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The Metric Spaces 

Definition: Let X be a non-empty set and d:X  X ℝ+ be a mapping. We 

say that, the ordered pair (X,d) is metric space if it is satisfying for all x, y 

and z in X: 

(1) d(x,y)  0 

(2) d(x,y) = d(y,x) 

(3) d(x,y)  d(x,z) + d(z,y)       (triangular inequality) 

(4) d(x,y) = 0    x = y 
 

Remarks:- 

(1) d is called metric mapping. 

(2) d(x,y) = distance between x and y. 
 

Definition:- 

        A mapping d:X  X ℝ+ is called a pseudo metric on X iff  d  satisfies 

the conditions (1-3) in the above definition and (4') d(x,y) = 0, for different  x, 

y  X.  
 

Remark: 

        Let a = (a1,a2,…,an) and b = (b1,b2,…,bn) be two n-triple of complex 

numbers then: 

(1) Cauchy-Shwarz inequality  

   
1 1

n n n2 22 2

i i i i
i 1 i 1 i 1  

  a b a b  

(2) Minkowskis inequality  

(∑ |𝑎𝑖 + 𝑏𝑖|𝑛
𝑖=1  𝑝)

1

𝑝 ≤ (∑ |𝑎𝑖|𝑝𝑛
𝑖=1 )

1

𝑝+(∑ |𝑏𝑖|𝑝𝑛
𝑖=1 )

1

𝑝 ,  𝑝 ≥ 1. 

Examples: 

(1) If X = ℝ with d(x,y) = x – y, prove that (X,d) is metric space? 

Proof:   Let x, y and z  ℝ  

(1) d(x,y) = x – y  0  (by absolute value)   

Y 

X 
Z 

d(x,y) 

d(x,z) 

d(y,z) 



 

26 
 

(2) d(x,y) = x – y = – (y – x) = y – x = d(y,x)    d(x,y) = d(y,x) 

(3) d(x,y) = x – y = x – z + z – y 

 x – z + z – y 

= d(x,z) + d(z,y) 

  d(x,y)  d(x,z) + d(z,y) 

(4) d(x,y) = 0    x – y = 0 

                   x – y = 0    x= y 

  d(x,y) = 0    x = y 

By (1), (2), (3) and (4)    (X,d) is metric space. 

---------------------------------------------------------------------------------------------

----- 

(2) Describe metric space: 

Let X   and d:X  X ℝ  
0 if x y

d(x, y)
1 if x y


 


  for all x, y in X. 

Show that (X,d) metric space? 

Proof:    

(1) d(x,y) = x – y  0  for all x, y  X  (by def. of d) 

(2) d(x,y) = d(y,x)  ? 

   

   

If  x y   d x, y   0  d y,x

If  x y   d x, y  1  d y,
d(x, y) d(y, )

x
x

   

  


 


 

(3) Let x, y and z  X. to prove  d(x,y)  d(x,z) + d(z,y) 

If x = y  d(x,y) = 0. Since d(x,z)  0 and d(z,y)  0  d(x,y) d(x,z)+d(z,y) 

If x  y  d(x,y) = 1 and either x  y  z  or  x  y, y = z  

either  d(x,y) = d(x,z) = d(z,y) = 1 

   d(x,y)  d(x,z) + d(z,y) ⇒ 1         1     +    1 

or  d(x,y) = d(x,z) = 1  and  d(z,y) = 0 

  d(x,y)  d(x,z) + d(z,y) ⇒ 1         1     +    0 

Then  condition (3) holds   x, y, z  X 

(4) d(x,y) = 0    x = y 

then (X,d) is metric space 
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---------------------------------------------------------------------------------------------

----- 

(3) If X = ℝ2, 
2 2

1 1 2 2d(x,y) (x y ) (x y )    ,where x = (x1,x2), y = 

(y1,y2) and z = (z1,z2). Prove that (X,d) is metric space? 

Proof:   Let x, y and z  ℝ  

(1) 
2 2

1 1 2 2d(x,y) (x y ) (x y ) 0       (  by root function) 

(2) 
2 2

1 1 2 2d(x,y) (x y ) (x y )     

2 2

1 1 2 2

2 2

1 1 2 2

( (y x )) ( (y x ))

(y x ) (y x )

d(y,x)

     

   



 

  d(x,y) = d(y,x) 

(3) 
2 2

1 1 2 2d(x,z) (x z ) (x z )     

2 2

1 1 1 1 2 2 2 2(x y y z ) (x y y z )         

2 2 2 2

1 1 2 2 1 1 2 2(x y ) (x y ) (y z ) (y z )        ( (by Minkowski's inequality) 

= d(x,z) + d(z,y) 

(4) d(x,y) = 0    
2 2

1 1 2 2(x y ) (x y ) 0     

                   
2 2

1 1 2 2
(x y ) (x y ) 0     

                   
2 2

1 1 2 2
(x y ) 0 & (x y ) 0     

                   1 1 2 2
x y 0 & x y 0     

                   1 1 2 2
x y & x y   

                   1 2 1 2
x (x ,x ) (y , y ) y    

  d(x,y) = 0    x = y 

By (1), (2), (3) and (4)    (X,d) is metric space. 

