الفيزياء النووية

الفصل الاول

اولا: المقدمة: ان دراسة الفيزياء النووية تتركز حول مشكلتين رئيسيتين هما:

1-محاولة فهم خواص القوة التي تربط اجزاء النواة ببعضها ، حيث تتكون النواة من عدد من البروتونات وعدد آخر من النيوترونات ويطلق اسم (نيوكليون) على كل من البروتون والنيوترون .

2-محاولة فهم تصرف المجموعات متعددة الاجزاء .

ثانيا: الخواص النووية الاساسية:

تقسم الخواص النووية من حيث اعتمادها على الزمن الى قسمين :

1-الخواص الثابتة (غير المعتمدة على الزمن) مثل الكتلة والحجم والشحنة والزخم الزاوي الذاتي والذي يسمى غالبا بالبرم النووي.

2-الخواص المتحركة (المعتمدة على الزمن) مثل الانحلال الاشعاعي والتفاعلات النووبة.

وفي هذا الفصل سوف نتطرق الى الخواص الثابتة فقط ، اما الخواص الحركية فسوف نناقشها في فصول لاحقة ، وقبل التطرق الى الخواص الثابتة من المفيد البدء ببعض التعاريف والمصطلحات التمهيدية والتي سيتكرر ذكرها خلال الفصول القادمة، وكذلك بعض الوحدات المستخدمة في الفيزياء النووية.

1-العدد الذري Z (Atomic number): عدد البروتونات الموجودة داخل النواة والذي يساوي عدد الالكترونات خارجها ، لذا فان الذرة متعادلة كهربائيا .

 $^{-}$ العدد الكتلي $^{-}$ الذري الدقيق (mass number) $^{-}$ الدقيق الوزن الذري الدقيق $^{-}$ النسبة لنظير الهيدروجين $^{-}$ يكون $^{-}$ $^{-}$ الوزن الذري الدقيق لهذا النظير مساويا $^{-}$ $^{-}$ $^{-}$ من وحدات الكتلة الذرية (a.m.u) وكذلك بالنسبة الى نواة اليورانيوم $^{-}$

3-العدد النيوتروني Neutron number) N : هو عدد النيوترونات الموجودة في العدد النيوترونات الموجودة في الله نواة ، وهي جسيمات عديمة الشحنة .

ملاحظة : ان مجموع العدد الذري (Z) والعدد النيوتروني (N) يكون مساويا للعدد الكتلي (A) اي ان :

$$A=Z+N \qquad \qquad \dots (1)$$

وهكذا عندما نريد ان نشير الى نواة معينة ، فاننا نستخدم الصيغة الاتية بصورة ${}^A\!X_{\rm N}$ ، حيث ${}^X\!X$ يمثل الرمز الكيميائي للعنصر و ${}^Z\!X$ العدد الذري و ${}^N\!X$ العد النيوتروني ، وفي بعض الاحيان ${}^X\!X$ يمكن ايجاده من الضروري ذكر عدد النيوترونات الذي يمكن ايجاده من العلاقة ${}^A\!X_{\rm N}$.

4-النيوكليون (nucleon) : يقصد بالنيوكليون اما بروتون او نيوترون .

5-النيوترون (neutron) : هو احد مكونات النواة متعادل الشحنة (Z=0) وعدده الكتلي (A=1) ، وذو كتلة تساوي تقريبا كتلة البروتون واكبر من كتلة الإلكترون.

6-البروتون (Proton) : لا يختلف عن النيوترون ، بصورة عامة ، سوى ان له شحنة تساوي شحنة الالكترون (1.6×10^{-19} C).

7-الالكترون (Electron) : جسيمة مشحونة بشحنة سالبة تساوي (1.6^{-10} C). الالكترون ذو كتلة صغيرة جدا بالمقارنة مع كتلة البروتون حيث ($m_p=1836$ m_e) لذا يمكن اهمال كتلة الالكترون عند الحديث عن كتلة الذرة بصورة عامة (عدا الحالات التي تتطلب ادخال كتلة الالكترون في الحساب) .

8-البوزترون (Positron): هو الكترون مشحون بشحنة موجبة وله نفس كتلة الالكترون السالب.

