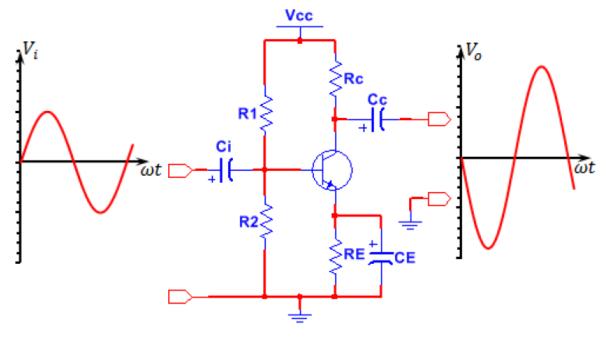
الفصل السادس

مضخمات الترانزستور ثنائي القطبية (BJT Amplifiers)

تدعى العملية التي يتم من خلالها زيادة شدة إشارة من دون تغيير أو تشويه في شكلها بالتضخيم (Amplification)، والدائرة التي تقوم بعملية تضخيم إشارة الإدخال تدعى بالمضخم (Amplifier). ويكاد لا يخلوا أي جهاز الكتروني في أيامنا هذه من دائرة مضخم، ومن امتلتها أجهزة التلفاز، المذياع، الهاتف النقال، المسجلات الصوتية، المضخم الصوتي، الحواسيب وغيرها. سنتطرق أولا لدائرة المضخم التي تحتوي على ترانزستور واحد مع ملحقاتها والتي تسمى مضخم ترانزستور ذي المرحلة الواحدة ومن ثم نناقش مضخم متعدد المراحل.


1.6 مبدأ عمل مضخم ترانزستور BJT ذي المرحلة الواحدة

الشكل (6–1) يوضح واحدة من التطبيقات المهمة للمضخمات وهي جهاز المضخم الصوتي عالى القدرة، يتكون الجهاز من عدة مراحل، يبدأ المايكرفون الذي يحول الصوت إلى إشارة كهربائية صغيرة، بعدها يقوم المضخم الأولى بتكبير الإشارة الصوتية المستلمة من المايكرفون بنقاوة عالية، بعدها تبدأ مرحلة التحكم الصوتي الذي يعمل على التحكم بعلوا الصوت ونغمته، وتقوم مرحلة مضخم القدرة بتحويل الإشارة الخارجة من المتحكم الصوتي إلى إشارة ذات قدرة عالية اللازمة لعمل سماعات القدرة العالية.

الشكل (6-2) يمثل دائرة عملية لمضخم باعث مشترك بدائرة انحياز مجزئ الجهد وهي من اكثر دوائر المضخمات استعمالاً في التطبيقات العملية، وفيما يلي وظيفة كل عنصر من عناصر تلك الدائرة:

- R_2 ، R_1 مقاومتان تعملان كمجزأ جهد لتوفير فولتيات التحييز الملائمة لعمل الترانزستور .
- RE مقاومة تعمل على زيادة استقرارية الدائرة (الثبوت النسبي لموضع نقطة العمل الساكنة).
 - R_c مقاومة تعمل على تحديد التيار المار في الترانزستور لتفادي مرور تيار يفوق تحمله.
- المتناوبة C_{c} متسعات اقران، حيث تعمل C_{i} على السماح بدخول الإشارة الإدخال المتناوبة وتمنع أي إشارة مستمرة من الدخول إلى المضخم، و تعمل C_{c} على جعل فولتية الإخراج خالية من أي مركبة مستمرة.
- $m c_{E}$ متسعة إمرار تعمل على زيادة الكسب من خلال تأريض $m R_{E}$ في ظروف العمل المتناوبة.

شكل (2-6) مضخم باعث مشترك بانحياز مجزئ جهد

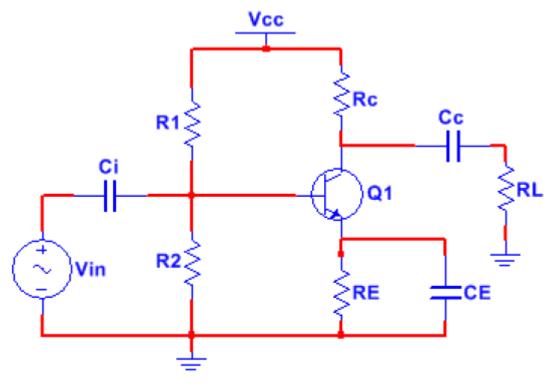
مركبات التيار المختلفة : – انه لمن المفيد ان نذكر التيارات السارية في دائرة الترانزستور عند وجود الفولتيات المستمرة والمتناوبة معا وهي :

 I_B تيار القاعدة : عند عدم وجود اشارة متناوبة في دائرة القاعدة فان التيار المستمر I_B سوف يسري في هذه الدائرة بسبب من وجود دائرة الانحياز . اما في حالة تسليط الاشارة المتناوبة (A.c) فان تياراً متناوبا (i_b) سيسري هو الاخروعليه فان تيارالقاعدة الكلى i_B سيكون مساويا لـ

$$i_B = i_b + I_B \qquad \dots (2)$$

يار مجمع المحمع المتار القاعدة المستمر I_B سوف يؤدي الى احداث تيار مجمع مستمر قدره βI_B كذلك يفعل التيار المتناوب للقاعدة i_b وعليه فان تيار المجمع الكلى سيكون مساويا لـ

$$i_{c} = I_{c} + i_{c} \qquad \dots (3)$$


 $_{-}$ تيار الباعث: $_{-}$ من المعروف ان تيار الباعث يرتبط بعلاقة مع تيار القاعدة والمجمع وعليه فان تيار الباعث المستمر $_{-}$