--------------------------------------------------------------------------------------------- 

(4) Pseudo metric not metric space: 



 

28 
 

Let d:X  X ℝ  d(x,y) =x2 – y2
  x, y in ℝ. Show that (ℝ,d) pseudo 

metric space but not metric? 

Proof:   Let x, y and z  ℝ  

(1) d(x,y) = x2 – y2
  0  (by def. of absolute value  القيمة المطلقة) 

(2) d(x,y) = x2 – y2 = y2 – x2  = d(y,x)    d(x,y) = d(y,x) 

(3) d(x,y) = x2 – y2 = x2 – z2 + z2 – y2 

 x2 – z2 + z2 – y2 

= d(x,z) + d(z,y) 

(4) d(x,y) = x2 – y2 = 0   x  ℝ 

 (ℝ,d) pseudo metric space but not metric since:- 

If  d(x,y) = 0    x2 – y2 = 0    x2 = y2  ⇏  x = y   x, y. 

 " y xوالاخر قد يكون    x = yفهناك احتمالين الاول قد    y 2x =2" إذا كانت  

i.e. when d(x,y) = 0 does not always implies x = y for example:- 

d(1,–1) = 12 – (–1)2 = 0  but 1  –1. 

(ℝ,d) not metric 

 

 

Exercises:-  Show the following are metric space? 

(1) d:ℂℂ  ℝ, 
2 2d(z,w) (x u) (y v)     (usual distance), where        

z = x + iy, w = u +iv. 

(2) d: 𝑙2 𝑙2    𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2∞
𝑖=1  , 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … ) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛, … ), 𝑥𝑖 , 𝑦𝑖  ∈ 𝑅, 

 𝑖 = 1,2, … , 𝑛, …  . 

(3) d:ℝ3  ℝ3; d(x,y) = x1 – y1 + x2 – y2 + x3 – y3 where x = (x1,x2,x3), 

y = (y1,y2,y3). 

(4) d:ℂℂ  ℝ; d(z,w) = max{x – u, y – v}. 

(5) If X  and  x, y, z in X,  d:XX  ℝ  d(x,y) = 0  x = y and            

d(x,y)  d(x,z) + d(z,y). Show that (X,d) metric space. 

(6) If (X,d) metric space,  x, y, z  X. Show that d(x,z) – d(y,z)  d(x,y). 
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(Needed in chapter 5 to prove d is continuous function) 

--------------------------------------------------------------------------------------------- 

Definition: 

        Let (X,d) be a metric space, S,T be two subset of X  and  p  X, then 

 

(1) The distance between p and S is                                

d(p,S) = inf{d(p,x), x  S}                            

(2) The distance between S and T is d(S,T) = inf{d(x,y), x  S, y  T}. 

(3) Diameter of S, (S) = sup{d(x,y): x,y  S}. Note that, () = – . 

(4) S is called bounded if      > 0 such that d(x,y)  M, x, y  S. 

i.e.   (s)  M. If S is not bounded then it is called unbounded. 

(5) The distance between two subsets 𝑺and 𝑻 of metric space 𝑋 is 

𝑑(𝑆, 𝑇)  =  𝑖𝑛𝑓{𝑑(𝑎, 𝑏), 𝑎  𝑆 𝑎𝑛𝑑 𝑏 ∈ 𝑇}  

But this d is pseudo metric not metric. If we take  

𝑆 = (0,1) and 𝑇 = (−1,0) then 𝑑(𝑆, 𝑇) = 0   even though  𝑆⋂𝑇 = ∅. 

 

Properties: Let (X,d) be a metric space, S, T  X, show that: 

(1) (S) = 0    S contains at the most one point. 

(2) S  T    (S)  (T). 

(3) If S  T      (ST)  (S) + (T). 

Without proof (1-3) 

(4) d(x,S) – d(y,S)  d(x,y)                                     (Homework) 

 

(5) Which is bounded, find (S):-                               

(1) S = {-1,-2, 3, 5}    (2)  𝑆 = {3 −
1

𝑛
: 𝑛 ∈ 𝑁}    (3)  S = {xℝ: x is odd}  
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(4)  S = {(x,y): 1  x  2, 0  y  3}       (5)  S = {3n :n∊ N}      

(6)  S = {(x,y,z): (x + 1)2 + (y + 2)2 + z2 = 10}            (7)  S = {(x,y): x < 0}. 