9-الفوتون (Photon) : هو وحدة (كم) الاشعة او الطاقة الكهرومغناطيسية التي تكون على شكل ضوء او اشعة سينية او اشعة كاما ويسير بسرعة الضوء ويحمل طاقة تعطى $E=h\nu$ بالعلاقة : $E=h\nu$

10-النويدة (nuclide): عينة نووية ذات عدد ذري معين Z وعدد نيوتروني معين N، والرمز الاكثر شيوعا لتمثيل النوبدة هو:

 ${}_{Z}^{A}X_{N}$ or ${}_{Z}^{A}X$ or ${}_{X}^{A}X$ or X-A

حيث X: يمثل الرمز الكيميائي للعنصر

A : العدد الكتلي

Z: العدد الذري او البروتوني

N: العدد النيوتروني

وقد تهمل كتابة N باعتباره معروفا ويساوي الفرق بين Z, A اي ان N=A-Z) ، كما وقد تهمل كتابة Z باعتبار ان رمز العنصر X يدل على العدد الذري.

 ${}_{3}^{7}L_{i4}$, ${}_{3}^{7}L_{i}$, ${}^{7}L_{i}$, L_{i} -7

مثال -عنصر الليثيوم /

النظائر (Isotopes) : هي نويدات لها نفس العدد الذري Z ، لذا فهي تمثل نفس العنصر ، لكنها تختلف عن بعضها بالعدد النيوتروني X ، وتبعا لذلك تختلف عن بعضها بالعدد الكتلى X . ومثال على ذلك نظائر ذرة الاوكسجين :

 ${}^{14}_{8}O_{6}, {}^{15}_{8}O_{7}, {}^{16}_{8}O_{8}, {}^{17}_{8}O_{9}, {}^{18}_{8}O_{10}, {}^{19}_{8}O_{11}$

Z وتبعا البعض بالعدد الذري Z وتبعا (Isobars) وتبعا النيوبارات (Isobars) وتبعا لذلك فهي تمثل عناصر مختلفة ، كما وتختلف أيضاً بالعدد النيوبروني Z ، لكن لها نفس العدد الكتلي Z .

 ${}_{3}^{8}L_{i5}$, ${}_{4}^{8}B_{e4}$, ${}_{5}^{8}B_{3}$

N : نويدات عناصر مختلفة لها نفس العدد النيوتروني N ، وبالطبع تختلف بالعدد الكتلي N . وبالطبع تختلف بالعدد الذري N وتبعا لذلك فهي تختلف عن بعضها بالعدد الكتلي N .

 ${}^{14}_{6}C_{8}$, ${}^{15}_{7}N_{8}$, ${}^{16}_{8}O_{8}$

14-الايزوميرات (Isomers): نؤيدات عنصر معين وفي حالة متهيجة ولها عمر نصف معين وطويل نسبياً ويشار لها بالرمز:

 ${}_{Z}^{A}X_{N}^{*}$

15-الميزونات (Mesons) : جسيمات متوسطة الكتلة ، اي جسيمات كتلة كل منها اكبر من كتلة الإلكترون واقل من كتلة البروتون . لقد تم الافتراض على وجود الميزونات باعتبارها المسؤولة عن التجاذب النووي بين البروتون والبروتون او بين البروتون والنيوترون او بين المختبرات والنيوترون او بين النيوترون والنيوترون . ولقد تم الكشف عن العديد منها في المختبرات ومنها :

 π^+ , π^- , π^0 (Pions) أ.البايونات

ب.الكيونات (Kaons) وغيرها الكثير \mathbf{K}^+ , \mathbf{K}^- , \mathbf{K}^0

النوى المرآتية Mirror nuclei :

عندما يكون عدد النيوكليونات متساويا لنواتين ويكون عدد البروتونات في احداهما مساويا لعدد النيوترونات في الاخرى فان النواتين تكونان ما يسمى بزوج النوى المرآة. ومن الامثلة على ذلك:

 $^{13}_{~6}C_7-^{13}_{~7}N_6$, $^{11}_{~5}B-^{11}_{~6}C$, $^{7}_{~3}L_i-^{7}_{~4}B_e$ جدول يضم قائمة بكتل بعض الانوية والجسيمات الشائعة

الجسيم	الرمز	الكتلة (u)	الشحنة
بروتون	P, 1/1H	1.007276	+e
نيوترون	$n, {}_0^1 n$	1.008665	0
الكترون	$e^{-}, \beta^{-}, {}_{-1}^{0}e$	0.0005486	-е
بوزترون	$e^+, \beta^+, {}_{+1}^0 e$	0.0005486	+ e
جسيم الفا	α, ⁴ He	4.0015	+ze

بعض الوحدات المستعملة في الفيزياء النووية:

1-فيرمي (Fermi) : وهي تعادل (m) فمثلا ان الابعاد النووية تتراوح بين 1-فيرمي (Fermi) : وهي النووية يكون بحدود 7fm←1fm

-2-بارن (barn) : وتستخدم عادة للتعبير عن المقاطع العرضية للتفاعلات النووية بصورة عامة والبارن يعادل -2 -2 -2 -2 .

