
CHAPTER 0 

 

PRELIMINARIES 

 

0-0 Introduction 

 

      Throughout this chapter, some basic known concepts and facts are 

given. Which has been divided in to six sections: basic elements in 

normed spaces, normalized duality mapping, hausdorff distance, multi-

valued mappings, types of iterative schemes and important fixed point 

theorems. 

      It is worth mentioning that, section (0.4) includes interesting 

considerations and examples to explain the relationships between some 

known contractive conditions.   

 

0-1 Basic Elements in Normed Spaces 

     A vector space over a field 𝐿 = ℝ or ℂ and wedding with a 

nonnegative real valued function ‖ . ‖ is called normed linear space 

(shortly, normed space) if it is satisfied ‖𝑥‖ ≥ 0 and ‖𝑥‖ = 0 ⟺ 𝑥 is 

zero vector, ‖𝜆𝑥‖ = |𝜆|‖𝑥‖ and ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for all vectors 

𝑥, 𝑦 ∈ 𝑋 and is scalar 𝜆 ∈ 𝐿. The ordered pair (𝑋, ‖ . ‖) denote to normed 

linear space. Also, 𝑋 is called real normed space (or complex normed 
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space) if 𝐿 = ℝ field (or, respectively 𝐿 = ℂ). It is known that every 

normed space is metric space by defining a function distance 𝑑: 𝑋 × 𝑋 →

ℝ+ with 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 in 𝑋 [16]. 

 

      The following definition are needed later. 

Definition (0.1.1): [16] [27]  

        In a normed space (𝑋, ‖ . ‖) a sequence 〈𝑥𝑛〉 is called Cauchy 

sequence if for every 𝜀 > 0, there exists a positive integer 𝑘 such that 

‖𝑥𝑚 − 𝑥𝑛‖ < 𝜀 for all 𝑚, 𝑛 > 𝑘 or denoted by ‖𝑥𝑚 − 𝑥𝑛‖ → 0  

𝑎𝑠 𝑛, 𝑚 → ∞. 

  

Definition (0.1.2): [16] [31] 

      In a normed space 𝑋 a sequence 〈𝑥𝑛〉 in 𝑋 converges (or converges 

strongly) to 𝑥 ∈ 𝑋 if for every 𝜀 > 0, there exists a positive integer 𝑘 

such that ‖𝑥𝑛 − 𝑥‖ < 𝜀 for all 𝑛 ≥ 𝑘, denoted by 𝑥𝑛 → 𝑥  𝑎𝑠 𝑛 → ∞ or 

lim
𝑛→∞

𝑥𝑛 = 𝑥. The point 𝑥 is called the limit of 〈𝑥𝑛〉. 

 

Definition (0.1.3): [31] [27] 

      The normed space 𝑋 is said to be complete if every Cauchy sequence 

in 𝑋 converges. However, a complete normed space is called Banach 

space.  

 

Definition (0.1.4) [16]: 

       A Banach space 𝑋 is said to satisfy Opial’s condition if for any  

sequence 〈𝑥𝑛〉 in 𝑋, 𝑥𝑛 → 𝑥 implies that  

lim
𝑛→∞

𝑠𝑢𝑝‖𝑥𝑛 − 𝑥‖ < lim
𝑛→∞

𝑠𝑢𝑝‖𝑥𝑛 − 𝑦‖  for all 𝑦 ∈ 𝑋 with 𝑦 ≠ 𝑥. 
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Definition (0.1.5): [16]  

        Let 𝑋 be a normed space, a mapping 𝑓: 𝑋 → 𝐿 is called linear 

functional if for all 𝑥, 𝑦 in 𝑋 and 𝛼, 𝛽 in 𝐿, 

 𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦).  

                                              

Definition (0.1.6): [16] [27] 

       Let 𝑋 be a normed space. The set of all continuous linear functional 

on 𝑋 together with the norm ‖𝑓‖ = 𝑠𝑢𝑝𝑥∈𝑋 |𝑓(𝑥)| is called dual space of 

𝑋. and denoted by 𝑋∗. 

 

Remark (0.1.7): [1] 

    Let 𝑋 be a normed space and 𝑓 ∈ 𝑋∗, for given 𝑥 ∈ 𝑋 , the equation 

𝜑𝑥(𝑓) = 〈𝑥, 𝑓〉 define a functional on 𝑋` and: 

 

i. 𝜑𝑥 is linear  

ii. |𝜑𝑥(𝑓)| = |〈𝑥, 𝑓〉| ≤ ‖𝑥‖‖𝑓‖ hence 𝜑𝑥 is bounded. 

iii. |〈𝑥, 𝑓〉| = ‖𝑥‖‖𝑓‖ and ‖𝑓‖ = ‖𝑥‖ hence ‖𝑓𝑥‖ = ‖𝑥‖. 

 

 Definition (0.1.8):[16] 

     Let 𝑋 is a normed space and the sequence 〈𝑥𝑛〉 ⊂ 𝑋 is said to be 

weakly convergent to 𝑥 ∈ 𝑋, written 𝑥𝑛

𝑤
→ 𝑥, if ∀ 𝑓 ∈ 𝑋`, 

lim
𝑛→∞

〈𝑥𝑛, 𝑓〉 = 〈𝑥, 𝑓〉, 𝑖. 𝑒,  lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(𝑥).  

 

    Note that every strongly convergence is weakly but the converse is not 

true [16 ]. 
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0-2 Normalized Duality Mapping 

 

     Recall the following: 

Definition (0.2.1): [32]. 

    Let 𝑋 and 𝑌 be two nonempty sets. 𝐹 is said to be a multi-valued 

mapping defined by 

                       𝐹: 𝑀 ⊆ 𝑋 → 2𝑌                                              … (0.2.1) 

We mean a mapping assigns to each point 𝑥 ∈ 𝑀 a subset 𝐹(𝑥) ⊆ 𝑌. 

Every single valued mapping 𝐹0: 𝑀 → 𝑌, can be identified with a multi-

valued mapping like (0.4.1) by setting  

                    𝐹(𝑥) = {𝐹0(𝑥)},  for all 𝑥 ∈ 𝑋. 

Thus 𝐹(𝑥) is a singleton. 

 

Definition (0.2.2):[30] [34] 

         Let 𝑋 be a normed space and let 𝑋` be the dual space of 𝑋 and 2𝑋 is 

the set of all nonempty subsets of 𝑋`, the multivalued mapping 𝐽: 𝑋 → 2𝑋`
 

is said to be the normalized duality if 

𝐽(𝑥) = {𝑓 ∈ 𝑋`: 〈𝑥, 𝑓〉 = ‖𝑓‖‖𝑥‖, ‖𝑓‖ = ‖𝑥‖}, ∀ 𝑥 ∈ 𝑋 

 

    The following example for a single value normalized duality mapping 

which is depend on the nature of the normed linear space 𝑙𝑝 

Example (0.2.3): [16] [27]  

       Consider the normed space 𝑋 = 𝑙𝑝(ℝ) with norm ‖𝑥‖𝑝 =

(∑ |𝑥𝑖|𝑝∞
𝑖=1 )

1

𝑝, when 𝑋 = (𝑥1, 𝑥2, … . ). It is dual space 𝑋`with 
1

𝑝
+

1

𝑞
= 1.  

