

Q DOC-20241013...

Sol. 1-

- 1) d is real, finite & $d=|x-y| \ge 0$
- 2) $d(x,y)=0 \leftrightarrow |x-y|=0 \leftrightarrow x-y=0 \leftrightarrow x=y$

 $\forall x, y \in IR$

3) d(x,y)=|x-y|=|-(y-x)|=|y-x|=d(y,x)

 $\forall x, y \in IR$

4) $d(x,y) = |x-y| = |x-z+z-y| \le |x-z| + |z-y| = d(x,z) + d(z,y)$ $\forall x, y, z \in IR$ Then (IR, d) is a metric space.

* A norm on a vector space is a way of measuring distance between vectors.

<u>Definition 1.11.:</u> A *norm* on a linear vector space V over F is a function $\| \cdot \| : V \to R$ with the properties that:

- (1) $||x|| \ge 0 \& ||x|| = 0 \leftrightarrow x = 0$ (positive definite);
- (2) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in V$ (triangle inequality);
- (3) $||\alpha x|| = |\alpha| ||x||$ for all $x \in V$ and $\alpha \in F$.

In Definition 1.11(3) we are assuming that F is R or C and |. | denotes the usual absolute value. If $\|\cdot\|$ is a function with properties (2) and (3) only it is called a *semi-norm*.

<u>Definition 1.12.</u> A *normed linear space* is a linear space V with a norm $\| \cdot \|$ (sometimes we write || . ||v).

Theorem 1.13. If V is a normed space then:

- 1) || 0 ||=0
- 2) ||x|| = ||-x|| for every $x \in V$.
- 3) ||x-y|| = ||y-x|| for every $x \in V$.
- 4) $| || x || || y || | \le || x y ||$ for every $x \in V$.

Proof:

Properties (1), (2) and (3) conclude directly from the definition, to prove property (4):

 $||x|| = ||(x-y)+y|| \le ||x-y|| + ||y|| \to ||x|| - ||y|| \le ||x-y|| \dots (1)$

Similarly:

 $||y|| - ||x|| \le ||x-y||$

 $-(||x|| - ||y||) \le ||x-y|| \to (||x|| - ||y||) \ge -||x-y||$ (2)

From (1) & (2), we get:

$$- || x - y || \le || x || - || y || \le || x - y || \ \to \ | \ || x || - || y || \ | \le || x - y ||$$

Examples 1.14.:- [H.W.6,7]

ector space V is normed v.s. with the norm ||x|| = |x| for all $x \in V$.

 $|x| \ge 0 \to ||x|| \ge 0.$

 $= 0 \leftrightarrow |x| = 0 \leftrightarrow x = 0$

3) Let $x \in V$, $\alpha \in F$, then

 $\|\alpha x\| = |\alpha x| = |\alpha| |x| = |\alpha| \|x\|$

4) Let $x,y \in V$, then:

 $||x+y|| = |x+y| \le |x| + |y| = ||x|| + ||y||$

[2] Let $V = \mathbb{R}^n$ with the usual Euclidean nor

•

Q DOC-20241013...

From (1) & (2), we get:

$$- || x - y || \le || x || - || y || \le || x - y || \to || || x || - || y || | \le || x - y ||$$

Examples 1.14.:- [H.W.6,7]

[1] The vector space V is normed v.s. with the norm ||x|| = |x| for all $x \in V$.

1) Since
$$|x| \ge 0 \to ||x|| \ge 0$$
.

2)
$$||x|| = 0 \leftrightarrow |x| = 0 \leftrightarrow x=0$$

3) Let
$$x \in V$$
, $\alpha \in F$, then

$$||\alpha x|| = |\alpha x| = |\alpha| |x| = |\alpha| ||x||$$

4) Let
$$x,y \in V$$
, then:

$$|| x+y || = |x+y| \le |x| + |y| = ||x|| + ||y||$$

[2] Let $V = R^n$ with the usual Euclidean norm

$$||x|| = ||x||_2 = (\sum_{j=1}^{n} |x_j|^2)^{1/2}$$

proof:

1) Since
$$x_j^2 \ge 0$$
 for all $j = 1, 2, ..., n \rightarrow ||x|| \ge 0$

2)
$$||x|| = 0 \leftrightarrow (\sum_{j=1}^{n} |x_{j}|^{2})^{1/2} = 0 \leftrightarrow \sum_{j=1}^{n} |x_{j}|^{2} = 0$$

$$\leftrightarrow x_j^2 = 0$$
 for all $j = 1, 2, ..., n \leftrightarrow x_j = 0$ for all $j = 1, 2, ..., n \leftrightarrow x = 0$