 $i_E = I_E + i_e \qquad \dots (4)$

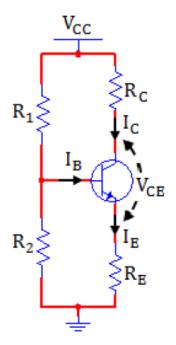
في معظم الاحيان حيث يكون تيار القاعدة صغيراً . يمكن اعتبار تيار الباعث مساويا لتيار المجمع . وأخيراً لابد لنا من الاشارة الى ان الموجة الخارجة على الرغم من أنها نسخة مكبرة من الموجة الداخلة . الا انها معكوسة الطور . اي ان الجزء الموجب من الموجة الداخلة اصبح سالبا والجزء السالب اصبح موجبا وبهذا فان فرق الطور بين الموجة الداخلة والخارجة في مكبر الباعث المشترك . يساوي 180°

2.6 الدائرة المكافئة المستمرة والمتناوبة للمضخم

ان عمل المضخم يتضمن ظروف عمل ساكنة (عدم وجود إشارة إدخال) والتي توفرها دائرة التحييز التي تتكون من مصدر الجهد المستمر والمقاومات و وظيفتها جعل الترانزستور عاملاً في منطقة العمل، وعند استعمال تلك لدائرة في تضخيم إشارة متناوبة فان دائرة المضخم ستتضمن فولتيات وتيار مستمرة ومتناوبة، ولتسهيل دراسة دائرة المضخم يتم تحليل دائرة المضخم المبينة في الشكل (6-6) إلى دائرة مكافئة مستمرة ودائرة مكافئة متناوبة و كما يلي:

شكل (6-6) مضخم باعث مشترك بانحياز مجزئ جهد

أ- الدوائر المكافئة الـ d.c : - يفترض عند ايجاد دوائر الـ D.C المكافئة لدائرة الترانزستور عدم وجود اشارة متناوبة وعليه فانه يؤخذ بالاعتبار استجابة دائرة الترانزستور للفولتية المستمرة فقط من هنا فان كل المتسعات سوف تعد دوائر مفتوحة بسبب ان المتسعة لاتمرر الفولتية اصلا وبهذا فان رسم دائرة الـ D.C المكافئة يتم عن طريق


1 - اختزل كل المصادر المتناوبة الى الارض .

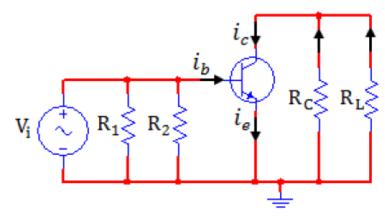
2 - افتح كل المتسعات المربوطة مع الدائرة .

والدائرة الباقية هي التي تهم عند احتساب التيارات والفولتيات المستمرة . لهذا السبب ندعوهذه الدائرة بالدائرة المكافئة المستمرة المستمرة طده الدائرة نحسب كافة التيارات والفولتيات المستمرة التي نهتم بها

أي ان المتسعة دائرة مفتوحة واختزال جميع المصادر المتناوبة.

الشكل (7-6) يمثل الدائرة المكافئة المستمرة لدائرة مضخم الباعث المشترك بانحياز مجزئ الجهد، ونلاحظ انها نفس الدائرة التي ناقشناها في الفصل السابق (دوائر الانحياز)، حيث يمكننا حساب كل من $V_{\rm CE}$ ، $V_{\rm CE}$, $V_{\rm CE}$

شكل (7-6) الدائرة المكافئة المستمرة لدائرة مضخم الباعث المشترك بانحياز مجزئ الجهد


ب- الدوائر المكافئة الـ a.c : - من المتوقع ان تكون مجهزات الفولتية المستمرة غير ذات أهمية بالنسبة الى دوائر A.C المكافئة لمكبرات الترانزستور وعليه فان هـذه المصادر سوف تقصر الى الصفر. كذلك هو ومعروف ان قيم المتسعات المستعملة بنوعيها (الاقران والامرار) في دوائر المكبرات . تكون كبيرة اي بممانعة صغيرة . لذا فانها تعد دوائر قصر short circuit بالنسبة للاشارات المتناوبة . من هنا فان ايجاد الدائرة المكافئة الـ A.C يتم بوساطة .

- 1- اختزل كافة المصادر المستمرة الى الصفر.
 - 2- اقصر كافة متسعات الإقران والامرار.

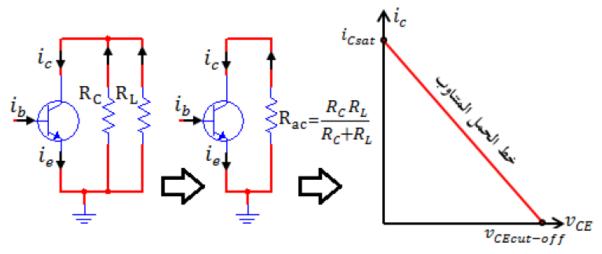
وتكون الدائرة الباقية هي التي تهم عند احتساب التيارات والفولتيات المتناوبة . ولهذا a·c equivalent circiut السبب تدعى هذه الدائرة بالدائرة المكافئة المتناوبة المتناوبة التي نهتم بها .