Defined duality mapping  𝐽: 𝑋 → 𝑋` by 

 𝐽(𝑥) = (𝑠𝑔𝑛 𝑥1|𝑥1|𝑝−1, 𝑠𝑔𝑛 𝑥2|𝑥2|𝑝−1, … … ), since  
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(∑ |𝑠𝑔𝑛 𝑥𝑖|𝑥𝑖|𝑝−1|𝑞
∞

𝑖=1
)

1
𝑞

= (∑ |𝑥𝑖|(𝑝−1)𝑞
∞

𝑖=1
)

1
𝑞

= (∑ |𝑥𝑖|𝑝
∞

𝑖=1
)

1
𝑞

, 

𝐽𝑥 ∈ 𝑋∗ and ‖𝐽𝑥‖ = ‖𝑥‖
𝑝

𝑞  ⟹ ‖𝐽𝑥‖ = ‖𝑥‖𝑝−1,  

〈𝑥, 𝐽𝑥〉 = ∑ 𝑥𝑖

∞

𝑖=1
𝑠𝑔𝑛 𝑥𝑖|𝑥𝑖|𝑝−1 =  ∑ |𝑥𝑖|𝑝

∞

𝑖=1
= ‖𝑥‖𝑝 = ‖𝑥‖‖𝑥‖𝑝−1 

                = ‖𝑥‖‖𝐽𝑥‖.  

 

Definition (0.2.4): [30] [13] 

       Let 𝑋 be a normed space and 𝑈(𝑋) = {𝑥 ∈ 𝑋: ‖𝑥‖ = 1}, then 𝑋 is 

said to be smooth if  

 

                                        lim
𝑡→0

‖𝑥+𝑡𝑦‖−‖𝑥‖

𝑡
                          … (0.2.1) 

 

exists for each 𝑥, 𝑦 ∈ 𝑈(𝑋). Also 𝑋 is said to be uniformly smooth if the 

limit (0.2.1) is attained uniformly for (𝑥, 𝑦) in 𝑈(𝑋) × 𝑈(𝑋). 

 

Definition (0.2.5): [32] 

    A normed space 𝑋 is said to be uniformly convex if and only if for 

every 𝜀 ∈  (0,2] there is a 𝛿(𝜀) ∈  (0,1] such that   

‖𝑥‖ ≤ 𝑘, ‖𝑦‖ ≤ 𝑘, ‖𝑥 − 𝑦‖ ≥ 𝜀𝑘,     𝑥, 𝑦 ∈ 𝑋, 𝑘 > 0, 

implies that 

                                ‖(𝑥 + 𝑦)/2‖ ≤ (1 − 𝛿(𝜀))𝑘. 

 

Example (0.2.6): [32] 

       Consider 𝑋 = ℝ2 with Euclidian norm ‖𝑥‖ = (𝑥1
2 + 𝑥2

2)
1

2  where 

𝑥 = (𝑥1, 𝑥2) is uniformly convex. 

But ℝ2 with maximal norm ‖𝑥‖ = max{|𝑥1| , |𝑥2|} where 𝑥 = (𝑥1, 𝑥2) is 

not uniformly convex on ℝ2. 
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Proposition (0.2.7): [13] 

      A normed space 𝑋 is uniformly smooth if and only if 𝑋` is uniformly 

convex. 

 

    We illustrate proposition (0.2.7) by the following two example 

Example (0.2.8): [32] 

i- Consider 𝑋 = 𝑙2(ℝ) with ‖𝑥‖ = √∑ 𝑥𝑖
2∞

𝑖=1  is uniformly 

smooth since the dual space of 𝑙2(ℝ) isomorphic to 𝑙2(ℝ) and 

𝑙2(ℝ) is uniformly convex.  

ii-  ℝ2 with ‖𝑥‖ = |𝑥 | is uniformly smooth since 𝑋` of ℝ2 

isomorphic to ℝ2  and ℝ2 with same norm is uniformly convex, 

but ℝ2 with  

‖𝑥‖ = max{|𝑥1| , |𝑥2|}, where 𝑥 = (𝑥1, 𝑥2)  is not uniformly smooth also 

the dual space of ℝ2 is not uniformly convex with the same norm. 

 

Proposition (0.2.9): [30] [3] 

      Let 𝑋 be a Banach space and let 𝐽: 𝑋 → 2𝑋`
be the normalized duality  

mapping, then we have the following: 

1. For each 𝑥 ∈ 𝑋, 𝐽(𝑥) is a nonempty bounded closed and convex 

subset of  𝑋∗; 

2. 𝐽(0) = {0}; 

3. Let 𝛼 be a real numbed and 𝑥 ∈ 𝑋 then 𝐽(𝛼𝑥) = 𝛼𝐽(𝑥); 

4. 𝑋 is smooth Banach space if and only if 𝐽 is single valued; 

5. 𝑋 is uniformly smooth Banach space if and only if 𝐽 is single 

valued and uniformly continuous on any bounded sub set of 𝑋, 

(where 𝐽 is uniformly continuous if and only if  ∀𝜀 > 0, ∃ 𝛿 > 0 

such that ∀ 𝑥, 𝑦 ∈ 𝑋, ‖𝐽(𝑥) − 𝐽(𝑦)‖ < 𝜀 if ‖𝑥 − 𝑦‖ < 𝛿). 
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0-2 Hausdorff Distance 

       Recall the following important classes of subsets of a normed space 

𝑋: 

2𝑋 the family of all nonempty subsets of 𝑋. 

𝐶𝐵(𝑋) the family of all nonempty closed and bounded subsets of 𝑋. 

𝐾(𝑋) be the collection of all nonempty compact subsets of 𝑋.  

 

Definition (0.3.1): [50]  

     Let 𝑋 be a normed space, a subset 𝑀 of 𝑋 is called Proximinal if 

∀ 𝑥 ∈ 𝑋, ∃ 𝑚 ∈ 𝑀 such that  

‖𝑥 − 𝑚‖ = 𝑑(𝑥, 𝑀) = inf  {‖𝑥 − 𝑦‖ : 𝑦 ∈ 𝑀}. 

We denote the class of all bounded proximinal subset of 𝑀 in 𝑋 by 𝑃(𝑀). 

 

Definition (0.3.2): [32] 

        Let 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), the Hausdorff distance between 𝐴 and 𝐵 denoted 

by 𝐷 (𝐴, 𝐵) which is defined by  

𝐷 (𝐴, 𝐵) = max{𝑠𝑢𝑝𝑎∈𝐴𝑑(𝑎, 𝐵), 𝑠𝑢𝑝𝑏∈𝐵 𝑑(𝑏, 𝐴)} 

Where 𝑑(𝑎, 𝐵) = inf {𝑑(𝑎, 𝑏): 𝑏 ∈ 𝐵} is the distance from a point 𝑎 to the 

set 𝐵 and 𝑑 induced by the norm. 

