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Models for Population Growth

In Section 9.1 we developed two differential equations that describe population growth. 
In this section we further investigate these equations and use the techniques of Sec-
tion 9.3 to obtain explicit models for a population.

■	 The Law of Natural Growth
One of the models for population growth that we considered in Section 9.1 was based  
on the assumption that the population grows at a rate proportional to the size of the  
population:

dP

dt
− kP

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance) 
with size P − 1000 and at a certain time it is growing at a rate of P9 − 300 bacteria per 
hour. Now let’s take another 1000 bacteria of the same type and put them with the first 
population. Each half of the combined population was previously growing at a rate of  
300 bacteria per hour. We would expect the total population of 2000 to increase at a rate 
of 600 bacteria per hour initially (provided there’s enough room and nutrition). So if we 
double the size, we double the growth rate. It seems reasonable that the growth rate 
should be proportional to the size.

In general, if Pstd is the value of a quantity y at time t and if the rate of change of P 
with respect to t is proportional to its size Pstd at any time, then

1 	
dP

dt
− kP

where k is a constant. Equation 1 is sometimes called the law of natural growth. If k is 
positive, then the population increases; if k is negative, it decreases.

9.4

	4.	 �Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area  
Ashd at height h. Then the volume of water up to height h is V − yh

0
 Asud du and so the  

Fundamental Theorem of Calculus gives dVydh − Ashd. It follows that

dV

dt
−

dV

dh
 
dh

dt
− Ashd 

dh

dt

		  and so Torricelli’s Law becomes

Ashd 
dh

dt
− 2as2th 

		  (a)	� Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of 
water. If the radius of the circular hole is 1 cm and we take t − 10 mys2, show that h 
satisfies the differential equation

s4h 2 h2 d 
dh

dt
− 20.0001s20h 

		  (b)	 How long will it take for the water to drain completely?
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632	 CHAPTER 9    Differential Equations

Because Equation 1 is a separable differential equation, we can solve it by the meth-
ods of Section 9.3:

 y 
dP

P
− y k dt

 ln | P | − kt 1 C

 | P | − ekt1C − eCekt

 P − Aekt

where A (− 6eC or 0) is an arbitrary constant. To see the significance of the constant A, 
we observe that

Ps0d − Aek � 0 − A

Therefore A is the initial value of the function.

2   The solution of the initial-value problem

dP

dt
− kP            Ps0d − P0

is	 Pstd − P0ekt

Examples and exercises on the use  
of (2) are given in Section 3.8.

Another way of writing Equation 1 is

dPydt

P
− k

which says that the relative growth rate (the growth rate divided by the population size; 
see Section 3.8) is constant. Then (2) says that a population with constant relative growth 
rate must grow exponentially.

We can account for emigration (or “harvesting”) from a population by modifying 
Equation 1: if the rate of emigration is a constant m, then the rate of change of the popu-
lation is modeled by the differential equation

3 	
dP

dt
− kP 2 m

See Exercise 17 for the solution and consequences of Equation 3.

■	 The Logistic Model
As we discussed in Section 9.1, a population often increases exponentially in its early 
stages but levels off eventually and approaches its carrying capacity because of limited 
resources. If Pstd is the size of the population at time t, we assume that

dP

dt
< kP        if P is small

This says that the growth rate is initially close to being proportional to size. In other 
words, the relative growth rate is almost constant when the population is small. But we 
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also want to reflect the fact that the relative growth rate decreases as the population P 
increases and becomes negative if P ever exceeds its carrying capacity M, the maxi-
mum population that the environment is capable of sustaining in the long run. The sim-
plest expression for the relative growth rate that incorporates these assumptions is

dP/dt

P
− kS1 2

P

MD
Multiplying by P, we obtain the model for population growth known as the logistic dif-
ferential equation, which we first saw in Section 9.1:

4 	
dP

dt
− kPS1 2

P

MD
Notice from Equation 4 that if P is small compared with M, then PyM is close to 0 and 
so dPydt < kP. However, if P l M (the population approaches its carrying capacity), 
then PyM l 1, so dPydt l 0. We can deduce information about whether solutions 
increase or decrease directly from Equation 4. If the population P lies between 0 and M, 
then the right side of the equation is positive, so dPydt . 0 and the population increases. 
But if the population exceeds the carrying capacity sP . Md, then 1 2 PyM is negative, 
so dPydt , 0 and the population decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking 
at a direction field.