 

Definition:  Let (X,d) be a metric space, S  X, S is called a metric subspace 

of X if (S, d) satisfies the conditions (1 – 4) in the definition of metric space. 

Examples: 

(1) Q is a subspace of ℝ with the usual distance. 

(2) S = {(x, y): x  0} subspace of ℝ2 with usual distance. 

 

Definition:                   

        Let (X,d) be a metric space and x  X, r > 0, then  

(1) The set B(x,r) = {y  X: d(y,x) < r} is called ball with center  x  and  radius  

r. 

(2) The set D(x,r) = {y  X: d(y,x)  r} is called disk with center  x and              

radius  r. 
 

Examples:   Describe the following set: 

(1) In ℝ with usual distance (i.e. d(x,y) = x – y, find  B(x,r)  &  D(x,r). 

Solution: B(x,r) = {y  X: d(y,x) < r}  

= {y  ℝ: y – r < r} = {y  ℝ: – r < y < r} 

x= {y  ℝ: x – r < y < x + r} = (x – r,x + r)  open interval.    

D(x,r) = {y  ℝ:d(y,x)  r} = [x – r,x + r]  closed interval. 

(2) In ℝ with usual distance  (i.e. d(x,y) = x – y, find  B(– 2,4)  &  D(0,10). 

Solution: B(– 2,4) = {y  ℝ: d(y,x) < r}  

                              = {y  ℝ: d(y,– 2) < 4} 
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   = {y  ℝ: y + 2 < 4} = {y  ℝ: – 4 < y + 2 < 4} 

   = {y  ℝ: – 4 – 2 < y < 4 – 2} = {y  ℝ: – 6 < y < 2} 

   = (– 6,2) 

D(0,10) = {y  ℝ: y – 0 < 10} = {y  ℝ: – 10  y  10} = [– 10,10]. 

 

(3) In ℝ2 with usual distance, find B(x,r), D(x,r). 

Solution: B(x,r) = {y  ℝ2: d(y,x) < r}  

                         
 
 

2 2 2

1 2 1 1 2 2

2 2 2 2

1 2 1 1 2 2

(y , y ) : (y x ) (y x ) r

(y , y ) : (y x ) (y x ) r

     

     

 

                         = inside the circle with center x=(x1,x2) and radius =r   

 
 

2 2 2

1 2 1 1 2 2

2 2 2 2

1 2 1 1 2 2

D(x,r) (y , y ) : (y x ) (y x ) r

(y , y ) : (y x ) (y x ) r

     

     

 

          = on and inside the circle with center  x  and radius  r   

 

Exercise:-    (Home Work) In ℝ2 with usual distance, find  

B(x,3); x = (– 2, – 1)  and   D(0,4), O = (0,0). 

Examples:   

(1) In ℝ2, d(x,y) = x1 – y1 + x2 – y2, find B(0,1), O = (0,0). 

Solution: B(0,1) = {y  ℝ2: d(y,0) < 1}  

                           = {(y1,y2)  ℝ2: y1 – 0 + y2 – 0 < 1} 

                           = {(y1,y2)  ℝ2: y1 + y2 < 1} 

But y1 + y2 = 1 this implies to the following four equations: 

r 
X 
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  y1 + y2 = 1 

     y1 – y2 = 1 

– y1 + y2 = 1 

– y1 – y2 = 1 

(a) y1 + y2 = 1 

If  y1 = 0    y2 = 1    (0,1) 

If  y2 = 0    y1 = 1    (1, 0) 

(b) y1 – y2 = 1 

If  y1 = 0    y2 = – 1    (0,– 1) 

If  y2 = 0    y1 = 1    (1,0) 

 

(c) – y1 + y2 = 1 

If  y1 = 0    y2 = 1    (0,1) 

If  y2 = 0    y1 = – 1    (–1,0) 

 

(d) – y1 – y2 = 1 

If  y1 = 0    y2 = – 1    (0, – 1) 

If  y2 = 0    y1 = – 1    (–1,0) 

 

 

                          

 (2)  In ℝ2, 
1 if x y

d(x, y)
0 if x y


 


, find B(0,1), B(0,2) and D(0,1). 

Solution: B(0,1) = {y  ℝ2: d(y,x) < 1} = {y  ℝ2: d(y,x) = 0} = {(0,0)}. 

B(0,2) = {y  ℝ2: d(y,x) < 2} = ℝ2. 

D(0,1) = {y  ℝ2: d(y,x)  1} = ℝ2. 
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Open Sets and Closed Sets 

Definition:   Let (X,d) be a metric space and S  X, S is called open set if  

x  S,   r > 0  B(x,r)  S. 