 

Example (0.3.3): 

       Consider 𝑋 = ℝ,   𝐴 = [2,3], 𝐵 = [4,6] then we find  𝐻 (𝐴, 𝐵) 

𝑑(𝐴, 𝐵) = 2  and 𝑑(𝐵, 𝐴) = 3  

hence 𝑑(𝐴, 𝐵) ≠ 𝑑(𝐵, 𝐴) and 𝐷 (𝐴, 𝐵) = max  { 𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)} = 3. 

 

Proposition (0.3.4): [ A ] 

Let 𝐴 and 𝐵 be a nonempty sub set of metric space (𝑋, 𝑑). 

1. If 𝐴 and 𝐵 are both bounded then 𝐷 (𝐴, 𝐵) < ∞. 
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2. If 𝐴 is bounded and 𝐷 (𝐴, 𝐵) < ∞ then 𝐵 is bounded. 

3. If 𝐴 is bounded and 𝐵 is unbounded then 𝐷 (𝐴, 𝐵) = ∞. 

4. If 𝐴 is unbounded and 𝐷 (𝐴, 𝐵) < ∞ then 𝐵 is unbounded. 

 

       In the converse of proposition (i) above It is possible that 𝐷 (𝐴, 𝐵) <

∞ if both 𝐴 and 𝐵 are unbounded, for example of this, if 𝐴 and 𝐵 are 

parallel lines in ℝ2. [ A ] 

  

Theorem (0.3.5): [B] 

      If (𝑋, 𝑑) be a metric space then (𝐾(𝑋), 𝐷) is metric space, morovere, 

if 𝑋 is complete then 𝐾(𝑋) is complete. 

 

Proposition (0.3.6): [A] 

       If (𝑋, 𝑑) be a metric space, and let 𝐴 and 𝐵 be a nonempty subset of 

𝑋  

1. If 𝐵 is compact, then for each 𝑎 ∈ 𝐴 there exists some 𝑏 ∈ 𝐵 

satisfying  𝑑(𝑎, 𝑏) ≤ 𝐷(𝐴, 𝐵).  

2. If 𝐴 and 𝐵 are both compact, then there exists 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 

such that  𝑑(𝑎, 𝑏) = 𝐷(𝐴, 𝐵). 

 

     If 𝐷 (𝐴, 𝐵) = 𝑑(𝑎, 𝑏) where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 it is not expected true if 

𝐴 and 𝐵 are not closed.  

In following example we show that 𝐴 and 𝐵 are closed and not compact 

but 𝐷 (𝐴, 𝐵) ≠ 𝑑(𝑎, 𝑏). 

 

Example (0.3.7): [30] 

         Consider the space 𝑙2(ℝ) = {𝑥: 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … ); 
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𝑥𝑖 ∈ ℝ ∀𝑖 𝑎𝑛𝑑 ∑ 𝑥𝑖
∞
𝑖=1 < ∞} with usual norm ‖𝑥‖ = √∑ 𝑥𝑖

2∞
𝑖=1  , so 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2∞
𝑖=1 , for 𝑥, 𝑦 ∈ 𝑙2(ℝ), 𝑙2 is the Banach space [16] 

the set 𝐵 = {𝑒1, 𝑒2, … . } of unit coordinate vectors it is easy to show that 

𝐵 is closed set. 

 Let 𝑥 = (−1, −
1

2
, … . . , −

1

𝑛
, … ) and 𝐴 = 𝐵 ∪ {𝑥}.  

Clearly, 𝐴 is closed, then 𝑠𝑢𝑝𝑏∈𝐵 𝑑(𝑏, 𝐴) = 0, so 

 𝐷(𝐴, 𝐵) = 𝑑(𝑥, 𝐵) = inf 𝑑(𝑥, 𝑒𝑛). Now, 

𝑑(𝑥, 𝑒𝑛) = ‖𝑥 − 𝑒𝑛‖ = √(−
1

𝑛
− 1)

2
+ ∑ (

1

𝑖
)

2
∞
𝑖=1       

                                        = ((1 +
1

𝑛
)2 + ∑

1

𝑖2

∞
𝑖=1
𝑖≠𝑛

)
1

2  

                                         = (1 +
2

𝑛
+

1

𝑛2
+ ∑

1

𝑖2

∞
𝑖=1
𝑖≠𝑛

)
1

2  

                                         = (1 +
2

𝑛
+ ∑

1

𝑖2

∞
𝑖=1
𝑖≠𝑛

)
1

2  

                                    = (1 +
2

𝑛
+ ∑

1

𝑛2
∞
𝑖=1 )

1

2  

                                         = (1 +
𝜋

6

2
+

2

𝑛
)

1

2  

So, 𝐷(𝐴, 𝐵) = inf 𝑑(𝑥, 𝑒𝑛) = inf  { (1 +
𝜋

6

2
+

2

𝑛
)

1

2} = (1 +
𝜋

6

2
)

1

2  

Where 𝐷(𝐴, 𝐵) = (1 +
𝜋

6

2
)

1

2 <  𝑑(𝑥, 𝑒𝑛). 

 

Lemma (0.3.8): [20] [13] 

         Let 𝑋 be a normed space. If 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋) and 𝑎 ∈ 𝐴, then given 

𝜀 > 0 there exists a point 𝑏 ∈ 𝐵 such that ‖𝑎 − 𝑏‖ ≤ 𝐷(𝐴, 𝐵) + 𝜀. 

 

Lemma (0.3.9): [13] 

         Let 𝑋 be a normed space and 𝐴𝑛, 𝐵𝑛 be two sequence in 𝐶𝐵(𝑋). 

Then therefore 𝑎𝑛 ∈ 𝐴𝑛, 𝑏𝑛 ∈ 𝐵𝑛   ∀  𝑛 ≥ 0 such that  
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‖𝑎𝑛 − 𝑏𝑛‖ ≤ 𝐷(𝐴𝑛, 𝐵𝑛) + 𝜀𝑛 with lim
𝑛→∞

𝜀𝑛 = 0                     … (0.3.1) 

 

0-4 Types of Multi-Valued Contractive 

Conditions 

    Recall, some important definition of multi-valued contraction 

mappings  

 

Definition (0.4.1): 

      Let 𝑋 be a normed space, 𝐹: 𝑀 → 2𝑀 be a multi-valued mapping. We 

introduce some types of contraction conditions as following: for all 

 𝑥, 𝑦 ∈ 𝑋 

Banach’s or (Nadler’s) multi-valued contraction condition [20]is 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑎𝑑(𝑥, 𝑦)    where   0 ≤ 𝑎 < 1                     … (0.4.1) 

 Kannan’s multi-valued contraction condition [  10 ] is 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑏[𝑑(𝑥, 𝐹𝑥) + 𝑑(𝑦, 𝐹𝑦)]  where 0 ≤ 𝑏 ≤ 0.5… 

(0.4.2) 

 Chatterjea’s multi-valued contraction condition [ 11 ] is 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑐[𝑑(𝑥, 𝐹𝑦) + 𝑑(𝑦, 𝐹𝑥)] where 0 ≤ 𝑐 ≤ 0.5 … 

(0.4.3) 

 Zamfirescu’s-multi-valued contraction condition [ 18 ] (z-operator) 