EXAMPLE 1  Draw a direction field for the logistic equation with k − 0.08 and 
carrying capacity M − 1000. What can you deduce about the solutions?

SOLUTION  In this case the logistic differential equation is

dP

dt
− 0.08PS1 2

P

1000D
A direction field for this equation is shown in Figure 1. We show only the first quadrant 
because negative populations aren’t meaningful and here we are interested only in what 
happens after t − 0.
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FIGURE 1 

Direction field for the logistic  
equation in Example 1

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



634	 CHAPTER 9    Differential Equations

The logistic equation is autonomous (dPydt depends only on P, not on t), so the 
slopes are the same along any horizontal line. As expected, the slopes are positive for 
0 , P , 1000 and negative for P . 1000.

The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice 
that the solutions move away from the equilibrium solution P − 0 and move toward the 
equilibrium solution P − 1000.

In Figure 2 we use the direction field to sketch solution curves with initial popula-
tions Ps0d − 100, Ps0d − 400, and Ps0d − 1300. Notice that solution curves that start 
below P − 1000 are increasing and those that start above P − 1000 are decreasing. 
The slopes are greatest when P < 500 and therefore the solution curves that start below 
P − 1000 have inflection points when P < 500. In fact we can prove that all solution 
curves that start below P − 500 have an inflection point when P is exactly 500. (See 
Exercise 13.)
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� ■

The logistic equation (4) is separable and so we can solve it explicitly using the 
method of Section 9.3. Since

dP

dt
− kPS1 2

P

MD
we have

5 	 y 
dP

Ps1 2 PyMd
− y k dt

To evaluate the integral on the left side, we write

1

Ps1 2 PyMd
−

M

PsM 2 Pd

Using partial fractions (see Section 7.4), we get

M

PsM 2 Pd
−

1

P
1

1

M 2 P

This enables us to rewrite Equation 5:

 y S 1

P
1

1

M 2 PD dP − y k dt

 ln | P | 2 ln | M 2 P | − kt 1 C

FIGURE 2 
Solution curves for the logistic  

equation in Example 1
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 ln Z M 2 P

P Z − 2kt 2 C

 Z M 2 P

P Z − e2kt2C − e2Ce2kt

6 	  
M 2 P

P
− Ae2kt

where A − 6e2C. Solving Equation 6 for P, we get

M

P
2 1 − Ae2kt        ?      

P

M
−

1

1 1 Ae2kt

so	 P −
M

1 1 Ae2kt

We find the value of A by putting t − 0 in Equation 6. If t − 0, then P − P0 (the initial 
population), so

M 2 P0

P0
− Ae 0 − A

Thus the solution to the logistic equation is

7 	 Pstd −
M

1 1 Ae2kt         where A −
M 2 P0

P0

Using the expression for Pstd in Equation 7, we see that

lim
t l `

 Pstd − M

which is to be expected.

EXAMPLE 2  Write the solution of the initial-value problem

dP

dt
− 0.08PS1 2

P

1000D    Ps0d − 100

and use it to find the population sizes Ps40d and Ps80d. At what time does the popula-
tion reach 900?

SOLUTION  The differential equation is a logistic equation with k − 0.08, carrying 
capacity M − 1000, and initial population P0 − 100. So Equation 7 gives the popula-
tion at time t as

Pstd −
1000

1 1 Ae20.08t         where A −
1000 2 100

100
− 9

Thus	 Pstd −
1000

1 1 9e20.08t

So the population sizes when t − 40 and t − 80 are

Ps40d −
1000

1 1 9e23.2 < 731.6            Ps80d −
1000

1 1 9e26.4 < 985.3
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The population reaches 900 when

1000

1 1 9e20.08t − 900

Solving this equation for t, we get

 1 1 9e20.08t − 10
9

 e20.08t − 1
81

 20.08t − ln 1
81 − 2ln 81

 t −
ln 81

0.08
< 54.9

So the population reaches 900 when t is approximately 55. As a check on our work, we 
graph the population curve in Figure 3 and observe that it intersects the line P − 900  
at t < 55.� ■

■	 Comparison of the Natural Growth and Logistic Models
In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para
mecium and used a logistic equation to model his data. The table gives his daily count of 
the population of protozoa. He estimated the initial relative growth rate to be 0.7944 and 
the carrying capacity to be 64.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

EXAMPLE 3  Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit for each model.