 

 

 

Examples:   

(1) S =   open set. 

Solution:  Since  if  x  S     r > 0    B(x,r)  S 

                                  F        F     or     T 

                                                T 

(2) S = X  open set. 

Solution:  Since all balls contains in X. 

(3) Any open interval is open set. 

Proof:  Let x  S    x  (a,b)  (a,b) = S           r = min{x – b,x – a}  

                               S is open set                       (x – r,x + r)  (a,b) 

Note that an open set in R is not necessarily an open interval. 

Example:  Let S = (– 2,– 1)  (1,2) 

Let x  S    x  (– 2,– 1)  or  x  (1,2)    x  (– 2,– 1)  S  or  x  (1,2) 

 S 

  S is open set. But S is not open interval. 

(4) In general, any ball is open set. 

Proof:   Let B(x,r) be any ball to prove B(x,r) open set. 

i.e. To prove  y  B(x,r),   >0    B(y,t)  B(x,r) 
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Let  t = r – d(x,y) > 0 and z  B(y,t)    d(z,y) < t. 

By triangular inequality 

d(x,z)  d(x,y) + d(y,z)                                       

          < d(x,y) + t          (since z  B(y,t)  d(y,z) < t) 

  

  z  B(x,r)    B(y,t)  B(x,r) 

This is true for all y in B(x,r) by def. B(x,r) is open set. 

 

(5) S = {x}, x  ℝ not open set. 

Proof:   Since there is not open interval in S containing  x  and contained in S. 

i.e.,  r > 0, ∄ B(x,r) = (x – r,x + r)  S. 

 

(6) [a,b], [a,b), [a,) and (– ,b] are not open sets. 

Proof:   If S = [a,b], then S is not open set, since  

if x = a     r > 0, B(a,r) = (a – r,a + r)  [a,b]. 

  

(7) The intersection of any two open sets is open set. 

"In general, the intersection of any finite family of open set is open set" 

Proof:  Let A = {Sk: Sk open set, k =1,2,…,k} to prove k
k 1

S



  is open set. 

Let x  k
k 1

S



     x  Sk,  k but Sk is open set  k     rk > 0  B(x,rk)  

Sk. 

Let r = min{r1,r2,…,rn}    B(x,r)  Sk   k 

  B(x,r)  k
k 1

S



 , so by def.  k

k 1
S




  is open set. 

y 

x 

B(x,r) 
B(y,t) 
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If this r is not suitable to make  B(x,r)  k
k 1

S



 , The fact that all sets Sk are open 

is always allowed to have an appropriate radius to make B(x,r)  within the 

intersection. 

 

(8) Is the intersection of two balls also ball?           (Homework) 

(9)  

(10) The infinity intersection of open sets is not necessary open set. 

 تقاطع عدد غير منته من المجموعات المفتوحه ليس بالضرورة مجموعة مفتوحة

Example:  Let x  ℝ, Sn = (x – 
1

n
,x + 

1

n
) open interval,  n 

n = 1    S1 = (x – 1,x+ 1) 

n = 2    S2 = (x – 
1

2
,x+ 

1

2
) 

n = 3    S3 = (x – 
1

3
,x+ 

1

3
) 

 

When  n      ∩ 𝑆𝑛 ∞
𝑛=1  = {x} is not open set. 

 

(11) The union of any family (finite or infinite) (countable or uncountable) 

of open set is open set 

Proof:  Let (X, d) be a metric space 

A = {S: S is open subset of X,   }, to prove 
λ

λ
S


 is open set. 

Let x  
λ

λ
S


            x  S. 

Since S is open set     r > 0    B(x,r)  S 

  x  B(x,r)  S  λ
λ

S

  this is true for all x  λ

λ
S


    

  λ
λ

S

  is open set. 

(12) Prove that: S is open  S = union of all balls.               (Homework) 

(13)  The set of rationals is not open.               (Homework) 

 
1 2S S

1x 1
x

2

( ( ( x



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Definition: Let X be a non-empty set and  = family of subset of X. If T satisfy 

the following 

(1) X,   . 

(2) If A, B      A  B  . 

(3) If {A: A  }   
λ

λ
A


   . 

Then the ordered pair (X,) is called topological space. 

 

Theorem (1): Every metric space is topological space. 

Proof:   Let (X,d) be a metric space and  = the family of all open subsets of 

X, then: 

(1) X,  open sets    X,   . 

(2) S1, S2      S1, S2  are open sets    S1  S2 open set    S1  S2  . 

(3) If  x  S,       , S open subset of X    
λ

λ
S


  open subset of X        

  
λ

λ
S


   . 

 (X,) is topological space. 

