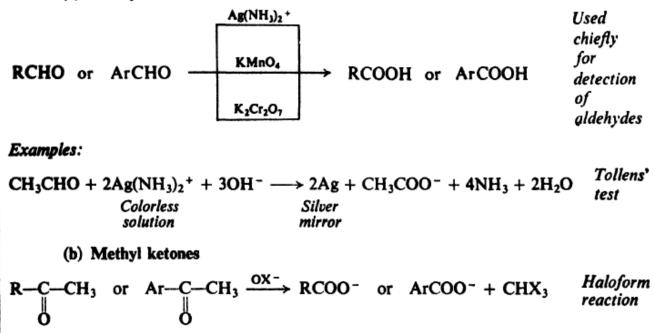
Reactions. Nucleophilic addition

The typical reaction of aldehyde and ketones is nucleophilic addition:-


1- Without catalyst

Acid-catalyzed nucleophilic addition

If acid is present, hydrogen ion becomes attached to carbonyl oxygen.

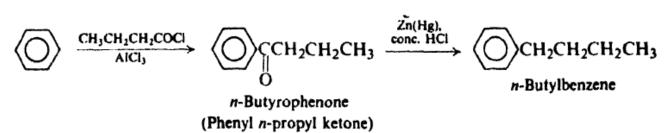
REACTIONS OF ALDEHYDES AND KETONES

- 1. Oxidation. Discussed in Sec. 19.9.
 - (a) Aldehydes

Mechanism of reaction between aldehyde and potassium dichromate

2-reduction to alcohol

Mechanism of the reduction of acetophenone


3-reduction amination

$$\begin{array}{c} H \\ R-C-O+NH_3 \longrightarrow \begin{bmatrix} H \\ R-C-NH \\ An imine \end{bmatrix} \xrightarrow{\begin{array}{c} H_2, N_1 \\ \text{or NaBH}_3CN \end{array}} \begin{array}{c} H \\ R-C-NH_2 \\ H \end{array}$$

$$\begin{array}{c} R' \\ R-C=O+NH_3 \longrightarrow \begin{bmatrix} R' \\ R-C-NH \\ An imine \end{bmatrix} \xrightarrow[or\ N_dBH_3CN]{H_2, N_1} R-C-NH_2 \\ H \\ A 1^{\circ} amine \end{array}$$

4- reduction to hydrocarbons

Examples:

5-addition of griniard reagents

Give the mechanism of the title reaction

6-addition of cyanide to formation of cyanohydrins

Examples:

Give the mechanism

7-addition of bisulfate

Examples:

$$\begin{array}{c}
H \\
\hline
\bigcirc -C = O + Na^{+}HSO_{3}^{-} \longrightarrow \bigcirc -C -SO_{3}^{-}Na^{+} \left[\xrightarrow{H^{+} \text{ or } OH^{-}} \bigodot CHO \right] \\
\hline
Benzaldehyde \\
CH_{3}CH_{2}CCH_{3} + Na^{+}HSO_{3}^{-} \longrightarrow CH_{3}CH_{2}C -SO_{3}^{-}Na^{+} \\
OH \\
Methyl ethyl ketone \\
2-Butanone$$

8-addition of derivatives of ammonia

Examples:

Certain compounds related to ammonia add to the carbonyl group to form derivatives that are important chiefly for the characterization and identification of aldehydes and ketones the product contain a carbon – nitrogen double bond resulting from elimination of a molecule of water from the initial addition products.

9-addition of alcohols to formation acetal and ketal

Example

Mechanism

Cannizaro reaction

The *Cannizaro* reaction represents the disproportionation of an aldehyde into a carboxylic acid and an alcohol. Alternatively, the reaction can be classified as a redox reaction because one molecule of aldehyde oxidizes another to the acid and is itself reduced to the primary alcohol. More useful is the crossed-*Cannizaro* reaction in which formaldehyde is reacted with another aldehyde. The formaldehyde reduces the aldehyde to alcohol and is itself oxidized to formic acid.

Fig.1

Disproportionation of benzaldehyde

Fig.2

Examples:

m-Chlorobenzaldehyde m-Chlorobenzoate m-Chlorobenzyl ion alcohol

Veratraldehyde

3,4-Dimethoxybenzyl alcohol

3,4-Dimethoxybenzaldehyde

Mechanism

10-halogenation of ketones

$$\begin{array}{c|cccc}
O & O & O \\
\hline
C & C & + X_2 & \xrightarrow{\text{acid or base}} & C & C & + HX & \alpha-Halogenation \\
H & X & X_2 = Cl_2, Br_2, I_2
\end{array}$$

11- addition of carbanions:-

a- Aldol condensation

Under the influence of dilute base or dilute acid, two molecules of an aldehyde or a ketone may combine to form a β -hydroxyaldehyde or β -hydroxyketone. This reaction is called the aldol condensation:-

Note :-In this reaction aldehyde or ketone should be contains α -H atom.

CH₃—C=O + H—C—C=O
$$\xrightarrow{OH}$$
 CH₃—C—C—C=O \xrightarrow{OH} CH₃—C—C—C=O \xrightarrow{H} OH H

Acetaldehyde \xrightarrow{Aldol} \xrightarrow{Aldol} $\xrightarrow{(\beta-Hydroxybutyraldehyde)}$ $\xrightarrow{(3-Hydroxybutanal)}$

Mechanism

-give the mechanism reaction of 2 moles of acetone in alkaline medium?

12-dehydration of aldol products

The β -hydroxyaldehydes and β -hydroxyketones obtained from aldol condensations are very easily dehydrated; the major products have the carbon-carbon double bond between the α - and β -carbon atoms. For example:

$$CH_3-C-C-C=O \xrightarrow{\text{dil. HCl, warm}} CH_3-C=C-C=O + H_2O$$

$$CH_3-C=C-C=O + H_2O$$

$$Crotonaldehyde$$

$$(2-Butenal)$$

Write the mechanism of dehydration from aldol compound?

Q/ prepare the n-butyl alcohol from acetaldehyde as starting material?

Examples

Wittig reaction

In 1954 george wittig reported a method of synthesizing alkenes from carbonyl compounds.

$$C=O+Ph_3P=C-R$$
 \longrightarrow $C=C-R+Ph_3PO$

An ylide $C=O+Ph_3$ $C=C-R+Ph_3PO$
 $C=C-R+Ph_3PO$

Mechanism

1.
$$R_1$$
 R_2 R_4 R_4 R_5 R_4 R_5 R_5 R_5 R_4 R_5 R

Reformatsky reaction. Preparation of β -hydroxy esters

If an α -bromo ester is treated with metallic zinc in the presence of an aldehyde or ketone, there is obtained a β -hydroxy ester. This reaction, known as the reformatisky reaction.zinc is used in place

of magnesium simply because the organozinc compounds are less reactive than Grignard reagents; they do not react with the ester function but only with the aldehyde or ketone.

BrCH₂COOC₂H₅
$$\xrightarrow{Zn}$$
 BrZnCH₂COOC₂H₅ $\xrightarrow{CH_3}$ CH₃ $\xrightarrow{CH_3-C-CH_2COOC_2H_5}$ OZnBr $\xrightarrow{CH_3-C-CH_2COOC_2H_5}$ OH

Ethyl β -hydroxyisovalerate

The Reformatsky reaction takes place only with esters containing bromine in the *alpha* position, and hence necessarily yields *beta*-hydroxy esters. By the proper selection of ester and carbonyl compound.

-Haloform reaction

This reaction involves oxidation , halogenations, and cleavage

mechanism