SOLUTION  Given the relative growth rate k − 0.7944 and the initial population 
P0 − 2, the exponential model is

Pstd − P0 ekt − 2e 0.7944 t

Gause used the same value of k for his logistic model. [This is reasonable because 
P0 − 2 is small compared with the carrying capacity (M − 64). The equation

1

P0
 
dP

dt Z
t−0

− kS1 2
2

64D < k

shows that the value of k for the logistic model is very close to the value for the 
exponential model.]

Then the solution of the logistic equation, given in Equation 7, is

Pstd −
M

1 1 Ae2kt −
64

1 1 Ae20.7944 t

where	 A −
M 2 P0

P0
−

64 2 2

2
− 31

So	 Pstd −
64

1 1 31e20.7944 t

Compare the solution curve in Fig-
ure 3 with the lowest solution curve 
we drew from the direction field in 
Figure 2.
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FIGURE 3 
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We use these equations to calculate the predicted values (rounded to the nearest integer) 
and compare them in the following table.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .

We observe from the table and from the graph in Figure 4 that for the first three or 
four days the exponential model gives results comparable to those of the more sophisti-
cated logistic model. For t > 5, however, the exponential model is hopelessly inaccu-
rate, but the logistic model fits the observations reasonably well.
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� ■

Many countries that formerly experienced exponential growth are now finding that 
their rates of population growth are declining and the logistic model provides a better 
model. The table in the margin shows midyear values of the population of Japan, in thou-
sands, from 1960 to 2015. Figure 5 shows these data points, using t − 0 to represent 
1960, together with a shifted logistic function (obtained from a calculator with the ability 
to fit a logistic function to data points by regression; see Exercise 15). At first the data 
points appear to be following an exponential curve but overall a logistic function pro-
vides a much more accurate model. 
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FIGURE 4 
The exponential and logistic  

models for the Paramecium data

Year
Population  
(thousands)

1960   94,092
1965   98,883
1970 104,345
1975 111,573
1980 116,807
1985 120,754
1990 123,537
1995 125,327
2000 126,776
2005 127,715
2010 127,579
2015 126,920

Source: U.S. Census Bureau / International 
Programs / International Data Base. Revised  
Sept. 18, 2018. Version data 18.0822. Code 
12.0321.

FIGURE 5 
Logistic model for the  

population of Japan
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■	 Other Models for Population Growth
The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 22 we look at the 
Gompertz growth function and in Exercises 23 and 24 we investigate seasonal-growth 
models.

Two additional models are modifications of the logistic model. The differential 
equation

dP

dt
− kPS1 2

P

MD 2 c

has been used to model populations that are subject to harvesting of one sort or another. 
(Think of a population of fish being caught at a constant rate.) This equation is explored 
in Exercises 19 and 20.

For some species there is a minimum population level m below which the species 
tends to become extinct. (Adults may not be able to find suitable mates.) Such popula-
tions have been modeled by the differential equation

dP

dt
− kPS1 2

P

MDS1 2
m

PD
where the extra factor, 1 2 myP, takes into account the consequences of a sparse popula-
tion (see Exercise 21).

9.4  Exercises

1–2  A population grows according to the given logistic equation, 
where t is measured in weeks.
(a)	� What is the carrying capacity? What is the value of k ?
(b)	 Write the solution of the equation.
(c)	 What is the population after 10 weeks?

	 1.	 ��
dP

dt
− 0.04PS1 2

P

1200D,  Ps0d − 60

	 2.	 ��
dP

dt
− 0.02P 2 0.0004P 2,  Ps0d − 40

	 3.	 ��Suppose that a population develops according to the logistic 
equation

dP

dt
− 0.05P 2 0.0005P 2

where t is measured in weeks.
	 (a)	 What is the carrying capacity? What is the value of k?
	 (b)	� A direction field for this equation is shown. Where  

are the slopes close to 0? Where are they largest?  
Which solutions are increasing? Which solutions are 
decreasing?

0 t

P

604020

150

100

50

	 (c)	� Use the direction field to sketch solutions for initial 
populations of 20, 40, 60, 80, 120, and 140. What do 
these solutions have in common? How do they differ? 
Which solutions have inflection points? At what popu- 
lation levels do they occur?