Remark: The converse of Theorem (1) is not true.  [Go To Stage-4] 

Definition:  

 Let d1 and d2 be two metric mappings on the set X. Then d1, d2 are called 

equivalent if every open set in (X,d1) is open in (X,d2) and vice versa. 

Example: 

        If X = ℝ2, d1 = usual distance, d2 = max{x1 – y1, x2 – y2} then d1, d2 

are equivalent. 

Definition:  Let (X,d) be a metric space and S  X, S is called closed set if Sc 

is open set where Sc = X\S (complement of S). 

Examples: 

(1) S = X is closed set. 

Proof:  Since Sc = Xc =  open set. 
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(2) S =  is closed set. 

Proof:  Since Sc = c = X open set. 

(3) S = [a,b]  or  S = [a,)  or  S = (– ,b]  are closed sets in ℝ. 

Proof:  If  S = [a,b]    Sc = (– ,a)  (b,) open set    S is closed set. 

(4) In ℝ, S = {x} is closed set. 

Proof:  Since Sc = (– ,x)  (x,)      

 

  Sc  is open    S is closed set. 

 

(5) In general, any finite set in ℝ is closed set. 

Proof:  Let S = {x1,x2,…,xn}  ℝ, to prove S is closed, i.e. to prove Sc open  

set. 

Sc = (– ,x)  (x1,x2)  …  (xn – 1,xn)   (xn,)   

 

  Sc  is open    S is closed set. 

(6) S = N  or  S = ℤ  closed set. 

Proof:  S = N 

Sc = (– ,1)  (1,2)  
n 2




  (n,n + 1) 

Sc open    S closed set. 

S = ℤ              (Home Work) 

(7) S = Q  or  S = Q' not closed sets.  

Proof:  S = Q    Sc = Q' not open. Similarly, when S = Q'. 

 

(8) In any metric space X, if S is finite set, then S is closed set. 

Proof:  Let S = {x1,x2, …, xn}  X  T.p.  S is closed set. 

i.e. T.p. Sc is open set 

open open 

open open open 
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Let y  Sc    y  xi   i     ri = d(y,ri) > 0,  i. 

Let r =min{r1,r2,…,rn}    B(y,r)  S =  

  B(y,r)  Sc  this is true for all y  Sc 

  Sc is open    S closed set. 

 

(9) Every disk is closed set.                                     (Homework) 
 

(10)  The union of finite number of closed sets is closed. 

Proof:  Let A = {Si, Si closed set in X, i = 1,2,…,n} 

T.p. 
n

i 1
 Si is closed   i.e. T.p. (

n

i 1
 Si)

c is open set. 

Since Si is closed,  i    (Si)
c is open  i 

  
n

i 1
 (Si)

c  open                      تقاطع عدد منته من المجموعات المفتوحه يكون مجموعة(

 مفتوحه(

  (
n

i 1
 Si)

c  open                   [(
n

i 1
 Si)

c = 
n

i 1
 Si] 

  
n

i 1
 Si  is closed 

 

(11)  The infinite union of closed sets is not necessary closed. 

For Example:  𝑆𝑛 = [
−𝑛

𝑛+1
,

𝑛

𝑛+1
], n  N. Sn closed intervals. Is 

n 1




 Sn closed? 

If  n = 1    1

1 1
S ,

2 2

 
  
 

, 

if  n = 2    2

2 2
S ,

3 3

 
  
 

, 

if  n = 3    3

3 3
S ,

4 4

 
  
 

, … 
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When   n      
n n

n

n nlim lim 1
n 1n 1

n n

 




 




   
n 1




 Sn = (– 1,1)  open set. 

 

(12)  The infinite intersection of closed sets is closed.                 (Homework) 

 

Accumulation Points 

Definition: Let X be a metric space and SX, pX, p is called an 

accumulation point of S if every open set contain p, contains another point q 

 p  q. q  S. 

i.e.  p  is acc. Point of S if  U, U open set, p  U then U\{p}  S  . 

Remark: 

(1) Since every open set = union balls, then we can define acc. Point as 

following: 

p is acc. Point of S if  r > 0,B(p,r)\{p}  S   

                     

(2) S' = the set of all acc. Point of S = derived set.    

(3) S  = the closure of S, S  = S  S'. 

 

(4) p is not acc. point, if  U, U open set and p  U  U\{p}  S = . 

or      r >0    B(p,r)\{p}  S = . 

 

Examples: 

(1) If S = {1,3}, find S' and S . 

Solution: To find S', there are some cases: x = 1, x = 3, x < 1, x > 3, 1 < x < 3 

If  x = 1    x is not acc. point since  r > 0  B(x,r)\{x}S = , then  r = 1 
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  B(1,1)\{1}{1,3} = (0,2)\{1}{1,3} = . 