أي اختزال المصادر المستمرة واعتبار جميع المتسعات دوائر قصر.

باعتماد تلك التقريبات يتم حساب التيارات والفولتيات المتناوبة

شكل (8-6) الدائرة المكافئة المتناوبة لمضخم الباعث المشترك بانحياز مجزئ الجهد

3.6 خط الحمل المتناوب 3.6


المخطط (6-9) يوضح خطوات رسم خط الحمل المتناوب، حيث يتم أولا رسم الدائرة المكافئة المتناوبة للدائرة ومن ثم يتم إيجاد المقاومة المكافئة للحمل المتناوب R_{AC} ومن ثم يتم

إيجاد إحداثيات نقطتي القطع والتشبع، حيث تعطى قيمة تيار التشبع وفولتية القطع بالصيغتين:

$$i_{Csat} = I_{CQ} + \frac{V_{CEQ}}{R_{AC}}$$
 (6-1)

$$v_{CE\,\text{cutt-off}} = V_{CEQ} + I_{CQ}R_{AC} \tag{6-2}$$

- حيث تمثل I_{CQ} و V_{CEQ} إحداثيات نقطة العمل الساكنة

شكل (9-6) خطوات رسم خط الحمل المتناوب

خط الحمل المستمر ط.c load line خط الحمل المستمر مثل كافة نقاط العمل الممكنة . النهاية الديا لخط الحمل المستمر تسمى بنقطة الاشباع يمثل كافة نقاط العمل الممكنة . النهاية الديا لخط الحمل المستمر تسمى بنقطة الاشباع R_E فان فولتية المصدر V_{CC} ستظهر كلها عبر R_E و R_C

$$V_{CE} = 0$$

$$I_{C \text{ (max)}} = \frac{V_{CC}}{R_C + R_E} \tag{7}$$

من جهة أخرى تسمى النهاية السفلى من خط الحمل المستمر بنقطة القطع ويمكس استخراجها من معرفة أنه لوكان الترانزستور في الشكل (1 أ) في حالة قطع فستظهر كل استخراجها من معرفة أنه لوكان المرانزستور في المشكل (1 أ) في حالة قطع فستظهر كل فولتية المصدر V_{cc} عبر طرفي المجمع – باعث أي ان V_{cc} عبر طرفي المجمع – باعث أي ان V_{cc} المران المران المران المران المران المران المران المران المراز المراز

$$V_{CE} = V_{CC} \tag{8}$$

مثال (1-6): في الشكل التالي المقاومتان R_1 و R_2 ضبطت بحيث تكون إحداثيات نقطة العمل الساكنة عند (10V, 1mA).

10kΩ

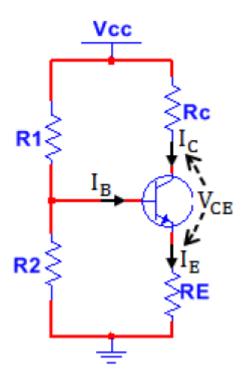
Ci

R2

ارسم:

· خط الحمل المستمر .

· خط الحمل المتناوب.


علماً بان المقاومة R_E صغيرة القيمة بحيث يمكن إهمال تأثيراها.

الحل: من معطيات المسألة لدينا

 $R_C=10k\Omega$, $R_L=30k\Omega$, $V_{CC}=20V$, Q(10V,1mA), $V_{CEQ}=10V$, $I_{CEQ}=1mA$, $R_E\approx 0$

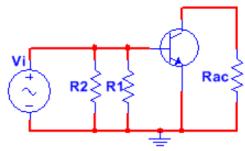
≥30kΩ

لرسم خط الحمل المستمر نقوم أولا برسم الدائرة المكافئة المستمرة للدائرة والتي تكون بالشكل التالي.

تعطى معادلة خط الحمل المستمر بالصيغة:

$$V_{CE} = V_{CC} - (R_C + R_E)I_C$$

وبالاعتماد على معادلة خط الحمل المستمر نجد ان حداثيات نقطة التشبع وكما يلي:


$$I_{\text{Csat}} = \frac{V_{\text{CC}}}{R_{\text{C}} + R_{\text{E}}} \; , \; \Rightarrow \; I_{\text{Csat}} = \frac{20}{10 \times 10^3 + 0} = 2 \times 10^{-3} \, A$$

أي ان احداثي نقطة التشبع هي (2mA).

اما إحداثيات نقطة القطع فتكون (Vcc,0) أي ان إحداثي نقطة القطع هي (20V, 0)، وبالتوصيل بين نقطتي التشبع والقطع نحصل على خط الحمل المستمر.

