CHAPTER O

PRELIMINARIES

0-0 Introduction

Throughout this chapter, some basic known concepts and facts are
given. Which has been divided in to six sections: basic elements in
normed spaces, normalized duality mapping, hausdorff distance, multi-
valued mappings, types of iterative schemes and important fixed point
theorems.

It is worth mentioning that, section (0.4) includes interesting
considerations and examples to explain the relationships between some

known contractive conditions.

0-1 Basic Elements in Normed Spaces

A vector space over a field L = R or C and wedding with a
nonnegative real valued function || . || is called normed linear space
(shortly, normed space) if it is satisfied ||x|| = 0 and ||x|| = 0 & x is
zero vector, ||Ax|| = |A|||x]|| and ||x + y|| < ||x]|| + ||y]| for all vectors
x,y € X and isscalar A € L. The ordered pair (X, || . ||) denote to normed

linear space. Also, X is called real normed space (or complex normed
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space) if L = R field (or, respectively L = C). It is known that every
normed space is metric space by defining a function distance d: X X X —
R* with d(x,y) = ||lx — y|l, for all x,y in X [16].

The following definition are needed later.
Definition (0.1.1): [16] [27]
In a normed space (X, || . ||) a sequence (x,,) is called Cauchy
sequence if for every € > 0, there exists a positive integer k such that
lx,, — x,|| < € forallm,n > k or denoted by ||x,, — x,,|| = 0

asn,m-— oo,

Definition (0.1.2): [16] [31]

In a normed space X a sequence (x,,) in X converges (or converges
strongly) to x € X if for every € > 0, there exists a positive integer k
such that ||x,, — x|| < e forall n > k, denoted by x,, - x asn — o or

lim x,, = x. The point x is called the limit of (x,,).

n—-oo

Definition (0.1.3): [31] [27]
The normed space X is said to be complete if every Cauchy sequence
in X converges. However, a complete normed space is called Banach

space.

Definition (0.1.4) [16]:
A Banach space X is said to satisfy Opial’s condition if for any
sequence (x,,) in X, x,, = x implies that

lim sup||x,, — x|| < lim sup||x,, — y|| forall y € X withy # «x.
n—oo n—oo

'(\5
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Definition (0.1.5): [16]
Let X be a normed space, a mapping f: X — L is called linear

functional if forall x,yin X and a, 8 in L,

flax +By) = af (x) + Bf(y).

Definition (0.1.6): [16] [27]

Let X be a normed space. The set of all continuous linear functional
on X together with the norm || f|| = sup,ex |f(x)] is called dual space of
X. and denoted by X*.

Remark (0.1.7): [1]
Let X be a normed space and f € X*, for given x € X , the equation

o, (f) = {x, f) define a functional on X and:

. @, 1s linear
i. 1o (Al = 1, 1 < llxlllIf 1| hence ¢, is bounded.
. [(x, A = lIxI[llf |l and [|£]I = lIx]| hence [| £l = llxl.

Definition (0.1.8):[16]

Let X is a normed space and the sequence (x,) € X is said to be

weakly convergent to x € X, written x,, 5 x,ifVfex,

lim (. f) = 0, ), e, Jim £ () = £,

Note that every strongly convergence is weakly but the converse is not
true [16 ].

'(\i
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0-2 Normalized Duality Mapping

Recall the following:
Definition (0.2.1): [32].

Let X and Y be two nonempty sets. F is said to be a multi-valued
mapping defined by

F-McX-?2Y .. (0.2.1)
We mean a mapping assigns to each point x € M a subset F(x) €Y.
Every single valued mapping F,: M — Y, can be identified with a multi-
valued mapping like (0.4.1) by setting
F(x) = {Fy(x)}, forall x € X.

Thus F(x) is a singleton.

