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Chapter Four 

Qualitative Solutions to Models for 
 Two Interacting Species  

 

 

In this chapter we develop some powerful theory, which allows us to predict the 
dynamics of a system in general terms. It provides the means by which we can 
establish the phase plane behavior of a system and predict the outcome for any 
possible parameter combination.  

Linear theory 

Both the analytic form of the solution and the solution’s stability depend on the 
eigenvalues of the matrix A where the linear system is 𝑋̇ = 𝐴𝑋.  

Two distinct real eigenvalues 

1) If 𝜆& < 𝜆( < 0 then the equilibrium point is stable node (sink). 

 

 

 

Stable node (sink) 

2)  If 𝜆& > 𝜆( > 0 then the equilibrium point is unstable node (source). 

 

 

 

Unstable node (source) 
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3) If 𝜆& < 0 < 𝜆( then the equilibrium point is saddle. 

 

 
 

  Saddle 

Real eigenvalues with algebraic multiplicity two  

1) If 𝜆& = 𝜆( < 0 then the equilibrium point is degenerate stable node. 

 

 

 

Degenerate stable node 

2) If 𝜆& = 𝜆( > 0 then the equilibrium point is degenerate unstable node. 

 

 

 

Degenerate unstable node 

Eigenvalues with nonzero imaginary part 

1) If we have 𝜆 = 𝜇 ± 𝑖𝑤 where 𝜇 < 0 then the equilibrium point is stable focus 
(spiral). 

 

 
 

Stable focus (spiral) 

 



Page 3 of 17 
 

2) If we have 𝜆 = 𝜇 ± 𝑖𝑤 where 𝑤 > 0 then the equilibrium point is unstable 
focus (spiral). 

 

 

 

Unstable focus (spiral) 

3) If 𝜆&,( = 𝜇 ± 𝑖𝑤			(𝜇 = 0) then the equilibrium point is center. 

 

 
 

Center 

Computational shortcuts for two-dimensional system 

Although the classification of 2 × 2 systems in the previous section depended 
on the eigenvalues of the matrix 𝐴, one does not usually need to compute them as 
there are equivalent conditions that are easier to check. To see this being by writing 
out the characteristic polynomial of 𝐴 in terms of its elements  

det(𝐴 − 𝜆𝐼) = det :𝑎&& − 𝜆 𝑎&(
𝑎(& 𝑎(( − 𝜆

< 

																																		= (𝑎&& − 𝜆)(𝑎(( − 𝜆) − 𝑎&(𝑎(& 

																																																					= 𝜆( − (𝑎&& + 𝑎(()𝜆 + (𝑎&&𝑎(( − 𝑎&(𝑎(&) 

																																																													= 𝜆( − 𝑇𝑟	𝜆 + ∆																																													… (7) 

where 𝑇𝑟 = 𝑇𝑟𝑎𝑐𝑒	(𝐴) = 𝑎&& + 𝑎(( is the trace of the matrix and ∆= 𝑎&&𝑎(( −
𝑎&(𝑎(& is its determinant. The eigenvalues of 𝐴 are the roots of this quadratic and 
so satisfy  

																																																			𝜆 =
−𝑇𝑟 ± √𝑇𝑟( − 4∆

2 																																														… (8) 
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if we call the two roots 𝜆& and	𝜆( we can use them to factor the characteristic 
polynomial and obtain   

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = (𝜆 − 𝜆&)(𝜆 − 𝜆() = 𝜆( − (𝜆& + 𝜆()𝜆 + 𝜆&𝜆( 																								… (9) 

Comparing Eq. (7) with the last line of Eq. (9), we obtain 

𝑇𝑟 = 𝜆& + 𝜆(              and                ∆= 𝜆&𝜆( 

And this, along with Eq.(8), allows us to make the following observations, which 
are summarised in figure 

• If ∆< 0 then the eigenvalues are real, nonzeroand have opposite sign: 
the equilibrium is thus a saddle 

• The eigenvalues are distinct real number if 𝑇𝑟( − 4∆> 0, (∆< KLM

N
), but form 

a complex conjugate pair if 𝑇𝑟( − 4∆< 0, (∆> KLM

N
). 

• If ∆> 0 and 𝑇𝑟 < 0 then the eigenvalues are either a pair of negative real 
number or a complex conjugate pair with negative real part. In either case, 
the equilibrium is stable. 

• If ∆> 0 and 𝑇𝑟 < 0 then the eigenvalues are either a pair of postive real 
number or a complex conjugate pair with postive real part. In either case, the 
equilibrium is unstable. 