(z1) 𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑎𝑑(𝑥, 𝑦) 

(z2) 𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑏[𝑑(𝑥, 𝐹𝑥) + 𝑑(𝑦, 𝐹𝑦)] 

(z3) 𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑐[𝑑(𝑥, 𝐹𝑦) + 𝑑(𝑦, 𝐹𝑥)] 

where 0 ≤ 𝑎 < 1, 0 ≤ 𝑏 < 0.5,   0 ≤ 𝑐 < 0.5                    … 

(0.4.4) 

 

Remark (0.4.2): 
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     By [Berinde 12], z-operator lead to the following conclusions for all 

𝑥, 𝑦 ∈  𝑋:  

i)  𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝛿𝑑(𝑥, 𝑦) + 2𝛿𝑑(𝑥, 𝐹𝑥) by using condition (0.4.2) 

and 

ii) 𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝛿𝑑(𝑥, 𝑦) + 2𝛿𝑑(𝑥, 𝐹𝑦) by using condition (0.4.3) 

where 𝛿 = 𝑚𝑎𝑥 {𝑎,
𝑏

1−𝑏
,

𝑐

1−𝑐
},and 𝛿 ∈ [0,1)∀𝑥, 𝑦 ∈ 𝑋. 

 

Definition (0.4.3): [9]  

    Let 𝐹: 𝑋 → 𝑋 be a mapping on metric space 𝑋 is said to be quasi-

contraction mapping iff there exists a number 0 ≤ 𝑞 < 1, such that 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑞𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝐹𝑥), 𝑑(𝑦, 𝐹𝑦), 𝑑(𝑥, 𝐹𝑦), 𝑑(𝑦, 𝐹𝑥)}     

                                                                                            … (0.4.5) 

 

   Dung and el.at gave the following generalization of (0.4.5) 

Definition (0.4.4) [20]:  

     Let 𝐹: 𝑋 → 𝑋 be a mapping on metric space 𝑋. The mapping 𝐹 is said 

to be a general quasi-contraction (g.q.c.-mappings) iff there exists 

𝑞 ∈ [0,1) such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑞𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝐹𝑥), 𝑑(𝑦, 𝐹𝑦), 𝑑(𝑥, 𝐹𝑦), 𝑑(𝑦, 𝐹𝑥)   

            𝑑(𝐹2𝑥, 𝑥), 𝑑(𝐹2𝑥, 𝐹𝑥), 𝑑(𝐹2𝑥, 𝑦), 𝑑(𝐹2𝑥, 𝐹𝑦)} … (0.4.6) 

 

    The following two examples to show that the contraction a g.q.c-

mappings is a generalization of (0.4.5) and (0.4.1), (0.4.2) and (0.4.3) 

independent.  

Example (0.4.5): [8] 

      Consider 𝑋 = [0, 1] with usual norm and 𝐹: [0, 1] → [0, 1], 𝐹(𝑥) =

𝑥

3
,  

∀ 𝑥 ∈ [0, 1]. Since 𝐹 satisfies (0.4.1), but dose not satisfy (0.4.2) when 
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 𝑥 = 0 and 𝑦 =
1

3
.  

Now, let 𝐹(𝑥) =
1

2
, 0 ≤ 𝑥 < 1 and 𝐹(𝑥) =

1

4
, 𝑥 = 1 since 𝐹 satisfies 

(0.5.3), but ‖𝑓(𝑥) − 𝑓(1)‖ =
1

4
> |𝑥 − 1|, for any 𝑥 ∈ (

3

4
, 1), so that 𝐹 

dose not satisfy (0.4.1). 

        Consider 𝑋 = ℝ and 𝐹: ℝ → ℝ, 𝐹(𝑥) =
−𝑥

2
,  then 𝐹 satisfies (0.4.2), 

but dose not satisfy (0.4.3) when 𝑥 = 2, 𝑦 = −2. 

Let 𝑋 be unit interval, define 𝐹: 𝑋 → 𝑋 by 𝐹(𝑥) =
𝑥

2
, if  0 ≤ 𝑥 < 1 

and  𝐹(𝑥) = 0, if 𝑥 = 1, then 𝐹 holds (0.4.3), but 𝐹 dose not hold (0.4.2) 

with 𝑥 =
1

2
, 𝑦 = 0. 

 

Example (0.4.6): [20]  

      Let 𝑋 = {1,2,3,4,5} with 𝑑 defined as: 

 𝑑(𝑥, 𝑦) = {
0    𝑖𝑓 𝑥 = 𝑦
2     𝑖𝑓 (𝑥, 𝑦)
1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∈ {(1,4), (1,5), (4,1), (5,1)}  

Let 𝐹: 𝑋 → 𝑋 be defined by  

 𝐹1 = 𝐹2 = 𝐹3 = 1, 𝐹4 = 2, 𝐹5 = 3. 

 𝐹 is not quasi-contraction for 𝑥 =4 and 𝑦=5 because there is no a 

nonnegative number 𝑞 < 1 satisfying the equation (0.4.5). However,𝐹 is 

generalized quasi-contraction since the (0.4.6) hold for some 𝑞 ∈  [0.5,1), 

for all 𝑥, 𝑦 ∈ 𝑋. 

 

Definition (0.4.7): [13] 

    Let 𝐹: 𝑋 → 𝑋 be a mapping on metric space 𝑋 is said to be like 

contraction (or weak contraction) if 𝑞 ∈ (0,1) and 𝐿 ≥ 0 exist, such that 

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑞‖𝑥 − 𝑦‖ + 𝐿‖𝑥 − 𝐹𝑥‖     ∀𝑥, 𝑦 ∈ 𝑋                       … 

(0.4.7) 
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      This definition is the general of condition (0.4.7) 

Definition (0.4.8) [12, 14]:  

         A mapping 𝐹 is called general like contraction (g.l.c) if there exist  

q∈ (0,1) and defined continuous strictly increasing function ∅: [0, ∞) →

[0, ∞) with ∅(0) = 0 such that  

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑞‖𝑥 − 𝑦‖ + ∅(𝑑(𝑥, 𝐹𝑥))  ∀𝑥, 𝑦 ∈ 𝑋                         … 

(0.4.8) 

 

    The following example show that 𝐹 satisfies condition (0.4.8)  

Example (0.4.9):  

      Consider X= [0, ∞) and 𝐹: 𝑋 → 𝑋 defined by 

 𝐹𝑥 = {
1.0        0 ≤ 𝑥 ≤ 0.6
 0.4     0.6 < 𝑥          

  

assume that 𝑥 < 𝑦. 𝑇ℎ𝑒𝑛 , for 0 ≤ 𝑥 < 𝑦 ≤ 0.6 or 

 0.6 < 𝑥 < 𝑦 , ‖𝐹𝑥 − 𝐹𝑦‖ = 0, and (0.4.8) is automatically satisfied  

If 0 ≤ 𝑥 ≤ 0.6 < 𝑦 ,then ‖𝐹𝑥 − 𝐹𝑦‖ = 0.6 

defined ∅ by ∅(𝑡) = 𝐿𝑡 for any 𝐿 ≥ 2. Then ∅ is increasing continuous , 

and ∅(0) = 0, Also, 

‖𝑥 − 𝐹𝑥‖ = 1 − 𝑥 , so that  

∅(‖𝑥 − 𝐹𝑥‖) = 𝐿(1 − 𝑥) ≥ 0.4𝐿 ≥ 0.6    therefore 

0.6 = ‖𝐹𝑥 − 𝐹𝑦‖ ≤ 𝐿‖𝑥 − 𝐹𝑥‖ ≤ 𝛿‖𝑥 − 𝑦‖ + 𝐿‖𝑥 − 𝐹𝑥‖ 

for any 0≤  𝛿 < 1, and (0.4.8) is satisfied for 0≤ 𝑥 ≤ 0.6 < 𝑦   

 

Proposition (0.4.10):[88] 

      Any mapping satisfying condition (0.4.5) with 0 < 𝑞 <
1

2
  is also, 

satisfying condition (0.4.7).  
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     In the following example the mapping satisfied condition (0.4.7) but 

not satisfied (0.4.5). 