3) Let $x \in IR^n$, $\alpha \in IR$:

$$\alpha x = \alpha (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

$$\|\alpha x\| = (\sum_{j=1}^{n} |\alpha x_{j}|^{2})^{1/2} = |\alpha| (\sum_{j=1}^{n} |x_{j}|^{2})^{1/2} = |\alpha| \|x\|.$$

4) Let $x,y \in \mathbb{R}^n$:

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

$$||x+y|| = (\sum_{j=1}^{n} |x_j + y_j|^2)^{1/2}$$

By using MinKowski's inquality where p=2, we have:

$$\parallel x + y \parallel = (\sum_{i = 1}^{n} |x_i + y_i|^2)^{1/2} \le (\sum_{i = 1}^{n} |x_i|^2)^{1/2} + (\sum_{i = 1}^{n} |y_i|^2)^{1/2} = \parallel x \parallel + \parallel y \parallel$$

[3] There are many other norms on \mathbb{R}^n , called the *p*-norms. For $1 \le p < \infty$ defined by:

$$\sum_{i=1}^{n} |x_{i}|^{p})^{1/p}$$

s a norm on V (to check the triangle inequality use MinKowski's Inequality)

$$\sum_{j=1}^{n} (y_j | p)^{1/p} \le \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p \right)^{1/p}$$

[4] There is another norm corresponding to $p = \infty$, defined by:

$$||x||_{\infty} = \max_{1 \le i \le n} \{|x_j|\}$$

where
$$\|\cdot\|$$
: IRⁿ \rightarrow IR and $x = (x_1, ..., x_n)$.

Q DOC-20241013...

[3] There are many other norms on \mathbb{R}^n , called the *p*-norms. For $1 \le p < \infty$ defined by:

$$||x||_p = (\sum_{j=1}^n |x_j|^p)^{1/p}$$

Then $\|\cdot\|_{\text{P}}$ is a norm on V (to check the triangle inequality use MinKowski's Inequality)

$$\left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{p}\right)^{1/p} \leq \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{1/p}$$

[4] There is another norm corresponding to $p = \infty$, defined by:

$$||x||_{\infty} = \max_{1 \le i \le n} \{|x_{i}|\}$$

where $\| \cdot \|$: IRⁿ \rightarrow IR and $x = (x_1, ..., x_n)$.

proof:

- 1) Since $|x_i| \ge 0$ for all $i=1, ..., n \to ||x|| \ge 0$.
- 2) $||x|| = 0 \leftrightarrow \max\{|x_1|, ..., |x_n|\} = 0 \leftrightarrow |x_i| = 0 \text{ for all } i=1, ..., n$ $\leftrightarrow x_i = 0$ for all i=1, ..., $n \leftrightarrow x=0$
- 3) Let $x \in IR^n$ and $\alpha \in IR$, then

$$\alpha x = \alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n)$$

$$\|\alpha x\| = \max \{ |\alpha x_1|, \ldots, |\alpha x_n| \}$$

$$= \max \{ |\alpha| |x_1|, \ldots, |\alpha| |x_n| \}$$

$$= |\alpha| \max \{|x_1|, \ldots, |x_n|\}$$

$$= |\alpha| |x|$$

4) Let $x, y \in \mathbb{R}^n$

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (, ...,)$$

$$||x + y|| = \max \{ |x_1 + y_1|, ..., |x_n + y_n| \}$$

$$\leq \max \{ |x_1| + |y_1|, \ldots, |x_n| + |y_n| \}$$

$$\leq \max\{|x_1| + |y_1|, \dots, |x_n| + |y_n|\}$$

$$\leq \max\{|x_1|, \dots, |x_n|\} + \max\{|y_1|, \dots, |y_n|\}$$

$$= ||x|| + ||y||$$

[5] Let X = C[a; b], and put $||f|| = \sup_{t \in a, b} |f(t)|$. This is called the uniform or supremum norm.

proof:

- 1) Since $|f(t)| \ge 0$ for all $t \in [a, b] \to ||f|| \ge 0$.
- 2) $||f|| = 0 \leftrightarrow \sup_{t \in [a,b]} |f(t)| = 0 \leftrightarrow |f(t)| = 0$ for all $t \in [a, b]$

f(t) = 0 for all $t \in [a, b] \leftrightarrow f = 0$.

 $\in X$, $\alpha \in IR$, then:

$$=\sup\{\mid \alpha f(t)\mid:t\in[a,b]\}$$

$$= \sup\{ |\alpha||f(t)| : t \in [a, b] \}$$

$$= |\alpha| \sup\{|f(t)|: t \in [a, b]\}$$

 $= |\alpha| ||f||.$

4)
$$||f+g|| = \sup\{ ||f+g)(t)| : t \in [a, b], = \sup\{ ||f(t)+g|(t)| : t \in [a, b] \}$$

$$\leq \sup\{ |f(t)| + |g(t)| : t \in [a, b] \}$$