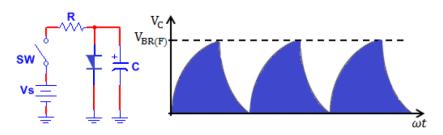

الفصل السابع – الثايروستورات Thyristors

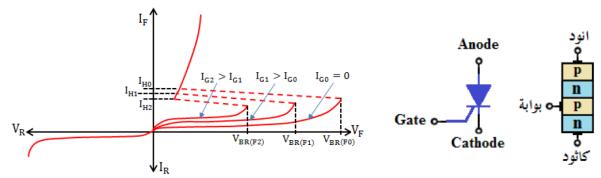
تضم عائلة الثايروسترات ثنائي شوكلي ، مقوم السيلكون المسيطر ، الداياك ، التراياك ، والمفتاح السيلكوني المسيطر والتي تمتاز بانها متكونة من اربع مناطق من اشباه الموصلات (pnpn). بالإضافة لهذه العائلة سنتناول نوع اخر من المكونات الالكترونية وهو الترانزستور احادي الوصلة . جميع هذه المكونات الالكترونية تمتاز بوجود مقاومة سالبة في منحني خواصها ولا يمكن استخدامها في تكبير الاشارة .


Shockey Diode ثنائى شوكلى (1 . 7)

يطلق عليه كذلك ثنائي رباعي الطبقات (four – layer diode) ، وهو نوع من الثايروسترات له طرفان فقط ، الشكل (1) يوضح تركيب ورمز ومنحني الخواص لهذا الثنائي ، في حالة الانحياز الامامي ، يتصرف ثنائي شوكلي كمقاومة عالية (دائرة مفتوحة) لفولتيات تحييز الاقل من جهد الانهيار الامامي (V_{BR}) ، وعند وصول جهد التحييز الامامي الى تلك القيمة تهبط مقاومة الثنائي بصورة فجائية ويهبط الجهد بين طرفيه ويتصرف كدائرة قصر . يلاحظ من منحني الخواص ان الثنائي ييقى في حالة التوصيل حتى في حالة انخفاض فولتية التحييز الامامية عن قيمة جهد الانهيار (V_{BR}) ولا يعود الثنائي الى حالة القطع الا عند انخفاض قيمة التيار الى افل من القيمة التي حدث عندها الانهيار (V_{BR}) . اما في حالة الانحياز العكسي فسلوكه يشبه سلوك الثنائي الاعتيادي .

شكل (1) رمز وتركيب ومنحنى الخواص لثنائي شوكلي

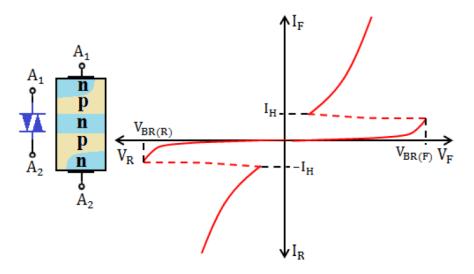
من اهم تطبيقات ثنائي شوكلي هي استعماله في مذبذب الارتخاء (Relaxation Oscillator) الموضح بالشكل (2) ، ان هذا المذبذب يستعمل لتوليد اشارة قدح (Trigger) للتحكم بعمل الانواع الاخرى من الثايروستر .



شكل (2) دائرة مذبذب الارتخاء وشكل الاشارة الخارجة

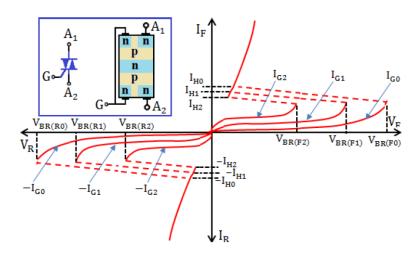
Silicon - Controlled Rectifier (SCR) المقوم السليكوني المسيطر (2.7)

للمقوم السليكوني المسيطر اهمية كبيرة في التطبيقات العملية حيث يأتي بالمرتبة الثالثة بعد الثنائي والترانزستور ، ومن تطبيقاته استعماله في دوائر التقويم عالي القدرة ، العاكسات ، منظم الفولتية عالي القدرة ، متحكمات الطور ، التحكم بسرعة المحركات ، التحكم بالسخانات ، وغيرها من انظمة التحكم .


يشبه تركيب المقوم السليكوني المسيطر تركيب ثنائي شوكلي مع اضافة طرف ثالث يسمى بالبوابة (Gate) والشكل (3) يوضح تركيب ورمز ومنحنى خواص المقوم السليكوني المسيطر .

شكل (3) تركيب ورمز ومنحنى خواص المقوم السليكوني المسيطر من منحنى الخواص نلاحظ ان تيار البوابة (I_G) يؤدي الى التحكم بجهد الانهيار (V_{BR}) وتياره (I_H) ، حيث نلاحظ انه كلما يزداد تيار البوابة يقل جهد وتيار الانهيار .