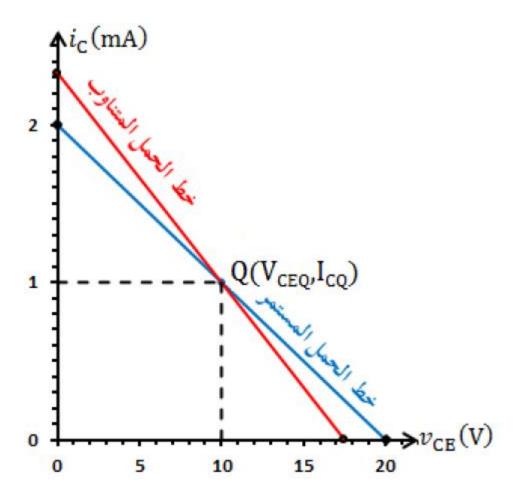
ثانياً: رسم خط الحمل المتناوب

لرسم خط الحمل المتناوب نقوم أولا برسم الدائرة المكافئة المتناوبة للدائرة، وهي كما موضحة بالشكل التالي. من الشكل نجد ان المقاومة المكافئة للحمل المتناوب R_{AC} هي:

$$R_{ac} = \frac{R_C \times R_L}{R_C + R_L} = \frac{10 \times 10^3 \times 30 \times 10^3}{10 \times 10^3 + 30 \times 10^3}$$

$$R_{ac} == 7.5 \times 10^3 \Omega$$

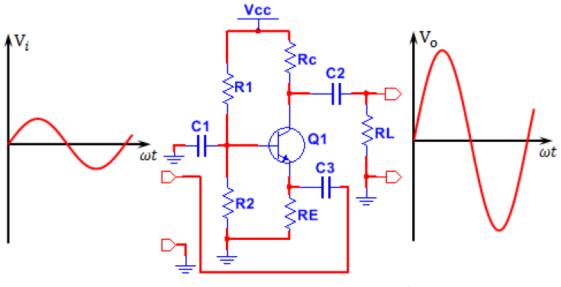
من معطيات المسألة ان إحداثي نقطة العمل الساكنة هي (10V, 1mA) أي ان $V_{CEQ}=10V$) و ($V_{CEQ}=10V$) ومنه يمكن ان نجد إحداثي نقطتي القطع والتشبع لخط الحمل المتناوب وكما يلي:


$$i_{\text{Csat}} = I_{\text{CQ}} + \frac{V_{\text{CEQ}}}{Rac} = 1 \times 10^{-3} + \frac{10}{7.5 \times 10^{3}}$$

$$i_{Csat} = 2.33 \times 10^{-3} A \Rightarrow i_{Csat} = 2.33 \text{mA}$$

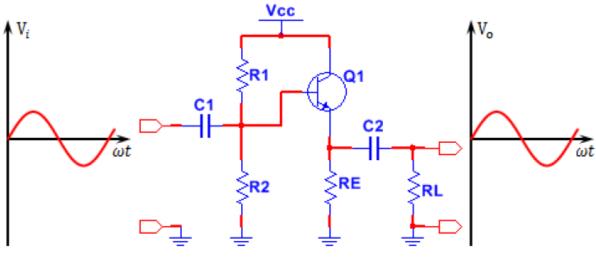
$$\nu_{\text{CE cutt-off}} = V_{\text{CEQ}} \, + I_{\text{CQ}} Rac \! = \! 10 + 1 \! \times \! 10^{-3} \times 7.5 \! \times \! 10^{3}$$

$$\nu_{\text{CE cutt-off}} = 17.5 V$$


نجد ان إحداثي نقطة التشبع هي (2.33mA) ونقطة القطع هي (17.5V, 0) وبالتوصيل بين النقطتين نحصل على خط الحمل المتناوب وكما موضح بالشكل التالي، يلاحظ ان خطي الحمل المستمر والمتناوب يتقاطعان عند نقطة العمل الساكنة.

لكي يقوم أي مضخم بعملية التضخيم بصورة جيدة يجب ان تكون ظروف التشغيل ملائمة، حيث يجب ان تكون نقطة العمل في منتصف خط الحمل وذلك للحصول على افضل تضخيم للإشارة دون ان يؤدي ذلك إلى حدوث تشوه في شكل الإشارة، ففي حالة كون نقطة العمل بعيدة عن منتصف خط الحمل فان مجال التضخيم للجزء الموجب سيكون اقل (أو اكبر) من مجال التضخيم للجزء السالب فيحدث تشوه في شكل الإشارة الخارجة.

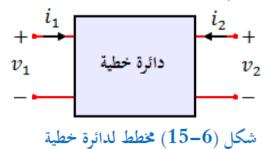
4.6 مضخم القاعدة المشترك


الشكل (6–11) يوضح دائرة نموذجية لمضخم قاعدة مشتركة بانحياز مجزئ جهد، حيث نجد ان طرف القاعدة هو الطرف المشترك حيث يتم تأريضه عبر المتسعة الإمرار C_2 ، إشارة الإدخال يتم إمرارها عبر متسعة الاقران C_1 اما إشارة الإخراج فتمر عبر متسعة الاقران C_3 .

شكل (11-6) دائرة مضخم القاعدة المشترك

5.6 مضخم الجامع المشترك

يسمى هذا المضخم أيضا تابع الباعث (Emitter Follower)، الشكل (6-13) يوضح مضخم الجامع المشترك بانحياز مجزئ الجهد، حيث يلاحظ ان إشارة الإدخال تمرر عبر متسعة الاقران C1 إلى طرف القاعدة، بينما تمرر إشارة الإخراج من طرف الباعث عبر متسعة الاقران C2 لتظهر على طرفي مقاومة الحمل، بينما يكون طرف الجامع في حالة تأريض متناوب.