The various special cases at the boundaries between the regions described are: 

∗ ∆= 0: then there are one or (if 𝑇𝑟 = 0) two zero eigenvalues and linear stability 
analysis is inconclusive and the pattern of solutions will be determined by higher-
order terms in the taylor series in Eq.(3). 

∗ ∆= PKL
(
Q
(
: the characteristic polynomial has a repeated real root and the phase 

portraits will be degenerate source  (in case 𝑇𝑟 > 0) or degenerate sink (in case 
𝑇𝑟 < 0). 

∗ ∆= 0: and ∆> 0: the eigenvalues are a pure imaginary pair and the phase portrait 
will be center. 
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Examples: 

 

1- Determine the phase portrait of the dynamical system  

:𝑥
\(𝑡)
𝑦′(𝑡)< = _−2 −2

1 −5b :
𝑥(𝑡)
𝑦(𝑡)< 

Solution: 

	𝑑𝑒𝑡𝐴 = 10 − (−2) = 12 > 0 

𝑇𝑟(𝐴) = −2 − 5 = −7 < 0 

				
[𝑇𝑟(𝐴)](

4 =
49
4 = 12.2 > det(𝐴) 

∴ ∆<
𝑇𝑟(

4 																																				 

∴ The equilibrium point in this system is stable node . 

 

2- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where  

𝐴 = _−2 −5
0 −2b. 

Solution 

∆= 𝑑𝑒𝑡𝐴 = 4 > 0																		 

𝑇𝑟(𝐴) = −2 − 2 = −4 < 0 

[𝑇𝑟(𝐴)](

4 =
16
4 = 4 = ∆																 

∴ The equilibrium point in this system is degenerate stable node. 

 

3- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _−1 2
−1 −1b 
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Solution 

 

∆= 1 − (−2) = 3 > 0 

𝑇𝑟(𝐴) = −1 − 1 = −2 < 0					 

[𝑇𝑟(𝐴)](

4 =
4
4 = 1 < ∆																 

∴ The equilibrium point in this system is stable spiral. 

 

4-  Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where      

𝐴 = _ 2 3
−2 −2b 

Solution: 

∆= −4 − (−6) = 2 > 0 

𝑇𝑟(𝐴) = 2 − 2 = 0									 

∴ The equilibrium point in this system is center. 

 

5- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _ 1 2
−1 1b 

Solution: 

∆= 1 − (−2) = 3 > 0 
		𝑇𝑟(𝐴) = 1 + 1 = 2 > 0 

					
[𝑇𝑟(𝐴)](

4 =
2(

4 = 1 < ∆ 

∴ The equilibrium point in this system is unstable spiral. 
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6- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _1 1
0 2b 

Solution: 

∆= 2 > 0 
		𝑇𝑟(𝐴) = 1 + 2 = 3 > 0 

					
[𝑇𝑟(𝐴)](

4 =
9
4 = 2.5 > ∆ 

∴ The equilibrium point in this system is unstable node. 

 

7- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _2 −5
0 2 b 

Solution: 

∆= 4 > 0								 
		𝑇𝑟(𝐴) = 4 > 0 

																				
[𝑇𝑟(𝐴)](

4 =
16
4 = 4 = ∆ 

∴ The equilibrium point in this system is degenerate unstable node. 

 

8- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _1 1
0 −2b 

Solution: 

		𝑑𝑒𝑡	𝐴 = −2 < 0 

∴ The equilibrium point in this system is saddle point. 
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9- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _0 0
0 −1b 

Solution: 

∆= 0 
																				𝑇𝑟(𝐴) = −1 < 0 

∴ The equilibrium point in this system is lines of stable fixed points (stable star). 

 

10- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _0 0
0 1b 

Solution: 

∆= 0 
																	𝑇𝑟(𝐴) = 1 > 0 

∴ The equilibrium point in this system is line of unstable fixed points (unstable 
star). 

 

11- Determine the phase portrait of the dynamical linear system 𝑋̇ = 𝐴𝑋, where   

𝐴 = _2 −4
1 −2b 

Solution: 

																			∆= −4 − (−4) = 0 
		𝑇𝑟(𝐴) = 0 

∴ The equilibrium point in this system is uniform motion. 
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Example: 

Example: 

Applications of Linear Theory 

 

 

Find all equilibrium points associated with the system  

𝑋\ = 𝑌	      and       𝑌\ = −𝑤(𝑋 

and determine their classification(s). 

Solution:  

In matrix form, the system is  

𝑋\ = 𝐴𝑋 where 𝐴 = _ 0 1
−𝑤( 0b 

        𝑌 = 0 and −𝑤(𝑋 = 0				 ⟼ 				𝑋 = 0 

∴ The only equilibrium point is (𝑥k, 𝑦k) = (0,0).  

To classify this point, we need the characterist eq.  

