤
 

and the initial vector is £
80
40
20
¤ 
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to find 𝐹(∆), we use equation (5) with 𝑘 = 1  

𝐹(∆) = ¥
𝐹3(∆)
𝐹b(∆)
𝐹)(∆)

¦ =

⎣
⎢
⎢
⎢
⎡
0 1 2
3
4 0 0

0
3
4 0⎦

⎥
⎥
⎥
⎤
	£
80
40
20
¤ = 	 £

80
40
20
¤ 

and  

𝐹(2∆) = ¥
𝐹3(2∆)
𝐹b(2∆)
𝐹)(2∆)

¦ =

⎣
⎢
⎢
⎢
⎡
0 1 2
3
4 0 0

0
3
4 0⎦

⎥
⎥
⎥
⎤
	£
80
60
30
¤ = 	 £

120
60
45

¤ 

or  

𝐹(2∆) = ¥
𝐹3(2∆)
𝐹b(2∆)
𝐹)(2∆)

¦ =

⎣
⎢
⎢
⎢
⎡
0 1 2
3
4 0 0

0
3
4 0⎦

⎥
⎥
⎥
⎤
)

£
80
40
20
¤ 

											= 	

⎣
⎢
⎢
⎢
⎢
⎡
3
4

3
2 0

0
3
4

3
2

9
16 0 0⎦

⎥
⎥
⎥
⎥
⎤

£
80
60
30
¤ = 	 £

120
60
45

¤ 

the population pyramids for 𝑡 = 0, ∆ and 2∆ 