	 (d)	� What are the equilibrium solutions? How are the other 
solutions related to these solutions?

	 4.	 ��Suppose that a population grows according to a logistic 
model with carrying capacity 6000 and k − 0.0015 per year.

	 (a)	 Write the logistic differential equation for these values.
	 (b)	� Draw a direction field (either by hand or with a com

puter). What does it tell you about the solution curves?

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 SECTION 9.4    Models for Population Growth	 639

	 (d)	� For each model, compare the predicted values with the 
observed values, both in a table and with graphs. 
Comment on how well your models fit the data.

	 (e)	� Use your logistic model to estimate the number of yeast 
cells after 7 hours.

	 9.	 ��The population of the world was about 6.1 billion in 2000. 
Birth rates around that time ranged from 35 to 40 million per 
year and death rates ranged from 15 to 20 million per year. 
Let’s assume that the carrying capacity for world population 
is 20 billion.

	 (a)	� Write the logistic differential equation for these data. 
(Because the initial population is small compared to the 
carrying capacity, you can take k to be an estimate of  
the initial relative growth rate.)

	 (b)	� Use the logistic model to estimate the world population  
in the year 2010 and compare with the actual population 
of 6.9 billion.

	 (c)	� Use the logistic model to predict the world population in 
the years 2100 and 2500.

	10.	 �(a)	� Assume that the carrying capacity for the US population 
is 800 million. Use it and the fact that the population was 
282 million in 2000 to formulate a logistic model for the 
US population.

	 (b)	� Determine the value of k in your model by using the  
fact that the population in 2010 was 309 million.

	 (c)	� Use your model to predict the US population in the  
years 2100 and 2200.

	 (d)	� Use your model to predict the year in which the  
US population will exceed 500 million.

	11.	 ��One model for the spread of a rumor is that the rate of spread 
is proportional to the product of the fraction y of the popula
tion who have heard the rumor and the fraction who have not 
heard the rumor.

	 (a)	 Write a differential equation that is satisfied by y.
	 (b)	 Solve the differential equation.
	 (c)	� A small town has 1000 inhabitants. At 8 am, 80 people 

have heard a rumor. By noon half the town has heard it. 
At what time will 90% of the population have heard the 
rumor?

	12.	 ��Biologists stocked a lake with 400 fish and estimated the  
carrying capacity (the maximal population for the fish of that 
species in that lake) to be 10,000. The number of fish tripled 
in the first year.

	 (a)	� Assuming that the size of the fish population satisfies the 
logistic equation, find an expression for the size of the 
population after t years.

	 (b)	� How long will it take for the population to increase  
to 5000?

	13.	 �(a)	 Show that if P satisfies the logistic equation (4), then

d 2P

dt 2 − k 2PS1 2
P

MDS1 2
2P

M D
	 (b)	� Deduce that a population grows fastest when it reaches 

half its carrying capacity.

	 (c)	� Use the direction field to sketch the solution curves for  
initial populations of 1000, 2000, 4000, and 8000. What 
can you say about the concavity of these curves? What is 
the significance of the inflection points?

	 (d)	� Program a calculator or computer to use Euler’s method 
with step size h − 1 to estimate the population after 
50 years if the initial population is 1000.

	 (e)	� If the initial population is 1000, write a formula for the 
population after t years. Use it to find the population after 
50 years and compare with your estimate in part (d).

	 (f )	� Graph the solution in part (e) and compare with the 
solution curve you sketched in part (c).

	 5.	 ��The Pacific halibut fishery has been modeled by the differen-
tial equation

dy

dt
− kyS1 2

y

MD 

where ystd is the biomass (the total mass of the members of  
the population) in kilograms at time t (measured in years),  
the carrying capacity is estimated to be M − 8 3 107 kg, and 
k − 0.71 per year.

	 (a)	 If ys0d − 2 3 107 kg, find the biomass a year later.
	 (b)	� How long will it take for the biomass to reach 

4 3 107 kg?

	 6.	 ��Suppose a population Pstd satisfies

dP

dt
− 0.4P 2 0.001P 2            Ps0d − 50

where t is measured in years.
	 (a)	� What is the carrying capacity?
	 (b)	� What is P9s0d?
	 (c)	� When will the population reach 50% of the carrying 

capacity?

	 7.	 ��Suppose a population grows according to a logistic model 
with initial population 1000 and carrying capacity 10,000. If 
the population grows to 2500 after one year, what will the 
population be after another three years?