Definition (0.2.2):[30] [34]
Let X be a normed space and let X be the dual space of X and 2% is

the set of all nonempty subsets of X , the multivalued mapping J: X — 2%

Is said to be the normalized duality if

JO) ={f €X:(x, ) = IfIxIL A = llxl}, v x € X

The following example for a single value normalized duality mapping
which is depend on the nature of the normed linear space [,
Example (0.2.3): [16] [27]

Consider the normed space X = 1,,(R) with norm |[x||,, =
1
(T2, ]%;P)?, when X = (xy, x,, ....). It is dual space X with % +§ = 1.

Defined duality mapping J:X — X by

J(x) = (sgn xq|x, P71, sgn x,|x, P71, ... ...), since
) )
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1 1 1
(o'e] - (oe] - (oe] -
(D tsgnitare)' = (> @) = (3 )’
i=1 i=1 i=1
b
[ € X" and Il = llxllé = ]l = lxlP,
(ole] o0
(o) =) xsgnalalP = ) fnl? = el =
1= 1=

= [l II-

Definition (0.2.4): [30] [13]
Let X be a normed space and U(X) = {x € X: ||x|| = 1}, then X is

said to be smooth if

Jim LYl .. (0.2.1)
t—0 t

exists for each x, y € U(X). Also X is said to be uniformly smooth if the
limit (0.2.1) is attained uniformly for (x,y) in U(X) X U(X).

Definition (0.2.5): [32]

A normed space X is said to be uniformly convex if and only if for
every € € (0,2] thereisa é(e) € (0,1] such that
Ixll <k, llyll <k llx =yl = ek, x,y€Xk>0,

implies that
IGx +y)/21 < (1 - 8(e))k.

Example (0.2.6): [32]

1
Consider X = R? with Euclidian norm ||x|| = (xZ + x2)z where
x = (x4, x5) is uniformly convex.

But R? with maximal norm ||x|| = max{|x,|, [x,|} where x = (x,x,) is

.&;

not uniformly convex on R2.
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Proposition (0.2.7): [13]
A normed space X is uniformly smooth if and only if X is uniformly

convex.

We illustrate proposition (0.2.7) by the following two example
Example (0.2.8): [32]

i-  Consider X = I,(R) with ||x]| = /22, x;2 is uniformly
smooth since the dual space of [, (R) isomorphic to [, (R) and
[, (R) is uniformly convex.

ii- R? with ||x|| = |x | is uniformly smooth since X of R?
isomorphic to R? and R? with same norm is uniformly convex,
but R? with

x| = max{|x], [x,]}, where x = (x,x,) is not uniformly smooth also

the dual space of R? is not uniformly convex with the same norm.

Proposition (0.2.9): [30] [3]
Let X be a Banach space and let J: X — 2% be the normalized duality
mapping, then we have the following:
1. Foreach x € X, J(x) is a nonempty bounded closed and convex
subset of X*;
J(0) = {0};
Let a be a real numbed and x € X then J(ax) = af(x);

X is smooth Banach space if and only if J is single valued;

o &~

X is uniformly smooth Banach space if and only if J is single
valued and uniformly continuous on any bounded sub set of X,
(where J is uniformly continuous if and only if Ve > 0,36 >0
suchthatVx,y € X, |[J(x) = JW)Il < gif ||lx — y|| < §).

.&5
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0-2 Hausdorff Distance

Recall the following important classes of subsets of a normed space
X:
2% the family of all nonempty subsets of X.
CB(X) the family of all nonempty closed and bounded subsets of X.

K (X) be the collection of all nonempty compact subsets of X.

Definition (0.3.1):
Let X be a normed space, a subset M of X is called Proximinal if
VY x € X,3m € M such that
lx — mll = d(x, M) = inf {|lx — yll:y € M}.
We denote the class of all bounded proximinal subset of M in X by P(M).

Definition (0.3.2): [32]
Let A, B € CB(X), the Hausdorff distance between A and B denoted
by D (4, B) which is defined by
D (A, B) = max{supgead(a, B), suppep d(b, A)}
Where d(a, B) = inf{d(a, b): b € B} is the distance from a point a to the
set B and d induced by the norm.

Example (0.3.3):

Consider X = R, A =[2,3], B = [4,6] then we find H (4, B)
d(A,B) =2 andd(B,A) =3
hence d(A, B) # d(B,A) and D (A, B) = max {d(4,B),d(B,A)} = 3.