شكل (6-13) دائرة مضخم الجامع المشترك

جدول (1-6) مقارنة بين مضخمات الباعث المشترك، القاعدة المشتركة والجامع المشترك

مضخم الجامع المشترك	مضخم الباعث المشترك	مضخم القاعدة المشترك	الخاصية
عالية جداً	صغيرة	صغيرة جداً	$Z_{ m in}$ ممانعة الإدخال
صغيرة جداً	كبيرة	عالية جداً	${f Z}_{ m o}$ ممانعة الإخراج
اقل من واحد	عالي	عالي	$\mathbf{A}_{ iny v}$ كسب الفولتية
عالي	عالي	اقل من واحد	$\mathbf{A_i}$ کسب التيار
عالي	عالي جداً	عالي	${f A}_{ m P}$ كسب القدرة
0°	180°	00	فرق الطور

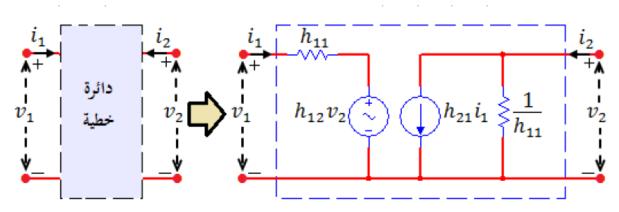
6.6 الدائرة المكافئة المتناوبة للترانزستور باستعمال المعاملات الهجينة

تعتبر طريقة المعاملات الهجينة (Hybrid Parameter) من ادق الطرق المعتمدة في تحليل دوائر مضخم الترانزستور، كما تمتاز تلك المعاملات بسهولة حساب قيمها عملياً. ان أي دائرة خطية لها طرفي إدخال وطرفي إخراج يمكن تحليلها باستعمال اربع معاملات. الشكل (15-6) يمثل مخطط لدائرة خطية، تيار الإدخال لها i_1 والإخراج i_2 وبالاتجاه الموضح، وفولتية الإدخال v_1 والإخراج v_2 وبالقطبية الموضحة بالشكل.

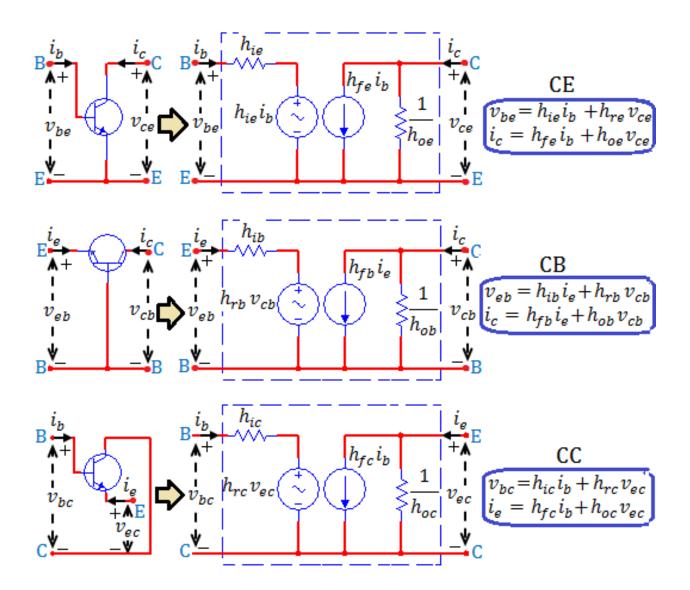
في هذه الحالة يمكن التعبير عن فولتية الإدخال وتيار الإخراج بالصيغتين:

$$v_1 = h_{11}i_1 + h_{12}v_2$$
 (6 - 3)

$$i_2 = h_{21}i_1 + h_{22}v_2$$
 (6 - 4)

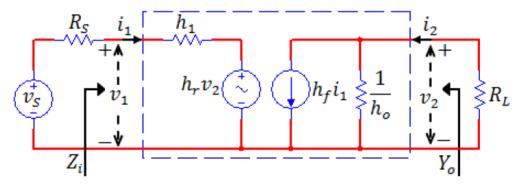

نلاحظ من المعادلة (6-6) ان المعامل (h_{11}) له وحدة الأوم (Ω) بينما المعامل المعامل (h_{22}) ليس له وحدات، ومن المعادلة (6-4) نجد ان المعامل (h_{22}) له وحدة مقلوب الأوم والتي تدعى سيمنس siemens ويرمز لها (8) بينما المعامل (10-1) ليس له وحدات. من المعادلتين (10-1) و (10-1) يمكننا تعريف المعاملات الهجينة الأربعة وكما يلي:

ولا: بجعل (على: الإخراج، نحصل على: $v_2=0$) اي بقصر (توصيل) طرفي الإخراج، نحصل على: $h_{11}=\frac{v_1}{i_1}$, $for~v_2=0~(output~shorted)$ $h_{21}=\frac{i_2}{i_1}$, $for~v_2=0~(output~shorted)$: ثانيا: بجعل ($i_1=0$) أي بقطع (فتح) طرفي الإدخال، نحصل على: $h_{12}=\frac{v_1}{v_2}$, $for~i_1=0~(input~open)$ $h_{22}=\frac{i_2}{v_2}$, $for~i_1=0~(input~open)$


