
COMPUTER GRAPHICS

The Digital Differential Analyzer (DDA)

These include a class of algorithms, which draw lines from their

corresponding differential equations. Before we see the actual algorithms, let

us see the concept by the example of a simple straight line.

The differential equation of a straight line is given by dy = y / ∆x

 dx

Looked another way, given a point on the straight line, we get the

next point by adding x to the x coordinate and y to the y coordinate i.e.

given a point p(x,y), we can get the next point as a Q(x+ ∆x, y + ∆ y) , the next

point R as R(x+2* ∆x, y+2* ∆y)etc. So this is a truly incremental method, where

given a starting point we can go on generating points, one after the other each

spaced from it's previous points by an additional x and y, until we reach the

final point.

Different values of ∆x and ∆y give us different straight lines.

But because of inaccuracies due to rounding off, we seldom get a

smooth line, but end up getting lines that are not really perfect.

We now present a simple DDA algorithm in a C like Language.

Procedure DDA (x1, y1, x2, y2)

/* The line extends from (x1, y1) to (x2, y2)*/

{

length = abs (x2 - x1);

if length < abs (y2-y1), then length = abs(y2-y1)

x increment = (x2-x1)/length;

y increment = y2-y1)/length;

x=x1+0.5; y=y1+0.5;

for (I=1;I<=length; i++)

{ plot (trun (x), trun (y))

x = x + x increment;

y = y + y increment;

}

}

We start from the point (x1,y1) and go up to the point (x2,y2)

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

The difference (x2-x1) gives the x spread of the line (along the x-

axis) and (y2-y1) gives the y spread (along y axis)

(x2,y2)

 Y spread

The larger of these is taken as the variable length (not exactly the

length of the line)

 The variables xincrement and yincrement give the amount of

shifts that we should make at a time in each direction. (Note that by dividing

by length, we have made one of them equal to unity. If y2-y1 is larger, then

yincrement will be unity; otherwise xincrement will be unity. What this means

is that in one of the directions, we move by one pixel at a time, while in the

other direction, we have to calculate as to whether we have to go to the next

valve or should stay in the previous value)

 Plot is a function that takes the new values of x and y,

truncates then and plots those points. Then we move on to the next valve of x,

next value of y, plot it, and so on.

A typical DDA drawn line appears as follows:

Obviously a mean line through these points is the actual line

needed.

Note that the line looks like a series of steps. This effect is

sometimes called a "Stair case" effect.

X Spread

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

Now we can explain the program to generate DDA line using C

Programming.

/*Program to Generate a Line using Digital differential Algorithm(DDA) */

 # include<stdio.h>

include<conio.h>

include <graphics.h>

include<math.h>

/*function for plotting the point and drawing the line */

void ddaline(float x1,float y1,float x2,float y2)

{

int i, color=5;

float x,y, xinc, yinc, steps;

steps=ads(x2-x1);

if (steps<abs(y2-y1);

steps=abs(y2-y1);

xinc=(x2-x1)/steps;

yinc=(y2-y1)/steps;

x=x1;

y=y1;

putpixel((int)x,(int)y,color);

for(i=1;i<=steps; i++)

{

putpixel((int)x,(int)y,color); /* plots the points with specified color */

x=x+xinc;

y=y=yinc;

}

{

/* The main program that inputs line end point and passes them to ddaline()

function */

void main()

{

 int gd=DETECT,gm,color:

float x1,y1,x2,y2;

printf(“\n enter the end points:\n”);

scanf(“%f %f %f %f”,&x1,&y1,&x2,&y2);

clrscr();

initgraph(&gd,&gm, “c:\\tc\\bgi”);

ddaline(x1,y1,x2,y2);

getch();

closegraph();

}

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

The main draw back of DDA method is that it generates the line

with “stair case” effect. It also needs all parameters as float but C language

syntax does not take any floating-point values as co-ordinates in computer

graphics.