Proposition (0.3.4): [ A]
Let A and B be a nonempty sub set of metric space (X, d).
1. If A and B are both bounded then D (4, B) < oo.

'(S;
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2. If Alisbounded and D (A, B) < o then B is bounded.
3. If Aisbounded and B is unbounded then D (4, B) = oo.
4. If A isunbounded and D (4, B) < oo then B is unbounded.

In the converse of proposition (i) above It is possible that D (4, B) <
oo if both A and B are unbounded, for example of this, if A and B are

parallel lines in R2. [ A]

Theorem (0.3.5): [B]
If (X, d) be a metric space then (K (X), D) is metric space, morovere,

iIf X is complete then K(X) is complete.

Proposition (0.3.6): [A]
If (X, d) be a metric space, and let A and B be a nonempty subset of

1. If B is compact, then for each a € A there exists some b € B
satisfying d(a,b) < D(A,B).

2. If A and B are both compact, then there existsa € Aand b € B
such that d(a,b) = D(A, B).

If D (A,B) = d(a,b) where a € A and b € B itis not expected true if
A and B are not closed.
In following example we show that A and B are closed and not compact
but D (4,B) # d(a,b).

Example (0.3.7): [30]
Consider the space [, (R) = {x:x = (X1, X5, 0o, Xp, - );
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x; € RViand )2, x; < oo} with usual norm |[|x|| = /X2, x;2, SO

d(x,y) = X2, (x; — )2, for x,y € 1,(R), I, is the Banach space [16]
the set B = {e4, e,, .... } of unit coordinate vectors it is easy to show that
B is closed set.

Let x = (—1,—%, —% ..)and A = B U {x}.

Clearly, A is closed, then sup,cp d(b,A) = 0, SO

D(A,B) = d(x,B) = infd(x, e;). Now,

d(x,e,) = llx = eyl = J (-2-1) +32, ()

1 o 12
= (1 +2)* + X1 5)?

i#n

2 1 w 11
=1+ -+—=+Xim13;)

i#n
= (1 +243R, 5
l¥n
=(1+2432,0)
=1+ %2 + %)3
So, D(4,B) = infd(x,e,) = inf { (1 + % +22} = 1 +2):

2.1
Where D(4, B) = (1 +§ )2 < d(x,e,).

Lemma (0.3.8): [20] [13]
Let X be a normed space. If A,B € CB(X) and a € A, then given
€ > 0 there exists a point b € B such that ||a — b|| < D(4,B) + «.

Lemma (0.3.9): [13]

Let X be a normed space and A4,,, B,, be two sequence in CB(X).

.&:

Then therefore a,, € A, b,, € B,, V n = 0 such that



Chapter zero: Preliminaries

la, — b, |l < D(A,,B,) + &, with lim &, = 0 ... (0.3.1)
n—-oo

0-4 Types of Multi-Valued Contractive

Conditions

Recall, some important definition of multi-valued contraction

mappings

Definition (0.4.1):
Let X be a normed space, F: M — 2 be a multi-valued mapping. We
introduce some types of contraction conditions as following: for all
x,y €X
Banach’s or (Nadler’s) multi-valued contraction condition [20]is
D(Fx,Fy) < ad(x,y) where 0<a<1 ... (0.4.1)
Kannan’s multi-valued contraction condition [ 10 ] is
D(Fx,Fy) < b[d(x,Fx) + d(y, Fy)] where 0<b <0.5...
(0.4.2)
Chatterjea’s multi-valued contraction condition [ 11 ] is
D(Fx,Fy) < cld(x,Fy) + d(y,Fx)] where 0<c¢<0.5
(0.4.3)
Zamfirescu’s-multi-valued contraction condition [ 18 ] (z-operator)
(z1) D(Fx,Fy) < ad(x,y)
(z2) D(Fx,Fy) < b[d(x,Fx) + d(y, Fy)]
(z3) D(Fx,Fy) < c[d(x,Fy) + d(y,Fx)]
where 0<a<1,0<b<05 0<c<05
(0.4.4)

Remark (0.4.2):

‘\ 10



Chapter zero: Preliminaries

By [Berinde 12], z-operator lead to the following conclusions for all
x,y € X:
i) D(Fx,Fy) < 6d(x,y) + 25d(x, Fx) by using condition (0.4.2)
and
i)  D(Fx,Fy) < dd(x,y) + 26d(x, Fy) by using condition (0.4.3)

where § = max {a,i },and 6 €[0,1)Vx,y € X.