من العلاقات الأربع الأخيرة نلاحظ ان المعامل (h_{11}) يمثل ممانعة الإدخال للدائرة عند قصر طرفي الإخراج يرمز له أيضا (h_i) ، بينما المعامل (h_{21}) يمثل كسب التيار عند قصر طرفي الإخراج ويرمز له أيضا (h_f) ، والمعامل (h_{12}) يمثل مقلوب كسب الفولتية عند فتح طرفي الإدخال ويرمز له أيضا (h_r) ، والمعامل (h_{22}) يمثل مواصلة (مقلوب الممانعة) الإخراج عند فتح طرفي الإدخال ويرمز له أيضا (h_o) .

حيث يشير الحرف إلى ممانعة الادخال input impedance والحرف o الى مه اصلة الاخراج output umpedance مه اصلة الاخراج output umpedance الما الحرف r فيشير الى نسبة التغذية الخلفيسة reverse voltage feedback ratio واخيراً الحرف f الذي يرمز الى نسبة التيار الامامية forward current ratio .

على اية حال . تعد الدوائر المكافئة المختلطة (الهجينية hybrid) في الوقت المحاضر . الأكثر استخداما في تحليل دوائر الترانزستور بسبب ان الثوابت الهجينية التابعة لهذه الدوائر المكافئة . هي ثوابت سهلة القياس وتعطي بعض البيانات عن خواص الترانزستور عند الترددات الواطئة بدلالة ثوابت (متغيرات خاصة) اربع يرمز لها بالحرف h ان السبب وراء اطلاق تسمية المختلطة او «الهجينية » على هذه الثوابت هو وجود مقدارين بينهما . مجردين من الوحدات ومقاومة واحدة وتوصيلة واحدة .



شكل (16-6) تمثيل الدائرة الخطية باستعمال المعاملات الهجينة

7.6 الدائرة المكافئة المتناوبة للمضخم باستعمال المعاملات الهجينة

الشكل (6-18) يوضح دائرة مضخم والدائرة المكافئة المتناوبة لها باستعمال المعاملات الهجينة.

شكل (18-6) الدائرة المكافئة لمضخم باستعمال المعاملات الهجينة

حيث تمثل R_L المقاومة الحمل المكافئة، R_S المقاومة المكافئة لمصدر الإشارة ودائرة تحييز الإدخال، يلاحظ من الشكل أننا لم نحدد طريقة الربط معينة للترانزستور، وبالتالي يمكننا كتابة العلاقة الخاصة بفولتية الإدخال وتيار الإخراج بالصيغة:

$$v_1 = h_i i_1 + h_r v_2$$
 (6 - 5)
 $i_2 = h_f i_1 + h_o v_2$ (6 - 6)

Current Gain (A_i) أولاً: كسب التيار

$$A_i = \frac{-h_f}{1 + h_o R_L}$$
 (6 – 7) العلاقة الأخيرة توضح ان اقصى كسب التيار هي $(-h_f)$ عند قصر طرفي الإخراج . $(R_L = 0)$

ثانياً: ممانعة الإدخال للمضخم (Z_i) ثانياً: ممانعة

$$Z_{i} = h_{i} - \frac{h_{f} h_{r} R_{L}}{1 + h_{o} R_{L}} \tag{6-8}$$

ثالثاً: كسب الفولتية (A_v) ثالثاً: كسب الفولتية

$$A_{\nu} = A_i \frac{R_L}{Z_i} \tag{6-9}$$

رابعاً: مواصلة الإخراج (Output Admittance(Y

معادلة المواصلة

$$Y_o = h_o - \frac{h_f h_r}{R_S + h_i}$$
 (6 - 10)

 (Z_0) ممانعة الإخراج

$$Z_0 = \frac{1}{Y_0} \tag{6 - 11}$$

خامساً: كسب القدرة (Power Gain (A_P

$$A_p=A_v imes A_i$$
 ببیق ان وجدنا ان $\left(A_v=A_irac{R_L}{Z_i}
ight)$ وبالتعویض نحصل علی:
$$A_p=rac{A_v^2}{R_L}\,Z_i \eqno(6-12)$$

الجدول (6-2) يعطي القيم النموذجية للمعاملات الهجينة للترانزستور الباعث المشترك ، الجامع المشترك والقاعدة المشترك.

جدول (2-6) القيم النموذجية للمعاملات الهجينة لطرق الربط الثلاث

	CE	CC	СВ
h_i	$1~k\Omega$	$1~k\Omega$	$20 k\Omega$
h_r	2.5×10^{-4}	≈ 1	3.0×10^{-4}
h_f	50	-50	-0.98
h_o	$25 \mu A/V$	$25 \mu A/V$	$0.5 \mu A/V$
$1/h_o$	$40k\Omega$	$40k\Omega$	$2M\Omega$

 $h_{ie}=1k\Omega$, $h_{re}=10^{-4}$, $h_{fe}=100$, مثال (2-6): مضخم باعث مشترك له: $h_{oe}=12\times 10^{-6}$ S, $R_L=2k\Omega$, $R_S=1k\Omega$,