𝜆( − 𝑇𝑟(𝐴) + 𝑑𝑒𝑡(𝐴) = 0 

																						𝜆( − 0𝜆 + 𝑤( = 0				 ⟼ 			𝜆( + 𝑤( = 0 

∴ 			𝜆 = ±𝑤𝑖																									 

Now,   with 𝑇𝑟(𝐴) = 0 and 𝑑𝑒𝑡 = 𝑤( 

This implies that the equilibrium point (0,0) is a center. 

 

 

 

Classify the equilibrium points for the system  

𝑑𝑅
𝑑𝑡 = −𝑎&𝐵,

𝑑𝐵
𝑑𝑡 = −𝑎(𝑅	 
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Solution: 

the system can be written in matrix form  

𝑋\ = 𝐴𝑋 ,     𝐴 = : 0 −𝑎&
−𝑎( 0 < 

and  

−𝑎&𝐵 = 0 ⟼ 𝐵 = 0
−𝑎(𝑅 = 0 ⟼ 𝑅 = 0		} → (𝑅k, 𝐵k) = (0,0) 

The characterist equation is 

𝜆( − 𝑇𝑟(𝐴) + 𝑑𝑒𝑡(𝐴) = 0 

											𝜆( + (−𝑎&𝑎() = 0																												 

with det(𝐴) = −𝑎&𝑎( < 0 

∴ The equilibrium point is a saddle point. 
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Zero 

A mathematical Interlude (Non Linear Theory) 

Suppose we are considering a model for two interacting species that has the 
general form  

																							
𝑑𝑢
𝑑𝑡 = 𝑓(𝑢, 𝑣)											and												

𝑑𝑣
𝑑𝑡 = 𝑔(𝑢, 𝑣)																																		… (1) 

where 𝑓 and 𝑔 are continuous and continuously differetiable. If (𝑢∗, 𝑣∗) is an 
equilibrium of Eq. (1), so that 

𝑓(𝑢∗, 𝑣∗) = 0 = 𝑔(𝑢∗, 𝑣∗) 

then we can investigate its stability by defining perturbation 𝑥(𝑡) and 𝑦(𝑡) such 
that  

																					𝑢(𝑡) = 𝑢∗ + 𝑥(𝑡)													and																		𝑣(𝑡) = 𝑣∗ + 𝑦(𝑡)																	… (2) 

Linearisation near an equilibrium 

																							
𝑑𝑢
𝑑𝑡 =

𝑑
𝑑𝑡
(𝑢∗ + 𝑥(𝑡)) =

𝑑𝑥
𝑑𝑡																												 

But then on the other hand  

𝑑𝑢
𝑑𝑡 =

𝑑𝑥
𝑑𝑡 = 𝑓v𝑢∗ + 𝑥(𝑡), 𝑣∗ + 𝑦(𝑡)w																								 

 

																							≈ 𝑓(𝑢∗, 𝑣∗) + 𝑥(𝑡)
yz
y{
	|{∗,}∗ + 𝑦(𝑡)

yz
y}
	|{∗,}∗ 

																																																= 𝑥(𝑡)
𝜕𝑓
𝜕𝑢	|{∗,}∗ + 𝑦(𝑡)

𝜕𝑓
𝜕𝑣 	|{∗,}∗ 																																… (3)	 

In the same manner 

														
𝑑𝑣
𝑑𝑡 =

𝑑𝑦
𝑑𝑡 = 𝑥(𝑡)

𝜕𝑔
𝜕𝑢 	|{∗,}∗ + 𝑦

(𝑡)
𝜕𝑔
𝜕𝑣 	|{∗,}∗ 																																	… (4) 

It’s convenient to combine the results (3) and (4) in matrix form as follows 



Page 14 of 17 
 

Example: 

𝑑
𝑑𝑡
_
𝑥
𝑦b = 𝐴 _

𝑥
𝑦b																																																																				… (5)	 

where 	𝐴 = �
yz
y{

yz
y}

y�
y{

y�
y}

�

{∗,}∗

																																																																											… (6) 

when derived form an ecological model such as the Lotka-Volterra system the 
matrix 𝐴 defined above is called the community matrix. The stability of the 
equilibrium then depends on the nature of the solutions to the linear system of 
ODEs (1) and this depends on the eigenvalues of the matrix 𝐴  

Applications of nonlinear theory 

 

 

Find the linearised for model  

𝑋\ = 𝛽&𝑋 − 𝑐&𝑋𝑌 

			𝑌\ = −𝛼(𝑌 + 𝑐(𝑋𝑌 

and hence classify all equilibrium points of the basic predator-prey model. 