<
1-b’ 1-c
Definition (0.4.3): [9]

Let F: X - X be a mapping on metric space X is said to be quasi-
contraction mapping iff there exists a number 0 < g < 1, such that
D(Fx,Fy) < gqmax{d(x,y),d(x,Fx),d(y, Fy),d(x,Fy),d(y, Fx)}

... (0.4.5)

Dung and el.at gave the following generalization of (0.4.5)
Definition (0.4.4) [20]:
Let F: X — X be a mapping on metric space X. The mapping F is said
to be a general quasi-contraction (g.g.c.-mappings) iff there exists
q € [0,1) such that for all x,y € X,
D(Fx,Fy) < gqmax{d(x,y),d(x,Fx),d(y, Fy),d(x, Fy),d(y, Fx)
d(F?x,x),d(F?x,Fx),d(F?x,y),d(F?x,Fy)} ... (0.4.6)

The following two examples to show that the contraction a g.q.c-
mappings is a generalization of (0.4.5) and (0.4.1), (0.4.2) and (0.4.3)
independent.

Example (0.4.5): [8]
Consider X = [0, 1] with usual norm and F:[0,1] - [0,1], F(x) =

x
31
Vv x € [0, 1]. Since F satisfies (0.4.1), but dose not satisfy (0.4.2) when

‘\ 11
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x=0andy=§.

Now, let F(x) = ,x =1 since F satisfies

N |-

,0<x<1and F(x) =

AN

(05.3), but [If(x) = fF(D)Il =7 > |x — 1|, for any x € (3,1), s that F
dose not satisfy (0.4.1).

Consider X =Rand F:R-> R, F(x) = %x then F satisfies (0.4.2),
but dose not satisfy (0.4.3) when x = 2,y = —2.
Let X be unit interval, define F: X —» X by F(x) = g ifo<x<1
and F(x) =0, if x = 1, then F holds (0.4.3), but F dose not hold (0.4.2)

Withx=%,y= 0.

Example (0.4.6): [20]
Let X ={1,2,3,4,5} with d defined as:

0 ifx=y
d(x, y) =12 lf (X, y) € {(174)' (1'5)7 (4'1)! (5!1)}
1 otherwise

Let F: X — X be defined by

F1=F2=F3=1,F4=2,F5=3.
F is not quasi-contraction forx =4 and y=5 because there is no a
nonnegative number g < 1 satisfying the equation (0.4.5). However,F is
generalized quasi-contraction since the (0.4.6) hold for some g € [0.5,1),

forall x,y € X.

Definition (0.4.7): [13]

Let F: X — X be a mapping on metric space X is said to be like
contraction (or weak contraction) if g € (0,1) and L > 0 exist, such that
D(Fx,Fy) < qllx —yll + L|l|lx — Fx|| Vx,y€eX
(0.4.7)

‘\ 12
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This definition is the general of condition (0.4.7)
Definition (0.4.8) [12, 14]:

A mapping F is called general like contraction (g.l.c) if there exist
ge (0,1) and defined continuous strictly increasing function @:[0,) —
[0, ) with @(0) = 0 such that
D(Fx,Fy) < qllx —y|l + @(d(x,Fx)) Vx,y €X
(0.4.8)

The following example show that F satisfies condition (0.4.8)
Example (0.4.9):
Consider X=[0, o0) and F: X — X defined by