	 8.	 ��The table gives the number of yeast cells in a new laboratory 
culture.

Time (hours) Yeast cells Time (hours) Yeast cells

0   18 10 509
2   39 12 597
4   80 14 640
6 171 16 664
8 336 18 672

	 (a)	� Plot the data and use the plot to estimate the carrying 
capacity for the yeast population.

	 (b)	 Use the data to estimate the initial relative growth rate.
	 (c)	� Find both an exponential model and a logistic model for 

these data.
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640	 CHAPTER 9    Differential Equations

	14.	 ��For a fixed value of M (say M − 10), the family of logistic 
functions given by Equation 7 depends on the initial value  
P0 and the proportionality constant k. Graph several mem-
bers of this family. How does the graph change when P0 
varies? How does it change when k varies?

	15.	 ��A Shifted Logistic Model  The table gives the midyear popu-
lation P of Trinidad and Tobago, in thousands, from 1970  
to 2015.

Year
Population 
(thousands) Year

Population 
(thousands)

1970   955 1995 1264
1975 1007 2000 1252
1980 1091 2005 1237
1985 1189 2010 1227
1990 1255 2015 1222

Source: US Census Bureau / International Programs / International Data 
Base. Revised Sept. 18, 2018. Version data 18.0822. Code 12.0321.

	 (a)	� Make a scatter plot of these data. Choose t − 0 to 
correspond to the year 1970.

	 (b)	� From the scatter plot, it appears that a logistic model 
might be appropriate if we first shift the data points 
downward (so that the initial P-values are closer  
to 0). Subtract 900 from each value of P. Then use a 
calculator or computer to obtain a logistic model for  
the shifted data. 

	 (c)	� Add 900 to your model from part (b) to obtain a shifted 
logistic model for the original data. Graph the model  
with the data points from part (a) and comment on the 
accuracy of the model. 

	 (d)	� If the model remains accurate, what do you predict for 
the future population of Trinidad and Tobago? 

	16.	 The table gives the number of active Twitter users world-
wide, semiannually from 2010 to 2016.

Years since 
January 1, 2010

Twitter users 
(millions)

Years since 
January 1, 2010

Twitter users 
(millions)

0   30 3.5 232
0.5   49 4.0 255
1.0   68 4.5 284
1.5 101 5.0 302
2.0 138 5.5 307
2.5 167 6.0 310
3.0 204 6.5 317

Source: www.statistica.com/statistics/282087/number-of-monthly-active-twitter-
users/. Accessed March 9, 2019.

Use a calculator or computer to fit both an exponential func-
tion and a logistic function to these data. Graph the data 
points and both functions, and comment on the accuracy of 
the models.

; 	17.	 ��Consider a population P − Pstd with constant relative birth 
and death rates � and �, respectively, and a constant emi- 
gration rate m, where �, �, and m are positive constants. 
Assume that � . �. Then the rate of change of the popula-
tion at time t is modeled by the differential equation

dP

dt
− kP 2 m        where k − � 2 �

	 (a)	� Find the solution of this equation that satisfies the initial 
condition Ps0d − P0.

	 (b)	� What condition on m will lead to an exponential 
expansion of the population?

	 (c)	� What condition on m will result in a constant popula
tion? A population decline?

	 (d)	� In 1847, the population of Ireland was about 8 million 
and the difference between the relative birth and death 
rates was 1.6% of the population. Because of the potato 
famine in the 1840s and 1850s, about 210,000 inhabi
tants per year emigrated from Ireland. Was the popu- 
lation expanding or declining at that time?

	18.	 ��Doomsday Equation  Let c be a positive number. A differ-
ential equation of the form

dy

dt
− ky 11c

where k is a positive constant, is called a doomsday equa-
tion because the exponent in the expression ky 11c is larger 
than the exponent 1 for natural growth.

	 (a)	� Determine the solution that satisfies the initial condi- 
tion ys0d − y0.

	 (b)	� Show that there is a finite time t − T (doomsday) such 
that lim t l T 2 ystd − `.

	 (c)	� An especially prolific breed of rabbits has the growth 
term ky 1.01. If 2 such rabbits breed initially and the 
warren has 16 rabbits after three months, then when is 
doomsday?