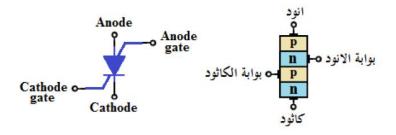
The Diac الداياك (3 . 7)


الشكل (4) يوضح تركيب ورمز ومنحنى الخواص للداياك ، والذي يمكن ان تصوره كثنائيي شوكلي مربوطين على التوازي وباتجاهين متعاكسين . احدهما يعمل خلال النصف الموجب من اشارة الادخال والاخر يعمل في النصف السالب من الاشارة يستعمل الداياك في العديد من التطبيقات منها : دوائر التوقيت ، ودوائر قدح الثاير وستورات .

شكل (4) رمز وتركيب ومنحنى الخواص للداياك

The Triac التراياك (4.7)

يشبه تركيب التراياك الداياك مع اضافة طرف للبوابة ، كما يمكن تصوره كمقومي سليكون مسيطر مربوطين على التوازي وباتجاهين متعاكسين مع طرف بوابة مشترك ، يعمل التراياك كمفتاح يكون في حالة غلق عند ادخال نبضة الى طرف البوابة ، ويختلف عن المقوم السليكوني المسيطر (الذي يعمل في الاتجاه الامامي) بانه يعمل كمفتاح في حالتي الانحياز ، ولجعل التراياك يعود الى حالة القطع يجب تقليل قيمة التيار المار عبره الى اقل من قيمة تيار الانهيار ($I_{\rm H}$) ، الشكل ($I_{\rm H}$) . وضمح تركيب ورمز ومنحني الخواص للتراياك .

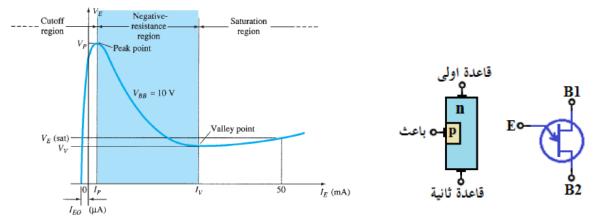


شكل (5) رمز وتركيب ومنحنى الخواص للتراياك

ويستعمل التراياك في دوائر التحكم وتشكيل الموجة.

The Silicon - Controlled Switch (SCS) المفتاح السليكوني المسيطر (5 . 7)

هو ثايرستور رباعي الاطراف تركيبه يشابه المقوم السليكوني مع اضافة بوابة ثانية احداهما تسمى بوابة الانود والاخرى بوابة الكاثود ، يمكن جعل SCS في وضعية الاغلاق (ON) من خلال قدح اي من البوابتين (نبضة موجبة لبوابة الكاثود ونبضة سالبة لبوابة الانود) ، ولتحويل SCS لوضعية الفتح (OFF) يتم تسليط نبضة موجبة لبوابة الانود . والشكل (OFF) يوضح تركيب ورمز OFF .


شكل (6) تركيب ورمز المفتاح السليكوني المسيطر

يستعمل SCS في مجالات مشابهة لاستعمال SCR بالإضافة الى استعماله في التطبيقات الرقمية مثل العدادات.

The Unijunction Transistor (UJT) الترانزستور احادي الوصلة (6.7)

لا يعتبر الترانزستور احادي الوصلة من عائلة الثايروسترات وذلك لان تركيبه لا يتضمن الطبقات الاربعة المميزة لها ، وسمى بأحادي الوصلة لأنه يحتوي على وصلة شبه موصل واحدة فقط.

الشكل (7) يوضح رمز وتركيب ومنحنى خواص ترانزستور احادي الوصلة ، حيث نلاحظ ان له ثلاثة اطراف باعث E وقاعدة اولى E وقاعدة ثانية E ونجد من منحنى الخواص ان هنالك منطقة المقاومة السالبة المظللة بالأزرق .

شكل (7) رمز وتركيب ومنحنى خواص ترانزستور احادي الوصلة لترانزستور احادي الوصلة لترانزستور احادي الوصلة تطبيقات عديدة منها استعماله في دوائر قدح الثايروسترات ، المذبذبات اللاجيبية ، مذبذب سن المنشار ، متحكمات الطور ، ودوائر التوقيت .

سؤال 1: ماهي الميزة التي تجمع عائلة الثايروسترات ، واذكر اسم وتركيب ورمز كل واحد من هذه العائلة ؟

سؤال 2: ما الذي يجمع بين عائلة الثايروسترات والترانزستور احادي الوصلة؟

سؤال 3: اشرح مع الرسم منحنى الخواص لثنائي شوكلي.

سؤال 4: قارن بين الداياك والتراياك من حيث التركيب والرمز ومنحنى الخواص