F :{1.0 0<x<0.6
04 06<x

assume that x < y.Then ,for0 < x <y < 0.6 or

0.6 <x <y,||[Fx—Fy| = 0,and (0.4.8) is automatically satisfied

If 0 <x <0.6 <y then|Fx—Fy| = 0.6

defined @ by @(t) = Lt for any L > 2. Then @ is increasing continuous ,
and @(0) = 0, Also,

||x — Fx|| = 1 — x, so that

O(lx — Fx||) = L(1 —x) = 0.4L > 0.6 therefore

0.6 = ||Fx — Fy|| < L|lx — Fx|| < §|lx — y|| + L|lx — Fx||

forany 0< 6 < 1, and (0.4.8) is satisfied for0< x < 0.6 <y

Proposition (0.4.10):[88]
Any mapping satisfying condition (0.4.5) with 0 < q < % is also,
satisfying condition (0.4.7).

‘\ 13
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In the following example the mapping satisfied condition (0.4.7) but
not satisfied (0.4.5).
Example (0.4.11):

Let X = [0, 1] be unit interval with usual norm when n = 1 define
F:[0,1] = [0,1] by F(x) = > for all x € [0,1) and F (x) = i ifx = 1.
Then F satisfies condition (0.4.7), since
|Fx — Fy|| < qllx — yl| + L||x — Fx|| , then is true if we take g = %and

L = 4.1f x = q,y = 0then F is not satisfy condition (0.4.5).

Definition (0.4.13): [12] [19] [5]

Let X be a normed space and @ # M < X. A multi-valued mapping
F:M - 2% is said to be k-strictly pseudo contractive if for each x,y € M
and for each u € Fx, & € Fy such that
D*(Fx,Fy) < |lx —yll* + kllx —pu— @&y = OII? ... (0.4.10)
The inequalities (0.4.10)

If there exists j(x —y) € J(x — y) such that
(w—&Jj(x —y)) < kllx —yll? ... (0.4.11)
or respectively (Fx — Fy,j(x —v)) < kl||lx — y||? ... (0.4.12)

In [50] condition (0.4.10) is said to be k-strictly pseudo-contraction of
proximinal set if there exists ke (0,1) such that given any x, y € M and
U € Fx, there exists & € Fy satisfying |[u — ¢|| < D(Fx, Fy) and
D*(Fx,Fy) < llx —ylI* + kllx —p — (y = OII? ... (0.4.13)

Remark (0.4.14):

I. From the definition (0.4.13), if k = 1 then F is said to be a pseudo
contractive mapping (i.e.D?(Fx, Fy) < |lx — y||* +
lx —u—(y—&J?forall x,y € M) ... (0.4.14)

or respectively
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IFx = Fyll> < llx = ylI* + llx = Fx = (y = Fy)|I* ... (0.4.15)
if k = 0 F is called nonexpansive mapping

(i.e. D?>(Fx,Fy) < ||x — y||* forall x,y € M) ... (0.4.16)
(or respectively ||Fx, Fy||? < |lx — y||?) ... (0.4.17)
Also every multivalued nonexpansive mapping is k-strictly pseudo
contractive and every Kk-strictly pseudo contractive mapping is
pseudo contractive

ii. Every k-strictly pseudo contractive mapping is L-Lipschitzian
mapping (i.e.D(Fx,Fy) < L||x — y|| forall x,y € M) ... (0.4.18)
(or respectively ||Fx, Fy|| < L||x — y|| for all x,y € M)
...(0.4.19) [ proposition 2,50].

lii.  L-Lipschitzian is Banach contraction, if L < 1 then F is
contraction and if L = 1 then F is said to be a multi-valued
nonexpansive mapping [28, 2].

iv.  Every nonexpansive mapping with nonempty fixed point set is
quasi-nonexpansive. But there exist quasi-nonexpansive mappings

that are not nonexpansive [50].

In the following two examples to illustrate that k-pseudo contraction
mapping is not necessarily nonexpansive mapping or pseudo contraction.
Example (0.4.15):

Let F: X - 2% defined by Fx = [—%,—x].
Then P, = {—2x} for all x € [0, ), F is not nonexpansive since:
3 2
D*(Fx, Fy) = max {|Gc =% F - )] |
o 12 — v — l2 L 2 — 2
=L lx=yl*=lx—yl* + 2 lx - yl%
By definition (0.4.5) foreachy € Fx,u = —ax,1 < a < %

choose ¢ = —ay. Then

‘\ 15
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=&l = |—ax — (—ay)| = alx — y| < Z|x — y| = D(Fx, Fy)
X === = lx = (—ax) — (y = (—ay)I?

=1+ a)x— 1+ a)y|?

=1+ a)?|x — y|>
D2(Fx,Fy) = |x —yI? +2|x — y|?

5
4(1+a)?

=|x—yl*+ (1+ a)?|x —y|?

5
=l =y i e =9

— v|2 5 1 — (v — 2|2
S AR vererri tal Sl VX 9]
5
= lx =y +=lx—u— -9
F is k-strictly pseudo contraction with k = 1—56 And follows F is pseudo

contraction but is not nonexpansive mapping.

Example (0.4.16):
Let X=R (the reals with usual metric). Defined F: X - 2% by
Fx = [-V5x,—x].
Then P, = {—x} which is not nonexpansive.
D2(Fx, Fy) = max {|V5(x = )|’ |x = y)I} = 5lx = yI?

=[x —y|* + 4]x — y|*.

Furthermore, for each u € Fx,u = —ax,1 < a <+/5, choose & = —ay.

Then

i — €| = |[—ax — (~ay)| = alx — y| < V5lx — y| = D(Fx, Fy)

Ix—p— @ - =lx—(—ax) — (y — (—ay)I?
=|1+a)x—(1+a)y|* =10+ a)?|lx —y|%

It then follows that

D?(Fx,Fy) = |x —y|* + 4|x — y|?

‘\ 16
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=lx =yl + 1+ 1)%|x - y|?
<lx—-yl+ A+ a)?x—yl?
=lx—yPP+lx—p—@-9
So, F is pseudo contraction.
For any pair x,0 € [0,), FO = {0}. It then follows that for any u € Fx
the corresponding ¢ = 0. In particular, for u = —x,
D?(Fx,F0) = 5|x — y|?
= |x — 0]% + 4|x — 0]?
=[x — 0] + |x — (—x)|?
>lx -y +klx—p—-@-OI° Vke(01).

This shows that F is not k-strictly pseudo contraction mapping.

Example (0.4.17): [/9]
Let M = [0, c0) with the usual metric and F: M — CB(M) be defined
) {0}, if x <1,
y Fx_{[x—%,x—é], if x> 1.
Indeed, it is clear that Fix; = {0} and for any x we have
D(Fx,F0) < |x — 0], hence, F is quasi-nonexpansive. However, if
x=2,y=1wegetD(Fx,Fy) > |x —y| = 1, and hence, F is not

nonexpansive.

Definition (0.4.18): [ 48]
Let X be a normed space, M be a nonempty subset of X. A mapping
F: M — P(M) is said to be multivalued generalized nonexpansive
mapping if
D(Fx,Fy) < allx — yll + b{d(x, Fx) + d(y, Fy)} +
c{d(x,Fy) + d(y, Fx)} ... (0.4.20)

forall x,y € X, wherea + 2b + 2¢ < 1.
‘\ 17
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Definition (0.4.19): [8]

Let X be a normed space and @ = M € X. A mapping F: M — 2%X is
said to be multi-valued monotone if there exist a constant k € (0, 1) and
z € M such that for each x € M and for each u € Fx there exists
j(x—2z) €J(x — z) with

(u— z,j(x—2)) < kl|x—z|? ... (0.4.21)
(or respectively (Fx — z,j(x — 2)) < kl||lx — z||?) ... (0.4.22)

Proposition (0.4.20):
Every k-strictly pseudo contraction mapping F with a fixed point is

monotone mapping.