Bresenham’s algorithm: This algorithm is designed on a very

interesting feature of the DDA. At each stage, one of the coordinates changes

by a value 1 (That is because we have made either (y2-y1) or x2-x1) equal to

length, so that either (x2-x1)/length or (y2-y1)/length will be equal to 1). The

other coordinate will either change by 1 or will remain constant. This is

because, even though the value should change by a small value, because of the

rounding off, the value may or may not be sufficient to take the point to the

next level.

 e

 e

Look at the above figure. The left most point should have been at

the point indicated by x, but because of rounding off, falls back to the previous

pixel. Whereas in the second case, the point still falls below the next level, but

because of the rounding off, goes to the next level. In each case, e is the error

involved in the process.

 So what the Bresenham algorithm does it as follows. In each

case adds ∆y or ∆x as the case may be, to the previous value and finds the

difference between the value and the (next) desirable point. This difference is

the error e. If the error is >=1, then the point is incremented to the next level

and 1 is subtracted from the value. If e is <1, we have not yet reached the

point, where we should go to the next point, hence keep the display points

unchanged.

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

 We present the algorithm below

 e=(deeltay/deltax)-0.5;

 for(i=1;i=deltax; i++)

{

plot (x ,y);

if e>o then

{

y=y+1;

e=e-1;

}

x=x+1;

e=e+(deltay/ deltax);

}

 The steps of the algorithm are self-explanatory. After

plotting each point, find the error involved, if it is greater than Zero, then in the

next step, the next incremental point is to be plotted and error by error-1; else

error remains the same and the point will not be incremented. In either case,

the other coordinate will be incremented (In this case, it is presented that x -

coordinate is uniformly incremented at each stage, while y coordinate is either

incremented or retained as such depending on the value of error)

Now we look at the program below that draws the line using

Bresneham,s line drawing algorithm.

/* Program to generate a line using Bresenham’s algorithm */

 # include<stdio.h>

include<conio.h>

#include<stddlib.h>

include <graphics.h>

void brline(int,int,int,int);

void main()

{

int gd=DETECT,gm,color:

int x1,y1,x2,y2;

printf(“\n enter the starting point x1,y1 :”);

scanf(“%d%d”,&x1,&y1);

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

printf(“\n enter the starting point x2,y2 :”);

scanf(“%d%d”,&x2,&y2);

clrscr();

initgraph(&gdriver, &gmode,””);

brline(x1,y1,x2,y2);

getch();

closegraph();

}

/* Function for Bresenham’s line */

void brline(int x1,int y1,int x2,int y2)

{

int e,l,xend;

int color;

float dx,dy,x,y;

dx=abs(x2-x1);

dy=abs(y2-y1);

if(x1>x2)

{

 x=x2;

y=y2;

 xend=x1;

}

else

{

 x=x1;

 y=y1;

xend=x2;

}

e=2*dy-dx;

while(x<xend)

{

color=random(getmaxcolor());

putpixel((int)x,(int)y,color);

if(e>0)

{

 y++;

e=e+2*(dy-dx);

}

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

else

 e=e+2*dy;

 x++;

}

}

Generation of Circles

 The above algorithms can always be extended to other curves -

the only required condition is that we should know the equations of the curve

concerned in a differential form. We see a few cases.

i) A circle generating DDA:

The differential equation of a circle is dy = -x/y

 dx

Hence by using the above principle, we can implement the circle

plotting DDA by using the following set of equations x n+1 = xn +εyn and

yn+1 = yn -εxn

 Where the subscript n refers to the present value and n+1 to

the next value to be computed. �y and �x are the increments along the x

and y values.

 Unfortunately, this method ends up drawing a spiral instead

of a circle, because the two ends of a circle do not meet. This is because, at

each stage, we move slightly in a direction perpendicular to the radius,

instead of strictly along the radius i.e. we keep moving slightly away from

the center. So, in the end, we get the closing point a little higher up than

where it is required and hence the circle does not close up

Ideal Circle Drawn by a DDA

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

However the error can be reduced to a large extent by using the

term - x n+1 instead of xn in the second equation.

i.e. x n+1 = xn +εyn

 yn+1 = yn -εx n+1

Another way of drawing circles is by using polar coordinators

x n+1 = xncosθ + ynsinθ

yn+1 = yncosθ - x nsinθ

Of course, each of them has a few minor disadvantages, which are

rectified by special algorithms, discussion of which is beyond the scope of the

present course.