(u) او (amu) : ويرمز لها بالرمز $(atomic\ mass\ unit)$: ويرمز لها بالرمز (amu) او (amu) : (amu) : $(atomic\ mass\ unit)$: $(atomic\$

4-مليون الكترون فولت (MeV) : غالبا ما يكون ملائما التعبير عن وحدة الكتلة الذرية بدلالة مكافئ طاقة سكونها ، فبالنسبة لوحدة كتلة ذرية واحدة ، ومن تطبيق معادلة تكافؤ الكتلة والطاقة لاينشتين :

$$E=m_oc^2 = (1.66 \times 10^{-27} \text{ kg}) (3 \times 10^8 \text{ m/s})^2$$

$$E=1.49 \times 10^{-10} J$$

وبما ان $1eV=1.6 \times 10^{-19} \, J$ فان

E≅ **931.5 MeV**

اذ ان : MeV/c^2 عن الكتلة في الفيزياء النووية بدلالة وحدة

 $\therefore 1u=931.5 \text{ MeV/c}^2$

مثال / احسب طاقة كتلة السكون للالكترون بوحدة $\,{
m MeV}\,$ مع العلم ان كتلة الالكترون مثال $\,{
m color off}\,$ result $\,{
m color off}\,$

Sol/

$$E_e = m_o c^2 = 9.1 \times 10^{-31} \text{ kg} (3 \times 10^8 \text{ m/s})^2$$

$$E_e = 8.18 \times 10^{-14} \ J = 0.511 \ MeV$$

ملاحظة : الالكترون فولت (eV) هي الطاقة التي تكتسبها وحدة الشحنة بالكولوم عند تعجيلها خلال فرق جهد مقداره فولت واحد وعليه فان:

الفصل الاول

الخواص الثابتة للنواة:

 Q_N (Nuclear charge) النواة بروتوناتها Q_N (Nuclear charge) تعزى شحنة النواة الى شحنة بروتوناتها حيث ان النيوترونات عديمة الشحنة ، لذا فشحنة النواة تساوي العدد الذري $Q_n = +1.6 \times 10^{-19}$ C بشحنة البروتون $Q_n = +1.6 \times 10^{-19}$ C حيث :

$$Q_N = Z * q_p = +1.6 \times 10^{-19} Z$$
(2)

 M_N (Nuclear mass) ان كتلة النواة M_N (Nuclear mass) عتل النواة من مجموع كتل بروتوناتها ونيوتروناتها ، اى ان :

$$M_N < (Zm_p + Nm_n)$$

حيث m_p كتلة البروتون ، وبالحقيقة ان الفرق بين مجموع كتلة البروتونات والنيوترونات وكتلة النواة قد تحول الى طاقة لربط النيوكليونات مع بعضها داخل النواة .

E-حجم النواة (nuclear size) : ان اول محاولة لتحديد حجم النواة ، او نصف قطر النواة ، كانت قد تمت من قبل راذرفورد والذي افترض تصادما رأسيا وهميا بين جسيمة الفا والنواة فبأقتراب الجسيمة من النواة فانها ستتباطأ نتيجة التنافر الكولومي بينهما الى ان تصل (جسيمة الفا) الى نقطة تكون فيها أقرب ما يمكن من النواة وعندها تتوقف عن الحركة وتتحول طاقتها الحركية (T_{α}) الى طاقة كامنة كهربائية (E_{p}) بشرط اعتبار النواة ساكنة خلال هذا التصادم. حيث :

$$\mathbf{T}_{\alpha} = \mathbf{E}_{\mathbf{p}} = \frac{KZe*2e}{R} = \frac{2Ke^{2}Z}{R}$$

$$\therefore R = \frac{2Ke^{2}Z}{T_{\alpha}} \dots (3)$$

حيث R: مسافة اقصر اقتراب من النواة وهي تمثل الحد الاعلى لنصف قطر النواة

تسحنة النواة : \mathbf{Z}_{e}

2e: شحنة جسيمة الفا

ان استعمال الالكترونات وبعض الدقائق النووية الاخرى بدلا من جسيمات الفا في اجراء تجارب الاستطارة يعطي دقة اكثر ، وقد ظهر ان نصف القطر الذي تبرز عنده التأثيرات النووية يمكن ان يكتب تقريبا كما يلي:

$$R=R_0A^{1/3}$$

ديث ان \mathbf{R}_{o} هو ثابت نصف القطر وبأخذ القيم :