Definition (0.4.21): [5] [21]

Let X be a normed space and @ = M € X. A mapping F: M — 2% is
said to be multi-valued strongly accretive if there is a constant k > 0
such that for each x,y € M and for each u € Fx, & € Fy there exist
Jx —y) €](x —y)with

(=& jlx—y)) = kllx—yll? ... (0.4.23)

(or respectively (Fx — Fy,j(x —y)) = k|lx — y||?) ... (0.4.24)
Now, since without loss the generality we assume that k € (0,1). And if
k = 01in (0.4.23) or in (0.4.24), then F is said to be multi-valued

accretive.
Definition (0.4.22): [21]

Let X be a real Banach space, @ # M € X and F: M — 2™ be a multi-

valued ¢-accretive mapping, if for any x,y € M and for any u € Fx,§ €
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Fy, there exists a j (x,y) € J(x,y) and a strictly increasing function
¢: [0, 4+0) = [0, 4+00) with ¢(0) = 0 such that
(u=&jx =y = ¢(lx—=ylD ... (0.4.25)

0-5 Types of Iterative Schemes

In the following, some types of iterative schemes for multi-valued
mappings:

Let X be a normed space, @ # M € X and F: M — 2% be a multi-
valued mapping. For x, € M if the sequence (x,,) € M with {(a,,), {£,,)
sequence in (0,1). Now we started with the Picard iteration method [1].

Xo EM ,Xp41 = Un ... (0.5.1)
where u,, € Fx,

when F is single valued mapping, (0.5.1) will be x,,,,; = Fx,

The Mann iterations [2] defined by

Xpe1 = A —ap)x, +apu, forn=0 ... (0.5.2)
where u,, € Fx,, ,

when F is single valued mapping, (0.5.2) will be

Xpe1 = 1 —ap)x, + a,Fx, forn=>0

Another iteration method is Ishikawa iteration [3] defined by

Xo EM
Xnt1 = (L —ap)x, + a, &, forn=>0 ...(0.5.3)
Yn = (1 - .Bn)xn + ﬁn.un

where u,, € Fx,, ,&, € Fy,
when F is single valued mapping, (0.5.3) will be

Xg EM
Xnt1 = A —a)x, + a, Fy, forn>0
Yn = (1 - ,Bn)xn + BnFxy
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The s-iteration process [4] is
Xg EM
Xn+1 = (1 —apiy, + ay &, forn=0
Yo = (1= Bp)xy + Bubtn
where u,, € Fx,, ,&, € Fy,
when F is single valued mapping, (0.5.4) will be
Xg EM
Xnt1 = (1 —a)Fx, + a, Fy, forn=>0
Yn = (1= Bn)xn + BuFxy

The 2step-Mann iteration [5] is defined by
Xo EX
Xnr1 = (L —a)yn + ané,  forn =0
Yn = (1= Bn)xn + Buktn
where u,, € Fx,, ,&, € Fy,
when F is single valued mapping, (0.5.5) will be

Xo EX
Xns1 = (1 — )y, + a, Fy, forn>0
Yn = (1- ﬁn)xn + BnFx,

Also, Picard-Mann iteration process [6] is
{ Xns1 = $n

Yn = (1- an)xn + ap iy
where u,, € Fx,, ,¢, € Fy,

forn>0

when F is single valued mapping, (0.5.6) will be

{ Xn+1 = Fyn

forn>0
Yn = (1- an)xn + a,Fx,

Remark (0.5.1):

We have some special cases for iterative schemes

Preliminaries

.. (0.5.4)

.. (0.5.5)

.. (0.5.6)
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1. If B, = 0in (0.5.3) then reduced Mann iteration
2. Ifa, =1in(0.5.2) then reduced Picard iteration
3. If a,, =11in(0.5.5) orin (0.5.4) then reduced Picard-Mann

iteration.

0-6 Important Fixed Point Theorems

In this section, recall some definition and some important theorems of

fixed point.

Definition (0.6.1): [1]:
Let x, € X, an orbit of Fat x, is a sequence Op(x,) = {x,;: x,, €
Fx,_;,n € N}. A space X is called to be F-orbitally complete if every

Cauchy sequence in Oz (x,) converge in X.