If  x = 3    x is not acc. point since  r > 0  B(x,r)\{x}S = , then  r = 1 

  B(3,1)\{3}{1,3} = (2,4)\{3}{1,3} = . 

If  x < 1    x are not acc. point since x  (x – 1,1) and (x – 1,1)  S = . 

If  x > 3    x are not acc. points since x  (3,x + 1) and (3,x + 1)  S = . 

If 1 < x < 3 are not acc. point since x  (1,3) and (1,3)  S = . 

 S has no acc. point    S' = . 

S  = S  S' = S   = S. 

(2) If 𝑺 = {
𝟏

𝒏
, 𝒏 = 𝟏, 𝟐, . . . }, prove that S' = {0}. 

Proof:  
1 1

S 1, , ,...
2 3

 
  
 

 T.p.  x = 0 is acc. point. 

 r > 0, 0  B(0,r) = (– r,r)    0  (– r,r)  T.p. (– r,r)\{0}  S   

∵  r > 0    by Arch. Prop.    n  N    nr > 1 

1

n
 < r    0 < 

1

n
 < r    – r < 0 < 

1

n
 < r    

1

n
  (– r,r) 

  (– r,r)\{0}S      x = 0  is acc. point. 

Now, T.p.  if x  0    x is not acc. point. 

Let x  S     n  N    
1

x
n

  

∵  n – 1 < n < n + 1   

  
1 1 1

n 1 n n 1
 

 
  

  
1 1 1

,
n n 1 n 1

 
 

  
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  
1 1 1

, \ S
n 1 n 1 n

   
    

    
 

    n, 
1

n
 is not acc. point 

Let x  S  

1 1
x, x

n 1 n

x 1

x 0

 
  

 
 

 
 
 

 are not acc. point. 

  S' ={0}. 

(3) If S = (a,b), find S'. 

Solution: If  x = a    x is acc. point, since  r > 0, a  B(a,r) = (a – r,a + r) 

and B(a,r)\{a}S  . 

If x = b    x is acc. point since  r > 0, b  B(b,r) = (b – r,b + r) and 

B(b,r)\{b}(a,b)  . 

If a < x < b    x are acc. points since  r > 0, x  B(x,r) = (x – r,x + r) and 

B(x,r)\{x}S     i.e. (x – r,x + r)\{x}  (a,b)  . 

If x < a    x are not acc. points since x  (x – 1,a)  and  (x – 1,a)  S = . 

If x > b    x are not acc. points since x  (b,x + 1)  and  (b,x + 1)  (a,b) = 

. 

 S' = [a,b]    S  = S  S' = [a,b] 

 

(4) Prove that S = [a,b]  = S .                                       (Homework) 

 

Theorem (2): Let X be a metric space, S  X, then: 

(1) S is closed set    S'  S. 

(2) S is closed set. 

(3) S = S    S closed set. 
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(4) If F is closed set, S  F, then S   F. 

(5) S  is smallest closed set contains S. 

Proof:  (1) ⇒ let S is closed set and let 𝑥 is accumulation of S ⇒ 𝑥 ∈ 𝑆′. To 

prove that  𝑥 ∈ 𝑆. 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑥 ∉ 𝑆 ⇒  𝑥 ∈ 𝑋\𝑆 = 𝑆𝑐. Since S is closed ⇒ 𝑆𝑐  is open and 

𝑥 ∈ 𝑆𝑐 ⇒ ∃𝑟 > 0 ∋ 𝐵(𝑥, 𝑟) ⊂ 𝑆𝑐 ⇒ 𝑆⋂𝐵(𝑥, 𝑟) ≠ ∅ ⇒ 𝐶! (since x is 

accumulation point of  S ). So, 𝑥 ∈ 𝑆. 

Conversely,⇐. Suppose that 𝑆′ ⊂ 𝑆 to prove S is closed. We must prove 

that 𝑆𝑐is open set. 

For 𝑥 ∈ 𝑆𝑐 ⇒ ∃𝑟 > 0 ∋ 𝐵(𝑥, 𝑟) ⊂ 𝑆𝑐 since S'  S ⇒𝑥 ∉ 𝑆′ ⇒ ∃𝜀 >

0  such that 𝐵(𝑥, 𝜀)\{𝑥} ⋂𝑆 = ∅ or since 𝑥 ∉ 𝑆 ⇒ 𝐵(𝑥, 𝜀)⋂𝑆 = ∅ ⇒

𝐵(𝑥, 𝜀) ⊂  𝑆𝑐. Then 𝑆𝑐 is open set. So, S is closed. 

Parts 2-5 exercise. 

 

Separable spaces 

Definition:  A subset S of a metric space X is called dense if S  = X. 

Example: Prove that 𝑄̅=R  (i.e. Q dense set in R). 