للجسيمات النووية
$$ho_{o}=$$
 1.4 Fm للالكترونات $ho_{o}=$

: (ρ) Density الكثافة –4

نفرض ان النواة كروية الشكل تقريبا لذلك فان حجمها يعطى بالعلاقة:

$$V_{N} = \frac{4}{3}\pi R^{3} = \frac{4}{3}\pi R_{o}^{3} A$$

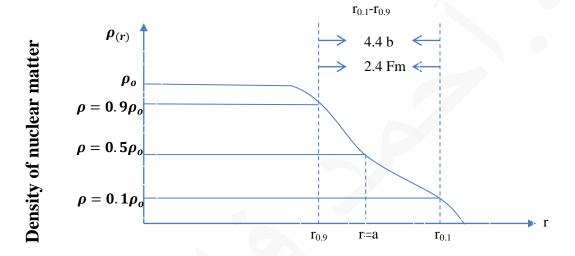
$$m_{N} = ZM_{n} + NM_{n}$$

$$\rho = \frac{m_N}{V_N} = \frac{ZM_p + NM_n}{\frac{4}{3}\pi R_o^3 A}$$

But $M_p \cong M_n \rightarrow M_N = (Z+N)M_n = AM_n$

$$\therefore
ho = rac{AM_N}{rac{4}{3}\pi R_o^3 A} = rac{1.0087~amu}{rac{4}{3} imes\pi imes(1.4F)^3} \cong 0.09~ ext{amu/Fm}^3$$
 . وهي مقدار ثابت .

5-توزيع الشحنة داخل النواة Charge distribution in the nucleus


ان كثافة الشحنة الكهربائية داخل النواة (الثقيلة) ثابتة تقريبا حتى تصل الى الصفر عند سطحها ، ويمكن ان نعبر عنها بقانون التوزيع لفيرمي .

$$ho_{(r)} = rac{
ho_o}{1 + exp\left(rac{r-a}{b}
ight)}$$

حيث a:a هو نصف القطر الذي تصبح عنده الكثافة الاصلية نصف قيمتها $\left(\frac{\rho_o}{2}\right)$ ويسمى half-way radius

 $0.55\; Fm =$ (مقياس لسمك السطح) surface thickness parameter : b

. (الكثافة في مركز النواة) $0.165~\mathrm{nuclou}~/\mathrm{Fm}^3$. وتساوي ho_o

Distance from the center of the nucleus

(شكل يوضح توزيع الكثافة النووية لنواة طبيعية)

6-الزخم البرمي للنواة Nuclear spin

لقد افترض باولي (Pauli) بان للبروتون والنيوترون زخما زاويا ذاتيا مقداره $\left(\frac{1}{2}\hbar\right)$ كما هي الحال بالنسبة للالكترونات، وبما ان الزخم الزاوي هو مقدار اتجاهي ، لذلك فان الزخم الزاوي الكلي للنواة هو عبارى عن المجموع الاتجاهي للزخوم الزاوية لمكوناتها ويرمز للزخم الزاوي للنواة بالرمز J ، وقد وجد تجريبيا ان النوى الزوجية – الزوجية (لها عدد زوجي من البروتونات وعدد زوجي من النيوترونات) يكون لها J ، اما النوى الفردية

- الفردية فيكون لها J عدد صحيح ، اما النوى الزوجية - الفردية وكذلك النوى الفردية - الزوجية فان لها مضاعفات النصف لقيمة J .

امثلة : 1- نواة $oldsymbol{o}_8$: يكون البرم الكلي لهذه النواة يساوي صفر

 $rac{1}{2}$ يكون البرم الكلي للنواة يساوي -2 - نواة 2 : يكون البرم الكلي النواة يساوي -2

-3 نواة -3: يكون البرم الكلي لها عدد صحيح مثل -3

: Dynamic Properties of Nuclei الخواص الحركية للنوى

كما في حالة الفيزياء الذرية ، فان النوى تتهيج الى حالات محددة من الطاقة ، ان الانتقال بين حالات الطاقة يتم عن طريق انبعاث اشعة نووية (اشعة كاما مثلا) ، الفرق بين فواصل الطاقة للحالات في الفيزياء الذرية هو بحدود الالكترون فولت ، بينما في الحالات النووية تكون الفوارق في حدود اكثر من $10^6 \ {
m eV}$. ان دراسة حالات الطاقة وطيف اشعة كاما في النواة قد ادى الى تحديد مستويات الطاقة النووية والتي ادت بدورها الى ظهور النماذج النووية .

*ويمكن ان تتحول النوى من نوع الى آخر . تحدث بعض هذه التحولات تلقائيا بينما يتم احداث التحولات الاخرى عن طريق القصف النووي وفي جميع الحالات يبقى العدد الكلي للنيوكليونات ثابتا ، وكذلك فان قوانين حفظ الطاقة والكتلة وقوانين حفظ الزخم الخطي والزاوي يجب ان تتحقق أيضاً .