Definition (0.6.2): [28] [32]

Let X be a normed space and @ # M C X, the point x € M is called
fixed point of the multi-valued mapping F: M — 2™ (or, single valued
mapping F: M — M) if x € Fx (respectively x = Fx). The set of all fixed
points of F denoted by Fixg
If G: M - 2M be another multi-valued mapping a point x is called

common fixed point of F and G if x € Fx N Gx.

Theorem (0.6.3): [15] (Banach’s Fixed Point Theorem)
Let (x,d) be a complete metric space and F: X — X be a Banach’s
contraction (0.4.1) with a € [0, 1) fixed. Then

i) F has a unique fixed point, that is Fixp = {z};

‘\ 21



Chapter zero: Preliminaries

i)  The Picard iteration associated to F, i. e., the sequence (x,;)n=o,
defined by
Xn = F(x,_1) = F'(xy), n=1,2,..,
converges to z, for any initial guess x, € X;

i) The following a priori and a posteriori error estimates hold:
d(x,,z) < %.d(xo,xl), n=012,....
d(x,,z) < ﬁ.d(xn_l,xn), n=2012,...

Iv)  The rat of convergence is given by

d(x,,z) <a.d(x,_1,z) <a".d(xy,z), n=1.2,..,

Theorem (0.6.4): [13] (Nadler’s Fixed Point Theorem (1941))
Let M be a nonempty closed subset of a Banach space X and
F: M — CB(M) be a multi-valued contraction mapping (0.4.1). Then F

has a fixed point.

Theorem (0.6.5): [Theorem 3, 4] [9]
Let (X,d) be a metric space and F:X — CB(X) be a quasi
contraction mapping (0.4.5). If X is F- orbitally complete. Then
i) F has a unique fixed point z in X and Fz = {z}
i)  for each x, € X there exists an orbit (x,,) of F at x, such that

lim x,, = zforall x € X and

n—oo

(@t~ H"

d(xnlz) S 1 ql_a

d(xy,x,) for all n € N, where a <1 is any

fixed positive number.

Theorem (0.6.6): [Theorem (3.4), 20]
Let (X,d) be a metric space and F:X — CB(X) be a g.q.m.c-
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i) F has a unique fixed point z in X and Fz = {z}
i)  for each x, € X there exists an orbit (x,,) of F at x, such that

lim x,, = z forall x € X and

n—oo

(ql—a)n
1

d(x,,z) < e d(xy,x,) for all n € N, where a <1 is any

fixed positive number.

Theorem (0.6.7): [15]
Let (X,d) be a complete metric space and F:X — X be a weak
contraction (0.4.7) with g € (0,1) and L = 0. Then
) Fixp + 0;
ii)  For any x, € X, the Picard iteration (x,) (0.5.1) converges to
some z € Fixp;

i) The following a priori and a posteriori error estimates hold:
d(x,,z) < %.d(xo,xl), n=20,12,....

d(x,,z) < ﬁ.d(xn_l,xn), n=2012...

Theorem (0.6.8): [15]

Let (X,d) be a complete metric space and F:X — X be a weak
contraction for which there exist g € (0,1) and some L, = 0 such that

d(Fx,Fy) <qd(x,y)+L,d(x,Fx), Vx,y€EX

Then

) F has a unique fixed point, Fixp + @;

ii)  The Picard iteration (x,) (0.5.1) converges to z € Fixy for any

Xy € X;

i) The a priori and a posteriori error estimates

d(x,,z) < %.d(xo,xl), n=2012,....
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d(x,,z) < ﬁ.d(xn_l,xn), n=012...

Iv)  The rat of convergence is given by

d(x,,z) <q.d(x,_1,z), n=12,..,

Remark (0.6.9): [15]
) If F satisfied condition (0.4.7), then it is not ensuring that F has

a fixed point. But if F has a fixed point, the it is unique.

i)  The theorem (0.6.8) unifies and generalizes the fixed point
theorems of (0.4.1), (0.4.2), (0.4.3) and (0.4.4) and convex
theorem (0.6.5).