Proof: for any 𝑝 ∈ 𝑅 ⇒ ∀𝜀 > 0, the ball 𝐵(𝑝, 𝜀) = (𝑝 − 𝜀, 𝑝 + 𝜀) contains 

infinitly rationals ⇒ 𝐵(𝑝, 𝜀)\{𝑝} ∩ 𝑄 ≠ ∅ ⇒𝑝 is acumuldtion. ⇒𝑝 ∈ 𝑄̅⇒  

𝑅 = 𝑄̅. 

Examples 

1- Let K={(x1,x2)R: x2  0 }. Find K̅.  

2- Let X be a metric space and G be a finite subset of X, prove that G'=. 

3- Let 𝑆 be a subset of a metric space 𝑋 and𝑥 ∈ 𝑋. Show that  

𝑑(𝑥, 𝑆) = 0 ⇔ 𝑥 ∈ 𝑆̅. 

Definition: a metric space X is called separable if there is a dense countable 

sub set S of X. 

Examples  

1- R is separable metric space. Since Q is countable dense subset of R. 
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2-  Let S= [a,b] with usual metric of on R, then S is separable metric space. 

3- Is R2 separable?? 

4-  Show that C is separable space. . . Hint: take S={w=p+iq: p, qQ}. 

Note that: Postpone the example of the non-separable space. [Go to MSc]. 

 

Compact Spaces            

Definition: Let (X,d) be a metric space,   S  X, if the set {U, U open set, 

  } is a family of open subsets of X such that S  
λ

λ
U


  then the family 

{U} is called open cover for S in X. 

*  If the family {U} is finite and S  
λ

λ
U


 , then {U} is called finite cover. 

*  Let {U}, {U} be two open covers for S and U  {U}   then {U} is 

called subcover for {U}. 

Definition: 

        Let S be a subset of a metric space (X,d), S is called compact set if every 

open cover for S in X has a finite subcover. 

 

 

Examples: 

(1) Every finite subset S of a metric space (X,d) is compact set. 

Proof:  Let S = {x1,x2,…,xn}  to prove that  S is compact set 

Let A= { V𝞴 : V𝞴 ⊂X, V𝞴 is open} be an open cover for S ⇒ S⊆ ⋃ V𝞴 

   xi  S we get xi  ⋃Vi  ⇒ ∃V𝞴i  A such that xi  V𝞴i. Then  S⊆ ⋃ 𝑉𝜆𝑖
𝑛
𝑖=1   

  { V𝞴i : i=1,2,..,n} is finite open subcover for S from A    S is compact. 
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(2) ℝ is not compact since there is an open cover for ℝ which has no finite 

subcover for ℝ, for example: 

A = {(n,n + 1): n  ℤ}  {(n – 
1

2
, n + 

1

2
):n  ℤ} 

  ℝ  [
n
 (n,n + 1)]  [

n
 (n – 

1

2
, n + 

1

2
)] 

  A is open cover for ℝ and A has no finite subcover since if we cancel any 

open interval from A, then some reals will be out. 

i.e.  if we cancel (– 
1

2
,
1

2
) then  0  will be out A. 

i.e.  ℝ ⊈ [ (n,n + 1)]  [(n – 
1

2
, n + 

1

2
)] \ (– 

1

2
,
1

2
). 

 

(3) Any open interval S = (a,b) is not compact. 

Proof:  We prove for a special case when S = (0,1). 

Let A = {An = (
1

n
,2); n  N} = {(1,2), (

1

2
,2), (

1

3
,2),…} 

A1 = (1,2), A2 = (
1

2
,2) … and A1  A2  A3  … 

To prove that  A is open cover for S.  i.e.  
n 1

1
S ( ,2)

n




   

Let  r  S = (0,1)    0 < r < 1, r > 0    by Arch.prop. 

 k  N    
1

k
 < r    r  (

1

k
,2) = Ak  

n 1

1
( ,2)
n




     A is open cover for S. 

To prove that  A has no finite subcover for S 

Suppose that A has a finite subcover for S, {A1,A2,…,Am} 

  S  
m

i m
i 1

1
A A ( ,2)

m
    but 

1
S

m 1



  and  

m

1
A

m 1



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  A has no finite subcover for S      S is not compact. 

(4) Any closed interval S = [a,b] is compact. (Exercise) 

 

Theorem (3):  (Bolzano-Weierstrass Theorem) 

         In compact space X, every infinite subset S of X has at least one 

accumulation point. 

Proof:  Suppose that S has no acc. point. 

  S' =     S'  S    S is closed (by Th.(3)) 

  X\S = Sc  is open set. 

Since S' =      x  S, x is not acc. point (by def. of acc. point) 

  x  S,  Ux open set    x  Ux and Ux  S = {x} 

  X = Sc  ( x
x S

U

 )    Sc  {Ux; x  S} is open cover for X. 

