

Q DOC-20241013...

 $\Rightarrow | || x_n - y_n || - || x_0 - y_0 || | \to 0 \Rightarrow || x_n - y_n || \to || x_0 - y_0 ||$

4- $||\alpha x_n - \alpha x_0|| = ||\alpha(x_n - x_0)|| = |\alpha| ||x_n - x_0||$

since $||x_n-x_0|| \to 0$ where $n\to\infty \Rightarrow ||\alpha x_n-\alpha x_0||$ where $n\to\infty \Rightarrow \alpha x_n\to\alpha x_0$

Theorem 1.22.: If the sequence (x_n) is convergent in the normed space X then its convergent point is unique.

proof:

suppose that $x_n \rightarrow x$ and $x_n \rightarrow y$ s.t. $x \neq y$, and let $||x-y|| = \varepsilon \rightarrow \varepsilon > 0$

since $x_n \rightarrow x \implies \exists k_1 \in \mathbb{Z}^+ \text{ s.t. } ||x_n - x|| < \varepsilon/2 , \forall n > k_1$

and $x_n \rightarrow y \implies \exists k_2 \in \mathbb{Z}^+ \text{ s.t. } ||x_n - y|| < \varepsilon/2 , \forall n > k_2$

put k=max { k_1 , k_2 }. Then $||x_n - x|| < \varepsilon/2$, $||x_n - y|| < \varepsilon/2$ $\forall n > k$.

 $\epsilon = \parallel x-y \parallel = \parallel (x-x_n) + (x_n-y) \parallel \leq \parallel (x_n-x) \parallel + \mid \mid (x_n-y) \parallel < \epsilon/2 + \epsilon/2 = \epsilon !$

and this contradiction then x=y.

Definition 1.23. A sequence (x_n) in a normed space X is a *Cauchy convergent sequence* if:

 $\forall \varepsilon > 0 \ \exists \ k(\varepsilon) \in \mathbb{Z}^+ \text{ such that } ||x_n - x_m|| < \varepsilon \ \forall n, m > k(\varepsilon)$

Theorem 1.24.: Every convergent sequence is a Cauchy convergent sequence.

Suppose that (x_n) is a convergent sequence in the normed space X, then $\exists x \in X$ s.t. $x_n \rightarrow x$

Let $\varepsilon > 0$, since $x_n \to x \Rightarrow \exists k \in \mathbb{Z}^+$ s.t. $||x_n - x|| < \varepsilon/2 \quad \forall n > k$

If $n,m \ge k$, then $||x_n - x_m|| = ||(x_n - x) + (x - x_m)|| \le ||x_n - x|| + ||x - x_m|| < \varepsilon/2 + \varepsilon/2 = \varepsilon$

Then (x_n) is a Cauchy sequence.

Remark:

The converse to above theorem may not be true. For example:

Let $X = IR - \{0\}, (x_n) = (1/n)$

 (x_n) Cauchy convergent sequence in IR

Since IR complete \Rightarrow $(x_n) = (1/n) \rightarrow 0$ convergent in IR

But (x_n) not convergent in IR- $\{0\}$, since $0 \notin \text{IR-}\{0\}$.

Definition 1.25.: Let X be a normed space, $x_0 \in X$, a function f is said to be *continuous* at x_0

 $\forall \ \epsilon > 0, \exists \ \delta(x_0, \epsilon) > 0 \text{ s.t. } || f(x) - f(x_0) || < \epsilon \text{ whenever } || x - x_0 || < \delta.$

Theorem 1.26.: Let X, Y be two Normed space, a function $f: X \to Y$ continuous at $x_0 \in X$ iff for each sequence (x_n) in X such that $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

<u>Definition 1.27.</u>: Let X be a normed space, a function $f: X \to IR$ is called **bounded** if:

 $\exists M > 0 \text{ s.t. } ||f(x)|| \le M, \forall x \in X.$

<u>Definition 1.28:</u> Let (x_n) be a sequence in a normed space X, say (x_n) is **bounded sequence** in 1 > 0 s.t. $||x_n|| \le M, \forall n \in \mathbb{Z}^+$.

3/2

<u>.29</u>.: If (x_n) is Cauchy convergent sequence in a normed space X then it is bounded.

a Cauchy sequence in X

Given $\varepsilon = 1$, $\exists k \in \mathbb{Z}^+$ s.t. $||x_n - x_m|| < 1$, $\forall n, m > k$.

Let $m = k+1 \Rightarrow ||x_n - x_{k+1}|| \le 1$

Since $| || x_n || - || x_{k+1} || || \le || x_n - x_{k+1} || \le 1$

 $\Rightarrow | || x_n || - || x_{k+1} || | < 1 \Rightarrow || x_n || < 1 + || x_{k+1} || > n > k$

Theorem 1.26.: Let X, Y be two Normed space, a function $f: X \to Y$ continuous at $x_{\theta} \in X$ iff for each sequence (x_n) in X such that $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

Definition 1.27.: Let X be a normed space, a function $f: X \to IR$ is called **bounded** if:

 $\exists M > 0 \text{ s.t. } || f(x) || \leq M, \forall x \in X.$

<u>Definition 1.28.:</u> Let (x_n) be a sequence in a normed space X, say (x_n) is **bounded sequence** in X if: $\exists M > 0$ s.t. $||x_n|| \le M$, $\forall n \in \mathbb{Z}^+$.