Example (0.4.11): 

      Let 𝑋 = [0, 1] be unit interval with usual norm when 𝑛 = 1 define 

𝐹: [0, 1] → [0, 1] by 𝐹(𝑥) =
𝑥

4
 for all 𝑥 ∈ [0,1) and 𝐹(𝑥) =

1

4
, if 𝑥 = 1. 

Then 𝐹 satisfies condition (0.4.7), since  

‖𝐹𝑥 − 𝐹𝑦‖ ≤ 𝑞‖𝑥 − 𝑦‖ + 𝐿‖𝑥 − 𝐹𝑥‖ , then is true if we take 𝑞 =
1

4
 and 

𝐿 ≥ 4. If 𝑥 = 𝑞, 𝑦 = 0 then 𝐹 is not satisfy condition (0.4.5). 

 

Definition (0.4.13): [12] [19] [5] 

      Let 𝑋 be a normed space and ∅ ≠ 𝑀 ⊆ 𝑋. A multi-valued mapping 

𝐹: 𝑀 → 2𝑋 is said to be 𝑘-strictly pseudo contractive if for each 𝑥, 𝑦 ∈ 𝑀 

and for each 𝜇 ∈ 𝐹𝑥, 𝜉 ∈ 𝐹𝑦 such that 

𝐷2(𝐹𝑥, 𝐹𝑦) ≤ ‖𝑥 − 𝑦‖2 + 𝑘‖𝑥 − 𝜇 − (𝑦 − 𝜉)‖2                   … (0.4.10) 

The inequalities (0.4.10)  

If there exists 𝑗(𝑥 − 𝑦)  ∈ 𝐽(𝑥 − 𝑦) such that  

〈𝜇 − 𝜉, 𝑗(𝑥 − 𝑦)〉 ≤ 𝑘‖𝑥 − 𝑦‖2                                                 … (0.4.11) 

or respectively 〈𝐹𝑥 − 𝐹𝑦, 𝑗(𝑥 − 𝑦)〉 ≤ 𝑘‖𝑥 − 𝑦‖2                    … (0.4.12) 

     In [50] condition (0.4.10) is said to be 𝑘-strictly pseudo-contraction of 

proximinal set if there exists k∈ (0,1) such that given any 𝑥, 𝑦 ∈ 𝑀 and 

𝜇 ∈ 𝐹𝑥, there exists 𝜉 ∈ 𝐹𝑦 satisfying ‖𝜇 − 𝜉‖ ≤ 𝐷(𝐹𝑥, 𝐹𝑦) and    

𝐷2(𝐹𝑥, 𝐹𝑦) ≤ ‖𝑥 − 𝑦‖2 + 𝑘‖𝑥 − 𝜇 − (𝑦 − 𝜉)‖2                    … (0.4.13)      

 

Remark (0.4.14):          

i. From the definition (0.4.13), if 𝑘 = 1 then 𝐹 is said to be a pseudo 

contractive mapping (𝑖. 𝑒. 𝐷2(𝐹𝑥, 𝐹𝑦) ≤ ‖𝑥 − 𝑦‖2 +

‖𝑥 − 𝜇 − (𝑦 − 𝜉)‖2 for all 𝑥, 𝑦 ∈ 𝑀)                            … (0.4.14)     

or respectively 
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 ‖𝐹𝑥 − 𝐹𝑦‖2 ≤ ‖𝑥 − 𝑦‖2 + ‖𝑥 − 𝐹𝑥 − (𝑦 − 𝐹𝑦)‖2   … (0.4.15) 

if 𝑘 = 0 𝐹 is called nonexpansive mapping       

(𝑖. 𝑒.  𝐷2(𝐹𝑥, 𝐹𝑦) ≤ ‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈ 𝑀)             … (0.4.16)                                        

(or respectively ‖𝐹𝑥, 𝐹𝑦‖2 ≤ ‖𝑥 − 𝑦‖2)                        … (0.4.17) 

          Also every multivalued nonexpansive mapping is 𝑘-strictly pseudo  

          contractive and every k-strictly pseudo contractive mapping is  

          pseudo contractive 

ii. Every 𝑘-strictly pseudo contractive mapping is 𝐿-Lipschitzian 

mapping (𝑖. 𝑒. 𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑀) … (0.4.18) 

(or respectively ‖𝐹𝑥, 𝐹𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑀) 

…(0.4.19) [ proposition 2,50]. 

iii. 𝐿-Lipschitzian is Banach contraction, if 𝐿 < 1 then 𝐹 is 

contraction and if 𝐿 = 1 then 𝐹 is said to be a multi-valued 

nonexpansive mapping [28, 2]. 

iv. Every nonexpansive mapping with nonempty fixed point set is 

quasi-nonexpansive. But there exist quasi-nonexpansive mappings 

that are not nonexpansive [50]. 

 

      In the following two examples to illustrate that 𝑘-pseudo contraction 

mapping is not necessarily nonexpansive mapping or pseudo contraction. 

Example (0.4.15): 

          Let 𝐹: 𝑋 → 2𝑋 defined by 𝐹𝑥 = [−
3𝑥

2
, −𝑥]. 

Then 𝑃𝐹𝑥 = {−2𝑥} for all 𝑥 ∈ [0, ∞), 𝐹 is not nonexpansive since: 

                                𝐷2(𝐹𝑥, 𝐹𝑦) = 𝑚𝑎𝑥 {|(𝑥 − 𝑦)|2, |
3

2
(𝑥 − 𝑦)|

2

}  

  =
9

4
|𝑥 − 𝑦|2 = |𝑥 − 𝑦|2 +

5

4
|𝑥 − 𝑦|2. 

By definition (0.4.5) for each 𝜇 ∈ 𝐹𝑥, 𝜇 = −𝛼𝑥, 1 ≤ 𝛼 ≤
3

2
,  

choose 𝜉 = −𝛼𝑦. Then 
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|𝜇 − 𝜉| = |−𝛼𝑥 − (−𝛼𝑦)| = 𝛼|𝑥 − 𝑦| ≤
3

2
|𝑥 − 𝑦| = 𝐷(𝐹𝑥, 𝐹𝑦)  

|𝑥 − 𝜇 − (𝑦 − 𝜉)|2 = |𝑥 − (−𝛼𝑥) − (𝑦 − (−𝛼𝑦))|2  

                                = |(1 + 𝛼)𝑥 − (1 + 𝛼)𝑦|2 

                                = (1 + 𝛼)2|𝑥 − 𝑦|2.   