Here are the programs for generating circles using DDA and

Bresneham’s algorithms. Also we have given the program to generate spiral.

/* Program to demonstrate circle using DDA algorithm */

include <graphics.h>

 # include<conio.h>

include<dos.h>

#include<alloc.h>

#include<math.h>

void main()

{

int gm,gd=DETECT,I,;

int x,y,x1,y1,j;

initgraph(&gd,&gm,””);

x=40; /*The c0-ordinate values for calculating radius */

y=40;

for(i=0;i<=360;i+=10)

{

 setcolor(i+1);

 x1=x*cos(i*3.142/180)+y*sin(i*3.142/180);

y1=x*sin(i*3.142/180)-y*cos(I*3.142/180);

circle(x1+getmaxx()/2,y1+getmaxy()/2,5); /* center of the circle is center

of the screen*/

delay(10);

}

getch();

}

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

The following program draws the circle using Bresenham’s

algorithm.

/* program to implement Bresenham’s Circle Drawing Algorithm */

 # include<stdio.h>

include<conio.h>

include <graphics.h>

include<math.h>

#include<dos.h>

/* Function for plotting the co-ordinates at four different angles that are placed

at egual distences */

void plotpoints(int xcentre, int ycentre,int x,int y)

{

int color=5;

putpixel(xcentre+x,ycevtre+y,color);

putpixel(xcentre+x,ycevtre-y,color);

putpixel(xcentre-x,ycevtre+y,color);

putpixel(xcentre-x,ycevtre-y,color);

putpixel(xcentre+y,ycevtre+x,color);

putpixel(xcentre+y,ycevtre-x,color);

putpixel(xcentre-x,ycevtre+x,color);

putpixel(xcentre-y,ycevtre-x,color);

}

/* Function for calculating the new points for(x,y)co-ordinates. */

void cir(int xcentre, ycentre, int radius)

{

int x,y,p;

x=0; y=radius;

plotpoints(xcentre,ycentre,x,y);

p=1-radius;

while(x<y)

{

if(p<0)

p=p+2*x+1:

else

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

{

 y--;

p=p+2*(x-y)+1;

}

x++;

plotpoints xcentre, ycentre,x,y);

delay(100);

}

}

/* The main function that takes (x,y) and ‘r’ the radius from keyboard and

activates other functions for drawing the circle */

void main()

{

intgd=DETECT,gm,xcentre=200,ycentre=150,redius=5;

printf(“\n enter the center points and radius :\n”);

scanf(“%d%d%d”, &xcentre, &ycentre, &radius);

clrscr();

initgraph(&gd,&gm,””);

putpixel(xcentre,ycentre,5);

cir(xcentre,ycentre,redius);

getch();

closegraph();

}

Bresenham specified the algorithm for drawing the ellipse using

mid point method. This is illustrated in the following program.

/* BBRESENHAM’s MIDPOINT ELLIPSE ALGOTITHM. */

 # include<stdio.h>

include<conio.h>

include<math.h>

include <graphics.h>

int xcentre, ycentre, rx, ry;

int p,px,py,x,y,rx2,ry2,tworx2,twory2;

void drawelipse();

void main()

{

https://www.updf.com/?satvw=9

COMPUTER GRAPHICS

int gd=3,gm=1;

clscr();

initgraph(&gd,&gm,””);

printf(“n Enter X center value: “);

scanf(“%d”,&xcentre);

printf(“n Enter Y center value: “);

scanf(“%d”,&ycentre);

printf(“n Enter X redius value: “);

scanf(“%d”,&rx);

printf(“n Enter Y redius value: “);

scanf(“%d”,&ry);

cleardevice();

ry2=ry*ry;

rx2=rx*rx;

twory2=2*ry2;

tworx2=2*rx2;

/* REGION first */

x=0;

y=ry;

drawelipse();

p=(ry2-rx2*ry+(0.25*rx2));

px=0;

py=tworx2*y;

while(px<py)

{

x++;

px=px+twory2;

if(p>=0)

{

 y=y-1;

 py=py-tworx2;

 }

 if(p<0)

 p=p+ry2+px;

 else

 {

 p=p+ry2+px-py;

https://www.updf.com/?satvw=9