But X is compact space    there is a finite subcover for X. 

x1, x2, …, xn  S    X = Sc  (
i

n

x
i 1

U

 ) 

  S  Sc = Sc  (
i

n

x
i 1

U

 )                     [X = S  Sc] 

  S  
i

n

x
i 1

U

                                        [since S  Sc = ] 

  S = {x1, x2, …, xn}                          [since 
ix

U S = {xi}  i} 

  S is finite set    C!                           [since S is infinite set] 

  S has at least one acc. point. 

 

Theorem (4):  In compact metric space, every closed subset is compact. 

Proof:  Let X be a compact metric space, and S be subset of X    Sc is open. 

T.p. S is compact. 
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Let A = {V: V is open set in X,    } be open cover for S    S  V

  

since X = S  Sc  ( V

 )  Sc, but Sc is open set 

  V

  Sc is open cover for X. 

Since X is compact set    there exists a finite number 1, 2,…, n such that             

X = Sc  (
i

n

i 1
V


 ) since S  Sc =     S  

i

n

i 1
V


     A has a finite subcover 

1 2 n
{V ,V ,...,V }    for S    S is compact. 

 

Theorem (5): Let (X,d) be a metric space, S  X. If S is compact, then S is 

closed. 

Proof:  Suppose that S is not closed set 

  S' ⊄ S     [S is closed  S'  S] 

   x  S'  and  x  S. 

   n  N, B(x,
1

n
)\{x}S      D(x,

1

n
)\{x}S  . 

Let Vn = [D(x,
1

n
)]c = X \ D(x,

1

n
), n  N 

  Vn  is open set  n    [since D(x,
1

n
) is closed set] 

Let D = 
n N
 D(x,

1

n
) = {x} 

Since [ if  y  D  and  y  x    d(x,y) > 0  

by Arch. Prop.   k  N    k d(x,y) > 1    
1

k
 < d(x,y) 

 y  B(x,
1

k
)  y  D(x,

1

n
)    D = {x}] 
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  S  X\{x} = X\D =X\
n N
 D(x,

1

n
) 

                                 = X\{D(x,1)  D(x,
1

2
)  …} 

                                 = X\D(x,1)  X\D(x,
1

2
)  … 

                                 = 
n N
 X \ D(x,

1

n
) = 

n N
 Vn. 

  S  
n N
 Vn    {Vn: n  N} is open cover for S. 

But S is compact set      finite number v1, v2, …,vn    S  
n

i
i 1

V

  

  S  
n

i 1
 (X \ D(x,

1

n
))    S  D(x,

1

n
) =      C! 

 x  S    S is closed set. 

 

Theorem (6): Let (X,d) be a metric space, S  X. If S is compact, then S is 

bounded. 

Proof:  Let  a  X, defined B(a,n) open balls, n  N  

⇒ B(a,1)  B(a,2)  … 

⇒  x  S,  n  N    x  B(a,n)    S  
n N
  B(a,n)   

⇒ {B(a,n)} open cover for S 

But S is compact ⇒ {B(a,n), n  N} has finite subcover for S                                   

{B(a,1), B(a,2), …, B(a,n)}    S  
n

k 1
  B(a,k)   

∵  B(a,1)  B(a,2)  …  B(a,n)    S  B(a,n)    S is bounded set. 
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Theorem (7): lf {In: nN} be a family of closed bounded nested intervals such 

that In =[an, bn] [an+1, bn+1]=In+1 then ⋂ In
∞
𝑛=1 ≠ ∅. 

Proof: let A={an: n=1, 2, …} and B={bn: n=1, 2, …}. 

Since for any m>n,  [an, bn] [am, bm] ⇒ am bm an bn , ∀𝑛, 𝑚. 

 ⇒ for any n.m, we get am bn ⇒ A is bounded above by any element belongs 

to B ⇒ A has sup, say x, (by completeness axiom).   an  x , ∀n. 

Also, x  bn, ∀n. ⇒ x[ an,, bn ]= In , ∀n ⇒ x⋂ In
∞
𝑛=1 . 

 

Theorem (8): Hien-Borel Theorem 

Any closed bounded subset of Rn, n≥1, is compact set. 

Proof: (prove in R) 

Let S closed bounded subset of R, to prove S is compact? 

Since S is bounded then there is a closed interval [a,b] such that S⊆[a,b]. 

Then (by Theorem 4) S is compact. [any closed subset of compact is compact. 

 

Theorem (9) Hien-Borel Theorem in R2. 

Proof: we need prove that the product of two closed intervals [a,b] 𝖷 [c,d] is 

compact set. Complete similar to proof of Theorem (8). 

 

 

 

 

 