𝐷2(𝐹𝑥, 𝐹𝑦) = |𝑥 − 𝑦|2 +
5

4
|𝑥 − 𝑦|2  

                    = |𝑥 − 𝑦|2 +
5

4(1+𝛼)2
(1 + 𝛼)2|𝑥 − 𝑦|2   

                    = |𝑥 − 𝑦|2 +
5

4(1+𝛼)2
|𝑥 − 𝜇 − (𝑦 − 𝜉)|2 

                    ≤ |𝑥 − 𝑦|2 +
5

4(1+1)2
|𝑥 − 𝜇 − (𝑦 − 𝜉)|2   

                    = |𝑥 − 𝑦|2 +
5

16
|𝑥 − 𝜇 − (𝑦 − 𝜉)|2.  

𝐹 is 𝑘-strictly pseudo contraction with 𝑘 =
5

16
. And follows 𝐹 is pseudo 

contraction but is not nonexpansive mapping. 

 

Example (0.4.16): 

       Let X=ℝ (the reals with usual metric). Defined 𝐹: 𝑋 → 2𝑋 by 

   𝐹𝑥 = [−√5𝑥, −𝑥].  

Then 𝑃𝐹𝑥 = {−𝑥} which is not nonexpansive.  

𝐷2(𝐹𝑥, 𝐹𝑦) = 𝑚𝑎𝑥 {|√5(𝑥 − 𝑦)|
2

, |(𝑥 − 𝑦)|2} = 5|𝑥 − 𝑦|2

= |𝑥 − 𝑦|2 + 4|𝑥 − 𝑦|2. 

Furthermore, for each 𝜇 ∈ 𝐹𝑥, 𝜇 = −𝛼𝑥, 1 ≤ 𝛼 ≤ √5, choose 𝜉 = −𝛼𝑦. 

Then 

|𝜇 − 𝜉| = |−𝛼𝑥 − (−𝛼𝑦)| = 𝛼|𝑥 − 𝑦| ≤ √5|𝑥 − 𝑦| = 𝐷(𝐹𝑥, 𝐹𝑦)  

|𝑥 − 𝜇 − (𝑦 − 𝜉)|2 = |𝑥 − (−𝛼𝑥) − (𝑦 − (−𝛼𝑦))|2  

                                = |(1 + 𝛼)𝑥 − (1 + 𝛼)𝑦|2 = (1 + 𝛼)2|𝑥 − 𝑦|2. 

It then follows that 

𝐷2(𝐹𝑥, 𝐹𝑦) = |𝑥 − 𝑦|2 + 4|𝑥 − 𝑦|2  
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                      = |𝑥 − 𝑦|2 + (1 + 1)2|𝑥 − 𝑦|2  

                    ≤ |𝑥 − 𝑦|2 + (1 + 𝛼)2|𝑥 − 𝑦|2  

                    = |𝑥 − 𝑦|2 + |𝑥 − 𝜇 − (𝑦 − 𝜉)|2.  

So, 𝐹 is pseudo contraction. 

For any pair 𝑥, 0 ∈ [0, ∞), 𝐹0 = {0}. It then follows that for any 𝜇 ∈ 𝐹𝑥 

the corresponding 𝜉 = 0. In particular, for 𝜇 = −𝑥, 

          𝐷2(𝐹𝑥, 𝐹0) = 5|𝑥 − 𝑦|2  

                                 = |𝑥 − 0|2 + 4|𝑥 − 0|2  

                                 = |𝑥 − 0|2 + |𝑥 − (−𝑥)|2  

                                  > |𝑥 − 𝑦|2 + 𝑘|𝑥 − 𝜇 − (𝑦 − 𝜉)|2         ∀𝑘 ∈ (0,1).  

This shows that 𝐹 is not 𝑘-strictly pseudo contraction mapping. 

 

Example (0.4.17): [49]      

      Let 𝑀 = [0, ∞) with the usual metric and 𝐹: 𝑀 → 𝐶𝐵(𝑀) be defined 

by          𝐹𝑥 = {
{0},                          𝑖𝑓 𝑥 ≤ 1,

[𝑥 −
3

4
, 𝑥 −

1

3
] ,      𝑖𝑓 𝑥 > 1.

   

Indeed, it is clear that 𝐹𝑖𝑥𝐹 = {0} and for any 𝑥 we have 

 𝐷(𝐹𝑥, 𝐹0) ≤ |𝑥 − 0|, hence, 𝐹 is quasi-nonexpansive. However, if  

𝑥 = 2, 𝑦 = 1 we get 𝐷(𝐹𝑥, 𝐹𝑦) > |𝑥 − 𝑦| = 1, and hence, 𝐹 is not 

nonexpansive. 

 

Definition (0.4.18): [ 48 ] 

     Let 𝑋 be a normed space, 𝑀 be a nonempty subset of 𝑋. A mapping 

𝐹: 𝑀 → 𝑃(𝑀) is said to be multivalued generalized nonexpansive 

 mapping if  

𝐷(𝐹𝑥, 𝐹𝑦) ≤ 𝑎‖𝑥 − 𝑦‖ + 𝑏{𝑑(𝑥, 𝐹𝑥) + 𝑑(𝑦, 𝐹𝑦)} + 

                                        𝑐{𝑑(𝑥, 𝐹𝑦) + 𝑑(𝑦, 𝐹𝑥)}               … (0.4.20) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎 + 2𝑏 + 2𝑐 ≤ 1. 
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Definition (0.4.19): [8] 

       Let 𝑋 be a normed space and ∅ ≠ 𝑀 ⊆ 𝑋. A mapping 𝐹: 𝑀 → 2𝑋 is 

said to be multi-valued monotone if there exist a constant 𝑘 ∈ (0, 1) and 

𝑧 ∈ 𝑀 such that for each 𝑥 ∈ 𝑀 and for each  𝜇 ∈ 𝐹𝑥 there exists 

 𝑗(𝑥 − 𝑧)  ∈ 𝐽(𝑥 − 𝑧) with 

                           〈𝜇 −  𝑧, 𝑗(𝑥 − 𝑧)〉 ≤ 𝑘‖𝑥 − 𝑧‖2                       … (0.4.21) 

(or respectively  〈𝐹𝑥 −  𝑧, 𝑗(𝑥 − 𝑧)〉 ≤ 𝑘‖𝑥 − 𝑧‖2)                   … (0.4.22) 

 

Proposition (0.4.20): [89] 

       Every 𝑘-strictly pseudo contraction mapping 𝐹 with a fixed point is 

monotone mapping. 

