

Q DOC-20241013...

[3] $l_{\infty} = \{x = (\alpha_n)_{n=1}^{\infty} : \alpha_n \in R \text{ or } C, \forall n \text{ s.t. } \sum_{n=1}^{\infty} |\alpha_n|^p \le m\}$ is a vector space over R or C.

[4] $C[a, b] = \{f : [a, b] \rightarrow R : f \text{ is continuous and } C[a, b]\}$ is a vector space over R or C.

[5] $L^p[a, b] = \{f: [a, b] \rightarrow R, f \text{ is Lebesgue integrable on } [a, b] \text{ s.t. } \int |f(x)| dx < \infty \}$ is a vector space over R or C.

[6] Let V be the set M(m, n)(C) of complex {valued $m \times n$ matrices, with usual addition of matrices and scalar multiplication.

[1] Let $x = (\alpha_n)_{n=1}^{\infty}$, $y = (\beta_n)_{n=1}^{\infty} \in S$, λ is a scalar, then

1.
$$x + y = (\alpha_n)_{n=1}^{\infty} + (\beta_n)_{n=1}^{\infty} = (\alpha_n + \beta_n)_{n=1}^{\infty} \in S$$

2.
$$\lambda(\alpha_n)_{n=1}^{\infty} = (\lambda \alpha_1, \lambda \alpha_2, ..., \lambda \alpha_n, ...) = (\lambda \alpha_n)_{n=1}^{\infty} \in S$$

Definition 1.3

Let V be a vector space. A non-empty set $U \subset V$ is a linear subspace of V if U is itself a vector space (with the same vector addition and scalar multiplication as in V). This is equivalent to the condition that:

 $\alpha x + \beta y \in U$, for all $\alpha, \beta \in F$ and $x, y \in U$ (which is called the subspace test).

Example 1.4.

[1] The set of vectors in \mathbb{R}^n of the form $(x_1, x_2, x_3, 0, ..., 0)$ forms a three-dimensional linear

[2] The set of polynomials of degree $\leq r$ forms a linear subspace of the set of polynomials of degree $\leq n$ for any $r \leq n$.

Definition 1.5. Linear independence and dependence of a given set M of vectors $x_1,...,x_r$ (r \geq 1) in a vector space V are defined by means of the equation $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_r x_r = 0$ (*)

where $\alpha_1, \alpha_2, ..., \alpha_r$ are scalars. Clearly, equation (*) holds for $\alpha_1 = \alpha_2 = ... = \alpha_r = 0$. If this is the only r-tuple of scalars for which (*) holds, the set M is said to be linearly independent. M is said to be linearly dependent if M is not linearly independent, that is , if (*) also holds for some r-tuple of scalars, not all zero.

<u>Definition 1.6.</u>: Let V be a vector space over a field F, $x \in V$ is called linear combination of $x_1, x_2, \dots, x_n \in V \text{ if } x = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = \sum_{i=1}^n \lambda_i \alpha_i, \ \lambda_i \in F, \ 1 \le i \le m.$

1.7. Let V be a vector space over a field F, and let $S = \{x_1, x_2, ..., x_n\} \subseteq V$, S is said to $d \text{ V if } x = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}, \ \forall x_{i} \in S, \lambda_{i} \in F, \ 1 \leq i \leq m.$

1.8.: Let V be a vector space over a field F, and A be a non-empty subset of V $(\phi \neq A \subseteq V)$, A is said to be basis of V if:

- 1- A linearly independent set.
- 2- A generated '/

DOC-20241013...

 \rightarrow

where α_1 , α_2 , ..., α_r are scalars. Clearly, equation (*) holds for $\alpha_1 = \alpha_2 = ... = \alpha_r = 0$. If this is the only r-tuple of scalars for which (*) holds, the set M is said to be *linearly independent*. M is said to be *linearly dependent* if M is not linearly independent, that is , if (*) also holds for some r-tuple of scalars, not all zero.

<u>Definition 1.6.</u>: Let V be a vector space over a field F, $x \in V$ is called linear combination of $x_1, x_2, ..., x_n \in V$ if $x = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n = \sum_{i=1}^n \lambda_i \alpha_i$, $\lambda_i \in F$, $1 \le i \le m$.