أوجد: كسب التيار، ممانعة الإدخال، كسب الفولتية، ممانعة الإخراج، كسب القدرة؟ الحل:

كسب التيار لمضخم الباعث المشترك بدلالة المعاملات الهجينة يعطى بالصيغة:

$$A_i = \frac{-h_f}{1 + h_o R_L}$$

$$A_i = \frac{-100}{1 + (12 \times 10^{-6})(2 \times 10^3)} \implies A_i = -97.66$$

ممانعة الإدخال لمضخم الباعث المشترك يعطى بالصيغة:

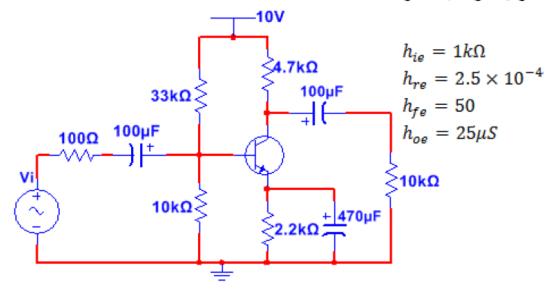
$$Z_i = h_{ie} + h_{re}A_iR_L$$

 $Z_i = 1000 + (10^{-4})(-97.66)(2000) \implies Z_i = 980.5\Omega$

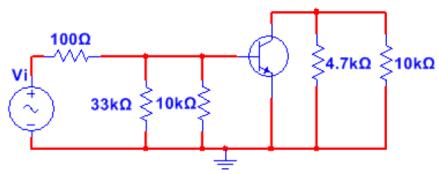
كسب الفولتية لمضخم الباعث المشترك يعطى بالصيغة:

$$A_{\nu} = A_{i} \frac{R_{L}}{Z_{i}}$$

$$A_{\nu} = (-97.66) \frac{2000}{980.5} \implies A_{\nu} = -199.2$$


لإيجاد ممانعة الإخراج نجد أولا مواصلة الإخراج والذي يعطى بالصيغة:

$$\begin{split} Y_o &= h_o - \frac{h_f h_r}{R_S + h_i} \\ Y_o &= 12 \times 10^{-6} - \frac{(100)(10^{-4})}{1000 + 1000} \quad \Longrightarrow \quad Y_o = 7 \times 10^{-6} S \\ Z_o &= \frac{1}{Y_o} \\ Z_o &= \frac{1}{7 \times 10^{-6}} \quad \Longrightarrow \quad Z_o = 142.85 \times 10^3 \Omega \end{split}$$


كسب القدرة يعطى بالصيغة:

$$A_p = A_v \times A_i$$

 $A_p = (199.2) \times (97.66) \implies A_p = 19453.8$

مثال (6-3): في الشكل التالي مضخم باعث مشترك، أوجد: كسب التيار، ممانعة الإدخال، كسب الفولتية، وكسب القدرة.

الحل: قبل تطبيق العلاقة الخاصة بكسب التيار علينا أولا ان نجد المقاومة المكافئة للحمل المتناوب والتي نحصل عليها بعد إيجاد الدائرة المكافئة المتناوبة الموضحة بالشكل التالي:

$$R_L = \frac{(4.7 \times 10^3) \times (10 \times 10^3)}{(4.7 \times 10^3) + (10 \times 10^3)}$$
 \Rightarrow $R_L = 3197.3\Omega$

$$A_i = \frac{-h_{fe}}{1 + h_{oe}R_L}$$

بعدها نستطيع تطبيق العلاقة:

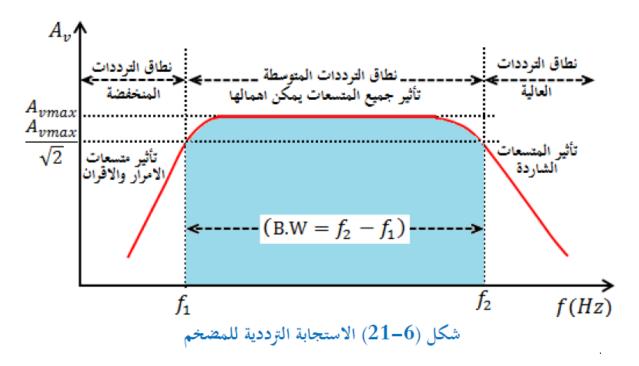
$$A_i = \frac{-50}{1 + 25 \times 10^{-6} \times 3197.3} \implies A_i = -46.3$$

لإيجاد ممانعة الإدخال نطبق العلاقة:

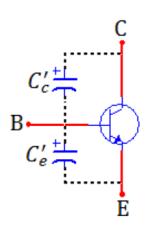
$$Z_i = h_{ie} + h_{re} A_i R_L$$

$$Z_i = 1 \times 10^3 + 2.5 \times 10^{-4} \times (-46.3) \times 3197.3 \quad \Rightarrow \quad Z_i = 963 \Omega$$

$$A_v = A_i \frac{R_L}{Z_i}$$
 نطبق العلاقة:


$$A_v = (-46.3) \times (\frac{3197.3}{963})$$
 $\Rightarrow A_v = -153.72$

لإيجاد كسب القدرة نطبق العلاقة:


$$A_p = A_v \times A_i$$

 $A_p = (-153.72) \times (-46.3)$ \Rightarrow $A_p = 7117.2$

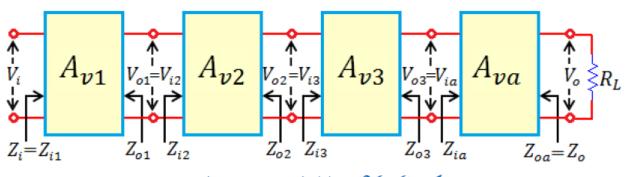
9.6 الاستجابة الترددية للمضخم Prequency Response of an Amplifier