	19.	 ��Let’s modify the logistic differential equation of  
Example 1 as follows:

dP

dt
− 0.08PS1 2

P

1000D 2 15

	 (a)	� Suppose Pstd represents a fish population at time t,  
where t is measured in weeks. Explain the meaning of 
the final term in the equation s215d.

	 (b)	 Draw a direction field for this differential equation.
	 (c)	 What are the equilibrium solutions?
	 (d)	� Use the direction field to sketch several solution curves. 

Describe what happens to the fish population for 
various initial populations.

	 (e)	� Solve this differential equation explicitly, either by 
using partial fractions or with a computer. Use the 
initial populations 200 and 300. Graph the solutions and 
compare with your sketches in part (d).
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where c is a constant and M is the carrying capacity.
	 (a)	 Solve this differential equation.
	 (b)	 Compute lim t l ` Pstd.
	 (c)	� Graph the Gompertz function for M − 1000, P0 − 100, 

and c − 0.05, and compare it with the logistic function  
in Example 2. What are the similarities? What are the 
differences?

	 (d)	� We know from Exercise 13 that the logistic function 
grows fastest when P − My2. Use the Gompertz differ- 
ential equation to show that the Gompertz function 
grows fastest when P − Mye.

	23.	 ��In a seasonal-growth model, a periodic function of time is 
introduced to account for seasonal variations in the rate of 
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.

	 (a)	 Find the solution of the seasonal-growth model

dP

dt
− kP cossrt 2 �d            Ps0d − P0

	 where k, r, and � are positive constants.
	 (b)	� By graphing the solution for several values of k, r, and  

�, explain how the values of k, r, and � affect the 
solution. What can you say about lim t l ` Pstd ?

	24.	 ��Suppose we alter the differential equation in Exercise 23 as  
follows:

dP

dt
− kP cos2srt 2 �d            Ps0d − P0

	 (a)	� Solve this differential equation with the help of a table 
of integrals or a computer.

	 (b)	� Graph the solution for several values of k, r, and �.  
How do the values of k, r, and � affect the solution? 
What can you say about lim t l ` Pstd in this case?

	25.	 ��Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent  
function (Figure 3.11.3). Explain the similarity by show-
ing that the logistic function given by Equation 7 can be 
written as 

Pstd − 1
2 M f1 1 tanh(1

2 ks t 2 cd)g
where c − sln Adyk. Thus the logistic function is really just 
a shifted hyperbolic tangent.

;

;

;

	20.	 �Consider the differential equation

dP

dt
− 0.08PS1 2

P

1000D 2 c

as a model for a fish population, where t is measured in 
weeks and c is a constant.

	 (a)	� Draw direction fields for various values of c.
	 (b)	� From your direction fields in part (a), determine the  

values of c for which there is at least one equilibrium  
solution. For what values of c does the fish population 
always die out?

	 (c)	� Use the differential equation to prove what you 
discovered graphically in part (b).

	 (d)	� What would you recommend for a limit to the weekly 
catch of this fish population?

	21.	 ��There is considerable evidence to support the theory that for 
some species there is a minimum population m such that the 
species will become extinct if the size of the population 
falls below m. This condition can be incorporated into the 
logistic equation by introducing the factor s1 2 myPd. Thus 
the modified logistic model is given by the differential 
equation

dP

dt
− kPS1 2

P

MDS1 2
m

P D
	 (a)	� Use the differential equation to show that any solution 

is increasing if m , P , M and decreasing if 
0 , P , m.

	 (b)	� For the case where k − 0.08, M − 1000, and m − 200, 
draw a direction field and use it to sketch several solu- 
tion curves. Describe what happens to the population 
for various initial populations. What are the equilibrium  
solutions?

	 (c)	� Solve the differential equation explicitly, either by using 
partial fractions or with a computer. Use the initial 
population P0.

	 (d)	� Use the solution in part (c) to show that if P0 , m, then 
the species will become extinct. [Hint: Show that the 
numerator in your expression for Pstd is 0 for some 
value of t.]

	22.	 ��The Gompertz Function  Another model for a growth func-
tion for a limited population is given by the Gompertz func-
tion, which is a solution of the differential equation 

dP

dt
− c lnSM

P DP

Linear Equations

In Section 9.3 we learned how to solve separable first-order differential equations. In this 
section we investigate a method for solving a class of differential equations that are not 
necessarily separable.

9.5
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