 

Definition (0.4.21): [5] [21] 

        Let 𝑋 be a normed space and ∅ ≠ 𝑀 ⊆ 𝑋. A mapping 𝐹: 𝑀 → 2𝑋 is 

said to be multi-valued strongly accretive if there is a constant 𝑘 > 0 

such that for each 𝑥, 𝑦 ∈ 𝑀 and for each 𝜇 ∈ 𝐹𝑥, 𝜉 ∈ 𝐹𝑦 there exist 

 𝑗(𝑥 − 𝑦)  ∈ 𝐽(𝑥 − 𝑦) with  

                           〈𝜇 −  𝜉, 𝑗(𝑥 − 𝑦)〉 ≥ 𝑘‖𝑥 − 𝑦‖2                  … (0.4.23) 

(or respectively  〈𝐹𝑥 −  𝐹𝑦, 𝑗(𝑥 − 𝑦)〉 ≥ 𝑘‖𝑥 − 𝑦‖2)            … (0.4.24) 

Now, since without loss the generality we assume that 𝑘 ∈  (0, 1). And if 

𝑘 = 0 in (0.4.23) or in (0.4.24), then 𝐹 is said to be multi-valued 

accretive. 

 

Definition (0.4.22): [21] 

    Let 𝑋 be a real Banach space, ∅ ≠ 𝑀 ⊆ 𝑋 and 𝐹: 𝑀 → 2𝑀 be a multi-

valued 𝜙-accretive mapping, if for any 𝑥, 𝑦 ∈ 𝑀 and for any 𝜇 ∈ 𝐹𝑥, 𝜉 ∈
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𝐹𝑦, there exists a 𝑗 (𝑥, 𝑦) ∈ 𝐽(𝑥, 𝑦) and a strictly increasing function 

𝜙: [0, +∞) → [0, +∞) with 𝜙(0) = 0 such that  

〈𝜇 −  𝜉, 𝑗(𝑥 − 𝑦)〉 ≥  𝜙(‖𝑥 − 𝑦‖)                                            … (0.4.25) 

 

0-5 Types of Iterative Schemes 

      In the following, some types of iterative schemes for multi-valued 

mappings:  

     Let 𝑋 be a normed space, ∅ ≠ 𝑀 ⊆ 𝑋 and 𝐹: 𝑀 → 2𝑋 be a multi-

valued mapping. For 𝑥0 ∈ 𝑀 if the sequence 〈𝑥𝑛〉 ⊂ 𝑀 with 〈𝛼𝑛〉, 〈𝛽𝑛〉 

sequence in (0,1). Now we started with the Picard iteration method [1]. 

  𝑥0 ∈ 𝑀    , 𝑥𝑛+1 = 𝜇𝑛                                                           … (0.5.1) 

where 𝜇𝑛 ∈ 𝐹𝑥𝑛     

when 𝐹 is single valued mapping, (0.5.1) will be 𝑥𝑛+1 = 𝐹𝑥𝑛     

 

 The Mann iterations [2] defined by 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝜇𝑛     for 𝑛 ≥ 0                              … (0.5.2)                                                                 

where 𝜇𝑛 ∈ 𝐹𝑥𝑛    , 

when 𝐹 is single valued mapping, (0.5.2) will be 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝐹𝑥𝑛     for 𝑛 ≥ 0 

 

 Another iteration method is Ishikawa iteration [3] defined by  

   {

𝑥0  ∈ 𝑀

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝜇𝑛

𝜉𝑛         for 𝑛 ≥ 0                     … (0.5.3)                                       

where 𝜇𝑛 ∈ 𝐹𝑥𝑛    , 𝜉𝑛 ∈ 𝐹𝑦𝑛 

when 𝐹 is single valued mapping, (0.5.3) will be 

  {

𝑥0  ∈ 𝑀

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝐹𝑥𝑛

𝐹𝑦𝑛       for 𝑛 ≥ 0 
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The s-iteration process [4] is  

{

𝑥0  ∈ 𝑀

𝑥𝑛+1 = (1 − 𝛼𝑛)𝜇𝑛 + 𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝜇𝑛

𝜉𝑛              for 𝑛 ≥ 0                    … (0.5.4)                                  

where 𝜇𝑛 ∈ 𝐹𝑥𝑛    , 𝜉𝑛 ∈ 𝐹𝑦𝑛 

when 𝐹 is single valued mapping, (0.5.4) will be 

{

𝑥0  ∈ 𝑀

𝑥𝑛+1 = (1 − 𝛼𝑛)𝐹𝑥𝑛 +  𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝐹𝑥𝑛

𝐹𝑦𝑛              for 𝑛 ≥ 0      

 

The 2step-Mann iteration [5] is defined by 

{

𝑥0  ∈ 𝑋

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑦𝑛 + 𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝜇𝑛

𝜉𝑛          for 𝑛 ≥ 0                        … (0.5.5)                                                         

where 𝜇𝑛 ∈ 𝐹𝑥𝑛    , 𝜉𝑛 ∈ 𝐹𝑦𝑛 

when 𝐹 is single valued mapping, (0.5.5) will be 

{

𝑥0  ∈ 𝑋

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑦𝑛 + 𝛼𝑛

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝐹𝑥𝑛

𝐹𝑦𝑛          for 𝑛 ≥ 0    

 

Also, Picard-Mann iteration process [6] is 

 {
𝑥𝑛+1 =  𝜉𝑛

𝑦𝑛 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝜇𝑛
              for 𝑛 ≥ 0                        … (0.5.6)                                                      

where 𝜇𝑛 ∈ 𝐹𝑥𝑛    , 𝜉𝑛 ∈ 𝐹𝑦𝑛 

when 𝐹 is single valued mapping, (0.5.6) will be 

{
𝑥𝑛+1 =  𝐹𝑦𝑛

𝑦𝑛 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝐹𝑥𝑛
              for 𝑛 ≥ 0    

 

   Remark (0.5.1): 

        We have some special cases for iterative schemes   
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1. If 𝛽𝑛 = 0 in (0.5.3) then reduced Mann iteration 

2.  If 𝛼𝑛 = 1 in (0.5.2) then reduced Picard iteration  

3. If  𝛼𝑛 = 1 in (0.5.5) or in (0.5.4) then reduced Picard-Mann 

iteration. 

 

 

0-6 Important Fixed Point Theorems 

     In this section, recall some definition and some important theorems of 

fixed point. 

      

Definition (0.6.1): [1]: 

       Let 𝑥0 ∈ 𝑋, an orbit of 𝐹at 𝑥0 is a sequence 𝑂𝐹(𝑥0) = {𝑥𝑛: 𝑥𝑛 ∈

𝐹𝑥𝑛−1, 𝑛 ∈ ℕ}. A space 𝑋 is called to be 𝐹-orbitally complete if every 

Cauchy sequence in 𝑂𝐹(𝑥0) converge in 𝑋. 

 

Definition (0.6.2): [28] [32] 

       Let 𝑋 be a normed space and ∅ ≠ 𝑀 ⊆ 𝑋, the point 𝑥 ∈ 𝑀 is called 

fixed point of the multi-valued mapping 𝐹: 𝑀 → 2𝑀 (or, single valued 

mapping 𝐹: 𝑀 → 𝑀) if 𝑥 ∈ 𝐹𝑥 (respectively 𝑥 = 𝐹𝑥). The set of all fixed 

points of 𝐹 denoted by 𝐹𝑖𝑥𝐹  

If 𝐺: 𝑀 → 2𝑀 be another multi-valued mapping a point 𝑥 is called 

common fixed point of 𝐹 and 𝐺 if 𝑥 ∈ 𝐹𝑥 ∩ 𝐺𝑥. 

 

Theorem (0.6.3): [15] (Banach’s Fixed Point Theorem) 

        Let (𝑥, 𝑑) be a complete metric space and 𝐹: 𝑋 → 𝑋 be a Banach’s 

contraction (0.4.1) with 𝑎 ∈  [0, 1) fixed. Then 

i) 𝐹 has a unique fixed point, that is 𝐹𝑖𝑥𝐹 = {𝑧}; 
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ii) The Picard iteration associated to 𝐹, 𝑖. 𝑒., the sequence 〈𝑥𝑛〉𝑛=0
∞ , 

defined by 

𝑥𝑛 = 𝐹(𝑥𝑛−1) = 𝐹𝑛(𝑥0),       𝑛 = 1, 2, … ., 

converges to 𝑧, for any initial guess 𝑥0 ∈ 𝑋; 

iii) The following a priori and a posteriori error estimates hold: 

         𝑑(𝑥𝑛, 𝑧) ≤
𝑎𝑛

1−𝑎
. 𝑑(𝑥0, 𝑥1),   𝑛 = 0,1,2, … . .,  

         𝑑(𝑥𝑛, 𝑧) ≤
𝑎

1−𝑎
. 𝑑(𝑥𝑛−1, 𝑥𝑛),    𝑛 = 0,1,2, … .,  

iv) The rat of convergence is given by  

         𝑑(𝑥𝑛, 𝑧) ≤ 𝑎 . 𝑑(𝑥𝑛−1, 𝑧) ≤ 𝑎𝑛 . 𝑑(𝑥0, 𝑧),    𝑛 = 1,2, … .,   

 

Theorem (0.6.4): [13] (Nadler’s Fixed Point Theorem (1941)) 

      Let 𝑀 be a nonempty closed subset of a Banach space 𝑋 and  

𝐹: 𝑀 → 𝐶𝐵(𝑀) be a multi-valued contraction mapping (0.4.1). Then 𝐹 

has a fixed point. 

  

Theorem (0.6.5): [Theorem 3, 4] [9] 

        Let (𝑋, 𝑑) be a metric space and 𝐹: 𝑋 → 𝐶𝐵(𝑋) be a quasi 

contraction mapping (0.4.5). If X is 𝐹- orbitally complete. Then    

i) 𝐹 has a unique fixed point 𝑧 in 𝑋 and 𝐹𝑧 = {𝑧}  

ii) for each 𝑥0 ∈ 𝑋 there exists an orbit 〈𝑥𝑛〉 of 𝐹 at 𝑥0 such that 

lim
𝑛→∞

𝑥𝑛 = 𝑧 for all 𝑥 ∈ 𝑋 and  

 𝑑(𝑥𝑛, 𝑧) ≤
(𝑞1−𝑎)𝑛

1−𝑞1−𝑎
 𝑑(𝑥0, 𝑥1) for all 𝑛 ∈ 𝑁, where 𝑎 < 1 is any 

fixed positive number. 

 

Theorem (0.6.6): [Theorem (3.4), 20]   

        Let (𝑋, 𝑑) be a metric space and 𝐹: 𝑋 → 𝐶𝐵(𝑋) be a g.q.m.c-

mapping (0.4.6). If X is 𝐹- orbitally complete. Then    
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i) 𝐹 has a unique fixed point 𝑧 in 𝑋 and 𝐹𝑧 = {𝑧}  

ii) for each 𝑥0 ∈ 𝑋 there exists an orbit 〈𝑥𝑛〉 of 𝐹 at 𝑥0 such that 

lim
𝑛→∞

𝑥𝑛 = 𝑧 for all 𝑥 ∈ 𝑋 and  

 𝑑(𝑥𝑛, 𝑧) ≤
(𝑞1−𝑎)𝑛

1−𝑞1−𝑎
 𝑑(𝑥0, 𝑥1) for all 𝑛 ∈ 𝑁, where 𝑎 < 1 is any 

fixed positive number. 

 

Theorem (0.6.7): [15] 

      Let (𝑋, 𝑑) be a complete metric space and 𝐹: 𝑋 → 𝑋 be a weak 

contraction (0.4.7) with 𝑞 ∈ (0,1) and 𝐿 ≥ 0. Then 

i) 𝐹𝑖𝑥𝐹 ≠ ∅; 

ii) For any 𝑥0 ∈ 𝑋, the Picard iteration 〈𝑥𝑛〉 (0.5.1) converges to 

some 𝑧 ∈ 𝐹𝑖𝑥𝐹; 

iii) The following a priori and a posteriori error estimates hold: 

              𝑑(𝑥𝑛, 𝑧) ≤
𝑞𝑛

1−𝑞
. 𝑑(𝑥0, 𝑥1),   𝑛 = 0,1,2, … . .,  

              𝑑(𝑥𝑛, 𝑧) ≤
𝑞

1−𝑞
. 𝑑(𝑥𝑛−1, 𝑥𝑛),    𝑛 = 0,1,2, … .,  

 

Theorem (0.6.8): [15] 

      Let (𝑋, 𝑑) be a complete metric space and 𝐹: 𝑋 → 𝑋 be a weak 

contraction for which there exist 𝑞 ∈ (0,1) and some 𝐿1 ≥ 0 such that 

𝑑(𝐹𝑥, 𝐹𝑦) ≤ 𝑞 𝑑(𝑥, 𝑦) + 𝐿1 𝑑(𝑥, 𝐹𝑥),    ∀ 𝑥, 𝑦 ∈ 𝑋 

Then 

i) 𝐹 has a unique fixed point, 𝐹𝑖𝑥𝐹 ≠ ∅; 

ii) The Picard iteration 〈𝑥𝑛〉 (0.5.1) converges to 𝑧 ∈ 𝐹𝑖𝑥𝐹 for any 

𝑥0 ∈ 𝑋; 

iii) The a priori and a posteriori error estimates  

              𝑑(𝑥𝑛, 𝑧) ≤
𝑞𝑛

1−𝑞
. 𝑑(𝑥0, 𝑥1),   𝑛 = 0,1,2, … . .,  
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              𝑑(𝑥𝑛, 𝑧) ≤
𝑞

1−𝑞
. 𝑑(𝑥𝑛−1, 𝑥𝑛),    𝑛 = 0,1,2, … .,  

iv) The rat of convergence is given by  

             𝑑(𝑥𝑛, 𝑧) ≤ 𝑞 . 𝑑(𝑥𝑛−1, 𝑧),    𝑛 = 1,2, … .,   

 

Remark (0.6.9): [15] 

i) If 𝐹 satisfied condition (0.4.7), then it is not ensuring that 𝐹 has 

a fixed point. But if 𝐹 has a fixed point, the it is unique. 

ii) The theorem (0.6.8) unifies and generalizes the fixed point 

theorems of (0.4.1), (0.4.2), (0.4.3) and (0.4.4) and convex 

theorem (0.6.5). 

 