Theorem 1.29.: If (x_n) is Cauchy convergent sequence in a normed space X then it is bounded.

Let (x_n) be a Cauchy sequence in X

Given $\varepsilon = 1$, $\exists k \in \mathbb{Z}^+$ s.t. $||x_n - x_m|| < 1$, $\forall n, m > k$.

Let $m = k+1 \Rightarrow ||x_n - x_{k+1}|| < 1$

Since $| || x_n || - || x_{k+1} || | \le || x_n - x_{k+1} || \le 1$

 $\Rightarrow | || x_n || - || x_{k+1} || | < 1 \Rightarrow || x_n || < 1 + || x_{k+1} ||, \forall n > k$

Put M = max { $||x_1||, ||x_2||, ..., ||x_k||, ||x_{k+1}||$ } $\Rightarrow ||x_n|| \leq M, \forall n \in \mathbb{Z}^+$.

 $\underline{\textbf{Theorem1.30.}} : \text{Every convergent sequence in the normed space } X \text{ is bounded.}$

proof:

Let (x_n) be a convergent sequence in $X \Rightarrow (x_n)$ a Cauchy convergent sequence in X (by 1.24) \Rightarrow (x_n) bounded (by 1.29).

Definition 1.31.: Let X is a normed space, $x_0 \in X$, r > 0, define:

- 1) $B_r(x_0) = \{ x \in X : ||x x_0|| \le r \}$ is called *open ball* of center x_0 and radius r.
- 2) $D_r(x_0) = \{ x \in X : ||x x_0|| \le r \}$ is called *closed ball* of center x_0 and radius r.
- 3) $B_1(0) = \{ x \in X : ||x|| \le 1 \}$ is called *open unite* of center 0 and radius 1.
- 4) $D_I(0) = \{ x \in X : ||x|| \le 1 \}$ is called *closed unite* of center 0 and radius 1.

Definition 1.32.: Let $\|.\|_1$, $\|.\|_2$ be two norms on vector space X, $\|.\|_1$ is said to be *equivalent* to $\|\:.\:\|_2\:(\|\:.\:\|_1\sim\|\:.\:\:\|_2\:)$ if there exist a and b positive real numbers such that:

$$a \parallel . \parallel_2 \le \parallel . \parallel_1 \le b \parallel . \parallel_2$$

Example: Let $X=IR^n$,

$$||x|| = \sum_{i=1}^{n} |x_i|, \forall x \in IR^n$$

14

$$||x||_{e} = \sum_{i=1}^{n} |x_{i}|^{\frac{1}{2}}, \forall x \in \mathbb{IR}^{n}$$

Then $||x|| \sim ||x||_e$

$$\sum_{i=1}^{n} x_i^2 y_i^2 \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}, \forall x_i, y_i \in IR^n$$
 (by using Cauchy – Schwars inequality)
$$i = 1, 2,, n.$$

$$i = 1, 2, \ldots, n$$

$$\Rightarrow \sum_{i=1}^{n} |y_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} 1\right)^{\frac{1}{2}}$$

$$\frac{1}{|x|} ||x|| \le ||x||_{e}$$
 (i.e. a=

$$||x|| \le ||x||_{e} \cdot \sqrt{n}$$

$$\frac{1}{\sqrt{n}} ||x|| \le ||x||_{e}$$
(i.e. $a = \frac{1}{\sqrt{n}} \cdot \dots \cdot (1)$

Q DOC-20241013... →

$$||x||_{e} = \sum_{i=1}^{n} |x_{i}|^{\frac{1}{2}}, \forall x \in \mathbb{IR}^{n}$$

Then $||x|| \sim ||x||_e$

proof:

$$\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}} \ , \ \forall x_i, \ y_i \in \mathrm{IR}^n$$
 (by using Cauchy – Schwars inquality)

Put $y_i=1, \forall i=1, 2,, n$.

$$\Rightarrow \sum_{i=1}^{n} |y_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} 1\right)^{\frac{1}{2}}$$

 $||x|| \leq ||x||_{\mathrm{e}} \cdot \sqrt{n}$

$$\frac{1}{\sqrt{n}} ||x|| \le ||x||_e$$
 (i.e. $a = \frac{1}{\sqrt{n}}$)(1)

But $||x||_e \le ||x||$ (i.e. b=1)

From (1) & (2), we have:

$$\frac{1}{\sqrt{n}} ||x|| \le ||x||_e \le ||x||$$

Then $||x|| \sim ||x||_e$

Theorem 1.33.: On a finite dimensional normed space, all norms are equivalent.

Examples:

- 1- X=IR², || . ||_e, || . ||₂, || . ||₃ are equivalent.
- 2- $X=IR^n$, $||.||_e$, $||.||_2$, $||.||_3$ are equivalent.

15

Chapter Two: Banach spaces

Definition 2.1. A normed linear space X is said to be *complete* if all Cauchy convergent sequences in X are convergent in X. The complete normed space is called Banach space.

Examples 2.2.

ace F^n with the norm $||x|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}, \forall x = (x_1, x_2, ..., x_n) \in F^n$ is a Banach space.

is a normed space,

Cauchy sequence in $F^n \Rightarrow x_m \in F^n \Rightarrow x_m = (x_{1m}, x_{2m}, ..., x_{nm})$

$$\exists k \in \mathbb{Z}^+ \text{ s.t. } ||x_m - x_l|| < \varepsilon \quad \forall m.l > k$$

$$\Rightarrow ||x_m - x_l||^2 < \varepsilon^2 \qquad \forall m.l > k \qquad \dots (1)$$

 $x_m - x_l = (x_{1m} - x_{1l}, x_{2m} - x_{2l}, ..., x_{nm} - x_{nl})$

$$||x_m - x_l||^2 = \sum_{i=1}^n |x_{im} - \sum_{i=1}^{l^2} |x_{im}|^2$$
 (2)

Q DOC-20241013...

Chapter Two: Banach spaces

Definition 2.1. A normed linear space X is said to be *complete* if all Cauchy convergent sequences in X are convergent in X. The complete normed space is called Banach space.

Examples 2.2.

[1] The space F^n with the norm $||x|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}, \forall x = (x_1, x_2, ..., x_n) \in F^n$ is a Banach space.

 $Proof: F^n$ is a normed space,

let $\{x_n\}$ is Cauchy sequence in $F^n \Rightarrow x_m \in F^n \Rightarrow x_m = (x_{1m}, x_{2m}, ..., x_{nm})$

let $\varepsilon > 0 \Rightarrow \exists \ \mathbf{k} \in \mathbf{Z}^+$ s.t. $||x_m - x_l|| < \varepsilon \quad \forall \ m.l > \mathbf{k}$

 $\Rightarrow ||x_m-x_l||^2 < \varepsilon^2 \quad \forall m.l > k$(1)

 $x_m - x_l = (x_{1m} - x_{1l}, x_{2m} - x_{2l}, ..., x_{nm} - x_{nl})$

 $||x_{m}-x_{l}||^{2} = \sum_{i=1}^{n} |x_{im}-x_{il}|^{2}$

from (1) & (2), we get:

$$\sum_{i=1}^{n} |x_{im} - x_{il}|^2 < \varepsilon^2 \qquad \forall m, l \ge k$$

then

 $|x_{im}-x_{il}|^2 < \varepsilon^2$ $\forall m.l \ge k \implies |x_{im}-x_{il}| < \varepsilon$ $\forall m.l \ge k$

 $\Rightarrow \forall i, \{x_{im}\}$ is a Cauchy sequence in F

Since F is complete (because F is IR or C)

 $\Rightarrow \forall i, \exists x_i \in F \text{ s.t. } x_{im} \rightarrow x_i$

Put $x=(x_1,x_2, ...,x_n) \Rightarrow x \in F$, T.P. $x_m \rightarrow x$.

Let $\varepsilon > 0$, $\forall m > k$, we get:

 $||x_{m-x}||^2 = \sum_{i=1}^{n} |x_{im} - x_i|^2 < \varepsilon^2 \implies ||x_{m-x}|| < \varepsilon \quad \forall m \ge k \implies \{x_m\} \text{ convergent} \implies F^n \text{ is complete}$

Since F^n is normed space $\Rightarrow F^n$ is a Banach space

[2] **H.W.** The space $l^p (1 \le p < \infty)$ with the norm $||x|| = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, x = (x_1, x_2, ...) \in l^p$, is a Banach space.

16

[3] The space l^{∞} with the norm $||x|| = \sup_{i} |x_{i}|$ is a Banach space.

Proof:

 l^{∞} is a normed space

Let $\{x_m\}$ is a Cauchy sequence in $l^{\infty} \Rightarrow x_m \in l^{\infty} \Rightarrow x_m = (x_{lm}, x_{2m}, ..., x_{nm}, ...)$

 $\exists k \in Z^+ \text{ s.t.}$

 ε , $\forall m,l > k$ (1) $-x_{1l},...,x_{nm}-x_{nl},...)$

 $= \sup_{i} |x_{im} - x_{il}| \qquad \dots (2)$

From (1) and (2), we have:

 $\sup_{i} |x_{im}-x_{il}| < \varepsilon$, $\forall m$, l > k

then for all i, $|x_{lm}-x_{il}| < \varepsilon$, $\forall m$, l > k (3)

 $\Rightarrow \forall i$, then $\{x_{im}\}$ is Cauchy sequence in F