Solution: 

𝛽&𝑋 − 𝑐&𝑋𝑌 = 0 ⟼ 𝑋(𝛽& − 𝑐&𝑌) = 0 

either 𝑋 = 0 or 𝛽& − 𝑐&𝑌 = 0 → 𝑌 = ��
��

 

−𝛼(𝑌 + 𝑐(𝑋𝑌 = 0 ⟼ 𝑌(−𝛼( + 𝑐(𝑋) 

either 𝑌 = 0 or −𝛼( + 𝑐(𝑋 = 0 → 𝑋 = �M
�M

 

∴ (0,0) and (�M
�M
, ��
��
) are equilibrium points. 

𝐹(𝑋, 𝑌) = 𝛽&𝑋 − 𝑐&𝑋𝑌																																																				𝐺(𝑋, 𝑌) = −𝛼(𝑌 + 𝑐(𝑋𝑌 
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𝜕𝐹
𝜕𝑋 = 𝛽& − 𝑐&𝑌																																																																			

𝜕𝐺
𝜕𝑋 = 𝑐(𝑌																													 

𝜕𝐹
𝜕𝑌 = −𝑐&𝑋																																																																									

𝜕𝐺
𝜕𝑌 = −𝛼( + 𝑐(𝑋															 

∗ For (𝑋k, 𝑌k) = (0,0) 

J = :𝛽& − 𝑐&𝑌 −𝑐&𝑋
𝑐(𝑌 −𝛼( + 𝑐(𝑋

< 

= :𝛽& 0
0 −𝛼(

<																						 

with 𝑑𝑒𝑡(𝐴) = −𝛽&𝛼( < 0				 ⟼ 					 (0,0)is saddle point. 

∗ For (𝑋k, 𝑌k) = (�M
�M
, ��
��
) 

J =

⎣
⎢
⎢
⎡𝛽& − 𝑐&

𝛽&
𝑐&

−𝑐&
𝛼(
𝑐(

𝑐(
𝛽&
𝑐&

−𝛼( + 𝑐(
𝛼(
𝑐(⎦
⎥
⎥
⎤
 

				=

⎣
⎢
⎢
⎡ 0 −

𝑐&𝛼(
𝑐(

𝛽&𝑐(
𝑐&

0 ⎦
⎥
⎥
⎤
																						 

𝑇𝑟(𝐴) = 0			and			 𝑑𝑒𝑡(𝐴) =
𝑐&𝛼(
𝑐(

.
𝛽&𝑐(
𝑐&

= 	𝛼(𝛽& 

∴ 	�
𝛼(
𝑐(
,
𝛽&
𝑐&
� 						is	center. 
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Example: 

 

 

 

Classify the equilibrium points of the epidemic model 

𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼	,				 

	
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼	 

Solution:  

−𝛽𝑆𝐼 = 0 ⟼ either  𝑆 = 0  or  𝐼 = 0 

𝛽𝑆𝐼 − 𝛾𝐼 = 0	 ⟼ 𝐼(𝛽𝑆 − 𝛾) = 0  

∴ either  𝐼 = 0  or  𝑆 = �
�

 

∴ (0,0) and  (�
�
, 0) are equilibrium points. 

𝐹(𝑆, 𝐼) = −𝛽𝑆𝐼																																																															𝐺(𝑆, 𝐼) = 𝛽𝑆𝐼 − 𝛾𝐼 

𝜕𝐹
𝜕𝑆 = −𝛽𝐼																																																																										

𝜕𝐺
𝜕𝑆 = 𝛽𝐼																													 

𝜕𝐹
𝜕𝐼 = −𝛽𝑆																																																																								

𝜕𝐺
𝜕𝐼 = 𝛽𝑆 − 𝛾 

The Jacobian matrix is 

J = �

𝜕𝐹
𝜕𝑆

𝜕𝐹
𝜕𝐼

𝜕𝐺
𝜕𝑆

𝜕𝐺
𝜕𝐼

� = :−𝛽𝐼 −𝛽𝑆
𝛽𝐼 𝛽𝑆 − 𝛾< 
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For (𝑆k, 𝐼k) = (0,0) 

𝐽 = :0 0
0 −𝛾<																						 

𝑇𝑟(𝐴) = −𝛾	and				𝑑𝑒𝑡(𝐴) = 0  

We have a line of stable fixed points. 

For (𝑆k, 𝐼k) = (�
�
, 0) 

𝐽 = �
0 −𝛽.

𝛾
𝛽

0 𝛽.
𝛾
𝛽 − 𝛾

� 

= _0 −𝛾
0 0 b						 

𝑇𝑟(𝐴) = 0			and				𝑑𝑒𝑡(𝐴) = 0  

We have a uniform motion. 