يقصد بالاستجابة الترددية منحنى العلاقة بين كسب الفولتية لمضخم ما وتردد إشارة الإدخال، الشكل (6–21) يوضح تغير كسب المضخم مع التردد، حيث يلاحظ ان الكسب يزداد تدريجياً مع زيادة التردد إلى ان يصل إلى قيمة عظمى (A_{vmax}) ، وبعدها ينخفض الكسب تدريجياً.

ان الانخفاض في الكسب عند الترددات الواطئة يعود إلى الممانعة العالية التي تبديها متسعات الإقران (Cin, Cc) للإشارة الداخلة والخارجة من المضخم، بالإضافة إلى ان تأثير متسعة الامرار (CE) يكون قليلاً في الترددات الواطئة (تأريضها للمقاومة RE يكون قليلاً) مما يؤدي إلى التقليل من كسب المضخم، ان تلك التأثيرات السلبية تتناقص مع الزيادة في التردد مما تؤدي إلى زيادة تدريجية في الكسب مع زيادة التردد.

اما عند الترددات العالية فان السبب في النقصان التدريجي في الكسب يعود إلى تأثير ما يعرف بالمتسعات الشاردة (Parasitic capacitances) التي تنشأ بين اطراف الترانزستور في الترددات العالية، الشكل المجاور يوضح تلك المتسعات، حيث تعمل متسعة وصلة (الجامع-القاعدة) على إرجاع جزء من إشارة الإخراج إلى مدخل المضخم مما تولد تغذية خلفية سالبة تؤدي إلى

التقليل من الكسب، بالإضافة لمتسعة وصلة (القاعدة-الباعث) التي تقصر مدخل المضخم مما يؤدي إلى التقليل من الكسب، وتزداد تأثير المتسعات الشاردة مع زيادة التردد مما يؤدي إلى النقصان التدريجي في الكسب مع زيادة التردد في الترددات العالية. يسمى (f_1) بتردد upper (lower cut-off frequency) والتردد (f_2) بتردد القطع الأعلى (cut-off frequency) وهما الترددان التي يكون عندها الكسب ($A_v = A_{vmax}/\sqrt{2}$) بالعلاقة:


 $BW = f_2 - f_1 \tag{6 - 14}$

(Multistage Amplifiers) مضخمات متعدد المراحل 11.6

في معظم الأجهزة الإلكترونية لا يكفي استعمال مضخم ترانزستور واحد للحصول على التضخيم المطلوب لعملها، ولغرض زيادة الكسب في دوائر التضخيم تستعمل اكثر من مرحلة تضخيم واحدة بحيث تصبح إشارة الإخراج من المرحلة الأولى إشارة إدخال للمرحلة التي تليها ويدعى هذا النوع من دوائر بالمضخمات متعددة المراحل.

بالإضافة للحاجة إلى الكسب العالي فان معظم التطبيقات العملية تتطلب ان يكون للمضخم ممانعة إدخال عالية جدا (لعدم التأثير على مصادر الإشارة الصغيرة) وممانعة اخراج منخفضة (لتتوالف مع ممانعة الأحمال التي تكون عادة منخفضة مثل السماعات وغيرها)، ان هذه المزايا الثلاث (كسب عالي، ممانعة إدخال مرتفعة جدا، ممانعة اخراج صغيرة جدا) لا تتوافر معاً في أي نوع من المضخمات المفردة ومن هنا تتأتى الحاجة لمضخمات متعددة المراحل.

تتكون مضخمات متعددة المراحل من مجموعة مضخمات مفردة ترتبط فيما بينها بالصورة المبينة في الشكل (6–26)، حيث يمثل طرفا الإدخال للمرحلة الأولى طرف الإدخال لمضخم متعدد المراحل، ويكون طرفا الإخراج للمرحلة الأخيرة بمثابة طرفا الإخراج لمضخم متعدد المراحل.

شكل (26-6) مخطط لمضخم متعدد المراحل

يمكن حساب الكسب النهائي للفولتية لمضخم متعدد المراحل وكما يلي:

في حالة التعبير عن الكسب بوحدة الدسبيل فان الكسب الكلي لمضخم متعدد المراحل يعطى بالصيغة:

$$A_{vT}(d\beta) = A_{v1}(d\beta) + A_{v2}(d\beta) + A_{v3}(d\beta) + \cdots + A_{va}(d\beta) \quad (6-20)$$

عادة ما يتم ربط مراحل المضخم متعدد المراحل بدوائر تسمى دوائر اقران (Coupling)، ويكون لدوائر الاقران وظيفتان أساسيتان وهي:

- 1- نقل الإشارة المتناوية من مخرج المرحلة الأولى إلى مدخل المرحلة التالية.
 - 2- عزل ظروف العمل الساكنة لكل مرحلة عن المرحلة التي تليها.