<u>Definition 1.7.</u>: Let V be a vector space over a field F, and let $S = \{x_1, x_2, ..., x_n\} \subseteq V$, S is said to be *generated* V if $x = \sum_{i=1}^{n} \lambda_i \alpha_i$, $\forall x_i \in S$, $\lambda_i \in F$, $1 \le i \le m$.

<u>Definition 1.8.</u>: Let V be a vector space over a field F, and A be a non-empty subset of V $(\phi \neq A \subseteq V)$, A is said to be basis of V if:

- 1- A linearly independent set.
- 2- A generated V.

Definition 1.9. A vector space V is said to be *finite dimensional* if there is a positive integer n such that X contains a linearly independent set of n vectors whereas any set of n+1 or more vectors of X is linearly dependent. n is called the dimension of X, written $n=\dim X$. By definition, $X=\{0\}$ is finite dimensional and dim X=0. If X is not finite dimensional, it is said to be infinite dimensional.

Examples: dim R=1, dim R²=2, dim Rⁿ=n.

Remarks

- 1- Let V(F) be a finite dimensional V.S. over a field F, and let w subspace of V(F), then dim $W \le dim V$, If dim W=dim V then W=V.
- 2- Let $(\phi \neq S \subseteq V)$ then if $0 \in S$ then S is linear dependent subspace.
- 3- The singleton $\{x\}$ is linear dependent iff $x\neq 0$.
- 4- Any subset of linear dependent set is linear dependent.
- 5- Any set containing a linearly dependent subset is linearly dependent too.

5

<u>Definition 1.10</u>: A *metric space* is a pair (X, d), where X is a set and d is a metric on X (or distance function on X), that is, a function defined on X x X such that for all $x, y, z \in X$, we

-valued, finite and nonnegative function.

If and only if x=y

y = d(y, x)

(Symmetry).

(4) $d(x, y) \le d(x, z) + d(z, y)$

(Triangle inequality).

Examples (H.W. 2-6)

1) Real line IR: this is the set of all real numbers, taken with the usu-1 metric defined by:

$$d(x, y) = |x-y| \quad \forall x, y \in IR$$

DOC-20241013...

<u>Definition 1.10</u>: A *metric space* is a pair (X, d), where X is a set and d is a metric on X (or distance function on X), that is, a function defined on X x X such that for all $x, y, z \in X$, we have:

- (1) d is real-valued, finite and nonnegative function.
- (2) d(x, y)=0 if and only if x=y
- (3) d(x, y) = d(y, x)

(Symmetry).

(4) $d(x, y) \le d(x, z) + d(z, y)$

(Triangle inequality).

Examples (H.W. 2-6)

1) Real line IR: this is the set of all real numbers, taken with the usual metric defined by:

$$d(x, y) = |x-y| \quad \forall x, y \in IR$$

then (R, d) is metric space.

2) Euclidean plane IR²: The metric space IR², with Euclidean metric:

if
$$x=(x_1, x_2), y=(y_1,y_2)$$
, then:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

then (R2, d) is metric space.

3) **Euclidean Space IR**ⁿ: If $x=(x_1, x_2, ..., x_n), y=(y_1, y_2, ..., y_n)$, then:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^n}$$

then (Rⁿ, d) is metric space.

4) Function space C[a, b]: As a set X we take the set of all real-valued functions x, y, ...which are functions of an independent real variable t and are defined and continuous on a given closed interval J = [a, b]. Choosing the metric defined by

$$d(x, y) = \max_{t \in J} |x(t) - y(t)|$$

then (C[a, b], d) is metric space.

5) Discrete metric space: We take any set X and on it the so-called discrete metric for X, defined by: d(x, x) = 0, d(x,y)=1 $(x\neq y)$.

This space (X, d) is called a discrete metric space.

6) Space B(A) of bounded functions: By definition, each element $x \in B(A)$ is a function defined and bounded on a given set A, and the metric is defined by:

$$d(x, y) = \sup_{t \in A} |x(t) - y(t)|$$

Sol. 1-

1, finite & d=|x-y| ≥ 0

$$|x-y| = |x-z+z-y| \le |x-z| + |z-y| = d(x,z) + d(z,y) \quad \forall x, y, z \in \mathbb{R}$$

 $\forall x, y \in IR$

Then (IR, d) is a metric space.

* A norm on a vector space is a way of measuring distance between vectors.

<u>Definition 1.11.:</u> A *norm* on a linear vector space V over F is a function $\| \cdot \| : V \to R$ with the properties that: