السيطرة على الأحياء المجهرية

Control microorganisms by physical and chemical agents

تعني السيطرة على الأحياء المجهرية خفض أعدادها أو شل نشاطها ونموها ، ثم القضاء عليها أو أزالتها كلياً او جزئياً وتتم هذه السيطرة بأستخدام أساليب فيزياوية وعوامل كيمياوية متعددة 0 أن الأهداف الرئيسية للسيطرة هي :-

- 1- منع أنتشار الأمراض والعدوى 0
- 2- منع التلوث ونمو الأحياء المجهرية غير المرغوب فيها 0
 - 3- منع تلف المواد بوساطة الأحياء المجهرية وغيرها

تهلك الأحياء المجهرية أو يمنع نموها بالتأثيرات التالية :-

- 1- ضرار لجدار الخلية أو منع تكوين الجدار الخلوى 0
 - 2- خلل في نفاذية الأغشية السايتوبلازمية للخلية 0
- 3- خلل في التركيب الفيزياوي والكيمياوي للبروتين والحوامض النووية في الخلية 0
 - 4- خلل في النشاط الأنزيمي الخلوي والتفاعلات الأيضية 0
 - 5- منع تصنيع البروتينات والحوامض النووية 0

تعريف بعض المصطلحات المستخدمة في السيطرة 0

- 1- التعقيم Sterilisation وهي عمليات تخليص الجسم أو المادة المراد تعقيمها من كافة أشكال الحياة وهي عملية مطلقة 100% وليست نسبية 0
- 2- التطهير Disinfection وهي عملية قتل أو التخلص من الأحياء المجهرية القادرة على أحداث أصابة مرضية والمادة التي تحقق العملية تدعى Disinfection أما مصطلح Antiseptic فهي المادة المطهرة المستخدمة في تطهير الأجسام الحية بينما Disinfection تستخدم للمواد المطهرة المستخدمة لتطهير الأجسام غير الحية 0
- 3- أما مصطلح microbicidal أو Germicidal فهي المادة التي لها القدرة على قتل الأحياء المجهرية الحية عموماً وأنواعها Bactericidal للبكتريا و Fungicidal للفطريات و Viricidal للفايروسات 0
- 4- أما مصطلح Microbstatic فهو العامل الموقف لنمو الجراثيم عموماً دون قتلها ومنها Bacteriostayic للبكتريا و Jacteriostayic للفطريات 0

العوامل التي تؤثر في فعالية أساليب السيطرة على الأحياء المجهرية:

1- طبيعة المادة المراد تعقيمها أو تطهيرها: تؤثر الخصائص الفيزياوية والكيمياوية للمادة أو الجسم الذي يحتوي على الأحياء المجهرية على معدل وكفاءة عملية القتل، ولقد وجد أن تأثير الحرارة العالية المميتة للأحياء المجهرية في الوسط الحامضي أكثر من الوسط القاعدي، وكلما كان الوسط متجانس كانت نفاذية عوامل السيطرة أكثر وبالتالي يكون هلاكها أسرع، كما أن تركيز المركبات الكربوهيدراتية أو البروتينية والدهنية في الوسط الزرعي يزيد من مقاومة الأحياء المجهرية وبذلك فأن وجود كميات كبيرة من المواد العضوية الملوثة في الجسم المراد تطهيره تقلل كثيراً من كفاءة العملية 0

- 2- نوع الأحياء المجهرية تتباين حساسية أنواع الأحياء المختلفة تبايناً كبيراً تجاه عوامل السيطرة الفيزياوية والكيمياوية المختلفة فمثلاً سبورات البكتريا أكثر مقاومة من الخلايا الخضرية كما تتباين مقاومة أنواع الخلايا الخضرية تجاه وسائل السيطرة المختلفة 0
- 5- الحالة الفسلجية للخلايا الميكروبية: أن الوضع الفسلجي لخلايا الأحياء المجهرية يؤثر في مقاومتها لعوامل السيطرة فالخلايا الفتية أكثر حساسية من الخلايا القديمة والخلايا في طور الركود أقل حساسية من الخلايا في المرحلة اللوغاريتمية وهذه أكثر حساسية من التي في طور الثبات 0
- 4- درجة الحرارة: تزداد فاعلية السيطرة كلما أزدادت درجة الحرارة وتكون العلاقة عكسية بين درجة الحرارة والوقت اللازم القتل 0
- 5- التركيز: تتناسب فاعلية المواد المطهرة طردياً مع تركيزها وهذه العلاقة ليست مطلقة وأنما محصورة ضمن حدود معينة من التركيز 0
- 6- الماء: يعمل الماء على تخثير البروتينات بواسطة الحرارة وينطبق هذا على تخثر البروتين بواسطة العوامل الكيمياوية ويعزى مقاومة السبورات البكتيرية للحرارة والعوامل الكيمياوية الى جفاف السبورات 0

عوامل السيطرة على الأحياء المجهرية بالوسائل الفيزياوية:

من أهم المعاملات الفيزياوية في السيطرة هي درجات الحرارة العالية والواطئة والتجفيف والضغط الأزموزي والأشعاع والترشيح والصوت:

أولاً: درجات الحرارة العالية:

تقسم الأحياء المجهرية تبعاً لمدى درجات الحرارة التي تتمو فيها على ثلاث مجموعات:

- 1- المجموعة التي تتمو بدرجات حرارة واطئة (صفر 15)م Psychrophiles
 - 0 Mesophiles م (40-20) م المجموعة التي تتمو بدرجات حرارة أعتيادية (20-40-40
 - 0 Thermophiles م (70 –45) م عالية (45 45) م 3

كل مجموعة من هذه المجموعات الثلاث لها درجة حرارة نمو مثلى ودنيا وعليا وأن أرتفاع درجة الحرارة أكثر من العليا تسبب هلاكها وأنخفاض درجة الحرارة أوطأ من الدنيا تسبب توقف نموها 0 تأثير الحارة الرطبة والجافة في هلاك الأحياء المجهرية توثر نسبة الرطوبة تأثيراً كبيراً في مقاومة هلاك الأحياء المجهرية تحت درجات الحرارة المختلفة ، حيث تؤدي الحارة العالية الرطبة إلى تغيير طبيعة البروتين للخلايا ، أما تأثير الحارة الجافة فيكون عن طريق أكسدة المكونات الكيمياوية للخلايا والحرارة الرطبة أكثر فعالية من الحارة الجافة فقد وجد أن درجة حرارة رطبة 120 م تقضي على سبورات البكتريا بحدود (15-20) دقيقة في حين يتطلب القضاء على هذه السبورات ساعتين عند أستخدام الحرارة الجافة ، كما أن سبورات البكتريا مقاومة للحرارة أكثر من الخلايا الخضرية وذلك لقلة النشاط المائي (AW) في السبورات 0

أستخدام درجات الحرارة الرطبة:

- 1- درجات حرارة أقل من (100) م وتسمى هذه المعاملة بالبسترة تبعاً لباستور التي أستبطها ، وفيها تعرض بعض المواد الغذائية كالحليب والمشروبات الكحولية والبيرة والعصائر الى درجة (63–65)م ولمدة نصف ساعة للقضاء على الأحياء المجهرية الخضرية وخاصة البكتريا الممرضة ، لاتعد المواد المبسترة معقمة لذا تحفظ في مكان بارد لتفادى تلفها 0
- 2- درجة حرارة غليان الماء 100م تستخدم درجة حرارة الغليان للتخلص من كافة خلايا البكتريا الخضرية وسبورات الأعفان والخمائر والفايروسات والطفيليات ولكنها لاتقضي على بعض سبورات البكتريا للحرارة 0 تستخدم هذه الطريقة في حفظ الأغذية ذات الحموضة العالية والحاوية على نسب عالية من الأملاح أو السكريات 0

- 5- درجة حرارة بخار الماء 100م تسمى هذه المعاملة بالتعقيم المجزأ أو التندلة تبعاً للعالم تندل التي أبنكرها حيث يستخدم بخار الماء بدرجة حرارة 100م لتعقيم بعض الاوساط الزرعية المايكروبية والمواد الكيمياوية والبايولوجية والتي يتغير تركيبها عند تعريضها لدرجة حرارة أكثر من 100م، وفيها تعرض المواد للبخار على درجة 100م لمدة معينة يومياً ولمدة ثلاثة أيام ويتخلل هذه المعاملات مدة حضن بواسطتها بسمح لنمو البكتيريا المقاومة للحرارة إلى خلايا خضرية حيث ما تلبث هذه الخلايا أن تهلك أثناء معاملة الحارة التالية وهكذا يتم التخلص من جميع أشكال الخلايا 0
- 4- درجة حرارة أعلى من 100م تستخدم هذه المعاملة الحرارية بوساطة بخار الماء المضغوط وأن أرتفاع الضغط يسبب أرتفاع درجة الحرارة وذلك بأستخدام أجهزة الموصدة autoclave وتعد هذه المعاملة أفضل وسيلة وأكثر المعاملات الحرارية كفاءة للتعقيم وتستخدم المعاملة الحرارية بدرجة 121م وضغط 1 جو ولمدة 15-20 دقيقة لضمان القضاء على سبورات البكتيريا المقاومة للحرارة 0

أستخدام الحرارة الجافة:

- 1- التعقيم بالهواء الساخن: يستخدم لهذا الغرض أجهزة وأفران كهربائية ويتطلب درجة حرارة ووقت أكثر في تعقيم المقارنة بالحرارة الرطبة حيث يتطلب درجة حرارة 160م ولمدة ساعتين لتعقيم الزجاجيات المختبرية الجراحية 0
 - 2- الحرق باللهب: وفيها تعرض المواد مباشرة للهب ويتم تعقيم الناقل Loop أو الملقط والمشرط لغرض التعقيم 0
 تأثير الحرارة في هلاك الأحياء المجهرية:

أن المعاملة الحرارية التي تعبر عن علاقة الوقت والحرارة والتي تستهدف القضاء على عدد معين من الأحياء المجهرية تحت ظروف تجريبية معينة يعبر عنها ببيانات وقت الهلاك الحراري Thermal death time أي الوقت اللازم لهلاك عدد معين من خلايا البكتيريا الحية أو سبوراتها تحت درجة حرارة معينة وظروف أخرى ثابتة وهذه لها أهمية تطبيقية في تعقيم الأغذية المعلبة والأوساط الزرعية المختبرية 0

(ثانيا) درجات الحرارة الواطئة:

تعمل درجات الحرارة دون درجات الحرارة المثلى للأحياء المجهرية على تثبيط الأعمال الأيضية في الخلايا لذا فأن درجات الحرارة الواطئة تستخدم في حفظ مزارع الأحياء المجهرية ، لذا لا يمكن أعتبار الحرارة الواطئة وسيلة تعقيم ولكنها وسيلو لوقف النشاط الأيضي للأحياء المجهرية وذلك بسبب الجفاف الذي ينتج عن طريق تجمد الماء الحر وعدم توفر الرطوبة الضرورية لحيوية الأحياء المجهرية في حين تستخدم درجات الحرارة العالية وسيلة على الأحياء المجهرية وكلا الوسيلتان تستخدمان في حفظ الأغذية

(ثالثاً) التجويف : Drying

بما أن الفعاليات الحيوية التي تقوم بها خلايا الأحياء المجهرية لا يمكن أن تجري إلا بوجود الماء ، لذا فأن التخلص من الماء بواسطة التجفيف يكون له الأثر الكبير في الحد من الفعاليات الحيوية ومن ثم موت الخلايا ، وقد وجد أن بعض أنواع البكتيريا السالبة لصبغة كرام مثل بكتيريا تكون حساسة جداً للتجفيق حيث تموت بعد تجفيفها بساعات بينما بكتيريا اسل تقاوم الجفاف لعدة أسابيع أما سبورات البكتيريا فتبقى حية إلى ما لانهاية بعد تجفيفها ، لذا فأنها تستخدم في حفظ الأغذية 0

(رابعاً) الأشعاع :

هنالك نوعان من الأشعة: Radiation

1- الأشعة ذات الموجات القصيرة مثل أشعة أكس وكاما وتدعى بالأشعة المؤينة وهذه الأشعة عندما تصطدم بالماء تتحرر الجذور H, OH وتتحد بسرعة مع البروتين والدنا DNA مؤدية بذلك الى موت الخلية وتعتبر السبورات مقاومة للقتل بالأشعة مقارنة بالخلايا الخضرية وذلك لأحتوائها على كمية من الماء ، وتستعمل أشعة أكس في السيطرة على التلوث المايكروبي في الغذاء والمضادات الحيوية والأدوات البلاستيكية والأدوات الجراحية التي لا يمكن تعقيمها بالحرارة 0

2- الأشعة الفوق البنفسجية Ultra violate وهذه تعتبر قاتلة أيضاً للمايكروبات حيث أنها تمتص من قبل البروتين والد أن أي DNA ويؤدي الى تحطيمها بسهولة ، تستخدم هذه الأشعة في تعقيم غرف العمليات والمختبرات والمايكروبايولوجية كما أنها لا تنفذ من الزجاج والبلاستك 0

(خامساً) الصوت: Sound

يمكن أستخدام الموجات الفوق صوتية والتي لا يمكن سماعها من قبل الأنسان لغرض القضاء على الأحياء المجهرية وذلك للتأثير المباشر في تخثير بوتينات الخلية أضافة إلى تحطيم الخلية نفسها وأستعملها الباحثون لغرض الحصول على المكونات الداخلية للخلايا بعد أن تعرض للموجات فوق الصوتية لغرض تحطيمها 0

Osmotic Pressure : سادسا) الغضط الأزموزب)

وهو عملية الأنتشار التي تجري خلال غشاء شبه ناضج يفصل بين محلولين على مذاب بتركيزين مختلفين حيث يحاول هذان المحلولان أن يتساويا بالتركيز على جهتي الغشاء الفاصل ، أن تغير الضغط الأزموزي داخل الخلية في حالة وضعها في وسط أقل تركيز حيث ينفذ الماء إليها وتمتلئ ويتكون ضغط أزموزي داخل الخلية ، وقد يحدث أنكماش وهو عكس الحالة الأولى نتيجة لخروج الماء من الخلية ، وهاتين الحالتين تؤدي الى تتشيط العمليات الأيضية ويمكن الأستفادة منها في حفظ الأغذية 0 (سابعا) شدة التوتر السطحي : Surface tension

أن السطح البيني أو الحدود الفاصلة بين سائل وغاز تتميز بتجاذب الجزيئات على سطح السائل وفوقها الهواء وتسحبها قوة إلى داخل السائل أسفلها ، في حين تتجاذب الجزيئات الأخرى في داخل السائل فيما بينها بقوة متساوية من كافة الأتجاهات ، تسمى هذه الظاهرة بالشد السطحي كما تحدث قوة شد سطحي بين المواد الصلبة والسائل أو بين سائلين لا يمتزجان ، أ، التغيرات التي تحدث في الشد السطحي تعمل على تغيير نفاذية الأغشية السايتوبلازمية في الخلايا مم يسبب تحطيم للخلية 0 (ثامنا) الترشيح Fiteration

استخدمت المرشحات لغرض ترشيح أنواع السوائل والغازات بهدف إزالة الأحياء المجهرية منها ووسيلة للتعقيم عندما لا يمكن أستخدام وسائل تعقيم أخرى وأن معدل قطر الثقوب للمرشحات البكتريولوجية مابين (1-45، 0) مايكرون ومن أنواعها:

- 1- أقراص الأسبستوس التي تستعمل في مرشحات OSeiTze
- 2- الداياتوم المصنعة من الطحالب البحرية والتي تحتوي جدرانها على السليكا وتستعمل في مرشحات بريكفيلد 0
 - 3- البورسلين وتستعمل في مرشحات جمبرلين 0
 - 0Sintered glass الزجاج الملبد −4
 - 5- مرشحات غشاء الترشيح OMembrane Filter
- 6- مرشحات الهواء ذات الكفاءة لغرض الحصول على هواء نقي خالي من الغبار والبكتيريا في المختبرات والعمليات الجراحية 0

السيطرة على الأحياء المجهرية بالوسائل الكيمياوية

أهم المركبات الكيمياوية المضادة للأحياء المجهرية (للمايكروبات)

1- الفينول والمركبات الفينولية: يعتمد تأثير الفينول على تركيزه في قتل خلايا الحياء المجهرية، وفي التراكيز الواطئة يعمل من خلال تأثيره في زيادة نضوحية الغشاء السايتوبلازمي لخلية البكتيريا، وبذلك يتيح الفرصة لكثير من

- المكونات الخلوية للخروج من الخلية 0 أما في التراكيز العالية فأن الفينول يقتل الخلايا الميكروبية عن طريق تخثره للبروتينات الخلوية ، وتكون سبورات البكتيريا والفايروسات أكثر مقاومة من خلايا البكتيريا الخضرية ، تستخدم المحاليل المائية للفينول بتراكيز (2-5%) لتطهير بعض المواد مثل القشع والأدرار والغائط وبعض الآلات الطبية الملوثة ، ويستخدم بتركيز 1% لتطهير البشرة0
- 2- الكحولات: تتصف هذه المواد بقابليتها على قتل المايكروبات وتزداد فعاليتها بأزدياد الوزن الجزئي كلما أرتفعت بالسلسلة أبتداء من الكحول المثيلي وحتى الوصول الى الكحول الأميلي الخماسي الكربون 0 يكون تأثير الكحول المضاد للمايكروبات عن طريق تغيير طبيعة البروتين الكيمياوي لخلايا الأحياء المجهرية ، وكما أن الكحول مذيب الدهنيات وبذلك يكون جدار الخلايا المايكروبية من المركبات الدهنية وهذا يزيد نضوجيتها للمضادات الميكروبية المستعملة 0 أن أعلى فعالية للقتل يمكن الحصول عليها عند أستعمال الكحولات بتراكيز تتراوح بين (50-80) % ويصبح غير مؤثر عندما يستعمل بتركيز اقل من 50% وأكثر من 80% وذلك لفشله في دخوله للخليه المايكروبية لغرض تخثير البروتينات وقتل الخلية 0 تعد الكحول من المطهرات القاتلة لأنواع متعددة من البكتريا بضمنها بكتريا السل ، ولكنها لا يؤثر على سبورات البكتيريا وتأثيرها قليل على الفايروسات 0
- 5- المعادن الثقيلة: تعتبر الفضة من أكثر المعادن الثقيلة تأثير في قتل المايكروبات والبكتريا بالذات ، تعمل هذه المعادن على الأتحاد مع بروتينات الخلية مكونة أملاح ضعيفة الفصل والتفكيك والتي تؤثر على تثبيط الفعاليات الحيوية للخلية او تحطيمها 0 يستخدم الزئبق بصورة غير عضوية ويتمثل بمركب كلوريد الزئبق ، اوكسيد الزئبق او بصورة عضوية ، وتستخدم نترات الفضة بتركيز 1% في قطرات العين للحد من اصابة عيون المواليد الجدد ببكتريا مرض السيلان 0
- 4- الأصبغ: Dyes من الاصباغ المستعملة في تصبيغ البكتيريا منها صبغة البنفسج البلوري وهذه تضاف الى وسط الماكونكي لمن نمو البكتيريا الموجبة لصبغة كرام وكذلك صبغة اخضر الملاكايت التي تمنع نمو بكتيريا والعنقوديات والسالمونيلا وبكتيريا القولون ، كما ان صبغة المثيل البنفسجي تمنع نمو المسبحيات وبكتيريا الخناق ، اما السبورات البكتيرية في مقاومة جداً للصبغات 0
- 5- الحوامض Acids: للأحياء المجهرية رقم هيدروجيني pH معين يعد الأمثل لنموها ، وهو يتراوح بحدود ال 7 بالنسبة للبكتيريا ، في حين ان الفطريات لا يناسبها الا الاوساط التي تميل الى الحموضة ، وعند تغير الرقم الهيدروجيني للبيئة فيؤدي الى توقف الفعاليات الايضية وبالتالي تموت الخلايا تستخدم الاحماض العضوية التي درجة تحللها اقل بكثير من درجة تحلل الحوامض اللا عضوية في معامل الأغذية والكثير من المستحضرات الصيدلانية ، كمادة حافظة تثبط نمو البكتيريا والفطريات ، واهمها حامض الخليك والبنزويك والسوربيك 0
- 6- الالدهايدات Aldehydes: في هذه المجموعة يستخدم الفورمالدهايد والكلوترالدهايد يستعمل الفورمالدهايد على شكل محلول مائي يدعى الفورمالين بتركيز يتراوح (3-8%) للقضاء على البكتيريا وسبوراتها والفطريات والفايروسات وذلك من خلال اتحاده وتفاعله مع البروتينات 0 والحوامض النووية ، ويستخدم في حفظ العينات التشريحية ، ويجب الحذر من استعماله لكونه مخدش للانسجة والعيون 0 اما الكلوترالدهايد فيستخدم محلوله المائي بتركيز 2% في تعقيم المواد غير المقاومة للحرارة 0
- 7- المنظفات والصابون: تعمل جميع انواعها على التقليل من شدة التوتر السطحي، حيث انها مواد مستحلبة تعمل على اذابة الدهون وتحويلها الى قطرات صغيرة او على شكل رغوة وهذه تساعد على انجراف الاحياء المجهرية ضمن هذه القطيرات ثم ازالتها عند الغسل بالماء العادي، كما ان تأثير الصابون قيد يمتد الى دهونات الخلية المايكروبية مما يؤدي الى زيادة نضوحية الخلايا وبالتالى موتها، يقتل الصابون بكتريا مرض السفلس وذات الرئة

- وبعض البكتيريا المسبحية ومكورات السحايا والسيلان وعصيات الخناق وبكتيريا السل وتزداد هذه القابلية كلما زادت درجة الحرارة ، لذا فأن غسل اليدين بالصابون والماء الحار يقضى على الكثير من الاحياء المجهرية الممرضة 0
- 8- الهالوجينات ومشتقاتها: يعد الكلور واليود من اكثر مواد هذه المجموعة استعمالا 0 فالكلور مثلا يستعمل على شكل غاز في جميع محطات اسالة الماء لغرض تطهير المياه وجعلها صالحة للشرب بتركيز 1 بالمليون 0 ومن مشتقاته هايبو كلورات الصوديوم بتركيز (5–12%) المستخدمة في المنازل كمادة قاصرة وقاتلة للمايكروبات في معامل الالبان والاغذية، اما الكلورامين فيمتاز بثبوتيه واطالة فترة انتاج الكلور مقارنة بالهايبوكلورات وهو مركب غير مخدش لذلك يستخدم في تطهير وتضميد الجروح 0

يعود الفعل القاتل للميكروبات للكلور ومركباته الى تكوين حامض الهايبوكلوروز عند اذابة هذه المواد في الماء كما في المعادلة $3CL_2 + 3H_2O \rightarrow 5HCL + HCL_3$:

ويتحلل حامض الهايبوكلورز هذا بسرعة بسبب عدم استقراريته ليعطي الاوكسجين الذري O المؤكسد الشديد والذي يقوم بأكسدة محتويات الخلية ويقضي عليها ، اما الكلور الحر فأنه يتحد مع بروتينات الخلية الميكروبية وأنزيماتها ويبطل عملها O يعد اليود من اقدم المركبات الفعالة ضد الميكروبات وهو لا يذوب بالماء بل يذوب بسهولة بالكحول ، واليود مادة مؤكسدة تعمل على ابطال فعالية البروتينات التي تحمل مجاميع SH كما يتحد مع التايروسين الذي يدخل في تركيب الانزيمات وغيرها من يروتينات الخلية O

- 9- الغازات: يتطلب احياناً القيام بتعقيم بعض المعدات التي تؤثر بالحرارة والرطوبة، بالغازات مثل الأدوات البلاستيكية وأهم هذه الغازات 0
- 1- أوكسيد الأثيلين: يكون هذا المركب سائلاً بدرجة حرارة 9، 10 ويصبح غاز فوق هذه الدرجة ، وهو قابل للأشتعال لذا يخلط co2 معه للسيطره عند تسويقه تجارياً 0 ويعتبر مضاداً جداً للميكروبات بضمنها السبورات 0 يستخدم في تعقيم المعدات التي لايمكن تعقيمها بدرجات الحرارة العالية ، ويعمل هذا الغاز على أستبدال ذرة الهيدروجين بجذر الكيلي في المركبات العضوية في البروتوبلازم وبذلك تموت الخلية ، ومن مساوئ أستخداماته يكون تأثيره بطيئاً في الأحياء المجهرية 0
- 2- بيتا بروبيولاكتون: يكون هذا المركب سائلا تحت درجة الحرارة الاعتيادية ودرجة غليانه 163م وهو لايشتعل او ينفجر على عكس اوكسيد الاثيلين 0 وهو يقتل معظم الاحياء المجهرية بضمنها السبورات البكتيرية وبذلك يعد من المعقمات الجيدة، إلا ان نفاذيته ليست جيدة داخل الانسجة، لذا يستخدم في تعقيم الغرف الكبيرة والبنايات 0 من مساوئه بأنه يسبب السرطان 0

مقدمة في علم الاحياء المجهرية :-

هو احد فروع علوم الحياة الذي يهتم بدراسة مجموعة من الكائنات التي تتميز بصغر حجمها والتي لا ترى بالعين المجردة لذلك يجب استعمال المجهر لرؤيتها (microscopic)، ومن هنا سميت هذه المجموعة من الكائنات بالاحياء المجهرية والتي يطلق عليها ايضا بالكائنات الدقيقة ، وتشمل كل من البكتريا Bacteria والفطريات Fungi والطفيليات Protozoa والفايروسات Viruses والطحالب Algae والديدان المتطفلة Protozoa ، ويذكر ان عين الانسان لاتستطيع تميز الاجسام التي تقل قطرها عن ملم واحد تقريبا ومن هنا يجب تكبير صور هذه الكائنات باستخدام المجهر حتى تصبح ظاهرة للعيان . يشمل دراسة علم الاحياء المجهرية من الناحية المظهرية والتركيبة وطريقة التكاثر والنواحي الموجودة وتصنيفها ووراثتها وتوزيعها في الطبيعة وعلاقتها مع بعضها البعض ومع غيرها من الكائنات الاخرى الموجودة في الطبيعة وقابليتها على احداث التغيرات الفيزيائية والكيميائية في الطبيعة.

تتباين احجام وتراكيب هذه الكائنات المجهرية باختلاف مجاميعها وكما يلى:

Viruses الفايروسات	0.01-0.2 μm	cm	10 mm
البكتريا Bacteria	0.2-5 μm	mm	10 decimeter
Fungi الفطريات	2-4 μm	decimeter	100 μicron
RBC كريات الدم الحمراء	7-8 μm	1 mm	10³ μicron
		1 μ	10 ⁴ Angstrom
		40° A	4 nm(nanometer)
			* * * * * * * * *

اهمية الاحياء المجهرية

تتواجد الاحياء المجهرية في كل مكان ، على سطح الارض وفي القطب المنجمد والمحيطات والبحار وعلى اجسام النباتات والحيوانات. ولصغر حجمها تتواجد باعداد كبيرة وتعيش في اماكن لاتستطيع احياء اخرى العيش بها ، لذلك فانها تلعب دورا اساسيا في الحياة.

ترجع اهمية الاحياء المجهرية للنظام البيئي بكونها اول الكائنات الحية في مجال البناء الضوئي photosynthesis وقبل ظهور النباتات. ويشكل البناء الضوئي من قبل الاحياء المجهرية (متظمنة الطحالب) اكثر من 50% من التركيب الضوئي على سطح الارض وبهذا تساهم في انتاج الجزء الاكبر من الاوكسجين للغلاف الجوي. من العمليات المهمة الاخرى التي تحافظ على الفعاليات الحيوية على سطح الارض هي التحلل اوالتعنن decomposition حيث تتظمن عملية التحلل تكسر المواد الميتة والفضلات الى مركبات بسيطة والعودة بها الى دورة الحياة الطبيعية مما يجعلها مهمة للحفاظ على بيئة الهواء والتربة والماء ، تقوم الاحياء المجهرية بعملية تدوير المغنيات nutrient recycling . وتستخدم الاحياء المجهرية في

معالجة المشاكل البيئية والزراعية والطبية ومنها: في مجال التكنلوجيا الحيوية biotechnology حيث تدخل في صناعة الغذاء والدواء، وفي مجال الهندسة الوراثية genetic engineering حيث تساهم في اعادة ارتباط الـ DNA لتغيير المنتجات ونمط الحياة، والمعالجة البايولوجية Bioremediation وهي استخدام المايكروبات للتخلص من الملوثات والفضلات في الطبيعة. وتوثر المكروبات على صحة الانسان حيث يوجد ما يقارب 2000 مايكروب يسبب الامراض ، مما يساهم في نسبة المخاطر للكائنات الحية المتقدمة.

نشؤ الاحياء المجهرية

يرجع نشؤ البكتريا استنادا الى الاحفوريات المسجلة الى 3.5 بليون سنة ويعود تاريخ حقيقية النواة الى 1.8 بليون سنة. النشؤ الاول لحقيقية النواة في الخط التطوري شمل الفطريات والنباتات ومتعددة الخلايا وبعدها الانسان (الشكل 1).

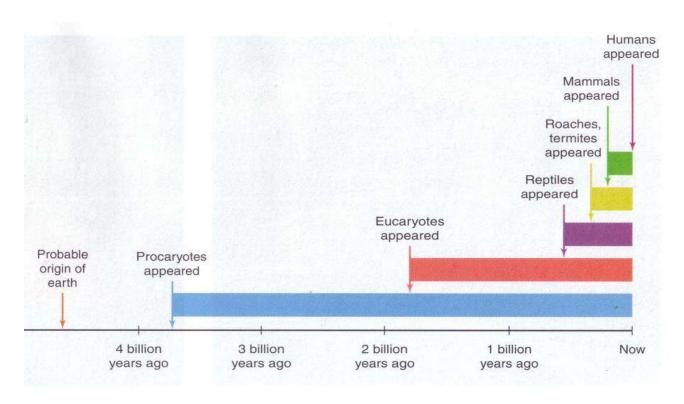
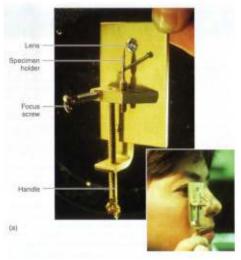
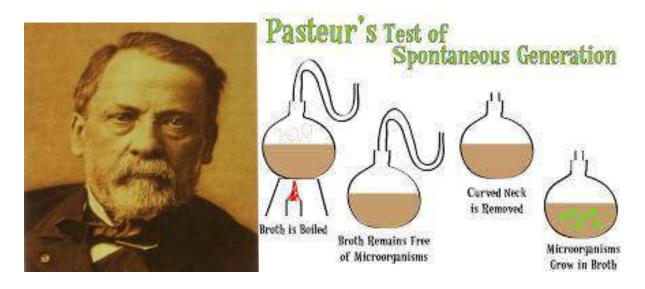



Fig. 1 Evolutionary timeline. The first bacteria appeared approximately 3.5 billion years ago. They were the only form of life for half of the earth's history

اكتشاف الاحياء المجهرية

يرتبط اكتشاف الاحياء المجهرية بتطور المجهر اول من صمم نواة للمجهر المركب صانعوا النظارات في هولندا زكريا يرتبط اكتشاف الاحياء المجهرية بتطور المجهر المجهر الملكب عام 1590 حيث وجدوا عند وضع عدستين محدبة في يانسون وجونز Galielo عدمتين محدبة في النبوب معدني نحصل على قوة تكبير للاشياء وفي عام 1624 صنع العالم الايطالي Galielo بصورة علمية الـ Microscope و Microscope.

في عام 1658 صنع العالم Athanasius Kricher المجهر الطبي Medical Microscopy وجود بعض الدلائل في التاريخ البشري من ان بعض المشاكل الصحية او الامراض التي يتعرض لها الانسان تعود الى كاننات غير مرئية الا ان لم يتمكن احد من رؤية هذه الكاننات الا في عام 1675اذ قام التاجر الهولندي Anton van كاننات غير مرئية الا ان لم يتمكن احد من رؤية هذه الكاننات الا في عام 1675اذ قام التاجر الهولندي leeuwenhoek بفحص قطرة ماء كبيرة باستعمال عدسة زجاجية صقلها بمهارة اذ كان مولع بصناعة العدسات. وقد بلغت قوة التكبير لمجهر لفينهوك بين الى 50 الى 300 مرة لذلك يعتبر مجهر ليفنهوك اكثر تطورا مما سبقه الاخرون . يعتبر العالم الهولندي Anton van leeuwenhoek المكتشف الاول لعالم الاحياء المجهرية وخاصة البكتريا لذا يعتبرالاب للحياء المجهرية وخاصة البكتريا والابتدائيات) تحت المجهر لوصف المايكروبات (البكتريا والابتدائيات) تحت المجهر ووصف الاشكال المختلفة للبكتريا (عصوية bacilli وكروية (cocci)


Antonie van Leeuwenhoek (1632-1723)

Leeuwenhoek's Microscope

اصل الحياة والنظريات الخاصة باصل الحياة

لقد كان الاعتقاد السائد ان الكاننات الحية تنشأ من اصل غير حي وهذا ما يعرف بالنشوء الذاتي spontaneous وحسب هذا الاعتقاد تنشأ الضفادع والفئران والنحل وغيرها من الحيوانات من الطين والجثث المتفسخة وماء المطر اوالضباب. واعتقد فريق اخر من العلماء في تلك الحقبة من الزمن بان الاحياء الراقية من نبات او حيوان لاتتوالد الا من كاننات حية تشبة ابويها.

ساهم عدد من العلماء في دحض نظرية النشوء الذاتي، ومنها تجارب الغليان التي اجراها العالم لويس باستور، بغلي المرق المغذي في وعاء ذوعنق ضيق لقتل كل اشكال الحياة ثم اغلاقه باحكام بسداد قطني لمنع دخول الهواء الا انه اصبح عكراً بعد ازالة السداد بعد فترة زمنية محددة. ثم توغل باستور عمقا في هذه التجارب، فاستعمل دورقا برقبة طويلة منحنية حيث يتيح هذا الدورق مرور الهواء بحرية من خلال رقبته، وعند تسخين الدورق لمدة مناسبة ثم تركها لم يلاحظ باستور اي نمو الا بعد كسر رقبة الدورق حيث يتحول المرق الى شكل مضبب بعد ان كان رائقا وذلك خلال بضعة ايام، وعند ذلك استنتج ان مصدر الكائنات ليست النماذج نفسها وانما جاءت اليها من الهواء ولهذا يعتبر مؤسس علم البكتريا.

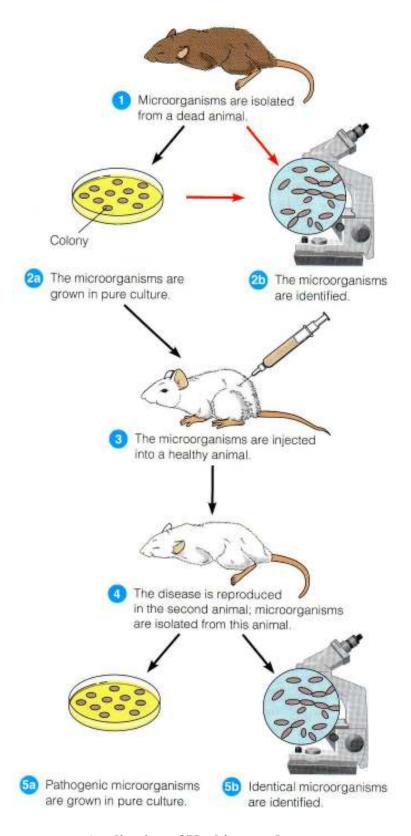
Louis Pasteur (1822-1895)

Pasteur's Experiment

من منجزات العالم Pasteur من منجزات العالم

- 1- اقترح طريقة لحفظ الخمور والحليب تسمى البسترة Pasteurization .
- 2- قام بتجارب التخمير والذي اظهر ان هناك احياء مجهرية لا تستطيع العيش بوجود الهواء اطلق عليها الاحياء اللاهوائية Anaerobic .
- 3- وصف بكتريا المكورات العنقودية Staphylococcus والبكتريا المسبحية Streptococcus والبكتريا المسببة للموت الغازي gas gangrene ، وبين ان الميكروبات موجودة في الهواء.
- 4- ادخال مبدأ السمية (Virulence) والاضعاف (Attenuation) حيث اوضح ان بامكان المزرعة البكتيرية المضعفة من ان تعمل كلقاح اي انها تمنح الانسان مناعة ضد اي اصابة لاحقة بالسلالات السامة لنفس النوع البكتيري.
 - 5- طور علاج لفايروس داء الكلب rabies.

6- ان عمليات الغليان لمدة ساعة واحدة تكفي لقتل الاحياء المجهرية (الخضرية).الا ان هذا لم يكن صحيح اذ ان مؤيدي النظرية الذاتية طعنوا في دقة تجارب لويس (في الواقع ان الاشكال الخضرية للاحياء المجهرية تقتل خلال ساعة من الغليان الا ان السبورات لا تقتل).


وخلال هذه المدة جاء العالم البريطاني John tyndal (1820-1893) اول من وصف الاشكال الراكدة للبكتريا (السبورات) ،اذ انشأ طريقة لتحطيم اكثر اشكال البكتريا مقاومة (السبورات) حيث يتم غلي المادة العضوية بصورة متقطعة، وتنمو الابواغ الى خلايا خضرية تقتل بسهولة في الفترة التالية من الغليان وهذه التقنية تسمى Tyndalization.

ومن العلماء الذين خاضوا في بعض جوانب الامراض المعدية هو العالم البكتريولوجي الالماني Robert Koch ومن العلماء الذين خاضوا في بعض جوانب الامراض المعدية هو العالم البكتريولوجي الالماني Robert Koch ومن انجازاته ما يلى:

- 1- وصف طريقة لتحضير المزارع البكتيرية على الاوساط الصلبة عام 1881 باستعمال مادة الـ gelatin
 - 2- نشر مقالاً عن الاصابات الحيوانات المختبرية.
 - 3- اول من صبغ المسحات البكتيرية.
- 4- نشر ابحاثه عن عصيات الجمرة الخبيثة Anthrax وشكلها وطبيعتها المرضية وطريقة الاصابة عام 1876.
 - 5- نشر ابحاثه عن عصيات السل Mycobacterium tuberculosis عام 1882.
 - 6- اكتشف ضمات الكوليرا عام 1883.

تجارب كوخ التقليدية لخصت على شكل فرضية اطلق عليها فرضية كوخ Kock's postulate والتي تعتبر لحد الان الاساس في تشخيص مسببات الامراض وهي تنص:

- 1- على الاحياء المجهرية ان تكون في جسم المريض.
- 2- يتحتم عزل الاحياء المجهرية من الحيوان المريض وتنميتها في مزرعة نقية.
- 3- الاحياء المجهرية المأخوذة من هذه المزرعة النقية يجب ان تحدث نفس المرض عندما تلقح بها حيوان اخرغير مريض.
 - 4- يجب ان يحتوي الحيوان المختبري المصاب على الاحياء المجهرية قيد الدراسة .

Application of Koch's postulates

تصنيف للاحياء المجهرية:

صنفوا العلماء الاحياء الى مجاميع تشترك فيما بينها بصفات وخصائص معينة. قبل اكتشاف الاحياء المجهرية كانت الكائنات الحية تصنف في مملكتين هي الحيوانية والنباتية وكان العامل الاساسي في التصنيف هو عملية البناء الضوئي اذ الكائنات القادرة على القيام بالبناء الضوئي تصنف مع النباتات وماعدها تصنف مع الحيوانات. وبما ان البكتريا لم توضع في مكانها المناسب اذ ان البكتريا ليست من النباتات لان الكثير منها يتحرك حركة انتقالية وليست من الحيوانات لان بعض انواع البكتريا تستطيع استغلال الطاقة الشمسية شأنها شأن النبات لذا وضعت في موقع تصنيفي جديد. في عام 1969 وضع العالم H. R. Whittaker تصنيفا جديدا كان اكثر قبولاً وهو تصنيف يقوم على توزيع الكائنات الحية الى خمس ممالك:

Kindom Plantaeالنباتعالم النباتعالم الحيوانSindom Protistaالكائنات الحية المجهرية حقيقية النواةKindom Moneraالم الكائنات الحية المجهرية بدائية النواةKindom Fungiعالم الفطريات

وتم تعديل التصنيف من قبل Whittaker and L. Margnlis في عام 1978 باضافة المجموعتين الرئيسية: حقيقية النواة Eucaryotes وبدائية النواة Procaryotes.

Superkingdom Procaryotes

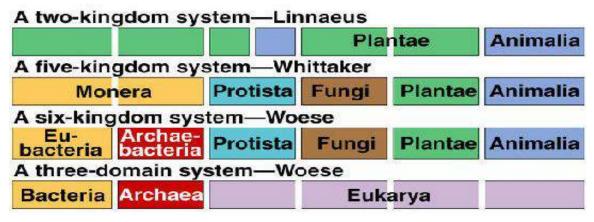
Kindom Monera

Superkingdom Eucaryotes

Kindom Animalia

Kindom Plantae

Kindom Protista


Kindom Fungi

التصنيف الاخير المعتمد حاليا والمنجز في عام 1990 من قبل العالمين كارل هوس Carl Woese وجورج فوكس George Fox اعتمد على التركيب الوراثي للرايبوسومات (16S rRNA genes) وعرف بنظام Woese- Fox system ، حيث يقسم الاحياء الى ثلاث مجاميع سائدة:

بدائية النواة البسيطة والمتواجدة في البيئات المتطرفة 1-Archaea

 2- Bacteria
 بدائية النواة النموذجية

 3- Eucarya
 كل انواع حقيقية النواة

شكل يوضح التصنيف للاحياء

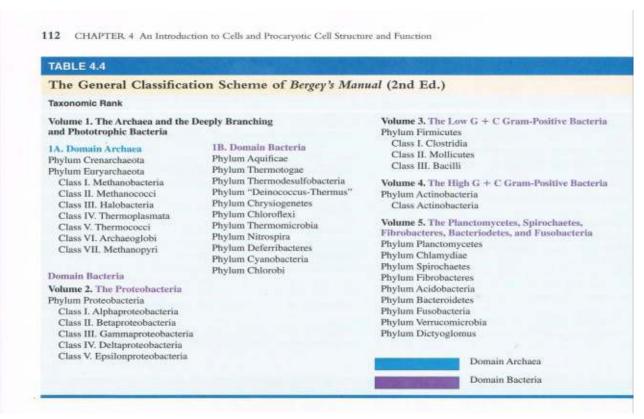
الاسس المعتمدة في التصنيف:

- 1- الفحص المجهري Microscopic Morphology ويتم التشخيص باستخدام المجهر الضوئي المركب لملاحظة شكل وحجم الخلايا، ترتيب الخلايا، تفاعل مع صبغة كرام، تفاعل الصبغة المقاومة للحامض، التراكيب الخاصة وتشمل السبورات والحبيبات الخازنة والكبسولة ويتم استخدام المجهر الالكتروني لدراسة الجدار الخلوي، الاسواط، الاهلاب بانواعها.
- 2- الفحص المظهري Macroscopic Morphology ويشمل مظهر المستعمرات ، قوام المستعمره ، الشكل ، اللون ، سرعة النمو في الوسط السائل ووسط الجيلاتين.
 - 3- Physiological/ Biochemical Characteristics الصفات الكيميوحيوية والفيزيائية
- تتميز الانزيمات البكتيرية والصفات الكيموحيوية بالثبات للنوع البكتيري الواحد. لذا اعتمدت تلك الصفات ضمن انظمة التشخيص الحيوي وتحديد احتياجاتها الغذائية. مثال على ذلك تخمر السكريات، هضم البروتينات، تحلل السكريات المعقدة، قابلية انتاج انزيم الكتاليز catalase، انزيم ومحددات الحياتية. انزيم decarboxylases، والحساسية للمضادات الحياتية.
- تنتج الخلايا البكتيرية اثناء نموها مواد ايضية مختلفة منها انتاج Butyric acid و Acetic acid و Sutyric acid و Butanol من قبل الانواع التابعة لجنس Ropropanol و Butanol و Aceton من قبل الانواع التابعة لجنس Butanol و Propionic من قبل جنس Propionibacterium خلال عملية التخمير. انتاج انزيم الـ Propionic قبل معظم انواع الجنس Proteus وانتاج انزيم Coagulase من قبل معظم انواع الجنس Proteus وانتاج انزيم الدم الحمراء الدم الحمراء الكامل لكريات الدم الحمراء في الوسط الزرعي).
- 4 التحليل الكيميائي Chemical Analysis ويشمل: الدراسة الكيميائية للتراكيب البكتيرية مثل المركبات الببتيدية في الجدار الخلوي وتركيب الدهون في الغشاء الخلوي.
- 5 عملية تحديد النمط المصلي Serotyping اذ تساعد في تمبيز نوع واحد عن الاخر اضافة الى تميز السلالات ضمن النوع نفسه من خلال اعطاء صورة واضحة عن الفروقات بين التراكيب السطحية للعزلات البكتيرية وذلك من خلال وجود اوغياب المستضد النوعي Specific antigen . مثال على

- ذلك يبلغ عدد الانماط المصلية الى اكثر من 2000 نمط مصلي لبكتريا السالمونيلا. ويعتمد التشخيص المصلى للبكتريا في العينات السريرية والاوساط الزرعية.
- التقنية الجزيئية والوراثية في التصنيف Genetic and Molecular Analysis من الطرق الحديثة في طرق التصنيف هي محاولات المقارنة للمعلومات الوراثية بمختلف مجاميع الكائنات بصورة مستقلة. مثال على ذلك ان درجة التشابه في تسلسل او تعاقب القواعد النتروجينية للـ DNA لخليتين بكتيريتين تعد قياساً لعلاقاتها اذ كلما تباعد تتابع قاعدة DNA كلما تباعدت الكائنات بتطورها. ويعتمد هذا التصنيف على:
- نسبة القاعدة الناتروجينية الكوانين والسايتوسين G-C base composition يتغير المقدار السبي لازواج القواعد كل من G+C مقارنتا بالقاعدة A+Tبصورة كبيرة في ما بين مختلف الكائنات وان هذا التغيرات في تركيب القواعد ذات قيمة هامة للتصنيف اذ يحتوي DNA بكتريا E.coli على GC %50 في حين ان DNA بكتريا Bacillus subtillis يحتوي على 60 وهذا يعني ان كلا الكائنين يحتوي على 50 و 60 % من AT على التوالي. ان النسبة المئوية لل G+C في البكتريا تتذبذب مابين 21 75 %.
- DNA analysis using genetic probes يتم تحديد النوع البكتيري species من خلال المواد الوراثية باستخدام قطع من ال DNAو RNA بما يعرف بالـ probes وهو متمم لقطعة محددة من DNA لمايكروب معين. عملية ارتباط probe في المادة الوراثية للبكتريا يحدد صفات التقارب على الساس المكون الوراثي. ويعتمد هذا النوع في تشخيص البكتريا في العينات السريرية والاوساط الزرعية.
- القواعد الناتروجينية الـ RNA الرايبوسومي (rRNA). الرايبوسومات هي وحدة بناء البروتينات في جميع انواع الخلايا، ولذلك يبقى محتوى الاحماض النووية ثابت لفترة طويلة. ولهذا يعتمد تسلسل القواعد الناتروجينية في RNA الرايبوسومي مقياس لدرجة التشابة والاختلاف للمجاميع البكتيرية، وبذلك اعتمدت لتقسيم الاحياء الى ثلاث مجاميع فوق المملكة superkingdoms.

جدول يوضح الصفات العامة لبدائية وحقيقية النواة:

الخصائص المميزة	مجموعة الكائنات الحية	نوع الخلايا
منطقة نووية ، كروموسوم واحد ، جدار خلوي معقد ، سوط ، التبر عم الرايبوسوم 70S الانقسام عن طريق الانشطار الثنائي ، التبر عم	البكتريا، الطحالب الخضراء المزرقة	بدائية النواة Procaryotes
تحاط النواة بغشاء ، تمتلك اكثر من كروموسوم ، البلاستيدات الخضر ، المايتوكوندريا ، اسواط معقدة ، الجدار بسيط التركيب ، جهاز كولجي ، الرايبوسوم 80S في السايتوبلازم،70S في المايتوكوندريا lysosomes ، الشبكة الاندوبلازمية ، الانقسام اختزالي	الطحالب، الابتدائيات، الفطريات، النباتات، الحيوانات الراقية	-حقيقيـة النـواة Eucaryotes


تسمية الكائنات الحية:

لقد اعطى لكل كائن حي اسم معين وقد وضبعت هذه التسمة للاحياء في القرن الثامن عشر حيث قام العالم النباتي السويدي ليناوس Linnaeus عام (1708 – 1707) بأعطاء اسمين لاتينين او لهما الجنس والاخر النوع Species ويطلق على هذه التسمية بالتسمية الثنائية Binomial System وقد اعطيت كافة الاحياء هذه التسمية وتمتاز بكتابة الحرف الاول من الجنس حرفاً كبير والحرف الاول من النوع حرف صغير وان يكتب الاسم بصورة ماثلة. ونتيجة لوجود بعض الاختلافات البسيطة ضمن افراد النوع الواحد ولهذا يقسم النوع الى سلالات Strains او ضروب Varieties مثل:

Escherichia coli Var. K12 Streptococcus lactis Var. maltigenes Bacillus cereus Var. mycoides

تصنيف البكتريا:

اعتمد تصنيف البكتريا على مصدر رئيسي يعمل به في كل انحاء العالم وهو Bergey's Manual of Determinative Bacteriology (1957) ويراجع هذا الكتاب دورياً وعلى مر السنين لمتابعة ما يضاف من خصائص وصفات جديدة تكتشف وتضاف للنوع البكتيري المعين . تعتمد النسخة الاولى (1st edition) لعام 1984 لمصنف Bergey's على صبغة كر ام و التفاعلات الحيوية و هذا يعر ف بطر ق التصنيف المظهرية او الظاهرية phenotypic or phonetic ، وبتطور الطرق المعتمدة في التصنيف صدرت النسخة الثانية لمصنف 2nd) لعام 2004 باعتماده على المعلومات الور اثية للمجاميع البكتيرية ويسمى برکیز (edition . phylogenetic

الجزء الاول (volume 1) يشمل:

- Archaea تضم اقدم مجاميع الخلايا التي ظهرت على وجه الارض قبل 4 بليون سنة. تعيش في البيئات المتطرفة الحارة والمالحة والحامضية ، مثل المجاميع المنتجة للميثان والمجاميع المحبة للحرارة العالية hyperthermophiles والمحبة للبرودة psychrophilic والمجاميع المحبة للملوحة sulfur reducers والمجاميع المختزلة للسلفة sulfur reducers . تعيش هذه الخلايا في قاع البرك والمحيطات والعيون الحارة وتمثل ايضا جزء من الفلورا الطبيعية للفم والامعاء للانسان.
- Bacteria تشمل البكتريا المتفرعة branching والبكتريا الضوئية phototropic. وتشمل السيانوبكتريا cyanobacteria و green sulfur bacteria و وبحيرات وبحيرات المختلفة مثل العيون الكبريتية و وبحيرات المياه العذبة.

الجزء الثاني (volume2) يشمل:

- Proteobacteria تشمل مجاميع مختلفة وهي
- 1- البكتريا السالبة لصبغة كرام، معظمها مهمة من الناحية الطبية، متطفله داخل خلوية اجبارية ، مثل الدين السالبة لصبغة كرام، معظمها مهمة من الناحية الطبية، متطفله داخل خلوية اجبارية ، مثل الدين Rickettsias .
 - 2- العصيات السالبة لصبغة كرام ، مثل Escherichia coli, Salmonella -2
 - 3- الحلزونيات spiral المرضية مثل spiral المرضية مثل
 - . gliding مثل البكتريا المتزحلقة Photosynthetic bacteria -4

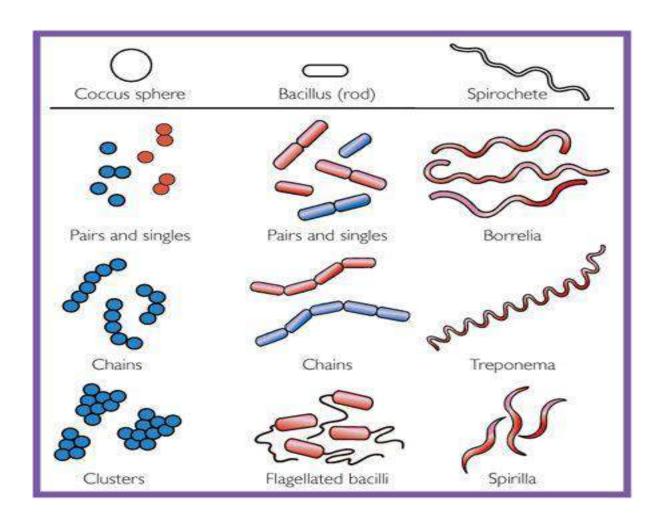
الجزء الثالث (volume3) يشمل:

عائلة Firmicutes البكتريا الموجبة لصبغة كرام ،قليلة القاعدة الناتروجينية G+C (اقل من 50%) و مهمة من الناحية الطبية ومنها

- 1- البكتريا العصوية المكونة للسبورات مثل Clostridium, Bacillus .
 - 2- المكورات مثل Staphylococcus, Streptococcus
 - 3- Mycoplasma تتميز بفقدانها للجدار الخلوي.

الجزء الرابع (volume4) يشمل:

عائلة Actinobacteria البكتريا الموجبة لصبغة كرام ، كثيرة القواعد الناتروجينية G+C (اكثر من 50%) و تضم عدة مجاميع منها


- 1- الخيطية المتفرعة مثل Actinomycetes
- 2- المنتجة للسبورات Streptomycetes (من المجاميع المنتجة للمضادات الحياتية)
 - 3- الجنس Micrococcus ، Mycobacterium ، Corynebacterium ، 3

الجزء الخامس (volume5) يشمل:

9 عوائل متباينة فيما بينها، جميعها سالبة لصبغة كرام وتضم بكتريا مهمة من الناحية الطبية مثل: Chlamydia عوائل متباينة فيما بينها، جميعها سالبة لصبغة كرام وتضم بكتريا مهمة من الناحية الطبية مثل: Treponema المسبب للسفلس.

المجاميع التصنيفية للبكتريا

توجد عدة انظمة للتصنيف منها على اساس اهميتها الطبية ومنها على اساس اختلاف معيشتها البيئية ، بالاضافة الى ما ذكر سابقا اعتمادا على فعالياتها الايضية وتركيبها الوراثي.

المجاميع البكتيرية المهمة طبيا وتشمل:

1- البكتريا الموجبة لصبغة كرام (Firmicutes) ماموجبة لصبغة كرام

أ) مكورات تتجمع على شكل عناقيد او مجاميع ، هوائية والاهوائية اختيارية مثل عائلة:

Family Micrococcaceae: <u>Staphylococcus</u> (members cause boil, skin infection)

تسبب الدمامل الجلدية ، التهابات الجلد

ب) مكورات تتجمع بشكل ازواج او سلاسل، ولاهوائية اختيارية مثل العائلة:

Family Streptococcaceae: <u>Streptococcus</u> (species cause strep throat, dental caries). تسبب تسوس الاسنان ، التهاب البلعوم

ت) مكورات لاهوائية تتجمع بشكل ثنائي، رباعي، مجاميع غير منتظمة مثل العائلة:

Family Peptococcaceae: <u>Peptococcus</u>, <u>Peptopstreptococcus</u> (involved in wound infection). تسبب عدوى الجروح

ث) عصيات مكونة للسبورات مثل عائلة:

تسبب الجمرة الخبيثة (anthrax) تسبب الجمرة الخبيثة

Clostridium (tetanus, gas gangrene, botulism) تسبب تسمم الغذائي ، الكزاز ، الغنغرينا

.

ج) عصيات غير مكونة للسبورات وتشمل:

Family Lactobacillaceae: <u>Lactobacillus</u>, <u>Listeria</u> (milk-borne disease), الأمراض المنقولة بالحليب

. الاحمرار (erysipeloid) .

Family Propionibacteriaceae: <u>Propionibacterium</u> (involved in acne) حب الشباب

Family Corynebacteriaceae: Corynebacterium (diphtheria) الخناق

Family Mycobacteriaceae: Mycobacterium (tuberculosis, leprosy). السل والجذام

Family Nocardiaceae: Nocardia (lung abscesses). خراجات الرئة

Family Actinomycetaceae: <u>Actinomyces (lumpy jaw)</u>, <u>Bifidobacterium</u>

Family Streptomycetaceae: **Streptomyces** (important source of antibiotics).

مصدر للمضادات الحيوية

Gram- Negative Bacteria (Gracilicutes) ما البكتريا السالبة لصبغة كرام -2

أ) مكورات هوائية مثل جنس:

Neisseria (gonorrhea, meningitis) التهاب السحايا ،مرض السيلان , Branhamella

ب) عصيات مكورة Coccobacilli هوائية مثل الجنس:

Moraxella, Acinetobacter

ت) مكورات لاهوائية

Family Veillonellaceae: Veillonella (dental disease). امراض الاسنان

ث) عصیات متنوعة miscellaneous

Brucella (undulant fever) حمى مالطا الحمى , Bordetella (whooping cough) , السعال الديكي , Francisella (tularemia)

ج) عصيات هوائية

Family Pseudomonadaceae: Pseudomonas (pneumonia, burn infection) التهاب الحروق

Miscellaneous: Legionella (legionnaire's disease)

ح) الضمات والعصيات الهوائية او اللاهوائية اختيارية

Family Enterobacteriaceae: <u>Escherichia</u>, <u>Edwardsiella</u>, <u>Citrobacter</u>, <u>Salmonella</u> (typhoid fever) الدين , <u>Shigella</u> (dysentery) , الدين , <u>Klebsiella</u>, <u>Enterobacter</u>, <u>Serratia</u>, <u>Protus</u>, <u>Yersinia</u> (one species causes plague) .

Family Vibronaceae: <u>Vibrio</u> (cholera, food infection) ، مرض الكوليرا , <u>Campylobacte</u>r, Aeromonas.

Miscellaneous genera: <u>Chromobacterium</u>, <u>Flavobacteriu</u>m, <u>Haemophilus</u> (meningitis) , <u>Pasteurella</u>, <u>Cardiobacterium</u>, <u>Streptobacillus</u>.

خ) عصيات لاهوائية

Family Bacteroidaceae: <u>Bacteroides</u>, <u>Fusobacterium</u> (anaerobic wound and dental infections) التهاب الاسنان والتهابات الجروح اللاهوائية.

د) الحلزونيات والبكتريا المنحنية

Family Spirochaetaceae: <u>Treponema</u> (syphilis) السفلس , <u>Borrelia</u> (Lyme disease) التهابات الرئه , <u>Leptospira</u> (kidney infection) .

ذ) بكتريا متطفلة داخل خلوية اجبارية obligate intracellular bacteria

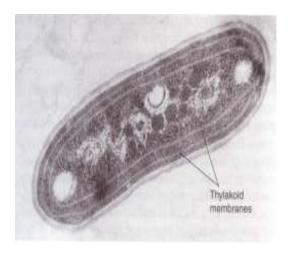
Family Rickettsiaceae: Rickettsia (Rocky Mountain spotted fever), Coxiella (Q fever).

Family Bartonellaceae: **Bartonella** (trench fever, cat scratch disease) الخناق .

Family Chlamydiaceae: **Chlamydia** (sexually transmitted infection).

3) بكتريا فاقدة للجدار الخلوي (Tenericutes)

Family Mycoplasmataceae: Mycoplasma (pneumonia), Ureaplasma (urinary infection).

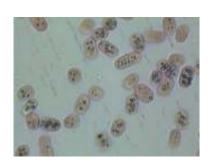

مجاميع البكتريا حرة المعيشة غير المرضية:

1- بكتريا التركيب الضوئي photosynthetic bacteria

غالبية البكتريا تغذيتها متباينة heterotrophic بمعنى انها تحصل على المواد الغذائية من كائنات اخرى. اما بكتريا التركيب الضوئي فتحتوي على حبيبات خاصة تستغل ضوء الشمس لانتاج الطاقة وبمشاركة المركبات اللاعضوية البسيطة. وتشمل المجموعة جنسين رئيسيين:

- أ) البكتريا المنتجة للاوكسجين اثناء عملية التركيب الضوئي
- ب) البكتريا المنتجة للكبريت او تحتوي sulfur granules.

2- البكتريا الزرقاء المخضرة Cynobacteria: blue- green bacteria


Electron micrograph of a cyanobacterial cell (80000x)

سابقا كانت تعرف بالطحالب الخضراء المزرقة ولعدة سنوات تصنف ضمن حقيقية النواة. لكن الدراسات اللاحقة اثبتت امتلاكها الى جدار خلوي وتصطبغ بالصبغة السالبة لصبغة كرام وتمتلك عضيات مشابه للبدائيات prokaryotic . من صفاتها:

- أ) يتراوح حجمها بين 1μm الى 10μm
- ب) تتواجد بشكل خلايا مفردة (احادية)او مستعمرات او مجاميع خيطية.
- ت) تمتلك غشاء سايتوبلازمي مميز يسمى thylakoid ويحتوي على حبيبات الكلوروفيل a .
 - ث) تحتوي على اكياس غازية (gas inclusion) تسمح للخلايا بالطفو في البيئات المائية.
 - ج) تتواجد في البيئات العذبة والمالحة والعيون الحارة.
 - ح) تعيش في البيئات الملوثة، ولهذا تعتبر كدليل لتلوث المياه.

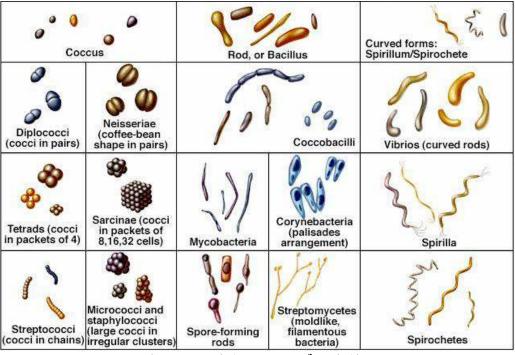
3- بكتريا الكبريت الخضراء والبنفسجية Green and Purple Sulfur Bacteria

- أ) بكتريا ضوئية التغذية
- ب) تختلف عن البكتريا الخضراء المزرقة باحتوائها على انواع مختلفة من الكلوروفيل يدعى bacteriochorophyll ولا تنتج اوكسجين.
 - ت) تعيش في العيون الكبريتية وبحيرات المياه العذبة.
- ث) تتراوح الوانها بين البني ، الوردي ، البنفسجي ، الازرق والبرتقالي
 - ج) تستهلك مركبات الكبريت (H2S, S) اثناء فعالياتها الايضية.

4- البكتريا المتزحلقة والثمرية Gliding, Fruiting Bacteria

- أ) البكتريا المتزحلقة تشمل البكتريا السالبة لصبغة كرام التي تعيش في المياه والتربة.
 - ب) جاءت التسمية من تزحلق عدد من الخلايا على السطوح الرطبة.
 - ت) تكون اجسام ثمرية عند انتاج السبور، مشابه لتكون السبورات في الفطريات.

Two species of Oscillatoria, a gliding, filamentous form(100x)

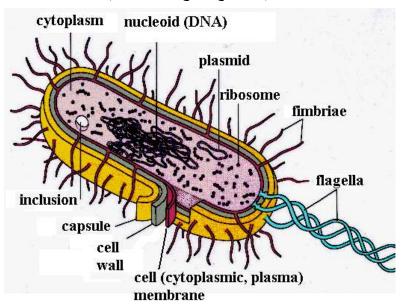

البكتريا Bacteria: هي كائنات واسعة الانتشار توجد بشكل طبيعي على سطوح الاجسام وفي داخلها وفي المخذاء والماء والتربة والهواء. وتكون احادية الخلية تمتلك المواد البروتوبلازمية الاساسية للنمو والتكاثر تستهلك المواد الذائبة بالسوائل وتطرح الفضلات الناتجة عن العمليات الايضية بالانتشار Diffusion. وان قسم من البكتريا تسبب امراض للانسان واخرى للحيوانات الواطئة واخرى للنباتات وبعضها لا يصيب اي من الكائنات الحية ولكن يعيش بصورة تعايشية Commensally وقد تعيش في جسم الانسان ولاتسبب المرض وتدعى Normal flora ويطلق على البكتريا المسببة للامراض بـ non-pathogenic ولكن قد تصبح ممرضات انتهازية Opportunistic pathogens عند انخفاض المناعة والجهاز الدفاعي للجسم.

الحجم والشكل الخارجي Size and Morphology: - ان وحدة قياس الابعاد البكتيرية هي المايكروميتر الذي يعادل جزءاً واحداً من الف الف من المتر (10 متر). تتراوح ابعاد البكتريا من 1-6 مايكرون طولا ، ومن 1.5 – 2 عرضاً وقد تصل في بعض انواع البكتريا الخيطية والحلزونية الى مئة مايكروميتر طولا ، على هذا فهي اصغر من خلايا حقيقية النواة ،حيث ان الموجودات التركيبية في الخلية هي التي تحدد حجم هذه الكائنات ، والذي يجعل فعالياتها الحيوية كبيرة حيث تتناسب هذه عكسيا مع حجم الكائن الحي أي انه كلما زاد حجم الكائن الحي تباطأ معدل التفاعلات الايضية التي تجري داخل جسمه. وبما ان معدل النمو يتحدد عموماً بمعدل سرعة التفاعلات الايضية لذا تتصف البكتريا بنموها السريع حيث تتضاعف اغلب انواع خلايا البكتريا بوقت اقل من ساعة واحدة تحت الظروف البيئية المناسبة. هنالك ثلاثة اشكال للخلية البكتيرية وهي الشكل الحلويي Spherical – Coccus و Spirillum و Spirillum.

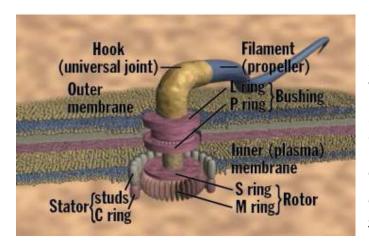
المكورات Spherical bacteria: وتسمى للجمع cocci ومفردها Spherical bacteria: وتسمى الشكل الواحد فليس من الضروري ان تكون كروية كاملة الشكل ولكن تكون بيضوية Ellipsoidal او متطاولة Elongated ومسطحة من الوجهين Flattened on one side.

الشكل العصوي Rod Shaped bacteria: وتسمى للجمع bacilli والمفرد bacillus تتغاير البكتريا العصوية في اطوالها ويكون طولها وقطرها متشابهان احيانا حتى يصعب معها تمييزها عن المكورات اما نهاياتها فقد تكون دائرية او منبسطة او مقعرة اومتشعبة.

البكتريا حلزونية الشكل علزوني وقد تكون صلبة او مرنة اعتماداً على النوع فقد تكون قصيرة على شكل تظهر بعض العصيات بشكل حلزوني وقد تكون صلبة او مرنة اعتماداً على النوع فقد تكون قصيرة على شكل نابض كثيف الدورات او على شكل حلزون غير كامل ويدعى هذا النوع ببكتريا الضمة Comma الكانسيط المنتمين متميزتين وظيفياً مع انه قد لا تنفصل هذه الخلايا عن بعضها دائماً. ويؤدي التصاق الخلايا الى ترتيب مميز يعتمد على مستويات التي تنقسم فيها البكتريا فالخلايا التي تنقسم في مستوى واحد تكون تجمعات بشكل سلاسل في حين الخلايا التي تنظم في مستويات عديدة وبطريقة عشوائية تكون تجمعات على شكل عناقيد و عندما يحدث الانقسام بتتابع وبمستويات عمودية على بعضها البعض تنتج رزم صغيرة مكعبة الشكل. فبكتريا الى تكوين عناقيد (شكل الى تكوين عناقيد (شكل الى تكوين عناقيد (شكل ا).


الشكل: رقم (1) يوضح شكل و تجمعات البكتريا

كما ان بعض الاحياء الخيطية المتعددة الخلايا مثل Beggiatoa التي تشترك فيها الخلايا مع البعض الاخر بصورة دائمة في جدار خلوي مشترك يغطي جميع الخلايا بحيث لا يمكن فصل هذه الخلايا بعضها عن البعض الاخر دون ان تموت. في حين ان سلاسل البكتريا يكون الاتصال فيها غير مستقر او ثابت حيث يمكن فصل الخلايا بواسطة الرج دون ان تموت اذا ان كل خلية يمثل كائن حي مستقلاً.


-: Structure of bacterial cell تركيب خلية البكتريا

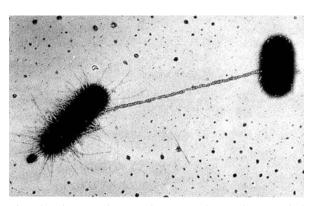
تحتوي الخلايا البكترية على عدد من التراكيب والعضيات قسم منها يقع خارج الخلية والقسم الاخر محاطآ

بغلاف الخلية وهناك تراكيب اخرى تتواجد في انواع من البكتريا دون الاخرى لذا وجود وعدم وجود هذا العضيات يعتبر صفة تصنيفية وقد شخصت الاجزاء التركيبية للخلية البكتيرية كما يأتي: (شكل رقم 2).

شكل رقم (2) يوضح تركيب الخلايا

الاسواط Flagella:-

وهي لواحق بشكل خيط قطرها 12-30 نانوميتر وتكون واسطة الحركة في البكتريا الحاوية عليها ويكون طولها احيانا اكثر من قطر الخلية ولا يمكن رؤيتها بالمجهر الضوئي الا باستعمال طرق تصبيغ خاصة،حيث تعامل الخلايا المثبتة بمادة مثبتة للالوان وهي محلول غروي غير مستقر يترسب على شكل طبقة


سميكة من مادة قابلة للصبغ على سطح الخلية وعلى امتداد سطح السوط او الاسواط، وعند اضافة الصبغة نستطيع مشاهدة هذه المادة المترسبة بالمجهر الضوئي حيث يظهر السوط على شكل خيط رفيع جداً يعد عدد وتوزيع الاسواط على الخلية صفة وراثية ثابتة تقريبا وتستعمل في التصنيف قد توجد الاسواط بشكل سوط قطبي واحد في احد قطبي الخلية التي تسمى في هذه الحالة Monotrichous او توجد بشكل حزمة من الاسواط عند احد قطبي الخلية ويسمى الخلية التي تسمى او قد يوجد سوط او حزمة من الاسواط في كل من قطبي الخلية ويسمى الترتيب Amphitrichous الوقد تحيط الاسواط بكل جسم الخلية ويسمى الترتيب من قطبي الخلية ويسمى الترتيب عضبها تتصل بجزء ثاني يكون اعرض منها ذو قطر ثابت يسمى الشص Hook طوله 45 نانوميتر على بعضها تتصل بجزء ثاني يكون اعرض منها ذو قطر ثابت يسمى الشص Hook طوله 54 نانوميتر بروتين فلاجيلين الاسواط الذي يكون ذا طبيعة مستضدية ويختلف من نوع لاخر، الا ان بروتينات الاسواط تشترك في صفة عامة هي احتواؤها على الحوامض الامينية مثل الكلوتاميك والاسبارتيك ويكون محتواها من الاحماض الامينية الحاوية على الكبوت كالسستين قليلاً.

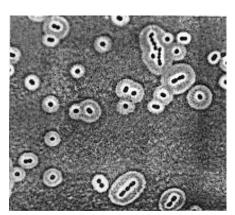
هنالك فرضيتان للطريقة التي تحرك الاسواط بها البكتريا ،احداهما تقول بان الوحدات البروتينية التي تكون الاسواط تتقلص وتنبسط منتجة مايشبه التموجات،وبذلك قد تنسحب او قد تدفع الخلية،اما الفرضية الثانية فتقترح حركة دائرية يقوم بها السوط بما يشبه حركة المروحة مما يؤدي الى حركة البكتريا.

A-Monotrichous
B- Lophotrichous
C- Amphitrichous
D- Peritrichous

الشعيرات او الاهلاب Pili and Fimbriae :-

وهي لواحق خيطية مشابه للاسواط الا انها ارفع واقصر طولا من الاسواط تنتشر على سطح الخلايا خصوصاً في البكتريا السلبية لصبغة كرام طولها 3.--3 مايكروميتر وقطرها 5-10 نانوميتر وليس لها علاقة بالحركة، هنالك نوعان من الشعيرات النوع الاول الشعيرات النوع الاول الشعيرات العمومية Fimbriae التي

يصل عددها الى المئات والتي تستخدمها البكتريا للالتصاق بالخلايا الحيوانية والنباتية والسطوح الخاملة مثل الزجاج والسيليلوز وهذه وظيفة مهمة جداً تمكن البكتريا من تثبيت نفسها في بيئاتها الطبيعية ليتسنى لها توفير المواد المغذية، اما النوع الاخر Specific pili يطلق عليها بالشعيرات الجنسية Sex pili والتي لها دورا في عملية الاقتران Conjugation التي تحدث في بعض انواع البكتريا كما انها تكون مستقبلات Bacteriophages.


تتكون الشعيرات من بروتين يدعى Pilin يصل وزنه الى7000 دالتون ويتكون من وحدات ثانوية تترتب على شكل حلزوني لتكون خيطا مفردا قويا ذات لب فارغ ، وما دام البروتين هو المادة الرئيسية لذا تعطي للخلية صفات مستضدية specific antigen خاصة للخلايا شأنها في ذلك شأن الاسواط.

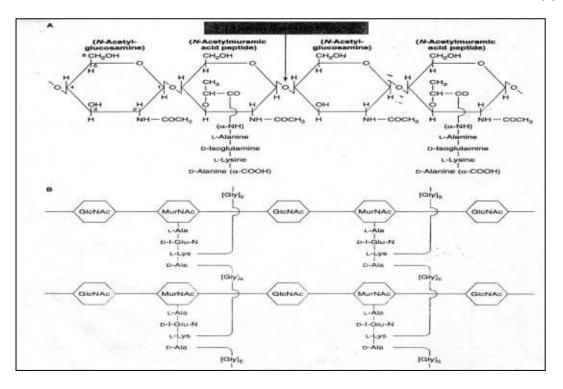
-: Capsule المحفظة

تصنع العديد من البكتريا في بيئتها الطبيعية كميات كبيرة من مواد مخاطية صمغية بوساطة انزيمات في الغشاء السايتوبلازمي وتفرز الى خارج الخلية من خلال ثقوب الجدار الخلوي وبذلك تتكون طبقة اضافية خارج الجدار تسمى بالعلبة اوالمحفظة والتي تكون مسؤولة عن توفير الحماية لخلية البكتريا في كونها تشكل

غطاءا واقيا للجفاف وتخزن المواد الغذائية وهي تزيد من

امراضية البكتريا الممرضة لمقاومتها الابتلاع Phagocytosis من قبل خلايا الدم البيضاء تختلف المحفظة من ناحية التركيب الكيمياوي فقد تتكون من الكربوهيدرات المعقدة مثال الدكستران Dextran وحامض هاياليورونيك ومن البروتينات ، يتغير سمك المحفظة من جزء من المايكروميتر الى 10مايكروميتر او اكثر ويكون تركيبها الكيمياوي متميزاً لكل نوع من الانواع ، وهي غير مهمة لحياة

البكتريا ويمكن ازالتها بالانزيمات او بالغسل دون ان يؤثر ذلك في حيوية الخلية ، ويرتبط تكوينها ارتباطاً مباشراً بالظروف البيئية المتاحة لذا عندما يكون التركيب الكيمياوي للمحفظة حاوي على الدكستران او الليفان فان تصنيع المحفظة يتم عند تنمية البكتريا بوسط حاوي على السكروز فقط وليس سكر آخر.

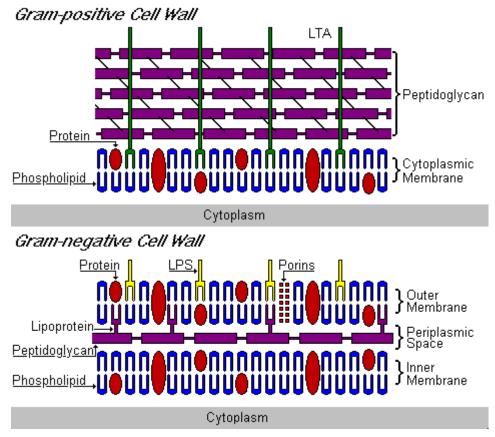

يعد قيام الخلية البكتيرية بتخليق المحفظة عملية وراثية يسيطر عليها جين معين فعند حصول طفرة وراثية لهذا الجين تفقد قدرتها لتكوين المحفظة عند تنمية الخلية المكونة للمحفظة على الوسط الزرعي الصلب تعطي مستعمرات ناعمة لماعة (S-Colonies) في حين الطفرات الفاقدة للمحفظة تعطى مستعمرات خشنة

(R- Colonies) لذا فان حدوث هذه الطفرات في بكتريا ممرضة Streptococcus pneumoniae فانها تفقدها قابليتها على اصابة المضيف تمتلك البكتريا الحاوية على المحفظة تخصصاً مناعيا اعتماداً على التركيب الكيمياوي للمحفظة ويساعد هذا على التفريق مصلياً بين الانواع المتشابهة.

الجدار الخلوي Cell Well:-

تسمى طبقات الغلاف الخلوي المحصورة بين الغشاء البلازمي والمحفظة الجدار الخلوي ،تحتوي جدران معظم الخلايا البكتيرية على نوع فريد من مادة عضوية متعددة Organic Polymerتدعى الببتيدوكلايكان Peptidoglycan وتوفر هذه المادة الاسناد والشكل للخلية،ويحمي الجدار الخلية من تأثير الضغط الازموزي الداخلي الذي يكون بمدى يقع بين 5-20 جو نتيجة لتركيز المواد الذائبة والمنقولة بوساطة عملية النقل الفعال،وللجدار الخلوي دور مهم في عملية انقسام الخلية كما تكون طبقات الجدار مواقع لكثير من المحددات المستضدية،بالاضافة الى انه موقع عمل قسم من المضادات الحيوية.

تتكون مادة الببتيدوكلايكان Peptidoglycan او Murein من وحدتين هما السكريات الامينية N-acetylmuramic acid (AMA) و sugars و الاحماض الامينية. اذ ان السكريات الامينية هي sugars الامينية و الاحماض الامينية. اذ ان السكريات الامينية هي N-acetylglucosamine (AG) مرتبطة بالاصرة 1-4 من النوع بيتا وسلاسل جانبية مكونة من مجموعة ببتيدات رباعية متصلة بحامض ن استيل ميور اميك ومجموعة من ببتيدات متشابهة مستعرضة ييكون الهيكل متشابها في جميع انواع البكتيريا اما السلاسل الجانبية والمستعرضة فتختلف باختلاف الانواع تتكون الجسور المستعرضة من آصرة ببتيدية مباشرة مع الاحماض الامينية D-Isoglutaminc و L-alanine و D-alanine اذ ترتبط بأواصر متستعرضة بـ AMA.


شكل (3)يوضح الوحدات التركيبية لطبيعة الـ Peptidoglycan

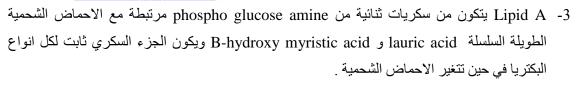
ان مادة الببتيدوكلايكان مجسمة ثلاثية الابعاد ومن هنا تأتي قوتها وهي بذلك لا تعترض دخول الماء والمواد الغذائية مثل المعادن والكلوكوز والاحماض الأمينية والمواد العضوية كذلك الجزيئات الكبيرة نسبياً وبنفس الوقت تخرج المواد التالفة من خلال هذا الممر وصلابة طبيقة الببتيدوكلايكان تعود الى الاواصر المستعرضة التي تربط الـ Polymer وتكون هذه الاواصر اكثر في البكتريا الموجبة لصبغة كرام مما هو علية في البكتريا السالبة لصبغة كرام.

جدار البكتريا الموجبة والسالبة لصبغة كرام :-

ان جدار الخلايا البكترية الموجبة لصبغة كرام يتألف من طبقات متتالية من الببتدروكلايكان حيث تتصل كل طبقة منها بالتي فوقها والتي تحتها خلال جسور من الاحماض الامينية ويبلغ سمك جدار هذه البكتريا -35 مل طبقة منها بالتي فوقها والتي تحتها خلال جسور من الاحماض الامينية ويبلغ سمك جدار هذه البكتريا -35 nm وزن الخلية ويحتوي 20-80% من مادة peptidoglycon اضافة الى البروتينات والسكريات المتعددة وحامض teichoic (الذي يتألف من الكليسرول glycerol و المتعددة وحامض ribitol ويوجد نوعان من حامض التكويك هما تكويك الجدار الخلوي فرعية متكررة متأصرة الى الالنين والفوسفات ويوجد نوعان من حامض التكويك هما تكويك الجدار الخلوي wall teichoic والذي يسمى dipoteicho.

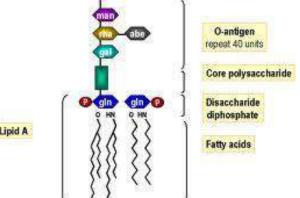
اما جدار الخلايا البكتيريا السالبة لصبغة كرام يكون رقيقاً جداً يبلغ سمكه nm 10-10 وهو يشكل 10-20% من وزن الخلية الجافة ويتكون من 5-15% من peptidoglycan و 35% من الدهون الفوسفاتية phospholipipids و 15% من protein و 55% من protein (وتعد هذه الطبقة ذات الهمية واسعة بسبب خواصها السمية وان الجزء الدهني هو المكون السمي لهذه الطبقة).

شكل (4)يوضح الفرق بين تركيب الجدار والاغلفة الملحقة لبكتريا السالبة والموجبة لصبغة كرام


بعض المكونات الخاصة بالبكتيريا السالبة لصبغة كرام والتي تقع خارج peptidoglycan وهي:

- 1- Lipoprotein وهي مواد قليلة الوزن الجزيئي تعمل كجسور لربط الطبقات الخارجية الى الجدار الخلوي اذ ترتبط بشكل تساهمي مع الحامض الاميني di-aminopimelic الموجود في طبقة peptoglycan ويتألف الجزء البروتيني من 57 حامض امين اما الجزء الدهني فهو diglyceride thioether الذي يرتبطب cvstein
 - وظيفة lipoprotein هي موازنة الغشاء الخارجي وتثبيته مع طبقات peptoglycan .
- 2- phospholipid (الفوسفولبيدات): وهي طبقة ثنائية من دهون فوسفاتية يتكون من ارضية سائلة تحتوي على ير و تبنات خاصة

يعمل الغشاء على تسرب البروتينات في periplasmic space ويحمى البكتريا المعوية من الاملاح والانزيمات المحللة الموجودة في بيئة المضيف. تختلف نفاذية الغشاء الخارجي من نوع لاخر ففي بكتريا psudomonase aeruginosa تكون نفاذية هذا الغلاف اقل 1000 مرة من نفاذية غشاء بكتريا E-coli ولهذا فان البكتريا الأولى شديدة المقاومة للمضادات البكتيرية antimicrobial.

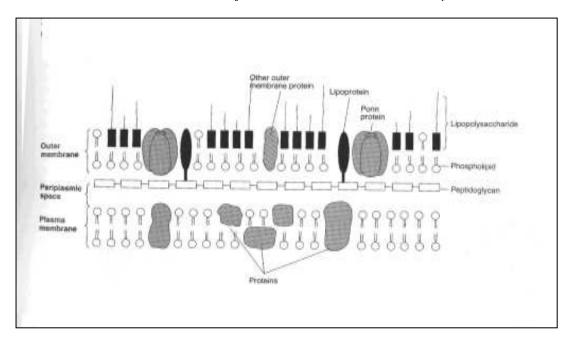

وان البروتينات الموجودة في الغشاء الخارجي يطلق عليها بالبروتينات الثانوية Minor protein والتي لها علاقة بنقل الجزيئات الصغيرة مثل الفيتامين B₁₂ و Phospholipid و proteases و proteases .binding protein

- (LPS) Lipopolysaccharide وتعتبر المكون الرئيسي بين هذه الطبقات وتشكل 45% من السطح الخارجي للبكتريا وهي تتكون من ثلاثة مناطق:
 - 1- ممتضد O-antigen ويطلق عليه المنطقة الاولى ويتكون من سكريات قليلة التعدد oligosaccharide ويكون عدد هذه المستضدات في بكتريا Salmonella اكثر من 1000 نوع.
 - 2- المنطقة المركزية Core region ويطلق عليها المنطقة الثانية وهي مكونة من سلاسل سكريات متعددة ترتبط بشكل تساهمي بالطبقة الثالثة وبالاضافة الى وجود
 - السكريات يوجد ايضاً ethanolamine phosphate

فائدته:

- 1- تعمل الطبقة الدهنية على موازنة الغشاء وتكون حاجز يمنع دخول بعض الجزيئات المحبة للماء .hydrophilic molecules
- 2- تكون هذه الطبقة سامة للحيوانات تدعى endotoxin لان عند تحللها الى Lipid A وسكريات متعددة تكون جميع سميتها عائدة الى lipid A

Structure of Lipopolysaccharide


Lipid A

التصبيغ: يتم التغلب على صعوبة ملاحظة الكائنات الشفافة والقادرة على الحركة وذلك بقتل الخلايا وتعامل بعدئذ مع صبغة او اكثر ذات الفة خاصة لواحد او اكثر من مكونات الخلوية ونتيجة لاختلاف الشحنات بين جسم الخلية والصبغة (فالخلية البكتيرية غنية بالحامض النووي الذي يحمل مجموعة الفوسفات السالبة الصيغة وهذا يساعد على الارتباط بالصبغات ذات الشحنات الموجبة (والمعروفة بالصبغات القاعدية) التي لها الفة قوية لواحد او اكثر من مكونات الخلية وتلون هذه المكونات عند اضافتها للخلية. اما الصبغات السالبة الشحنة فلا تستطيع اختراق غلاف الخلية وبالتالي تجعل الخلية عديمة اللون والارضية بلون الصبغ. (وان الاصباغ الملاح يكون احد ايوناتها ملونا والملح عبارة عن مركب كيمياوي احد ايوناته موجب الاخر سالب مثل كلوريد المثيل الازرق). وتعد صبغة كرام (1884) Gram stain (1884) التي انشأها الطبيب الدنيماركي Dr. Hans مالين وتعد صبغة البنفسج المثيل الازرق). ووتد صبغة البنفسج المول تصبيغ الانسجة المصابة ببكتريا التي تسبب ذات الرئة Pneumonia باستعمال صبغة البنفسج حاول تصبيغ الانسجة المصابة ببكتريا +G لقدرتها على الاحتفاظ بالمعقد Pneumonia باستعمال صبغة البنفسج قصر البكتريا -G وعدم قصر البكتريا +G لقدرتها على الاحتفاظ بالمعقد Crystal violet-iodin وتحديث اللون وعند اضافة صبغة السفرانين الحمراء Safranin باللون Purple البنفسجي ، اما -G تكون عديمة اللون و عند اضافة صبغة السفرانين الحمراء Safranin بعد الكحول.

	Microscopic Appearance of Cell		Chemical Reaction in Cell Wall (very magnified view)	
Step	Gram (+)	Gram (-)	Gram (+)	Gram (-)
Crystal violet			2000	2222
Violet			Both cell walls affix the dye	
2. Gram's iodine				~~~
lodine			Dye crystals trapped in wall	No effect of iodine
3. Alcohol				
			Crystals remain in cell wall	Cell wall partially dissolved, loses dye
4. Safranin (red dye)				
			Red dye has no effect	Red dye stains the colorless cell

الغشاء السايتوبلازمي Cytoplasmie membrane

ويسمى ايضا الغشاء الخلوي cell membrane يحتوي الغشاء السايتوبلازمي على حوالي 60% بروتين و 40 % دهون معظمها بشكل دهون مفسفرة phosphorlipids ويقع تحت الجدار الخلوي مباشرة، وهو لايحتوي على الستيرولات Sterols الموجودة في الاغشية الحيوانية.

شكل رقم (5) يوضح تركيب الغشاء البلازمي

ان لوجود الدهون المفسفرة خواص بايولوجية فريدة اذ تمثل الجزء غير المحب للماء hydrophobic وهي طبقة شبه سائلة semifluid ويمثل الجزء البروتيني الطرف المحب للماء semifluid وبأمكان عزل الغشاء السايتوبلازمي عن بقية التراكيب الخلوية فعند ازالة الجدار الخلوي بوساطة معاملته مع protoplast سوف تنفجرال protoplast وعند وضع في محلول واطئ الشد تندلع محتويات الغشاء البلازمي (السايتوبلازمي) للخارج ويبقى الغشاء السايتوبلازمي على شكل كيس رقيق فارغ ينظف بالماء وثم يعرض الى الطرد المركزي.

وظائف الغشاء البلازمى:

- 1- يحتوي على الانزيمات والجزيئات الحاملة carrier molecules التي تساهم في خلق DNA وبوليمرات الجدار الخلوي ودهون الغشاء.
- 2- يكون الغشاء شبه منفذ Semipermeable اذ تستطيع المواد ذات الوزن الجزيئي الواطئ النفوذ الى الجزء الداخلي من الخلية (اي ان الغشاء يعمل حاجزاً تنافذياً لا يسمح بمرور المواد ذات وزن جزيئي يزيد عن جزيئة الكليسرين ولهذا فهو يسمح بتكوين ضغط تنافذي داخل الخلية ويحافظ عليها.
 - 3- ينظم مرور المواد الغذائية والمنتجات الايضية بين الخلية والمحيط الخارجي.
- 4- السماح بمرور الجزيئات الايضية الكبيرة ضمن انظمة النقل النشط Active transport وتدعى ايضاً بانزيمات النضوح (permeases) حيث يتخصص كل نظام من هذه الانظمة لمادة معينة او مجموعة مواد.

- 5- افراز الانزيمات الخارجية المحللة extracellular hydrolytic enzyme.
- 6- انتقال الالكترونات وعملية الفسفرة التأكسدية oxidative phosphorylation التي تتواجد في الخلايا حقيقية النواة في الانواع الهوائية.

اليات انتقال المواد عبر الغشاء السايتوبلازمى:

1- النقل المنفعل (السلبي) Passive transport

حيث تتدفق الجزيئات بصورة حرة من خارج الخلية الى داخلها دون انفاق طاقة من قبل الخلية وبمساعدة Specific protein system الموجود في الغشاء ويستمر انتقال الجزيئات الى ان يصبح تركيز الجزيئة هو نفسه داخل وخارج الخلية (على جانبي الغشاء البلازمي). يتم انتقال الماء وبعض المواد القابلة للذوبان في الدهون مثل الكليسيرول Glycerol.

Active transport النقل الفعال -2

ان الخلية تستهاك طاقة لنقل الجزيئات من خارج الخلية الى داخلها وهذه الطاقة ناتجة من الافعال الحيوية للبكتريا Metabolic energy. وعادة ان ما تنقله الخلية داخلها اكثر مما تنقله خارجها وتكون النتيجة تراكم الجزيئات داخل الخلية. ومثال ذلك انتقال السكريات سداسية الكاربون Hexoses عبر الغشاء السايتوبلازمي ويتم تجهيز الطاقة من اصرة الفوسفات الموجودة ضمن جزيئة (PEP) Phosphoenol pyruvate (PEP) بالاضافة الى وجود البروتين الحامل للطاقة Carrier protein وجود انزيم يحفز التفاعل. اذ يقوم البروتين الحامل للطاقة يفسفره السكر السداسي الموجود خارج الغشاء السايتوبلازمي.(Fig.1, 2, 3)

 $\begin{array}{ll} PEP + Protein & \underline{^{EnzymeI}} & \underline{Pyr}uvate + Protein \ phosphate \\ Protein \ phosphate + sugar & \underline{^{EnzymeII}} \ \underline{Sugar} - 6 - phosphate + protein \\ \end{array}$

3- الفراغ السايتوبلازمي Periplasmic space

- هي المنطقة المحصورة بين الجدار الخلوي والغشاء الخلوي وتختلف في طبيعة تركيبها الكيمياوي وتحتوي هذه المنطقة على العديد من الانزيمات الذائبة التي تقع الى خارج الغشاء الخلوي لذلك يطلق عليها بالانزيمات الخارجية Exoenzymes ومن هذه الانزيمات:
- 1- مجموعة من الانزيمات التي تقوم بعمليات تحليل المواد او هضمها منها Acid phosphatase و .penicillinase
 - 2- مجموعة من الانزيمات العائدة الى السلسلة التنفسية مثل Nitrite reductase.
- 3- مجموعة من البروتينات التي تعمل في انظمة النقل يطلق عليها Binding proteins والتي تعمل على نقل المواد التالية sugars و sumino acid و lons.

Protoplast البروتوبلاست

يطلق على الخلايا التي تفقد جدارها الخلوي بـ Protoplast ويمكن ان تحافظ على حيويتها اذا ما حفظت في ضغط تنافذي مناسب. وتمتاز البروتوبلاست بشكلها المكسور دائماً مها كان شكل الخلية المشتق منها وذلك بسبب غياب الجدار الخلوي.

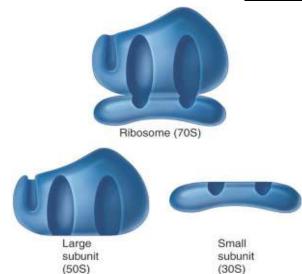
ويمكن ان تبقى البروتوبلاست لساعات طويلة اذا ما حفظت في محلول ذو ضغط تنافذي عالى نسبياً مثل كلوريد الصوديوم 5% او سكر الكلوكوز 20 % او مصل الدم 20% لكي تعادل الضغط التنافذي من داخل الغشاء السايتوبلازمي. وتمتاز البروتوبلاست بكونها غير متحركة وغير قادرة على الانقسام (الا في حالات

معينة) و لاتكون جدار خلوي وغير معرضة للاصابة بالعاثيات. ويمكن تحطيم الجدار الخلوي بمعاملة الخلية المنزيم Peptidoglycan و هذا انزيم معين يكسر الاواصر الكيمياوية (بيتا 1-4)بين الوحدتين الفرعيتين الفرعيتين الموجودان ضمن تركيب طبقة acetyl muramic acid الموجودان ضمن تركيب طبقة acetyl muramic acid بالاضافة البكتريا +G اكثر من البكتريا -G لاحتواء الاخيرة على طبقة رقيقة من الـ Peptidoglycan بالاضافة اللى وجود طبقات جدارية اخرى مثل outer membrane و مواد دهنية معقدة (عملياً يمكن از الـ Outer معادة هيدر وكسيد الصوديوم المذيب للدهون تم تعامل بالانزيم الحال).

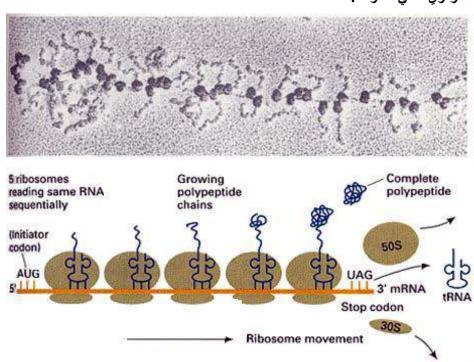
يطلق على البكتريا G^+ عند از الـة جدارها الخلوي بـ protoplast اما البكتريا G^+ فيطلق عليها بـ spheroplast مع بقاء طبقة (outer membraane) يمكن الحصول على البروتوبلاست من معاملة الخلايا بـ pencilline الذي يعمل على منع التأصر العرضي في مادة الببتيدوكلايكان في الخلايا النامية او المنقسمة لذلك فالخلايا G^+ اكثر حساسة للبنسلين من G^- .

الجسم الوسطى Mesosome:- وهي تراكيب داخلية تقع مباشرة تحت الغشاء الخلوي في عدد من البكتريا وتظهر بعض الاحيان كطبقات من الغشاء الخلوي lamellar structure الفشاء النوبية Tubular او بشكل حويصلات Vesicles ويتكون تركيبها من 50—70% بروتين و 15-30% دهون وكميات قليلة من الكاربوهيدرات. وان هذه التراكيب تظهر بشكل واضح وشائع جدا في البكتريا الموجبة لصبغة كرام، اما السالبة للصبغة فتظهر صغيرة واقل تعقيداً. ان الجسم الوسطي يختفي عند ازالة الجدار الخلوي وتحضير البروتوبلاست وهذا يشير الى ان الغشاء السايتوبلازمي يتمدد ليحيط بالسايتوبلازم وياخذ معه الجسم الوسطى اثناء عملية التمدد.

وظائف الـ Mesosome -:

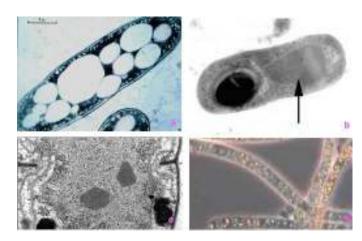

- 1- يزيد من المساحة السطحية للغشاء لذا فقد يزيد قابلية الخلايا على تركيز المواد المغذية.
 - 2- يساهم في تكوين الجدار المستعرض في انقسام الخلية البكتيرية.
 - 3- يعمل على توزيع المادة النووية على شطري الخلية المنقسمة.
- 4- له علاقة ببعض الفعاليات الحيوية الاخرى مثل تفاعلات الاكسدة والاختزال، تكوين السبورات ، التركيب
 الضوئي ، تثبيت النتروجين ، افراز بعض الانزيمات ، تكوين بعض البروتينات ، التنفس الخلوي.

السايتوبلازم Cytoplasm السايتوبلازم


يحتوي السايتوبلازم على جميع المواد والتراكيب المختلفه الموجودة ضمن الغشاء السايتوبلازمي اذ يمكن ملاحظة منطقة سايتوبلازمية حبيبية المظهر والتي تكون غنية بالحامض النووي RNA والمنطقة الثانية كروماتينية او صبغية وتكون غنية بالحامض النووي DNA ، وتكون جميع المواد الموجودة في السايتوبلازم محاطة او عالقة في ارضية سائلة او شبه سائلة Matrix تحوي على ايونات ذائبة مثل ايون الهيدروجين وايون الصوديوم وايون الكلور وايون الفوسفات فضلا عن احتوائه على مواد اخرى مثل الاحماض الامينية وبعض البروتينات وببتيدات وبعض القواعد النايتروجينية مثل البيورينات والبريميدينات واحتوائه على المعقدات الدهنية والفيتامينات وسكر الرايبوز والكلوكوز ونيوكليوتيدات وانزيمات مساعدة وغيرها وتكون هذه: (أ) البادئات وغيرها من المواد المستعملة في البناء الخلوي(ب) مصادر للطاقة كالكلوكوز(ج) فضلات ناتجة عن فعاليات الخلية تطرح الى الخارج. وتحتوي المادة البينية على الحامض النووى الرايبوزي الناقل ARNA.

التراكيب السايتوبلازمية الدقيقة Cytoplasmic ultra structure

الرايبوسومات Ribosomes: - وهي تراكيب خلوية داخلية اساسية تقوم بتخليق البروتين تنتشر في كافة انحاء السايتوبلازم وتتكون الرايبوسومات بصورة رئيسه من 35% من البروتينات و 65% من الحامض النووي الرايبوزومي Ribosomal –RNA ، اي انها بروتينات نووية Nucleoproteins وتثبت مكوناتها بواسطة الاواصر الكارهة للماء bonds انها تحتاج الى ايونات والاواصر الهيدروجينية ، كما انها تحتاج الى ايونات



المغنسيوم والبوتاسيوم لتثبيت مكوناتها ، ويصل حجم الرايبوسومات الى 20 نانومتر ويتراوح عددها بين 1000-5000 في الخلية الواحدة ويختلف عددها اعتماداً على سرعة تخليق البروتين من قبل الخلية اذ كلما كان معدل تخليق البروتين اعلى كلما كان عدد الرايبوسومات اكثر وهي تظهر متجمعة على الحامض النووي المراسل mRNA وتسمى Polysome. تمتاز الرايبوسومات بخواصها الترسيبية عندما تنبذ (تطرد مركزياً) بسرعة عالية جداً في جهاز الطرد المركزي عالي السرعة الترسيبية عندما تنبذ كلما كان ترسيب الرايبوسومات اسرع كلما كانت كثافتها اكبر. وتتواجد الرايبوسومات على شكل جزيئين مختلفين وهي 308 و 308 اعتماداً على اوزانها الجزيئية وتتجمع مع بعضها مكونة الرايبوسومات كانت وزن 708 (في حقيقة الرايبوسومات على 808 من جزئيت كان وزن 708 و 408). حيث كانت وزن 708 (في حقيقة النواة وزن الترسيب باستعمال جهاز الطرد المركزي عالي السرعة وقد جاءت هذه التسمية نسبة الى اسم مكتشفها العالم السويدي Svedberg الذي لعب دورا مساعداً في نشو جهاز الطرد المركزي عالى السرعة.

Ribosome Function

المواد السايتوبلازمية الخاملة: يحتوي السايتوبلازم على حبيبات وكريات globules من مواد غذائية مخزونة وخاملة يعتمد تركيبها على نوع الخلية والظروف الغذائية، تحاط المواد المخزونة باغشية تحددها عن بقية السايتوبلازم، فغالباً ما تحول المادة الغذائية الى جزيئات كبيرة وتخزنها في وقت تكون مصدراً للطاقة، غير ذائبة و لا تؤثر في الضغط الازموزي الخلوى داخل الخلية.

المواد العضوية المخزونة Stored organic materials :-

تخزن البكتريا وبقية الكائنات الحية بدائية النواة المواد العضوية الكاربونية على شكل مجموعتين مختلفتين تمثل الخزين من الكاربون والطاقة داخل البكتريا:

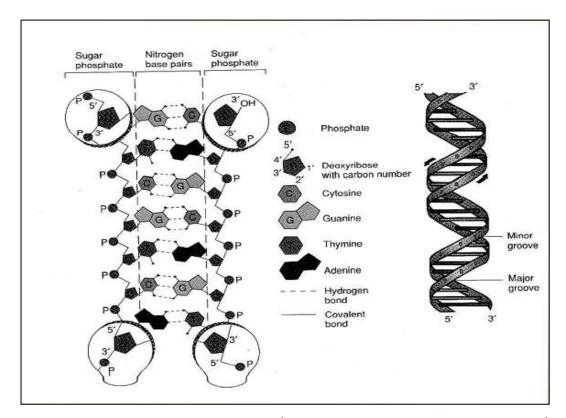
1- السكريات المتعددة مثل النشا Starch والكلايكوجين glycogen.

2- الدهون Lipids تخزن في البكتريا بشكل بوليمرات من الحامض الشحمي Lipids التي Lipids التي ester bond ترتبط الجزيئات في الوحدة الواحدة بوساطة آصرة استر hydroxy butyric acid تربط مجموعة الكاربوكسيد لجزيئة اخرى بازاحة جزيئة من الماء يتكون هذا المركب كوسيلة للتخلص من الاحماض الناتجة في الخلية وذلك عن طريق التخلص من الجزء الكاربوكسيلي الذي يتفاعل مع وحدات هذا الحامض عن طريق اصرة الاستر وبذلك نتخلص من الكاربوكسيل وتقلل الحموضة في السايتوبلازم.

المواد اللاعضوية المخزونة Stored inorganic materials :-

1- الحبيبات المتكونة من عنصر الكبريت ، بعض البكتريا المؤكسدة للبكتريا تقوم بأكسدة ما يفيض عن حاجتها من كبريتيد الهيدروجين H2S الى الكبريت الذري لكي تخزنه على شكل حبيبات داخل السايتوبلازم.
2- الحبيبات المتكونة من تجمع الفوسفات غير العضوية وتعرف بمادة الميتافوسفات hosphate وتدعى بحبيبات الفوليوتين volutin ، تظهرهذه الحبيبات بوضوح عندما تكون ظروف التغذية للخلية جيدة ويكون الايض بطيئا ، و تدعى احيانا بالحبيبات المختلفة اللون Metachromatic لانها تصطبغ بلون يختلف عن لون الصبغة المضافة عليها فعند اضافة صبغة ازرق المثيلين تصطبغ الحبيبات باللون الاحمر تتواجد في بكتريا الخناق Corynebacterium.

-: Gas Vacuoles الفجوات الغازية


من المعروف ان الخلايا بدائية النواة تفتقد بصورة عامة الى وجود العضيات المحاطة باغشية الا ان هناك بعض المجاميع المتخصصة من البكتريا تحتوي فعلا على اغشية داخلية تشمل هذه بكتريا التأزت والبكتريا القادرة على القيام بعملية التركيب الضوئي ، ففي هذه المجاميع تبدو الخلية مليئة بالاغشية ، وهذه الاغشية هي ليست في الواقع اغشية حقيقية وانما تكون على شكل حويصلات اسطوانية مكونة من بروتين بصورة مطلقة ويكون سمك الطبقة مكافنا لجزيئة بروتين واحدة وتساعد هذه الفجوات في البكتريا المائية على تنظيم قابلية الطفو Buoyoancy عند الخلية البكتيرية وبذلك يحدد ارتفاعها في العمود المائي، وتقوم العديد من السيانوبكتريا المائية بالتحرك الى الاعلى والاسفل لغرض الحصول على الظروف المثلى للقيام بعملية التركيب الضوئي وهذا ما يسمى بالانتحاء الضوئي Phototaxis. كما تحتوي بعض البكتريا على حبيبات معدن الحديد محاطة بغشاء تجعل البكتريا تتجه نحو المغناطيس وتكون هذه الحبيبات السبب في ابحار البكتريا حسب المجال الارضي المغناطيسي Magnetotaxis.

-: Nuclear Material المادة النووية

تسمى ايضاً نيوكلويد nucleoid او الجسم الكروماتيني وتفتقد الخلية البكتيرية الى وجود كروموسومات متميزة والنوية والغشاء النووي الموجودان في الخلايا حقيقية النواة ، وتحتل المادة النووية موقعاً قريبا من مركز الخلية وتكون متصلة بالميزوسوم والغشاء البلازمي ، ولاتعاني من الانقسامات الخيطية والاختزالية ، وهذا ما يميزها عن حقيقية النواة. تتألف المادة النووية من جزيئة من DNA يطلق عليها

بالكروموسوم ويصل طول شريط الـ DNA الى حوالي 400 مرة اطول من المحور الطولي لبكتريا E.coli يبلغ طول جزيئة الـ DNA عند مدها الكامل حوالي 1 ملمتر وسمكها $^{\circ}$ 25A ويحتوي كل 4 مليون قاعدة نتروجينية و 3000 جين ويعبر عن طول شريط الـ DNA بـ (Kilobase (kbp)).

وهذه الكروموسومات تحتل نصف حجم السايتوبلازم، وهي خالية من الهستونات histones التي توجد عادة في نواة الكائنات الحية الراقية (الهستون: بروتينات قاعدية التفاعل غنية بالحامض الاميني القاعدي lysine و arginine التي تعمل على معادلة المجاميع الفوسفاتية في شريط الـ DNA.

يتألف شريط الـ DNA من عدد من النيوكلوتايدات ويتألف كل Nucleotide من:

- 1- سكر خماسي هو سكر الرايبوز منقوص الاوكسجين Deoxyribose.
- 2- قواعد نتروجينيـة تشمل :- guanine) purines و denine) و thymine) pyramidines و cytosine و (cytosine
- 3- مجاميع الفوسفات Phosphoric acid : ترتبط القواعد النتروجينية مع بعضها بواسطة اواصر هيدروجينية A=T والسايتوسين المروجينية hydrogen bonds وذلك بأرتباط الادنين والثايمين بأصرة مزدوجة A=T والسايتوسين والكوانيين بأ اصرة ثلاثيية G_=C وان قسيم من DNA يظهير خيارج حلقة الكروموسيوم والكوانيين بأ اصرة ثلاثيية وهي تستنسخ ذاتياً بعيداً عن الكروموسوم وبمعزل عنه تدعى البلازميدات Plasmids ، وهذه البلازميدات غير ضرورية لحياة البكتريا ويمكن ازالتها من البكتريا بمعاملة البكتريا بمواد كيميائية مثل Cobalt Ion و Cobalt Ion والكلوروفينكول والتتراسايكلين وايضاً تحمل معلومات مسؤولة عن تهيئة البكتريا لعملية الاقتران.تكون البلازميدات ذات فائدة كبيرة في مجال الهندسة الوراثية لكونها تحمل العديدمن المعلومات الوراثية ويساعد البلازميدات ذات فائدة كبيرة في مجال الهندسة الوراثية لكونها تحمل العديدمن المعلومات الوراثية ويساعد

صغر حجمها على عزلها وربطها بمعلومات وراثية مأخوذة من مصادر اخرى وزرعها في خلايا بكتيرية جديدة من اجل الحصول على الصفات المرغوبة.

الابواغ الداخلية (Endospores) -:

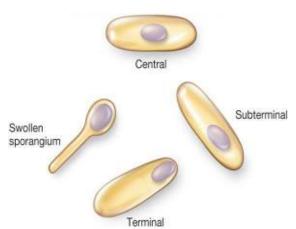
وهي تراكيب تظهر في بعض مراحل النمو للخلايا في بعض الاجناس البكتيرية خلال عملية تكوين البوغ اوالسبور Sporulation وبعد تحرره من داخل الخلايا الخضرية يدخل طور السبات حيث يمكن ان يبقى في هذه الحالة لسنوات طويلة (ثبت وجودها لغاية 150.000 سنة) ويمكن ان يمر البوغ تحت ظروف معينة عبرسلسلة من الاحداث يتحول فيها البوغ مباشرة ثانية الى خلية خضرية تدعى بالانبات Germination وبما ان الخلية الخضرية تكون بوغاً داخلياً واحد لذلك لايعد عملية تكاثربل وسيلة لحفظ النوع فقط.

يتكون البوغ نتيجة لعدم توفر ظروف جيدة النمو. مثل قلة المواد الغذائية (نقص المصدر النايتروجيني والمصدر الكربوني) ويظهر تكون البوغ بوضوح في نهاية الطور اللوغارتمي نتيجة لنقص الغذاء واختلاف الظروف الفيزيائية والكيميائية في المزرعة.

تكون السبورات الداخلية اجساما ذات جدار سميك عالية المقاومة تكونها كل انواع الاجناس Bacillus و Sporosarcina و Sporosarcina و Sporosarcina و Sporosarcina و التكاثر عدة المنتجة للابواغ الداخلية على النمو والتكاثر عدة اجيال خلايا خضرية ثم يحدث في بعض مراحل النمو ان يتكون بروتوبلازم جديد يتحول فيما بعد الى بوغ ، تلخص الخطوات الرئيسية لهذه العملية كما يأتى:

1- تحول مادة DNA الى خيوط وحدوث انبعاج في الغشاء الخلوي قرب احد نهايتي الخلية وبهذا يتكون تركيب يسمى البوغ الاولي fore spire.

2- تكون طبقات تغطي البوغ الاولي Spore cortex تسمى قشرة البوغ تفقد بتكون غطاء البوغ Opore البوغ تفقد بتكون غطاء البوغ coat المكون من عدة طبقات.

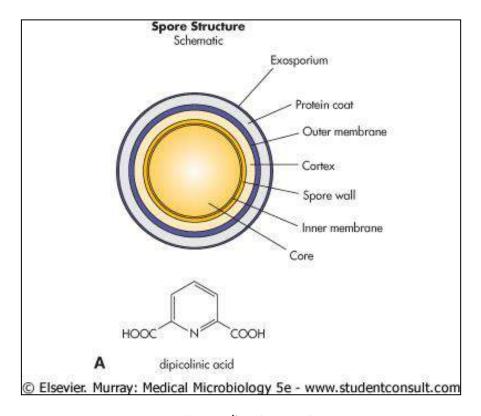

3- تحلل الخلية الام وانطلاق البوغ بصورة حرة.

تطرأ على الخلية عدة تغيرات اثناء تكون البوغ ومنها انتاج عدد من المواد الايضية الجديدة والانزيمات والتي تحددها عدد من الجينات في الخلية الخضرية حيث يتم تنشيط الجينات المسؤولة عن عملية تكوين الابواغ وتتوقف الجينات المسؤولة عن نشاط الخلية الخضرية وتختلف الفترة الزمنية التي تستقر فيها الخلية البكتيرية لتكوين السبور مثلاً تحتاج بكتريا B.subtilus حوالي 7 ساعات في ظروف المختبر.

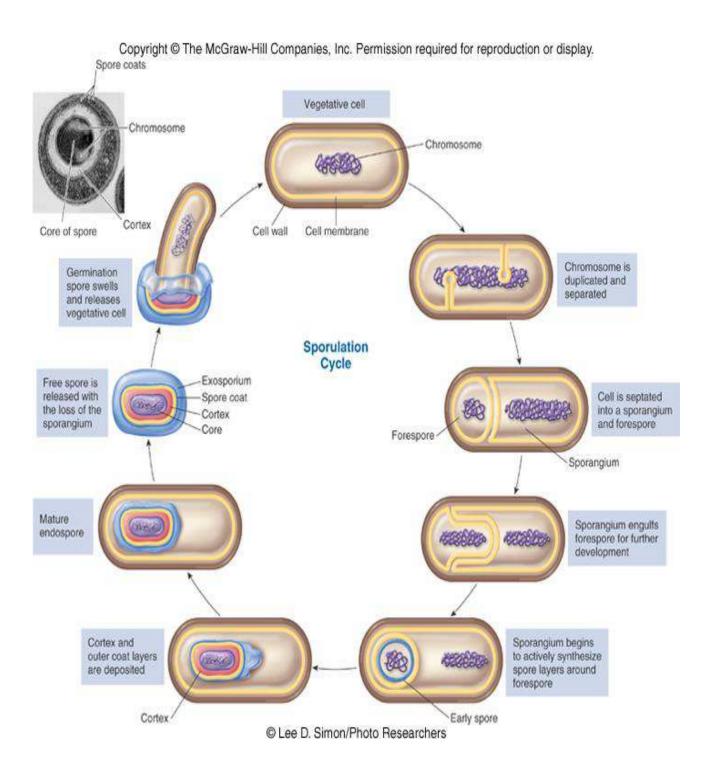
ان اكثر الصفات المميزة للبوغ الداخلي هو عدم امتلاك نشاط ايضياً فعلياً حيث ان البوغ يقاوم العوامل التي تقتل الخلية الخضرية مثل التسخين والتجفيف والتجميد والكيميائيات والاشعاع.

موقع السبور: لا يكون حجم الابواغ ومواقعها متشابها في الخلايا البكتيرية لذا تعد هذه الصفات مهمة في تشخيص البكتريا. هنالك ثلاث مواقع للسبور في الخلية بأختلاف الانواع:

- 1- terminal spores : يكون موقع السبور طرفي كما في بكتريا Clostidium tetans.
- . Central spores -2 يكون موقع السبور وسطياً كما في بكتريا Central spores -2
- Subterminal -3: يكون موقع السبور شبه طرفي كما في بكتريا Subterminal -3.


تركيب السبور: الطبقات الخارجية للبوغ Exosporium: طبقة رقيقة خارجية تتكون من البروتينات والسكريات المتعددة والدهون.

1- اغطية البوغ Spore coats: توجد داخل الطبقات الخارجية كل طبقة بسمك 2-2.5 نانومتر وهذه الطبقة تعزى اليها صعوبة تصبيغ البوغ بالطرق العادية وتتكون بصورة رئيسة من البروتينات (حوالي 90%).


2- طبقة القشرة Cortex: تشكل هذه الطبقة حوالي نصف حجم البوغ وتختفي اثناء عملية الانبات.

C منطقة اللب Core: وهي تحتوي على المادة النووية Nuclear material وعلى عدد من الانزيمات. يتميز التركيب الكيمياوي للبوغ على احتوائه على كميات كبيرة من حامض Dipicolinic acid وهي مادة غير موجودة في الخلايا الخضرية وتكون C 01% من الوزن الجاف للبوغ بالاضافة الى كميات كبيرة من الكالسيوم C 2+ dipicolinic acid + peptidoglycan ويعتقد ان المعقد المتكون من C 2+2 ويعتقد ان المعقد المتكون من عدم نفاذية غطاء البوغ ويعتقد ان المقاومة للحرارة والجفاف يكون طبقة القشرة وهذه الطبقة مسؤولة عن عدم نفاذية غطاء البوغ ويعتقد ان المقاومة للحرارة والجفاف والمواد الكيمياوية والمطهرات ناتجة عن قلة المحتوى الماني و تكون C 2-2 القشرة.

* يكشف عن الابواغ الداخلية بسهولة بالمجهر الضوئي لانها ذات انكسار عال ولاتتقبل الاصباغ خلال غطائها السميك كما تتقبله بقية الخلية.

تکوین وترکیب الـ Spore

: Nutrition of Microbiology تغذية الاحياء المجهرية

لكي تنمو الاحياء المجهرية عليها ان تحصل على جميع المواد الضرورية لتخليق المكونات الخلوية لتوليد الطاقة وهي تحصل على هذه المواد من البيئة وتسمى هذه بالمغذيات وتقسم الى:

- 1- المواد الغذائية الاساسية Essential nutrients وهي المواد التي لايمكن للخلايا ان تعيش بدونها.
- 2- المواد الغذائية غير الاساسية NON-Essential nutrients وهي مواد مساعدة تستعمل عند توفرها.

ويمكن تقسيم المواد الغذائية الى قسمين حسب الكميات التي تحتاجها الكائنات ومنها Macronutrient وهي المواد التي تحتاجها الخلايا بكميات كبيرة اما micronutrients فهي المواد التي تحتاجها بكميات قليلة.

عناصر التغذية :-

الماع: إن بروتوبلازم الخلية الحية يحتوي من 73-80% من الماء، تحصل عليه من البيئة الطبيعية التي تعيش عليها. والماء يدخل من الخلية محملاً بكل الجزيئات الغذائية الذائبة بالبيئة الطبيعية ويخرج منها محملاً بما تريد أن تخرجه الخلية وكل العمليات الإنزيمية الكيميائية التي تتم بداخل الخلية يتم فقط في وجود كميات كافية من الماء. ونوعية الماء اللازم لتحضير بيئة لتنمية البكتيريا يعتبر من الأمور الهامة جداً. فمثلاً يجب عدم إستعمال ماء الحنفية العسر أو المحتوى على أيونات الكالسيوم أو المغنيسيوم. حيث أن وجود الفوسفات غير الذائبة وكذلك أيونات الكالسيوم أو المغنيسيوم قد يؤثر على مدى صلاحية الببتون أو خلاصة اللحم التي تضاف إلى البيئة. وأفضل المياه التي تستعمل في صناعة بيئات الزرع هو الماء المقطر. يمكن التعبير عن الوفرة للماء بالنشاط المائي Water activity

$${
m P}$$
ضغط بخار المحلول ${
m aW}=$ ضغط بخار الماء ${
m Po}$

وقيمة aW مساوية للـ 1 وتقل هذه القيمة عندما تكون هناك املاح مذابة في الماء.

تتمكن الكائنات المجهرية من النمو في بيئة تكون قيمة aW واقعة بين 0.63 و 0.99 ويبدو ان قيم aW ثابتة بالنسبة للنوع الواحد ولاتعتمد على طبيعة المواد المذابة وتحتاج البكتريا الى قيم لفاعلية الماء اكثر من القيم التي تحتاجها الخمائر والفطريات (الـ Micrococci و Staphylococcni تمتلك القيم الاقل لفاعلية الماء المثلى لنموها) ، والقيمة المثلى للنشاط المائي الذي تنمو فيه الاحياء المجهرية هي 0.90 -0.99 وعند هبوط قيمة النشاط المائي الى 0.86 فانه يعيق نمو العديد من البكتريا اما الفطريات فيمكن منع نموها بخفض القيمة الى 0.7.

تقسيم أحياء المجهرية بالنسبة لمصدر الطاقة والكاربون والالكترونات :-

- أ. بالنسبة لمصدر الكاربون: تصنف أحياء المجهرية بالنسبة لمصدر الكاربون إلى:
- 1. أحياء ذاتية التغذية Lithotrophs or Autotrophs وهي الأحياء المجهرية التي تستعمل غاز ثاني اوكسيد الكاربون مصدر للكاربون.
 - 2. أحياء المتباينة التغذية Heterotrophs وهي الأحياء المجهرية التي تستعمل المركبات العضوية مصدرا للكاربون.
 - ب. بالنسبة لمصدر الطاقة: تصنف أحياء المجهرية بالنسبة لمصدر الطاقة إلى:
 - 1. أحياء ضوئية Phototrophs وهي الأحياء المجهرية التي يكون فيها الضوء مصدرا للطاقة
- 2. أحياء كيميائية Chemotrophs وهي الأحياء التي تؤكسد المركبات العضوية أو المعدنية لتحصل على الطاقة اللازمة للعمليات الحيوية المختلفة.

احياء مجهرية تغذية الاحياء المجهرية المحاضرة (7)

كذلك قسمت أحياء التربة المجهرية بالنسبة للتداخل بين مصدر الكاربون والطاقة إلى أربعة أقسام هي:

- أ. أحياء ذاتية التغذية ضوئية Photoautotrophs وهي الأحياء المجهرية الشبيهة بالنباتات إذ تستعمل ثاني اوكسيد الكاربون كمصدر للكاربون والضوء مصدر للطاقة وهذه تضم جميع الطحالب وقسما من البكتريا مثل جنس Purple bacteria وكذلك البكتريا الأرجوانية Purple bacteria والبكتريا الخضراء Purple bacteria.
- ب. أحياء ذاتية التغذية كيميائية Chemoautotrophs وهي الأحياء المجهرية التي تستعمل ثاني اوكسيد الكاربون مصدرا للكاربون وأكسدة المركبات المعدنية مصدر للطاقة اللازمة لتحويل ثاني اوكسيد الكاربون إلى كلوكوز ثم تحويله إلى مركبات الخلية العضوية الأخرى. ويشمل هذا القسم عددا من الأجناس البكترية الاقتصادية والتي تقسم بدورها إلى مجاميع أخرى على أساس مركبات العناصر التي تقوم بأكسدتها للحصول على الطاقة وهي:
- 1. البكتريا التي تؤكسد ايونات الامونيوم إلى ايونات النتريت للحصول على الطاقة مثل جنس Nitrosomonas كما في المعادلة الآتية:

$$NH_4 + 11/2O_2$$
 ----- $NO_2 + 2H^+ + H_2O + 66$ cal.

2. البكتريا التي تؤكسد ايونات النتريت إلى ايونات النترات للحصول على الطاقة مثل جنس Nitrobacter كما في المعادلة الآتية:

$$NO_2^- + 1/2O_2$$
 ----- $NO_3^- + 17.2$ cal.

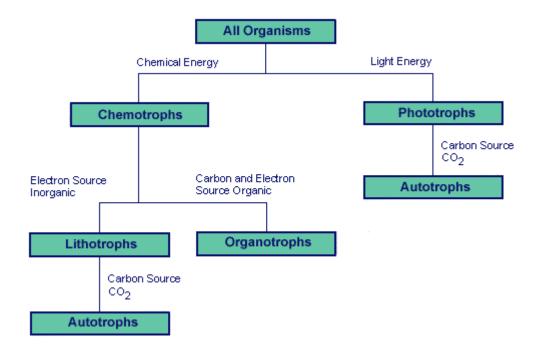
3. البكتريا التي تؤكسد مركبات الكبريت إلى ايونات الكبريتات للحصول على الطاقة مثل جنس Thiobacillus كما في المعادلة الآتية:

$$S + 11/2O_2 + H_2O - - H_2SO_4 + energy$$

4. البكتريا التي تؤكسد ايونات الحديدوز المضافة إلى التربة بشكل كبريتات الحديدوز إلى رواسب من هيدروكسيد الحديديك للحصول على الطاقة مثل جنس Ferrobacillus.

$$Fe^{+2}$$
 ----- Fe^{+3} + energy

ج. أحياء المجهرية المتباينة التغنية كيميائيا Chemoheterotrophs وهي الأحياء المجهرية التي تستعمل المركبات العضوية مصدرا للكاربون والطاقة وتشمل جميع الفطريات والابتدائيات ومعظم البكتريا وجميع الاكتنيومايستات ومن الأجناس البكترية لهذه المجموعة هي Rhizobium المثبت للنايتروجين تعايشيا والجنس Azotobacter المثبت للنايتروجين لاتعايشيا والجنس Pseudomonas ومن أنواعه P. denitrificans الذي يختزل النترات إلى غاز النتروجين والجنس Micrococcus والذي من أنواعه M. urea المحللة لليوريا والجنس Phage المحللة للسليلوز.


د. أحياء متباينة التغنية ضوئية Photohetrotrophs

1. وضعت هذه المجموعة لغرض أكمال التقسيم ولم يكتشف حتى ألان في أي كائن حي يقع ضمن هذا التقسيم.

ه - بالنسبة لمصدر الالكترونات:

lithotrophs -1 مصدر الالكترون هو الجزيئات غير العضوية

Organotrophs -2 مصدر الالكترونات الجزيئات العضوية

النايتروجين: تحتاج الخلايا N لتخليق الحوامض الامينية والنووية. ويدخل في تركيب الانزيمات والعديد من المواد ويوجد باشكال متعددة منها N_2 و N_3 و N_3 وان الشكل الذي يحتاجه الكائن الحي يعتمد على القابلية الاختزالية الانزيمية التي يمتلكها الكائن الحي فعندما يكون مصدر النايتروجين على هيئة N_3 هيئة N_3 فان البكتريا تقوم باستغلاله عن طريق ازالة مجموعة الامين (Deamination) ليكون الامونيا N_3 ثم يستغل N_3 الموجود فيها وقد تنقل الخلايا N_3 (Transamination) الى مستلم اخر وقد تقوم البكتريا بكلا العمليتين.

تحتاج عملية استغلال الامونيا الى صرف طاقة فعند وجود الامونيا بتراكيز عالية خارج الخلية سوف يعمل انزيم Glutamate ويؤدي الى تكوين حامض Glutamic acid الذي يدخل الى داخل الخلية تقوم بعد ذلك بتوزيع هذا الحامض الى مختلف المواد الخلوية التى تحتاجها خلال تفاعل حذف جذر الامين.

وهناك بعض الاحياء تقوم على استغلال N من الاملاح الامونيوم وبعضها يقوم بتثبيت النتروجين الجوي Biological وهناك بعض الاحياء تقوم على استغلال N من الاملاح الامونيوم وبعضها يقوم بتثبيت النتروجين المواد النايتروجينية العضوية الخلوية.

وبعض الاحياء تقوم بأختزال النترات بواسطة انزيم Nitrate reductase الى نتريت ويختزل الاخير بواسطة انزيم reductase ويستمر الاختزال الى مراحل تكون الامونيا NH3 لكي تستفيد منه الخلايا.

الفسفور: يوجد الفسفور في الاحماض النووية وفي الفوسفولبيدات وفي ATP ، تقريبا اغلب الاحياء المجهرية تستخدم الفسفور الغير عضوي كمصدر للفسفور والبكتريا تستطيع استخدام الفسفور العضوي وغير العضوي ،بعض الفسفور العضوي يمكن ان يدخل الى داخل الخلايا بواسطة البروتينات الناقلة والبعض الاخر يتحلل بفعل الانزيمات الموجودة في الفراع السايتوبلازمي Periplasm المفسور الغير غير العضوي الموجود خارج الخلايا يدخل عن طريق ال Porin الموجودة في جدار البكتريا وفي حالة وجود الفسفور بتراكيز قليلة تستخدم نواقل خاص للفسفور يطلق عليها phosphate – specific trancport

الكبريت: يشغل عنصر الكبريت ومركباته مع الاوكسجين والهيدروجين دورين. الاول انه يستعمل لانتاج الطاقة حيث يستعمل كمستلم للالكترونات Electron acceptor والدور الثاني يستعمل لبناء المواد الخلوية. يمكن للخلايا البكتيرية ان تستخدم S من مصادره وهو مؤكسده وضمن مركبات SO4 غير العضوي وبهذا يتوجب على هذه الاحياء ان تختزله اولاً. هناك بعض الاحياء المجهرية لا تستطيع اختزال هذا العنصر، لذا يجب ان تحصل عليه وهو مختزل على شكل كبريتيد -S مثل H2S او على شكل مركبات عضوية تحتوي على مجموعة SH مثل البروتينات حيث مركبات عضوية تحتوي على مجموعة SH مثل الحامض الاميني Cystein او مركبات اخرى اكثر تعقيداً مثل البروتينات حيث تقوم هذه المركبات بتزويد الخلية بعنصر S.N.C اضافة الى الطاقة.

المعادن: كل الكائنات الحية بما فيها البكتيريا تحتاج إلى كميات ضئيلة من الأيونات المعدنية مثل الصوديوم والبوتاسيوم والكالسيوم والماغنيسيوم والمنغنيز والحديد والزنك والنحاس والفوسفور والكوبلت لكي تنمو طبيعياً ، وأن الكميات اللازمة منها قليلة جداً ، وهذه المعادن قد تدخل في عمليات البناء أو التنفس أو تعمل كمرافقات إنزيمية .

عوامل النمو العضوية Organic Growth Factors:

إن أي مادة حيوية وضرورية لبناء وحياة الخلية والتي لا تقدر الخلية على تخليقها بنفسها من المصادر الكربونية والنيتروجينية البسيطة التي تتناولها تعرف بعوامل النمو وهذه تشمل فيتامينات وأحماض امينية معينة والكثير من البكتيريا غير ذاتية التغذية تكتفي بما يحتويه مستخلص اللحم المضاف في بيئة المرق المغذي من عوامل النمو إلا أن هناك بعض البكتيريا الممرضة الصعبة التنمية Fastidious heterotrophs تحتاج إلى بيئات أغنى غذائياً enriched مثل آكار الدم للحصول على العديد من عوامل النمو التي يحتاجها ، وتحتاج الخلايا هذه المواد بتراكيز ظئيلة جداً لذلك تدعى بالمغذيات الدقيقة. Micronutrient وهي تقسم الى:

- 1. الحوامض الامينية: تعد من اهم المواد العضوية ، اذ ان بعض البكتريات تحتاج الى بعض الحوامض الامينية الخاصة التي لا تستطيع تخليقها نظراً لنقص الانزيمات المشتركة في عملية التخليق فمثلا يعد الحامض الاميني Tryptophan عامل نمو مهم لاتستطيع الاحياء من النمو بدونه مثل بكتريا الخالق Salmonella typhi وبكتريا الخالق Clostridium tetani وبكتريا الخالق. Corynobacterium diphtheria
- 2. القواعد النتروجينية: تتمثل القواعد النتروجينية بالبيورينات والبريمدبنات التي يجب توفرها بنسبة ضئيلة في الوسط الزرعي ويوجد بـ 5 مركبات مختلفة من القواعد النتروجينية تدخل في تركيب الحوامض النووية وهي (C, G, U, A, T). ان عملية تخليق هذه القواعد تتضمن سلسلة معقدة من التفاعلات لذلك يكون الكائن معتمداً على البيئة (الوسط الزرعي) في تزويده بالقواعد النتروجينية.
- 3. الفيتامينات: هي مجموعة من المركبات العضوية التي تشكل الجزء المتمم لبعض الانزيمات، ويكون الاحتياج للفيتامينات بكميات اقل من الحوامض الامينية والقواعد النتروجينية تختلف الاحياء المجهرية من حيث احتياجها بالنسبة لاشكال عوامل النمو فمثلاً الثايمين (B1) يتكون من جزيئتين من البريميدين والتايازول اذ تحتاج بعض الاحياء المجهرية للثابمين بشكله المتكامل في حين تستطيع الانواع الاخرى الاستفادة من احد شطري الفيتامين البريميدين او الثايازول وايضاً مثال اخر حامض البنتاثنيك حين تستطيع الانواع الاخرى عامل مهم يدخل في تخليق الـ Coenzyme الذي يدخل في التفاعلات الايضية المنتجة للطاقة ويتكون هذا الحامض من جزيئتين هما Pantoic و Pantoic اذ ان الاحياء المجهرية التي تحتاج الى هذا الحامض يجب ان تكون قادرة على pantothenic من جزيئين ثم ربط هذين الحامضين بوجود انزيم معين ينتج من خلاله pantothenic.

(عوامل النمو هي مواد كيمياوية قد تكون عضوية مثل Co و Mg و Mn و Zn)

تقسيم أحياء المجهرية بالنسبة لحاجتها للأوكسجين

أن وجود الأوكسجين أو عدم وجوده يقسم أحياء المجهرية إلى ثلاثة مجاميع رئيسية والأساس في هذا التقسيم يعود بالدرجة الرئيسية إلى طبيعة نظم إنتاج الطاقة والمجاميع هي:

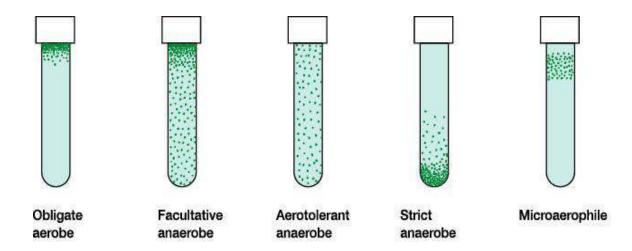
أ. الأحياء الهوانية الإجبارية Obligate anaerobes: وهي الأحياء المجهرية التي تحتاج إلى الأوكسجين كمستقبل نهائي للالكترونات لغرض الأكسدة وعندما تكون هذه هي الوسيلة الوحيدة لإنتاج الطاقة فان هذا الكائن الحي يكون من النوع الهوائي الإجباري. أن اغلب أحياء المجهرية من هذا النوع ومن الأمثلة عليها الأجناس البكترية Thiobacillus و Nitosomonas و Nitrobacter.

ب. الأحياء المجهرية اللاهوائية الاختيارية Facultative anaerobes: وهي الأحياء المجهرية التي تحصل على الطاقة بغياب الأوكسجين ويمكنها النمو أيضا في وجود الأوكسجين أي أنها تستطيع النمو بوجود الأوكسجين أم عدم وجوده مثل الاجناس البكترية Bacillus و Pseudomonas.

ج. الأحياء المجهرية اللاهوائية الإجبارية Obligate anaerobes: وهي الأحياء المجهرية التي لها نظام أنتاج الطاقة الذي لايحتاج إلى الأوكسجين وعلى الرغم من الأوكسجين يعد مستقبلا شائعا وكفوءا للالكترونات فان بعض الكائنات ذات النواة البدائية لها القدرة على الاستفادة من بعض مستقبلات الإلكترون اللاعضوية (المعدنية) إذ تختزل النترات إلى امونيا وثاني اوكسيد النتروز وغاز النتروجين بواسطة البكتريا اللاهوائية الإجبارية Pseudomonas dentrificans حيث تعد النترات احد مصادر مستقبلات الالكترونات لهذه البكتريا أو يمكن أن تكون الكبريتات (SO4) مستقبل للالكترونات إذ تختزل إلى كبريتيدات بواسطة البكتريا اللاهوائية الإجبارية Desulfovibrio desulfuricans أو يمكن أن يكون غاز ثاني اوكسيد الكاربون مستقبل للالكترونات إذ يختزل إلى غاز الميثان بواسطة البكتريا اللاهوائية الإجبارية جنس Methanobacterium.

ويعد الاوكسجين من العناصر التي تؤدي الى قتل او توقف نمو للكائن الحي وان سمية هذا المادة تعد معقدة وغير مفهومة بشكل واضح ولكن يمكن ان تعود الى ان الاحياء من هذا النوع تحتوي على انزيمات في حالة اختزال لكي تعمل بحالة طبيعية لذلك وجود الاوكسجين سيعطل هذه الانزيمات وبالتالي يوقف نموها. فمثلاً عدم احتواء الاحياء من هذا النوع على انزيم حمل الذي يفلق بيروكسيد الهيدروجين الى ماء واوكسجين الا انها ايضاً لاتمتلك الانزيم الذي يحول O_2 الى O_2 .

$$2 O_2^- + 2H^+$$
 Superoxide dismutase dismutase $H_2O_2 + O_2$


 H_2O_2 catalase $O_2 + H_2O$

نمو البكتريا في وسط يحتوى على اوكسجين تتكون مادتين سامة وهي

- Superoxide Ion O₂ -1
- Hydrogen peroxide H₂O₂ -2

ان بكتريا Lactic acid bacteria هي من نوع Lactic acid bacteria حيث لا تحتوي على انزيم الـ Catalase ولكن تحتوي على انزيم الـ Peroxidases الذي يعمل على تحويل 2H2O الى 2H2O بوجود مواد عضوية مؤكسدة. وقد اقترح العلماء ان موت الاحياء بوجود الاوكسجين يعود الى تكوين بيروكسيد الهيدروجين وتجمعه فيما بين الخلايا وان بيروكسيد الهيدروجين يعتبر مادة سامة جداً.

الاحياء الهوائية الدقيقة Microaerophilic organism: هي الاحياء التي يتوقف نموها او قد تقتل بوجود الاوكسجين بتركيزه الموجود في الهواء الا انها تنمو اذا توفر الاوكسجين بتركيز واطئ اقل من 2- 10 % من الضغط الجوي وذلك يعود الى وجود انزيمات حساسة لوجود عامل مؤكسد ومن هذه الاحياء هي البكتريا التي تحصل على طاقتها من اكسدة الهيدروجين بوجود انزيم Hydrogenase الذي يتعطل بوجود الاوكسجين. ويمكن ان تنمى البكتريا في انابيب حاوية على على وسط خاص مثل وسط Thioglycollate.

شكل يوضح انواع البكتريا اعتمادا على حاجتها للاوكسجين

Cultivation of Microorganism زراعة الاحياء المجهرية

ان الغرض الرئيسي في تحضير أي وسط زرعي للاحياء المجهرية هو تزويد الاحياء بخليط متوازن للمواد التي تحتاجها الخلايا وبتراكيز تسمح للنمو حيث ان زيادة تركيز أي مادة سيؤدي الي:

1- ان الوسط يصبح مثبط او سام لان العديد من المواد المغذية تتحول الى مواد مانعة للنمو.

2- اذا حدث النمو في الوسط الزرعي عالي التركيز فان الطبيعة البيئية ستتغير نتيجة الفعاليات الايضية للاحياء المجهرية النامية فتصبح هذه البيئة غير مناسبة وتتغير الحالة الفسلجية لهذه الاحياء او قد تموت. وقد يكون هذا سبب التغير الشديد في تركيز ايون الهيدروجين او بتجمع المواد العضوية السامة او لنفاذ الاوكسجين في حالة الاحياء الهوائية الاجبارية.

تحضير الوسط الزرعى: - يعتمد تحضير الوسط الزرعى على:

- 1- اضافة مصدر كاربوني ونتروجين ومصدر طاقة وعوامل نمو خاصة.
 - 2- اضافة الفلزات المهمة التي تناسب أي كائن مجهري.

ان الحاجة الى مصادر الغذائية تختلف حسب الفعاليات الحيوية التي تقوم بها البكتريا لكن جميعها تحتاج الى الماء والذي يشكل نسبة 80 % من حجم و وزن البكتريا. ان الاوساط الزرعية قد تكون بسيطة المكونات او معقدة فمثلا الاوساط الزرعية التي تستعمل لتنمية الاحياء ذاتية التغذية تكون بسيطة عادة وذلك لقدرتها على بناء التراكيب المعقدة لخلاياها من مواد بسيطة (بعض الاملاح غير العضوية وماء ومصدر نتروجين و (CO₂) في حين تكون بعض الاحياء نحسا Fastidious فتحتاج عادة الى اوساط معقدة التركيب لنموها وذلك لعدم قدرتها على تصنيع تراكيبها.

تقسم الاوساط الزرعية الى:

1- الوسط الصناعي Synthetic medium: وهو الوسط الزرعي المعروف مكوناته الكيمياوية نوعاً وكماً.

2- الوسط المعقد Complex Medium: وهو الوسط الزرعي الذي لاتعرف مكوناته الكيمياوية نوعاً وكماً وذلك بأضافة بعض المواد مثل خلاصة اللحم او خلاصة الخميرة لتزويد الوسط الزرعي بالمركبات الكيمياوية العضوية واللاعضوية المختلفة.

, FeSO4.7H2O , Mn. Cu, CO, Zn) توجد هذه الاملاح في جميع الاوساط الزرعية (Inorganic Salt ، K2HPO4 ، MgSO4.7H2O

تقسم الاوساط حسب مكوناتها الى:-

- 1- الوسط الاول: يحتوي على كلوريد الامونيوم NH4Cl فقط ويخلو من المصدر الكاربوني. وهذا الوسط يلائم البكتريا ذاتية التغذية مثل بكتريا النايتروجين Nitrosomanas التي تحصل على الكاربون من CO₂ اما الطاقة من الاكسدة الهوائية للامونيا.
- 2- الوسط الثاني: يحتوي على سكر الكلوكوز و NH4Cl ويصلح هذا الوسط للبكتريا والفطريات لان الكلوكوز يعد مصدر للكاربون والطاقة اما البكتريا اللاهوائية فتحصل على طاقتها من عملية التخمر.
- 3- الوسط الثالث: يحتوي على فيتامين و هو Nicotinic acid اضافة الى سكر الكلوكوز و NH4Cl وينمو
 في هذا الوسط الاحياء التي تحتاج الى الفيتامينات مثل بكتريا Proteus vulgaris .

4- الوسط الرابع: وهو وسط معقد يحتوي على (Yeast extract) والسكر يستعمل لتنمية الاحياء الكيمياوية المتباينة التغذية الهوائية واللاهوائية. ان مستخلص الخميرة (Yeast extract) يزود الوسط الزرعي بالمواد النابتر وجينية فضلاً عن معظم عوامل النمو العضوية.

- ان تحضير الاوساط الزرعية تحتاج الى الكثير من الدقة والجهد في وزن المواد واختيار المواد الكيمياوية المناسبة.
- تعد الاوساط الزرعية الثلاثة الاولى من الاوساط الصناعية والوسط الرابع وسط معقد لاحتوائه على خلاصة الخميرة بالاضافة الى الاحتياجات الغذائية الاخرى هناك عوامل اخرى يجب توفرها عند نمو كائن مجهري معين وهي درجة حرارة الحضن ، الضغط التنافذي ، تركيز ايون الهيدروجين.

العوامل التي يجب توفرها عند نمو الكائن المجهري

1- السيطرة على الرقم الهيدروجيني

ان البيئة الطبيعية للنمو اغلب الاحياء المجهرية هي بين 4-9 والعدد القليل الذي ينمو في اس هيدروجيني اقل من 4 واكثر من 9 ويطلق على الاحياء المحبة للرقم الهيدروجيني الواطئ Acidophiles والتي تتراوح بين (0 – 5.5) وتمتاز بتحلل غشائها السايتوبلازمي عند رفع الاس الهيدروجيني فضلا عن ذلك تاثرها على الانزيمات النقل الموجودة في الغشاء السايتوبلازمي وبعض البكتريا مثل Salmonella typhimurium و للانزيمات النقل الموجودة في الغشاء السايتوبلازمي تحمل الحموضة اما الاحياء المحبة للوسط القاعدي يتراوح E. coli) يطلق عليها Alkaliphiles اما البكتريا التي تنمو في الاس الهيدروجيني المتعادل يطلق عليها Neutrophiles و الذي يتراوح بين (5.5-8.5).

عند تنمية الاحياء المجهرية في الوسط الغذائي المناسب فانها تتأثر وبشكل ملحوظ في التغيرات الكيمياوية التي تطرأ على المزرعة نتيجة الفعاليات الايضية للاحياء النامية نفسها فمثلاً تكون الحوامض العضوية نتيجة الفعاليات التخمرية للسكر الموجود في الوسط مما يوقف نمو الكائن المجهري او تتكون قواعد بدلاً من الحوامض نتيجة لعمليات الهدم التي تحصل من قبل الكائن المجهري اواستخدام الايونات السالبة الموجودة في الوسط او التفاعلات الايضية التي تحصل في البروتينات والحوامض الامينية والتي تؤدي الى تكوين الامونيا. ان تكون مثل هذه المواد تؤدي الى تغيرالرقم الهيدروجيني للوسط الا ان التغير لايكون بشكل حاد او مفاجئ بسبب احتواء الوسط على ما يسمى بالدارئ مثل الحوامض الامينية والبروتينات لاحتوائها على جذور الامين بسبب احتواء الوسط على ما يسمى بالدارئ مثل الحوامض الامينية والبروتينات لاحتوائها على جذور الامين يطلق على هذه المواد بأنها امفوتيرية amphoteric الا انه في بعض الاحيان يكون التغير في الرقم الهيدروجيني للوسط الزرعي كبير بحيث تعجز قدرة الدارئ على كبحه لذلك يستعان ببعض المواد الدارئ مثل.

1- املاح الفوسفات:

1- تتكون دوارئ الفوسفات phosphot buffers من خليط يحتوي على K2HPO4 (ملح ضعيف القاعدية)

$$K_2HPO_4 + HCL \longrightarrow KH_2PO_4 + HCL$$

$$KH_2 PO_4 + KOH \longrightarrow K_2HPO_4 + H_2O$$

و KH2PO4 (ملح ضعيف الحامضية).

2- يستخدم في تحضير الاوساط الزرعية لانه يمنع التغيير الجذري في تركيز ايون الهيدروجين الناتج من نمو الاحياء المجهرية.

- 3- تعد من الاملاح اللاعضوية الوحيدة التي تعمل كداريء ضمن المدى المهم وهو التعادل النسبي.
 - 4- لاتعد سامة للاحياء المجهرية.
 - 5- تعد مصدراً مهماً للفسفور تتزود منه الاحياء.
- 6- التراكيز العالية من الفوسفات تكون مانعة لنمو بعض الاحياء. وعموماً فان البكتريا والفطريات تستطيع ان تتحمل فوسفات البوتاسيوم بتركيز 5 غم/ لتر من الوسط الزرعي

2- املاح الكاربونات والبيكاربونات:-

1- تستخدم عند تحرر الحوامض بكمية كبيرة في الوسط الزرعي فلا تنفع استخدام داريء الفوسفات.

$$Na_2CO_3 + HCL \longrightarrow NaCl + H_2O + CO_2$$

 $NaHCO_3 + NaOH \longrightarrow Na_2CO_3 + H_2O$

2- وجود ايون الهيدروجين يحول الكاربونات الى بيكاربونات ثم تتحول الاخيرة الى حامض الكاربونيك الذي يتحلل الى CO₂ وماء.

$$CO_3^{-2}$$
 $+H^+$ $+H^+$ $+H^+$ $+H^+$ $+CO_3$ $+CO_2+$ $+CO_2+$ $+CO_3+$ $+CO_3+$

3- يعمل على منع تجمع ايونات الهيدروجين.

4- لايفضل استخدام كاربونات الصوديوم الذائبة بل يفضل كاربونات الكالسيوم غير الذائبة لان الاولى قلوية
 حادة والقلوية العالية تكون غير ذائبة في الوسط.

في ظروف اخرى لاتنفع دواريء الفوسفات والكاربونات لذا يفضل ضبط الرقم الهيدروجيني دورياً وبأستمرار بأضافة قاعدة او حامض تحت ظروف معقمة.

2- السيطرة على كمية الاوكسجين

يعد الاوكسجين عامل تغذية مهماً بالنسبة للاحياء المجهرية الهوائية لانه يدخل في العديد من العمليات البنائية والهدمية.

- زراعة الاحياء المجهرية الهوائية: تزرع عن طريق تخطيطها فوق سطح الاكار في اطباق بتري اما اذا كانت المزرعة سائلة فيمكن استخدام انابيب الاختبار الاعتيادية. او دورق صغير ثم تحضن تحت الظروف الجوية اما اذا كانت الكميات كبيرة فانها توضع في اوان كبيرة حتى تزيد من المساحة السطحية للمزرعة وتعريضها للاوكسجين، وقد تستخدم اجهزة هزازة لهذا الغرض او قد يضخ الهواء الى داخل المزرعة باستخدام مضخات خاصة كما في الصناعة التي تعتمد على التخمير.
 - زراعة الاحياء المجهرية اللاهوائية يتم استبعاد الاوكسجين عن طريق
 - 1- تستخدم قناني محكمة الغلق وتملاء تماماً بالوسط السائل المفرغ من الهواء.
 - 2- يتم غليان الوسط لغرض طرد 2

3- في حالة تنمية الاحياء المجهرية في وسط صلب اذ تحضن الاطباق في اجواء غير هوائية باستخدام الجرار المعد لحضن المزارع الصلبة المزروعة في الاطباق وتستخدم مجففات مفرغة Vacuum desiccators وبعد ان تفرغ من الهواء تملأ بالناتروجين او الهيدروجين او بخليط من هذين الغازين مع CO₂.

4- زراعــة البكتريــا اللاهوائيــة المجبـرة بأضــافة مــواد مختزلــة قويــة للوسـط الزرعــي مثــل Sodium thioglycolate و غيرها .

3-السيطرة على CO2

يتم السيطرة على كمية CO_2 من خلال ضخ هواء يحتوي على 5% من CO_2 (خاصة ان الهواء الجوي يحتوي على CO_2 من CO_2) الا انه سوف يولد تغيير في الوسط الزرعي لذا يتم استعمال دوارئ لغرض زراعة الاحياء المجهرية الضوئية ذاتية التغذية والكيمياوية ذاتية التغذية.

5. الضغط

اغلب البكتريا تعيش على سطح الارض او على سطح المياه وبعضها تعيش في اعماق البحار والتي يتراوح الضغط فيه حوالي 600- 1100 atm والتي يطلق عليها Barotolerat زيادة الضغط عن ذلك يوثر سلبا في حين يلاحظ وجود بكتريا في امعاء اللافقريات البحرية تتحمل الضغط عالى يطلق عليها barophilic .

6- توفر الضوع

يعد الضوء من المتطلبات الضرورية لتنمية الاحياء المجهرية الضوئية وytochromes او cytochromes او cytochromes البكتريا التي تحتوي على Chlorophy II الحرارة المسلطرة على توفر الضوء ودرجة الحرارة عن طريق تستطيع امتصاص الضوء كمصدر للطاقة لذا يتم السيطرة على توفر الضوء ودرجة الحرارة عن طريق استخدام حاضنات مزودة بوسيلة تثبت درجة الحرارة المطلوبة وبما ان الحاضنات لا تحتوي على اضاءة داخلية لذا يجب وضع الحاضنات قرب الشبابيك الجيدة الإضاءة لأوقات متقطعة متجنبين التعرض المباشر لضوء الشمس تجنباً من شدة الضوء الذي يرفع من درجة الحرارة الذي سيمنع نمو الأحياء المجهرية. ان الاطوال الموجية التي تناسب عملية التخليق الضوئي التي تقوم بها الأحياء المجهرية الضوئية التغذية اقل من 700 نانومتر للطحالب ولحقيقية النواة وتنحصر ما بين 700-1000 نانو متر للبكتريا الخضراء

7. تجنب رواسب المعادن

و البنفسجية.

عند تحضير الاوساط الصناعية يتكون راسب اثناء عملية التعقيم وخصوصاً اذا احتواء الوسط على ايونات الفوسفات بتراكيز عالية اذ يتكون راسب نتيجة تكوين مواد معقدة غير ذائبة من تفاعل الفوسفات وايونات بعض المواد الثقيلة مثل الحديد ويتم معالجة هذه المشكلة عن طريق تعقيم المحلول المركز لمركبات هذه المعادن بشكل مفرد ثم تضاف الى بقية المكونات في الوسط الزرعي المعقم بعد ان يبرد او ادخال كمية قليلة من عامل الكلابي Chelating agent حيث يكون مادة معقدة ذائبة مع هذه المعادن وبذلك يمنع تفاعلها مع الفوسفات ومن هذه العوامل هو Chelating Acetic Acid (Ethylene Diamine Tetra Acetic Acid) بتركيز 0.01% تقريباً.

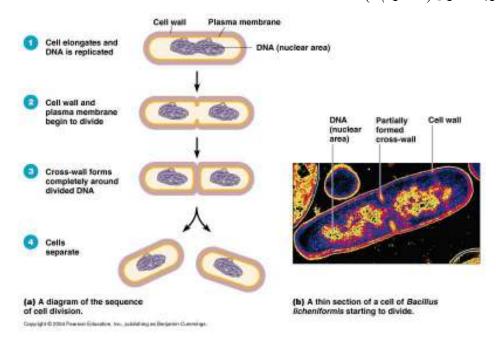
انواع الاوساط الزرعية:

- 1- الاوساط الزرعية الانتاجية Enriched Media هي الاوساط الزرعية التي تحتوي على مواد مغذية اضافية مثل الدم او المصل او خلاصات الانسجة النباتية او الحيوانية لتصبح صالحة لتنمية الاحياء التي تتطلب مواد غذائية معقدة.
- 2- الاوساط الزرعية الانتخابية Selective Media : هي الاوساط التي تسمح لنمو انواع معينة من الاحياء نتيجة لاضافة مثبطات خاصة التي تحد من نمو بعض الاحياء المجهرية مثل المضادات الحيوية او اضافة صبغة Crystal violet بتركيز معين يسمح بنمو الاحياء G^- ولا يسمح نمو الانواع الاخرى او اضافة Phenylethanol الذي يساعد على نمو بكتريا G^+ دون السالبة او ادخال مصدر كاربوني وحيد لا يستطيع استغلاله الا من قبل مجموعة معينة من الاحياء مثل اضافة النشا. ومثال على الاوساط الانتخابية وسط MacConkey agar
- 3- الاوساط التفاضلية Differential Media: هي من الاوساط التي تميز الاحياء عند نموها حيث تظهر صفات خاصة تميزها عن غيرها فمثلاً استعمال الدم للتميز بين البكتريا المحللة للدم عن غير المحللة للدم فتظهر المستعمرات المحللة محاطة بهالة شفافة وغير المحللة لاتظهر حولها هالة شفافة (يوجد ثلاث انواع من اتزيمات تحلل الدم haemolysis ∞ haemolysis).
- 4- الاوساط الزرعية التحليلية Assay media: هي اوساط صناعية تستخدم التقويم الكمي لبعض المواد المراد مثل الفيتامينات والحوامض الامينية، وهذه الاوساط مخصصة لتنمية نوع من الاحياء المتباينة التغذية التي تحتاج الى عامل نمو معين، وتنتخب هذه الاحياء انتخاباً بحيث يكون عامل نموها هو نفس المادة المراد تقويمها ولهذا تحذف هذه المادة عادة من مكونات الوسط التحليلي. وبعد الزرع تضاف مقادير معلومة من المادة المراد تقويمها ثم تقارن كمية المادة المستخدمة مع النمو الحاصل نتيجة هذه الاضافة.
- 5- الاوساط الزرعية التشخيصية Characterization media: هي اوساط تستخدم لتشخيص الاحياء المجهرية من خلال النمو الحاصل عليها او من خلال التغيرات الكيمياوية التي تطرأ على هذه الاوساط نتيجة نمو احياء مجهرية معينة عليها.
- 6- الاوساط الزرعية الحفظية Maintenance media: تستخدم للابقاء على حيوية الاحياء المجهرية عند خزنها لمدة معينة وهي مزروعة على هذه الاوساط دون ان تتغير الخصائص العضوية لهذه الاحياء.

نمو البكتريا Bacterial Growth

النمو Growth: هو الزيادة المنتظمة لكل مكونات الخلية والذي يؤدي بعد ذلك الى كبر حجم الخلايا وانقسامها عن طريق الانشطار الثنائي binary fission الى خليتين متساوية في الحجم والنمو ايضا يمكن ان يعرف على انه الزيادة في الحجم اذ ان الخلايا الواحدة تكبر حجما نتيجة لتجمع المواد المخزونة الذي لايرافقه تخليق المواد الحيوية الاساسية المتمثلة بالبروتينات والحوامض النووية اما الاحياء وحيدة الخلية فانه يؤدي الى زيادة عدد الافراد bacterial population عن طريق حساب كثافة الخلايا او كتلة الخلايا وهو نمو المجموعة البكتيرية

الانقسام الخلوي:


تتضاعف جميع الخلايا الخضرية Vegetative cell حيوانية كانت ام نباتية او التي تمثل كائناً حياً بذاتها عن طريق الانقسام غير الجنسي (وهذا لا يحدث في الفايروسات) اذ ينتج من الانشطار انقسام الخلايا الى خليتين او اكثر وتستمر الخلايا المتولدة بالانشطار او بالانقسام غير الجنسي الى ما لانهاية. وتتكاثر معظم البكتريا عن طريق الانشطار الثنائي العرضي transverse binary والذي يشمل عدة مراحل:

1- تحدث في البداية زيادة في طول الخلية الذي يشمل استطالة في الجدار والغشاء الخلوي نتيجة لتكون مواد جديدة تضاف الى التراكيب الموجودة داخل الخلية.

2- عند وصول الخلية الى حجم معين يبدأ الكروموسوم بالتضاعف لتكوين حلقتين متماثلتين.

3- تبدأ الخلية بالانقسام الى اثنين وذلك بعد تكوين حاجز Septum الذي يبدأ بتكوين الجدار الخلوي وبقية الطبات الجدارية الى الداخل في منتصف المسافة لطول الخلية البكتيرية وعند مكان انقسام الخلايا وبهذا سوف تنقسم الخلابا

4- تنفصل الخلايا مباشرة او انها تبقى لفترة ربما الى بعد حدوث انقسامات اخرى بنفس المستوى او بمستويات اخرى (شكل رقم 1)

شكل رقم (1) يوضح انقسام الخلايا

والوقت المستغرق الذي تحتاجه الخلية لتصبح اثنين يسمى بوقت التضاعف Generation time وطوله يعتمد على نوع البكتريا وعلى ظروف النمو اذ يستغرق حوالي عدة دقائق (10 دقائق الـ E.coli) وتصل الى ساعات وربما ايام. ان النمو في الاحياء المجهرية كما اسلفنا يحصل نتيجة الانقسام الخلوي الا انه في بعض الاحيان يحصل النمو دون الانشطار ، اذ هناك بعض البكتريا العصوية لاتستطيع القيام بعملية الانشطار بسبب تأثير عوامل خارجية لذلك فانها تعاني من استنساخ المادة النووية ونمو الجدار الخلوي والغشاء السايتوبلازمي والمحتويات الخلوية الا انها لا تنشطر وانما تطول وتنمو الى خيوط طويلة غير مجزئة.

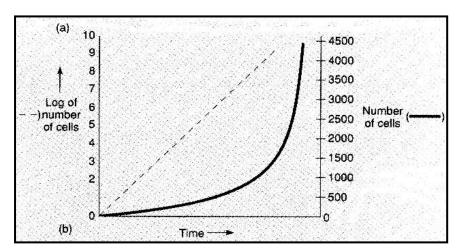
بصورة عامة فان فترة تضاعف البكتريا يتراوح بين 30-60 دقيقة حيث يصل عدد البكتريا المتضاعفة من خلية واحدة الى بليون (Billions) خلال 24 ساعة وهذا يفسر قدرة مشاهدة المزارع البكتيرية في الاوساط السائلة او الصلبة خلال فترة حضانة تتراوح بين 24-48 ساعة.

العوامل التي يؤدي الى منع الانشطار الثنائي:

- 1- الصابون.
- 2- املاح صفراء
- 3- الاشعة فوق البنفسجية.
 - 4- المضادات الحيوية.
- 5- نقص المواد الغذائية.
 - 6- حدوث الطفرات.

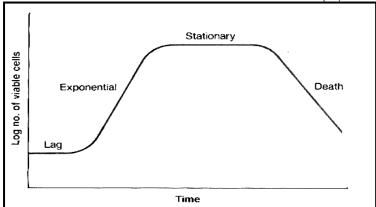
اذ ان هذه العوامل تمنع تخليق او تكوين الحاجز او الجدار العرضي في الخلية المنقسمة.

- هناك بعض الكائنات لاتتكاثر بطريقة الانشطار العرضي مثل.
- 1- الاكتينومايسيتات (Actinomycetales) تنمو بشكل خيوط يتبعه تجزؤ الخيوط الى وحدات اصغر.
- 2- Hyphomicrobiales تتكاثر عن طريق التبرعم حيث ينفصل البرعم من الخلية الام بعد ان يصل الى حجم معين.


ملحظة: - لا يعد تكون السبورات عملية تكاثرية اذ ان السبور الواحد يعطي خلية خضرية واحدة وبهذا لا يحصل زيادة في العدد الميكروبي.

طريقة قياس نمو المجموع البكتيرى:

- 1- قياس عدد الخلايا الكلي Total count
- 2- طريقة قياس عدد الخلايا الحي Viable count
 - 3- قياس عكارة المزروع البكتيري Turbidity.
- 4- قياس النواتج الايضية Measurment of metabolites.
 - 5- قياس الكتلة الخلوية Cell Mass


منحنى النمو البكتيري:

عند نقل عدد من الخلايا البكتيرية (مثل بكتريا E. coli) الى وسط غذائي سائل في وعاء مغلق فان الخلايا في هذه المزرعة سوف تنمو وتنقسم او تتضاعف بمعدل ثابت ثم يتم حساب المستعمرات النامية التي تمثل عدد الخلايا الحية كل مدة من الوقت وعند رسم خط بياني للعلاقة بين العدد المطلق للخلايا واللو غاريتم العدد من الجهة الاخرى لحصلنا على (شكل رقم 2). ويمكن الاستمرار في الحساب لمدة ساعة. ان العدد الخلوي قد يصل الى عدة ملايين من الخلايا في الملاتر الواحد (لهذا ترسم العلاقة على ورقة بيانية شبه لو غارتمي).

شكل رقم (2) يوضح العلاقة بين نمو البكتريا والوقت ولوغارتم العدد البكتيري والوقت

اطوار نمو المجموع البكتيري: ان المزرعة السائلة لبكتريا معينة تتوفر فيها جميع الاحتياجات الضرورية للنمو من درجة حرارة واس هيدروجيني ومغذيات فانها لاتشرع في النمو مباشرة وانما تمر بفترات للتطبع والتأقلم ثم يتبعه طور ثاني يتميز بنمو متوازن ومتزايد وهو الطور اللوغاريتمي وبعدها يبطئ النمو خلال طور يدعى طور الموت (شكل رقم 3)

شكل رقم (3) منحنى نموذجى لنمو البكتريا في مزرعة سائلة

1- طور الركود Log phase الور الكامن Latent phase: ان نقل الخلايا الى وسط غذائي جديد لا تشرع في النمو كما ذكرنا وانما تبقى مؤقتاً كما هي لاتتغير ولا تنقسم والوقت الذي يستغرقة هذا الطور يختلف اعتماداً على نوع البكتريا وايضا في حالة نقل البكتريا من وسط الى وسط اخر يختلف في التركيب في هذه الحالة تحتاج البكتريا الى تخليق انزيمات جديدة اعتمادا على نوع الوسط الجديد او قد تكون البكتريا قديمة يؤدي الى اطالة هذا الطورلذلك فهي تحتاج ان تهيئ نفسها للظروف الجديدة . ان الخلايا في هذا الطور تكون في حالة نمو غير متوازن حيث تزداد كميات البروتينات المخلقة للانزيمات و RNA مقارنة بالمكونات الاخرى أي ان الخلايا لاتكون خاملة او ساكنة.

2- الطور اللوغاريتمي (Logarithimic phase (log phase) او الطور الاسي Logarithimic phase : اذ يحدث في هذا الطور نمو وانقسام الخلايا وان الخط البياني الذي يربط لوغاريتم العدد البكتيري والوقت هو خط مستقيم والعلاقة بينهما علاقة طردية مميزات هذا الطور:

- 1- اصطباغها الشديد بالصبغات القاعدية Basic dyes.
- 2- تزداد حساسيتها للعديد من العوامل الفيزياوية والكيمياوية.
- 3- تكون جميع الخلايا تقريباً حية وفي حالة انقسام لذلك عدد الخلايا الحية يتساوى مع العدد الكلي وذلك لان نسبة الخلايا الميتة تكون واطئة جداً وان الخلايا جميعاً خلايا فتية نشطة
 - 4- تكون الخلايا في هذا الطور متساوية من ناحية مكوناتها وفعاليتها.
 - 5- الغشاء السايتوبلازمي او الجدار يرق بشكل ملحوظ.
 - 6- حجم الخلايا في هذا الطور يكون في حده الادني.
- يتم حساب عدد الخلايا الناتجة بعد فترة من حساب عمر الجيل Generation time وحسب المعادلة الاتية:

g = t/n

 $N_1 = N_0 \times 2^n$

 $log N_1 = log N_0 + nlog 2$

 $n = \frac{\log N_1 - \log N_0}{\log 2}$

 $n = \frac{\log N_1 - \log N_0}{0.301}$

 $n = 3.3 \log N_1 / N_0$

G = t/n

$$G = \underbrace{t}_{3.3 \log N_1/N_0}$$

. هو عدد الخلايا المزروعة في وقت الصفر N_0

عدد الخلايا بعد مرور مدة معينة.

عمر الجيل n = t عدد الجيل t = t

وان عمر الجيل هو ثابت بالنسبة للنوع البكتيري اذا ما ثبتت الظروف البيئية فاذا بدأنا بخلية واحدة فسنتضاعف خلال مدة معينة من الوقت الى خليتين ثم الى اربع خلايا لنفس المدة من الوقت و هكذا الى ثمانية الى ستة عشر وان المدة الفاصلة بين كل انشطارين تبقى ثابتة. جدول رقم (1) يوضح GT لبعض انواع البكتريا وتحت ظروف نمو مثلى.

Table 1. Generation times for some common bacteria under optimal conditions of growth.

Bacterium	Medium	Generation Time (minutes)
Escherichia coli	Glucose-salts	17
Bacillus megaterium	Sucrose-salts	25
Streptococcus lactis	Milk	26
Streptococcus lactis	Lactose broth	48
Staphylococcus aureus	Heart infusion broth	27-30
Lactobacillus acidophilus	Milk	66-87
Rhizobium japonicum	Mannitol-salts-yeast extract	344-461
Mycobacterium tuberculosis	Synthetic	792-932
Treponema pallidum	Rabbit testes	1980

3- طور الثبوت او الاستقرار (Stationary phase): يصل عدد البكتريا في هذا الطور الى حـــوالي 109 خلية اذا ان استمرار نمو الخلايا في الوسط الغذائي سوف يؤدي الى نفاذ المواد الغذائية والاوكسجين اذا البكتريا الهوائية الموجودة تحت سطح الوسط لاتستطيع ان تتحمل نفاذ الاوكسجين بدون تحريك الوسط وفي نفس الوقت تزداد النواتج العرضية السامة مثل الحوامض وتزدحم الخلايا في الوحدة الحجمية كل هذا يؤدي الى بطئ النمو في البداية ثم توقفه اذ يصبح عدد الخلايا الحية مساوي لعدد الخلايا الميتة (اي ثبوت العدد البكتيري نتيجة لتوقف التام للانشطار الخلوي او نتيجة للتوازن بين معدل الانشطار ومعدل موت الخلية). يتم البكتيري نتيجة لتوقف العديد من التغيرات المورفولوجية ومنها تكوين السبورات وايضا صغر حجم الخلايا وانتاج العديد من البروتينات التي تجعل الخلايا مقاومة للظروف الصعبة وايضا يزداد تكوين الروابط العرضية في طبقة الببتيدوكلايكان لمقاومة الظروف الصعبة .

4- طورالموت Decline or death phase: ان استمرار قلة المواد الغذائية يؤدي الى دخول المزرعة طور الموت اذ يبدأ عدد الخلايا الميتة يفوق عدد الخلايا الحية وان موت الخلايا لا يكون بشكل مفاجئ وانما يكون بشكل لوغارتمياً أي ان الخلايا تموت بمعدل ثابت.

ان معدل موت الخلايا يعتمد بشكل كبير على الظروف المحيطة وكذلك على نوع البكتريا ففي البكتريا المعوية يكون بطيئاً اما في بكتريا Bacillus يكون موتها سريع.

و. المراحل الانتقالية بين اطوار النمو: ان انتقال المزرعة يكون تدريجي من طور الى اخر وهذا يعني ان الخلايا ليست جميعها في حالة عضوية واحدة متماثلة عند اقتراب المزرعة في الطور التالى.

انواع النمو:

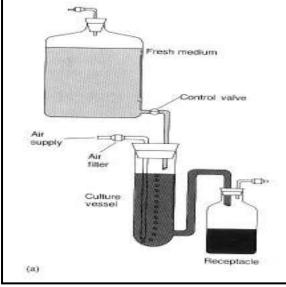
1- النمو الثنائي Diauxic growth

نوع من النمو يحدث للخلايا التي تنمو على خليط من مواد الاساس حيث تبدأ بالمصدر الاسهل والاكثر توفراً ثم تبدأ باستخدام المادة الاخرى.

2- النمو المتزامن Synchronous growth:

هي المزرعة التي تنقسم فيها جميع الخلايا في ان واحد وتستعمل هذه المزرعة في نواح بحثية اذ يتم نقل خلية بكتيرية واحدة من مزرعة لوغارتمية الى وسط غذائي طازج ولكن بنفس مكونات الوسط الغذائي المستخدم وبنفس ظروف الحضن لذلك فان الخلايا سوف تنشطر الى خليتين متشابهتان تقريباً وبسبب هذا التشابه يكون انشطار ها متزاماً الا ان التزامن لايكون مطلق، اذ يستمر التزامن المطلق في النمو لبضعة اجيال وفيما بعد تدخل الخلايا طور الانقسام العشوائي بسبب تراكم الفروقات الفسلجية الطفيفة جداً بين الخلايا.

3- النمو او المزروع المستمر Continous culture


بما ان النمو لايكون بشكل متزامن طول الوقت عند استعمال مزرعة ذات الدفعة الواحدة او المغلقة نتيجة للتغير المستمر للظروف، الا انه في بعض الاحيان من الافضل تنمية الخلايا تحت ظروف ثابتة ومسيطر عليها تسمى طريقة المزارع المستمرة وهي الطريقة الزرعية التي يتم بها السيطرة على توفر مواد غذائية بصورة مستمرة وازالة المواد الضارة المفرزة من قبل الاحياء المجهرية اثناء النمو وبذلك يتم المحافظة على الزرع في الطور اللوغاريتمي دون الدخول بطور الثبات وللتغلب على تراكم المواد السامة ونفاذ مستلزمات النمو تستخدم وسيلتان:

1- الناظم الكيمياوي Chemo state:

الذي يتألف من مستودع الزرع منظم لازالة جزء محدد من الخلايا النامية والمواد الضارة وينظم مرور الهواء بواسطة ناظم معين (شكل رقم 4)

2- الناظم االعكارة Turbid state:

هومنظم بصري كهربائي كالمطياف الضوئي يثبت كثافة الخلايا حيث تسيطر الخلية الضوئية وملحقاتها على معدل دخول المواد الغذائية.

شكل رقم (4) يوضح المزارع المستمرة

مميزات الزرع المستمر:

- 1- ان الخلايا تزود دائما ببيئة جديدة وبذلك يكون تركيز المواد الغذائية والفضلات ثابتة.
 - 2- يمكن السيطرة على معدل النمو وذلك بالسيطرة على معدل دخول المواد الغذائية.
 - 3- تستخدم في لدر اسات الفسلجية والوراثة وفي الصناعة.

القياس الكمى للنمو البكتيري:

1- الطرق المباشرة

ان دقة هذه الطريقة تقل كلما كان العدد البكتيري عالياً او منخفض ، ففي حالة كون العدد البكتيري عالي تتراكم الخلايا بعضها فوق البعض الاخروبذلك سوف يكون هناك عدد من الخلايا التي لاتحسب اما في حالة كون العدد البكتيري منخفض تتجمع الخلايا في بقعة معينة ولايمكن في هذه الحالة من حسابها وخاصة وان الخطأ في هذه حالة سوف يتضخم ولايكون مقبولاً احصائياً ومن هذه الطرق:

1- حساب عدد الخلايا باستخدام المجهر

1- طریقة برید Breed

اذ يؤخذ حجماً معين من النموذج ويوزع على مساحة معروفة من شريحة مجهرية ومن ثم تصبغ هذه المسحة وتفحص بالمجهر وهنا يجب ان تعرف مساحة الحقل المجهري Microscopic field ثم تحسب عدد الخلايا فيه لكي تعرف العدد البكتيري في المللتر الواحد من النموذج كتقدير عدد الخلايا البكتيرية في الحليب.

سلبيات الطريقة:

- 1- صعوبة توزيع النموذج على الشريحة المجهرية.
 - 2- لايمكن الحصول على نتائج مضبوطة.

2-طریقة Petroff-Hausser counting chamber

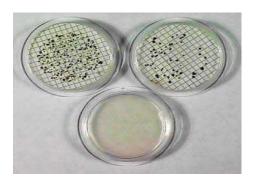
تستخدم لقياس هذه الطريقة لقياس اعداد الخلايا البدائية النواة في حين استخدام مقياس الخلايا الحمراء Hemacytometer لقياس اعداد للخلايا البدائية والحقيقية النواه وهي عبارة عن شريحة خاصة مجزئة الى مربعات تبلغ مساحة المربع الواحد منها 1/400 ملم² وتغطى الشريحة بغطاء رقيق يستند اليها تاركاً مسافة 50/1 ملم بين الغطاء والشريحة وبذلك يكون لدينا حجم قدره 20000/1 ملم² فوق كل مربع من مربعات الشريحة ويتم حساب عدد الخلايا في المللتر الواحد.

حسب القانون التالى:

Bacteria /mm³ = (bacteria / squares) (25 squares)(50) ويضرب في كمية التخفيف ان وجد

Bacteria /cm³ = (bacteria / squares) (25 squares)(50)(10^3)

2- حساب عدد الخلايا بواسطة اغشية الترشيح


هي الطريقة التي تستخدم فيها اغشية خاصة بثقوب صغيرة جداً ومنتظمة بحيث تمنع مرور البكتريا اذا ما رشح النموذج السائل من خلالها، نمرر كمية معروفة من السائل المراد حساب عدد الخلايا فيه من خلال غشاء الترشيح، فتحجب البكتريا من عبور الغشاء، وتبقى محبوسة عليه حيث يمكن عدها وهي على الغشاء باستخدام المجهر حيث تصبغ البكتريا باستخدام صبغة Acridine orange او صبغة DNA اذ تضهر البكتريا اما برتقالية اوخضراء ساطعة باستخدام المجهر.

مميزات الطريقة:

- 1- طريقة مهمة جداً في تحديد عدد البكتريا في النموذج السائل عندما يكون حجم النموذج كبير.
 - 2- تستخدم للنموذج الذي يكون عدد او محتواه الميكروي واطئ جداً مثلًا.

مساوئ الطريقة: لايمكن التميز بين الخلايا الحية والميتة.

شكل(5) يوضح اغشية الترشيح لعد الخلايا البكتيرية

3- حساب الخلايا بواسطة العدادات الالكترونية:

تعتمد هذه الطريقة على استخدام اجهزة تعمل على مبدأ العين الالكترونية ، اذ هناك اشعة الكترونية تعبر من بين قطبين في هذه العين او الفتحة فاذا مرت الخلايا من خلال هذه الاقطاب اعترضت مرور الاشعة هذه وبذلك تقطع الدائرة الكهربائية ويترجم هذا القطع بواسطة اجهزة معينة الي ارقام تمثل عدد الخلايا البكتيرية التى مرت خلال هذا العداد.

مميزاتها:

 1- تستطيع هذه الاجهزة عد او حساب الاف الخلايا الحية والميتة خلال مدة قصيرة جداً. مساوئها: لاتميز بين الخلايا الحية والميتة.

شكل (6) جهاز العدادات الالكترونية

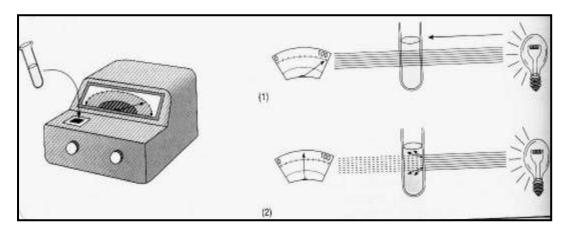
الطرق غير المباشرة:

1- الطرق الكيمياوية:

توجد بعض مكونات الخلية بكميات ثابتة فيمكن عند التقيس الكمي لهذه المواد ان تحدد تقريباً كمية او كتلة الخلايا التي تحتويها.

يعد النتروجين احد المواد المعتمدة ويوجد النايتروجين بحدود ثابتة بالبروتينات لذلك يتم قياس النتروجين عن طريق جمع الخلايا وتغسل جيداً اذ تتخلص مما علق بها من وسط غذائي ثم تنشف ويقاس النتروجين بواسطة التحليل الكيمياوي الكمي باستخدام طريقة كيلدال Kjeldal او يمكن قياس كمية البروتين في الخلية باستخدام كاشف فولن Folin Reagent اذ يعطى لون يتفاعل مع الحوامض الامينية (Tryptophan, Tyrosin) والتي توجد بكميات ثابتة في البروتين او يمكن استخدام عوامل اخر مثل تحديد المجاميع الامينية الحرة او الحوامض النووية الـ DNA و RNA او كمية الفسفور في هذه الحوامض.

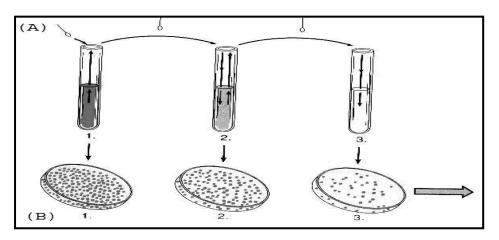
2- تحديد وزن الخلايا الجاف:


هي قياس وزن الجاف للخلايا البكتيرية بعد تنميتها في مزرعة ذات حجم معروف ثم يجري لها طرد مركزي و تغسل الخلايا جيداً قبل البدء بعملية الوزن ثم تجفف في الفرن وتوزن .

مميز اتها:

- 1- تعد غير تامة الدقة بسبب تركز بعض مواد الوسط الزرعي مع الخلايا البكتيرية.
 - 2- تستخدم في المجالات الصناعية والبحثية.

3- قياس العتمة Turbidity :


هي طريقة ضوئية اذ تتحدد فيها كمية الضوء المنتشر في معلق من الخلايا. ان مبدء عمل هذه الطريقة تعتمد على حقيقة ان تعليق الاجسام الصغيرة جداً في سائل ما فان قدرة هذه الاجسام على امتصاص الضوء ونشره في السائل تتناسب مع تركيزها وضمن حدود معينة فعندما تمر حزمة ضوئية خلال احد هذه السوائل فان الاختزال الحاصل في كمية الضوء الخارجة من السائل يؤخذ مؤشراً لكثافة الخلايا وتدعى كمية الضوء المختزل هذه بالكثافة الضوئية وهي تقاس باستخدام اجهزة قياس المطياف الضوئي (شكل رقم 7)

شكل رقم (7) يوضح جهاز المطياف الضوئي لقياس كثافة الخلايا Spectrophotometer

4- طريقة التخفيف المتسلسل Serial Dilution:

نتضمن هذه الطريقة تخفيف مللتر واحد من النموذج السائل عشرة اضعاف في كل تخفيف ولغاية اربعة تخفيفات او خمسة او حسب ما يناسب كثافة الخلايا في النموذج (ان عملية التخفيف تتم باستخدام المرق المغذي في انابيب اختبار مناسبة ثم تحضن الانابيب ثم يسجل ان كان هناك نمو او لا يوجد (شكل رقم A 8) تستخدم هذه الطريقة لتقدير اعداد البكتريا الحية في السوائل مثل الحليب والماء.

شكل رقم (8) يوضح طريقة التخفيف المتسلسل

5- طريقة عد المستعمرات Colony count

يصب حجم معروف من المزرعة السائلة أو النموذج السائل في طبق بتري ثم يضاف بعدها وسط الأكار المغذي السائل تحت درجة حرارة لاتزيد على 45 م° ثم يحرك الطبق ببطئ لمزج وتوزيع النموذج ضمن وسط الأكار ثم يترك ليتصلب ويحضن لمدة معينة ، أذ أن الخلايا الواحدة تنقسم إلى خليتين وهكذا إلى أن تصل كتلة الخلايا إلى حد نستطيع معه رؤيتها بالعين المجردة وبهذا نقول أن الخلايا كونت مستعمرة مرئية. أن عدد المستعمرات التي تستطيع العين البشرية عدها بحيث تعطينا أقل خطأ تنحصر ما بين (50-200) مستعمرة لذا يجب أن يخف النموذج حتى يعطينا عدد المستعمرات ضمن هذه الحدود (شكل رقم $\mathbf{B8}$).

علم الوراثة Genetics: هو العلم الذي يهتم بدراسة التغيرات والخصائص المحددة التي يرثها الكائن الحي.

تعد البكتريا من الكائنات الجيدة للدراسات الوراثية وذلك لانها تتميز بصغر حجمها لذا تحتاج حيزاً مختبرياً صغيراً جداً للنمو. وانها تنمو وتنقسم بصورة سريعة حيث يسمح ذلك بأنجاز العديد من التجارب ضمن مدة زمنية قصيرة. فضلاً عن تماثل جميع ذرية الخلية المفردة بصورة اساسية ولهذه الاسباب فقد قدمت دراسة وراثة البكتريا الكثير من الاسهامات الاساسية لفهم الظواهر الميكروبيولوجية.

الخصائص المظهرية والخصائص الجينية :-

تمتك الكائنات الحية عموماً ظاهرة ثبوت او استقرار الخصائص العامة للنوع الواحد من الناحية الوراثية حيث ينقل الاباء صفاتهم الى الابناء فهي اذن تشابه وراثي الا ان في بعض الاحيان يحدث تغير في صفات الفرد الواحد مقارنة مع الصفات التي ورثها عندما ينمو في ظروف تختلف عن ظروف بيئته وتقترن هذه التغيرات الوصفية بظاهرتين اساسيتين ترتبطان بمستوى الخلية الواحدة وهما :-

- الخصائص الجينية Genotype: هي المميزات او الخصائص العامة الوصفية و التركيبية للجينات التي يستدل عليها من خلال الصفات الخلوية.
 - الخصائص المظهرية Phenotype: هي مجموعة الصفات التي تظهر ها الخلية في وقت معين.

التغيرات في الخصائص المظهرية (التحور) (Change in phenotype (Modification):

ان البكتريا تحت ظروف بيئية منتظمة تظهر ثبوتاً ملحوظاً في الخصائص العامة وهي التي تمكننا من تشخيص وتصنيف البكتريا فمثلاً بكتريا Prictose التي تعزل من التجويف الانفي تمتاز بكونها سالب لصبغة كرام وثنائية النمو Diplococcus و Sucrose و Sucrose و Sucrose و Sucrose و Sucrose

اما بكتريا Neiss. meningitids المعزولة ايضاً من التجويف الانفي تمتاز بكونها سالبة لصبغة كرام -G الما بكتريا Diplococcuse ايضا ولكنها تخمر سكر Glucose و Maltose فقط.

ان خزن هذان النوعان في المختبر ولمدة طويلة نسبياً سوف تحتفظان بخصائصهما طول مدة الخزن ولوحظ هذا ايضاً في بكتريا Lactobacillus lactis اذ احتفظت بخصائصها لمدة 40 سنة مع هذا يمكن ان تحدث بعض التغيرات او التحورات Modificication في المظهر او الفعاليات الايضية ومنها:-

• التحويرات المظهرية Morphological modification:- ويقصد بها التغير في الحجم والمظهر الخارجي باختلاف مراحل النمو وتشمل:-

1- تاثير مكونات الوسط على الحجم وشكل الخلايا

تختلف البكتريا في حجمها وشكلها المورفولوجي خلال مرحلة نموها عند زراعتها في وسط غذائي اذ تكون كبيرة الحجم وبشكل غير مألوف في نهاية طور الركود Lag phase في حين تكون الخلايا صغيرة واكثر انتظاماً في طور الاستقراراو الثبوت Stationary phase اذ في هذه المرحلة من النمو نستطيع تشخيص الخلايا مورفولوجياً وتصنيفياً ، اما في المزارع القديمة فان الخلايا تظهر بهيئة غير مألوفة بالنسبة للنوع كوجود اختلافات في الحجم والشكل وقد تحتوي على حبيبات خلوية وعند نقل تلك الخلايا الى وسط غذائي جديد يمكن ان تستعيد الخلايا نشاطها وميزاتها وخصائصها المعروفة.

2- تأثير مكونات الوسط على التراكيب الخلوية

- تكون المحفظة او الكبسولة عند زراعة البكتريا في وسط يحتوي على الحليب (وسط غذائي) ولا تتكون المحفظة عند زراعة البكتريا في وسط Nutrient Agar.
- تتأثر عملية تكوين السبورات بتغير الوسط الغذائي من ناحية تركيبه او قوامه كان يكون الوسط سائلاً او صلباً اذ نلاحظ ان بكتريا Bacillus sphaericus تنمو بهيئة خلايا خضرية 100% عند تنميتها على وسط يحتوي على 2 % Peptone في حين تتحول افراد المزرعة جميعاً الى سبورات عند تنميتها على وسط يحتوي على 2 % Peptone وذلك بعد يومين فقط.

3- تأثير درجة حرارة الحضن Incubation Temperature

• التحويرات المزرعية Cultural Modification

1- انتاج الصبغات من قبل البكتريا يعد من اهم التغيرات التي تطرأ على الخصائص المزرعية وتعتمد على تأثير مكونات الوسط الغذائي على انتاج الصبغات وتأثير درجة حرارة الحضن على انتاج الصبغات حيث نلاحظ ان بكتريا Serratia marcescens تنتج صبغة حمراء مميزة عند حضنها بدرجة حرارة الى 37م°.

2- التغيرات في شكل المستعمرات لبعض انواع البكتريا ان التغير في قابلية البكتريا على انتاج الكبسولة يؤدي الى تغير شكل المستعمرات لبعض انواع البكتريا في الوسط الغذائي الذي يحتوي على سكروز (سكر ثنائي) تتحفز عملية تخليق المحفظة حيث يكون تركيبها متعدد السكر لذلك يكون شكل المستعمرة مخاطية كبيرة في حين يكون شكلها مختلف عن زراعتها على وسط اخر اذ لا تكون كبسولة.

• التحويرات في الخصائص الفسلجية والكيمياوية الحيوية

Modification in physiological and Biochemical characteristic

1- مقاومة الاحياء المجهرية للتأثير القاتل او المثبط للنمو للعوامل الكيمياوية او الفيزيائية (المطهرات والكحولات) يتغير مع عمر المزرعة فان البكتريا في الطور اللوغارتمي تكون اكثر حساسية للكيمياويات اذا ما قورنت مع الخلايا التي تكون في الاطوار الاخرى.

2- ان نمو البكتريا في بيئة لاتصنع جميع الانزيمات التي تستطع الخلايا من تصنيعها ولكن عند نقلها الى بيئة اخرى يتوجب على البكتريا نفسها ان تخلق انزيمات اخرى مختلفة او اضافية اذ ان عملية حث تكوين الانزيمات تنعني ان الانزيم المعين لا يصنع الا بوجود محفز في الوسط الغذائي عند ذلك فقط البكتريا تقوم بخلق ذلك الانزيم فمثلاً بكتريا E.coli تصنع انزيم B-glactosidase الذي يخلق سكر الكالكتوز من المركبات التي تحتويه وهو سكر اللاكتوز أي ان هذا الانزيم يخلق عند وجود السكريات التي تحتوي على الكالكتوز في الوسط الغذائي وهذا يعني ان بكتريا E.coli تورث الجين المسؤول عن هذا الانزيم ضمن حقيبة الخصائص الوراثية او الخصائص الجينية ويبقى ان الخلية تنتج او لا تنتج هذا لانزيم فهذا هو التغير المظهري لهذه الخاصية وهي عملية مرتبطة بالظروف البيئية النوعية وبالذات وجود المحفز الكيمياوي الذي يحث عملية تصنيع هذا الانزيم.

• التغير في الخصائص الجينية Genotypic changes

ان الكائن الحي يمتلك تركيباً يدعى بالجين، وهذه الجينات تحدد خصائص الكائن الحي بطريقة ما وان هذا الجين يستطيع ان يتغير او يطفر الى شكل اخر وبذلك تتغير الخصائص المرتبطة به ان عملية التطفير هذه تدعى الطفرة Mutant والكائن الحي الذي تجري فيه الطفرة تدعى بالطافر Mutant.

قام العالمان ماكس ديلبريك وسلفادور لوريا (Max Delbruk & Salvador Luria 1943) بتجربة تثبت ان البكتريا تمتلك تقنية وراثية مستقرة من خلال تجربة وهي اختبار بعض انواع Bacterophage التي تهاجم البكتريا وتؤدي الى قتلها مثل بقية العوامل الكيمياوية الا انه لوحظ ان قسماً من البكتريا سيقاوم البكتريوفاج وهذه المقاومة سوف تكون في الخلايا المتولدة من هذه البكتريا واعتقد العالمان ان سبب ذلك بان البكتريا المقاومة للفاج ظهرت نتيجة حدوث طفرة وراثية في بعض الجينات.

الطفرة في مستواها الجزيئي:-

وهي التغير في تعاقب او تسلسل النيوكليوتيدات Nucleotides ضمن جزيئة الحامض النووي الـ DNA وهذا التغير يؤدي الى تحوير المعلومات التي يحتويها الحامض النووي وبذلك يسبب في تكوين تخليق بروتين مختلف من ناحية تسلسل الحوامض الامينية ونتيجة هذا التغير فان البروتين يكون ضعيف وظيفياً اذا كان انزيم مثلاً او قد يفقد وظيفته تماماً.

ان حدوث الطفرة تعد عملية نادرة وذلك بسبب ثبات واستقرار جزيئة الحامض النووي الـ DNA من الناحية الكيمياوية وفي ظروف طبيعية تحدث الطفرة التلقائية Spontanaous mutations بمعدلات تتراوح ما بين $0^{-6} - 0^{-10}$ أي بمعدل بكتريا لكل جيل أي خلية بكتيرية واحدة من مليون خلية الى خلية بكتيرية واحدة من عشرة بلايين خلية. وفي الظروف الطبيعية فأن العدد الهائل للخلايا غير الطافرة يحجب العدد الضئيل من الخلايا الطافرة. أن انتخاب الخلايا الطافرة حيث تكون من خلال تعريض المزرعة البكتيرية للفاجات فأن الخلايا الحساسة تموت وتبقى الخلايا الطافرة حيث تكون مستعمرات.

طرق تكوين الطفرات من خلال تغير تعاقب في القواعد الـ Purine و Pyrimidine :-

- 1- استبدال Substitution: هي استبدال النيوكلوتيدات بعضها مع البعض الاخر.
 - 2- الحذف او الفقدان Deletion: وهي حذف واحد او اكثر من النيوكلوتيدات.
 - 3- الادخال Insertion: هي اضافة جزيئة واحدة او اكثر من النيوكلوتيدات.

ان حدوث التغيرات قد يكون خلال او اثناء عملية استنساخ جزيئة الـ DNA مما يؤدي الى هذه التغيرات او بفعل الاشعة السينية X-ray او الاشعة فوق البنفسجية Ultraviolet ومن العوامل التي تساعد على حدوث الطفرات:

- المطفرات Mutagen وهي مواد كيمياوية تتداخل او تؤثر في تركيب جزيئة الـ DNA.
 - المطفرات المستحثة Induced mutation وهي الطفرة الناتجة بسبب فعل المطفر.

اشكال التطفير تختلف بأختلاف موقع التغير في الحامض النووي:

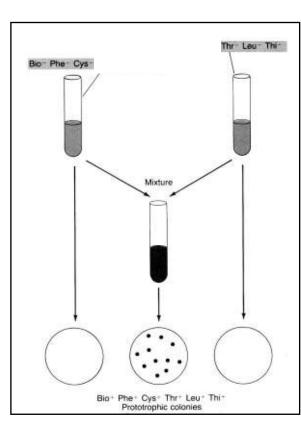
- 1- اما ان يكون التأثير على الاواصر الهيدروجينية بين القواعد النتروجينية.
- 2- او حذف جذر اميني من القاعدة النتروجينية او البرميدينية عند استعمال النتروز (وهو من المطفرات الفعالة).
- 2-aminopurine مثل Base Analogs مثل Base Analogs مثل التروجينية وتسمى و المتعمال بدائل للقواعد النتروجينية وتسمى مثل المتعمال علاج للـ Methprim).

انواع الطفرات البكتيرية:-

- 1- بكتريا طافرة تظهر مقاومة عالية للعوامل الكيمياوية الكابحة للنمو او القاتلة مثل المضادات الحيوية فهي اذن Antibiotic mutant or drug resistant.
- 2- بكتريا طافرة قد تغيرت قابليتها التخمرية حيث ان قدرتها على اعطاء او انتاج المنتوج النهائي قد تزيد او تنقص كما في انتاج البنسلين على مستوى تجاري حيث يزداد كمية الانتاج بشكل هائل من خلال انتخاب سلالات طافرة من الجنس Penicillium.
- 3- بكتريا طافرة فيها نقص او عوز غذائي أي انها تحتاج الى وسط غذائي اكثر تعقيداً مقارنة بالخلايا التي اشتقت منها هذه الطفرات.
 - 4- بكتريا طافرة تكون مستعمراتها مختلفة او لها القابلية على انتاج صبغات معينة.
 - 5- بكتريا طافرة يكون تكوينها الكيمياوي مختلف Antigenic mutants.
 - 6- بكتريا طافرة تمتلك مقاومة عالية للفعل القاتل للبكتريوفاجات.
- 7- بكتريا طافرة تظهر بعض التغيرات في اشكالها الظاهرية او المورفولوجية مثل فقدانها القابلية على تكوين السبورات او المحفظة او الاسواط او انتاج صبغات معينة.

الية التبادل الوراثي (انتقال الجين Gene Transfer) :-

يمكن تقسيم الالية التي تنتقل فيها الجينات لثلاث فئات وهي :-


- 1- الاقتران Conjugation تنتقل الجينات بين الخلايا التي تكون بتماس مع بعضها البعض mating between cells in direct contact
 - 2- التحول الوراثي: اخذ الحامض النووي (transformation) اخذ الحامض النووي

قبل التطرق الى الطرق لابد من معرفة ان هناك تشابه بين الثلاث عمليات وهي:

- 1- لا تلتحم الخلايا في الاليات الثلاثة ولكن جزء فقط من الـ DNA ينقل من خلية واحدة (الخلية الواهبة Donor cell).
- 2- عند دخول الخلية المستلمة يترتب DNA الخلية الواهبة بجانب DNA الخلية المستلمة وعندها تتجاور الجينات المتماثلة ثم يعمل انزيم او اكثر على DNA الخلية المستلمة مما يسبب ذلك تكسير وازالة قطع من DNA الخلية المستلمة.
- ينغرز DNA الخلية الواهبة في كروموسوم الخلية المستلمة بدلاً من DNA المستاصل وذلك بعملية تدعى (اعادة توحيد Brakeage and reunion).
 - يمكن للبكتريا ان تمتلك واحد او اثنين او ثلاثة من الطرق في انتقال المادة الوراثية.
- يتم انتقال الجين (الموروثة) بصورة واضحة بين افراد نفس النوع وتحدث احيانا بين الانواع المختلفة.

تجربة الاقتران البكتيري Bacterial conjugation

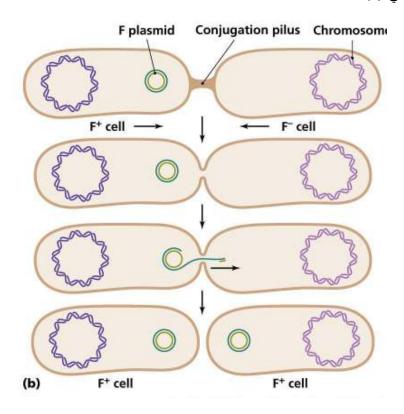
اول من لاحظ عملية التزاوج بين البكتريا من قبل العالمان Leder berg & Tatum عام 1946 وقد استعملت سلالات متعددة من البكتريا القولون ذات عوز غذائي مسلالات متعددة من البكتريا القولون ذات عوز غذائي Auxotrophs يختلف بعضه عن البعض الاخر وبذلك اتاح فرصة التزاوج لهاتين السلالتين وبعد الزراعة على وسط (يحتوي على الحد الادنى حيث لا تنمو الا السلالة البرية) ولكن عند رؤية ظهور مستعمرات نامية على هذا الوسط تأكيد على حدوث عملية التزاوج بين السلالتين المعوزتين غذائياً (شكل رقم 1) وذلك بدمج عزلتين احدهما تحتاج الى الوسلا و وبعد المزج والنمو على وسط الادنى ينتج عزلة تستطيع صناعة كل المواد.

شكل رقم (1) يوضح عملية الاقتران البكتيري

لقد استعملت سلالات متعددة من بكتريا القولون في الدراسات الوراثية ومنها تم ايضاح الظواهر التالية: 1- انتقال المادة الوراثية من خلية الى اخرى يتطلب اتصالاً مباشراً بين الخليتين المتزاوجتين وتدعى

۔ بالاقتران.

2- وجود اعداد كبيرة من عناصر وراثية كروموسومية اضافية DNA تعمل والجزاء من الحامض النووي الـ DNA تعمل element تدعى بالبلازميدات (Plasmids) وهي تمثل قطعاً اواجزاء من الحامض النووي الـ DNA تعمل جينات اضافية ليس لها اهمية او ضرورة للبكتريا التي تحملها ولكنها في بعض الاحيان تمنح البكتريا بعض الفوائد منها:


1- البكتريا التي تحمل بلازميد Col-factors التي تفرز مادة الكوليسين Colicin وهو مادة بروتينية تعمل على قتل انواع البكتريا الاخرى.

2- في حين البكتريا التي تحمل بلازميد R-Factors تكسب الخلايا مقاومة عالية للعديد من المضادات الحيوية.

البلاز ميدات تستطيع الانتقال الى خلية اخرى عن طريق الاهلاب Pili حيث يتصل البلاز ميد في مكان ما على السطح الداخلي للغشاء السايتوبلاز مي للخلية وعند اتصال الهلب بالخلية الاخرى يتحفز البلاز ميد ويبدأ بالاستنساخ نفسه حيث تنتقل النسخة عبر الهلب الى الخلية الاخرى. وفي الواقع فان مادة الـ DNA تنتقل بشريط واحد one strand عبر الهلب اما الشريط الاخر فيصنع من قبل الخلية المستلمة.

- ان عملية الانتقال تتم بأتجاه واحد من الخلية المرسلة Donor الى الخلية المستلمة Recipient ولايتم العكس في الحالة الواحدة .
- هناك بعض البلاز ميدات تبقى داخل الخلية ولاتنتقل الى خلية اخرى Nontransferable وقد تفقد بطريقة ما.
- F- بعض البلاز ميدات تدعى بعوامل الاخصاب (Fertility Factors) ويرمز لها F وهي رتبة ثانوية من البلاز ميدات تدعى الايبسومات (Episomes) وقد تكون هذه الايبسوم على شكل قطع من الحامض النووي الـ DNA المتصل بالغشاء السايتوبلاز مي كما في البلاز ميدات الاخرى وقد يلتحم الايبسوم بالحامض النووي للـ DNA للخلية المضيفة و هو بهذا سوف يدخل في الهيكل الوراثي للخلية المضيفة وان الجين المتكون منه سيتشابه مع بقية جينات الخلية تمتلك الخلايا البكترية ثلاث انواع من عوامل الاخصاب (F-factors) وهي :- F- هي الخلايا التي لا تمتلك عوامل الاخصاب (F- عليا الاناث) لذا تعد خلايا مستلمة فقط اثناء عملية التزاوج.
- F^{-} هي الخلايا التي تمتلك عوامل الاخصاب وتدعى خلايا الذكور لذا تعد خلايا مانحة او لاقحة اثناء التزاوج ولكنها لاتعطى الا الى F^{-} وبهذا تتحول الـ F^{-} الى F^{+} .
- 6- High Frequency recombination) Hfr وتدعى بالخلايا التردد العالي اذ ما التحم عامل الاخصاب مع الحامض النووي الخلوي فالخلية تدعى بـ Hfr. تبدأ الخلايا ذات التردد العالي (HFr) اثناء عملية الاقتران بزرق نسخة من هيكلها الوراثي Genome مبتدئة بنهاية طرف واحد من هذا الهيكل وهذا يعني ان جينات الHfr سوف تزرق الى خلايا الF حسب تسلسلها الطبيعي التي كانت عليه في الهيكل الوراثي للـ Hfr.
- (ان عامل الاخصاب F في السلالات HFr المختلفة يتصل او يلتحم بأماكن مختلفة من الهيكل الوراثي للخلية).

ومن خلال الدراسات لتسلسل الجينات لبكتريا القولون E. coli استطاع الباحثون ان يلاحظوا بان تسلسل الجينات هذا هو تسلسل دائري وهذا يعني ان الهيكل الوراثي البكتيري هو هيكل دائري. قبل ان يزرق الهيكل الوراثي هذا تنفلق الدائرة في نقطة اتصال عامل الاخصاب بها حيث نحصل بهذا الانفلاق على هيكل وراثي طولي. وان الانفلاق يحدث ضمن عامل الاخصاب حيث ينقسم العامل الى قسمين احدهما يكون في النهاية الرائدة التي تدخل اول ما تدخل في الخلية المظيفة ساحبة خلفها التسلسل الجيني وما يبقى من عامل الاخصاب المنشطر يبقى في نهاية السلسلة.

شكل رقم (2) الاقتران البكتيري Conjugation يوضح انتقال جسيم F من الخلية الى المستلمة

*ان عملية زرق نسخة من الهيكل الوراثي لبكتريا القولون باكمله تستغرق حوالي مئة دقيقة.

* ان عملية الاقتران تم ملاحظتها في اجناس بكتيرية مختلفة اضافة الى بكتريا القولون مثل Salmonella و Psudomonas و Psudomonas و Serratia و Vibrio وقد تحدث عملية الاقتران بين جنسين مختلفين مثل:

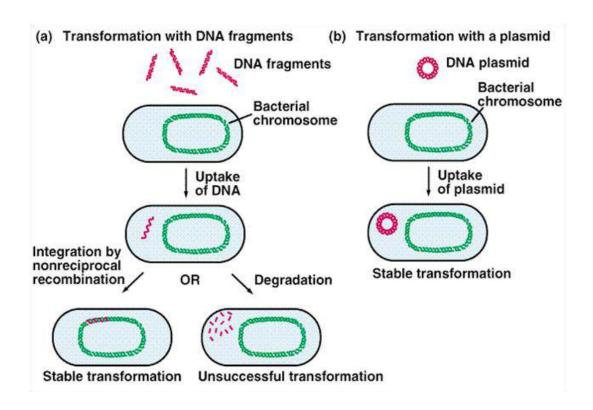
Escherichia – Shigella والـ Salmonella-Vibrio

Salmonella- Serratia والـ Escherichia- Serratia

Salmonella- Shigella و الـ Escherichia- Salmonella

2- التحول الوراثي Genetic Transformtion

وهو قيام الخلية البكتيرية المستلمة Recipient باخذ اجزاء حرة من الـ DNA ذات حجم كبير نسبياً والتحام هذا الحامض مع الهيكل الوراثي لهذه الخلية (شكل رقم 3) وتم اكتشاف هذه الطافرة في اجناس بكتيرية معينة وليس جميع الاجناس وتشمل Diplococcus pnueumonia و Bacillus و Pseudomonas و Recipient


تحضير الـ DNA المحول

- 1- ممكن تحضير الـ DNA المحول Transforming DNA عن طريق تحلل الخلايا ذات السلالة المانحة عن طريق استخدام انزيم خاص يدعى Lysozyme او استخدام المنظفات Detergents.
 - 2- اضافة الكحول ما يؤدي الى تجميع الـ DNA بين الطبقتين المائية والكحولية.
- 3- يدخل قضيب الى ما بين الطبقة بحذر مع تحريك القضيب سوف يلتف الـ DNA حول القضيب وينشف من الكحول.
 - 4- يذوب الـ DNA في المحلول المائي.
 - 5- يعامل المحلول المائي بأنزيم او Ribonuclease لتجنب أي تلوث يحصل بالحامض النووي الـ RNA.
- التنافس Competence: وهي الخلية التي لها القابلية على اخذ جزيئة من الـ DNA وتدعى بالخلية المتنافسة وهناك سلالات معينة فقط تكون متنافسة.
- اخذ الحامض النووي الـ DNA (Uptake of DNA):- وهي ارتباط الـ DNA بالخلية المتنافسة ارتباطاً لارجوع فيه Irreversible

مميزات التحول:

- 1- ان الخلية المنافسة لا تميز بين الـ DNA العائد لنفس نوعها التصنيفي او الـ DNA العائد لاي نوع اخر.
 - 2- ترتبط مع اي DNA شرط ان يكون ثنائي الشريط.
 - 3- هذا الارتباط يأخذ طابع الثبات بحيث لايمكن عكسه اوفكه.
- 4- تزداد حالة التنافس (الخلية المتنافسة) في الطور أللوغاريتمي المتأخر وبعدها تهبط هذه النسبة (خلال هذه الممكن المدة القصيرة التي يرتفع فيها التنافس يتغير سطح الخلايا بحيث يستطيع الـ DNA الالتحام بها ومن الممكن احداث هذا التغيير في السطوح بواسطة عامل يشبه الانزيم يفرز من قبل الخلايا نفسها ويظهر هذا العامل نفسه في الوسط الغذائي للمزرعة وقت ظهور التنافس تقريباً فلو اضفنا هذا العامل الى خلايا غير متنافسة لنفس السلالة يحفزها ويغيرها الى خلايا متنافسة).
 - 5- ان هذه الفعالية تكمن في الاحماض المأخوذة من انواع تتشابه فيما بينها من الناحية الوراثية.
 - 6- التحام الـ DNA المرتبطة مع الهيكل الوراثي للخلية DNA المرتبطة مع الهيكل الوراثي للخلية

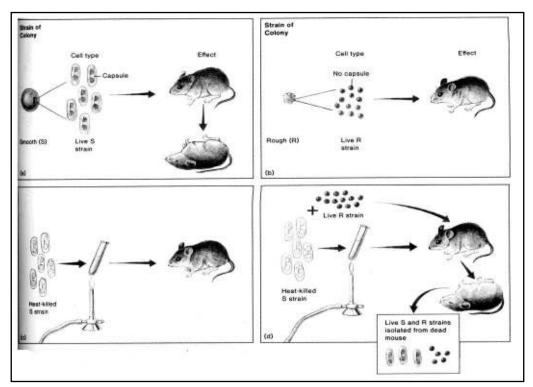
بعد عملية الارتباط يتغير الـ DNA (القطعة المرتبطة) الـي حامض احادي الشريط حيث ينكسر احد الشريطين اما الشريط الاخر فينصهر او يلتحم مع الهيكل الوراثي للخلية المستلمة وبعد استنساخ هذا الحامض النووي الهجين سنحصل على نوعين من الخلايا احدهما نفس صفات الخلية الام والثاني سيمثل الخلية المتحولة Transformed cell.

شكل رقم (3) يوضح الـ transformation في البكتريا

العلامات الوراثية الممكن ان تحصل بالتحول الوراثي Range of genetic makeris transformation مثل:

1- مقاومة العقاقير (Drug resistance) مثل الـ Streptomycin و الـ Novobiocin و الـ Erythromycin.

2-العلامات الغذائية Nutritional Markes مثل احتياجات الحوامض الامينية Nutritional Markes واستغلال الكاربوهيدرات Carbohydate utilization مثل Manitol و

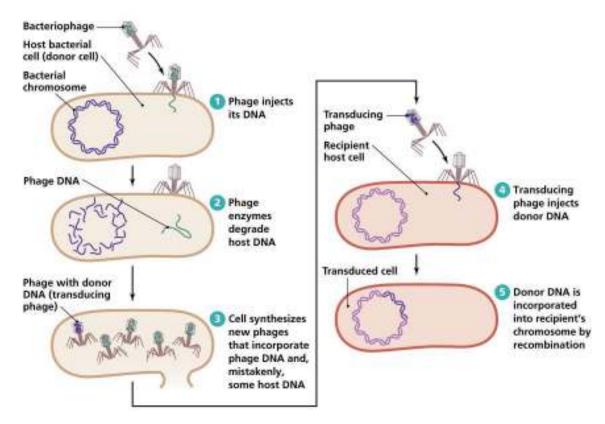

3- خصائص المحفظة Capsule characteristics (ويقصد بها المواد المتعددة السكاكر الموجودة في المحفظة).

حدوث التحول في الطبيعة The occurrence of Transformation in Nature

هذه الظاهرة قد اكتشفت اثناء تحليل العوامل التي تتضمنها قابلية D. pneumania على احداث الاصابة مع Pathogenicity في الفئران. اذ ترتبط القابلية على الاصابة لخلايا D. pneumania ارتباط مباشراً مع وجود المحفظة على سطوحها حيث تقوم المحفظة هذه بحماية الخلايا من البلعمة phayocgtosis التي تقوم بها خلايا الدم البيضاء في الجسم فالسلالات المحتوية على المحفظة تكون ممرضة جداً Highly virulent بحيث ان بضعة خلايا تستطيع احداث الاصابة اذا ما حقنت بالفأر وتؤدي الاصابة الى الموت بعد عدة ايام من الحقن. ونحن تستطيع احداث طفرات من نفس السلالات لكن لا تمتلك محفظة و هي لا تستطيع احداث الاصابة حتى لو لقحنا الفأر بجر عات كبيرة من هذه الطفرات.

التجربة تبين التحول الوراثي في الطبيعة.

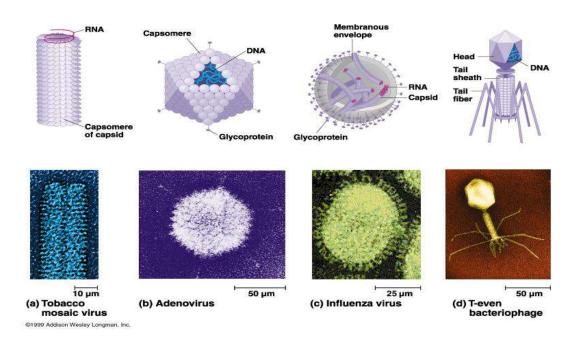
لو لقحنا فأر بخلايا ذات محفظة مقتولة بالحرارة ولقحنا فأرة اخرى بخليط من خلايا حية غير مكونة للمحفظة وخلايا ذات محفظة مقتولة بالحرارة فأن الفأر في الحالة الاولى لاتصاب في حين لوحظ موت الفار في الحالة الثانية ولايعود هذا الاصابة الى ان الخلايا ذات المحفظة انعكست واسترجعت محفظتها ولايمكن ان تكون السلالة البرية استرجعت حياتها بل يعود السبب الى ان قسماً من الخلايا الميتة قد تحللت واطلقت التكون السلالة البرية قام بدوره باحداث عملية التحول في الطفرات التي لاتمتلك محفظة وحولها الى خلايا تمتلك هذا التركيب ويمكن ملاحظة التحول ايضاً في سلالات مقاومة للمضادات الحيوية فقد حقن فأراً بسلالة مقاومة للبنسلين pencilline وسلالة مقاومة للستر وبتومايسين Streptomycine نستطيع عزل سلالات مقاومة لكلا المضادين.



الشكل رقم (4) يوضح التحول الوراثي في الطبيعة

3- النقل بواسطة الفاج Transduction

يتم انتقال الحامض النووي الـ DNA من خلية الى اخرى بواسطة الفايروس فعندما تصيب الفايروسات الخلية البكتيرية يعمل DNA الفايروسي الى تجزؤ الكروموسوم البكتيري الى حوالي 100 قطعة وان واحدة من هذه القطعة تعبأ بطريق الصدفة نحو العاثية كنسخة فايروسية وما ان تتحرر العاثية من الخلية المصابة حتى تصيب خلية اخرى وبتلك الوسيلة تنتقل الجينات البكتيرية (شكل رقم 5) وقد تحدث عملية تصيب خلية اخرى وبتلك الفايروسي مع الجهاز الوراثي للخلية المضيفة وتعتبر هذه العملية تزاوج وراثي ومظهرياً عن الخلية غير Genetic Recombination

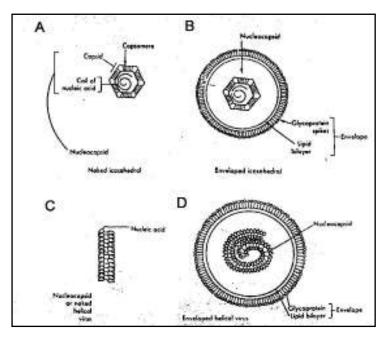

المصابة Non-lysogenization فتقوم الخلية بالتعبير عن بعض الجينات الفاير وسية وبالذات تلك الجينات التي تمنع الخلية الحصانة او المناعة ضد اية اصابة جديدة.

شكل رقم (5) يوضح الـ Transduction

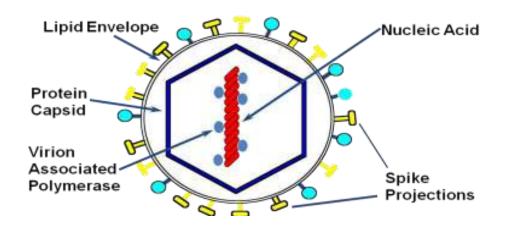
انواع النقل Transduction:-

- 1- Specialized trans وفيه تلتحم مجموعة محددة من الجينات المضيف بصورة مباشرة مع الهيكل الوراثي الفايروسية. (مثل جينات الكالكتوز لبكتريا القولون بواسطة الفاج λ .
- 2- .Generalized trans و هي ان الجينات من أي جزء من الهيكل الوراثي للمضيف تندمج مع الفايروس وان هذه الجينات قد تحل محل الـ DNA الفايروس او تكون مضافة له ولكنها لاتلتحم معه مباشرة.
- * ان الفايروس المحصل عليه بكلا الطريقتين Tranducing virus particle يكون عادة ضعيفاً Defective ولا يستطيع ان يحلل المضيف وقد يعود ذلك الى فقدان الفايروس لبعض جيناته.
- ان الـ Transduction يحدث في انواع مختلفة من البكتريا وتشمل الـ E. coli وانواع من جنس Bacillus والـ Staphylococcus والـ Staphylococcus والـ Proteus والـ Staphylococcus

Viruses


ان كلمة virus كلمة لاتينية وتعني السم او اي عامل يستطيع ان يسبب مرضا. وان علم الفايروسات لم يبدأ الا في العقد الاخير من القرن التاسع عشر وعند اكتشاف المجهر الالكتروني، وبعد دراسات كثيرة اكتشف الباحثون بان الفايروس يتكون من جسم صغير جدا مؤلف من بروتين وحامض نووي، بسبب صغر حجمه فانه يعبر خلال المرشحات التي تمنع عبور الاحياء الدقيقة مثل البكتريا ولذلك سميت بالرواشح Filterable وهذه التسمية تشير ال ميزة واحدة فقط وهي القابلية على عبور المرشحات والتي لا تنفرد بها الفايروسات. ففي عام 1882 اكتشف العالم ايفانوسكي Ivanoski العامل المسبب لمرض تبقع التبغ Tabacco Mosaic وفي عام 1898 اعلن العالم بيجرنك Beijerink عن وجود عوامل تختلف عن البكتريا واوضح بعض صفاتها ، كما افترض انه يتوجب على هذا العامل ان يمتزج مع بروتوبلازم الخلية الحية لكي يستطيع الانتشار و التناسل، واستمرت البحوث في هذا المجال حتى تم تحديد الصفات العامة للفاير وسات.

لذا تعرف الفايروسات بانها: جسيمات لا خلوية تمتلك مواد نووية وبروتينات وتستطيع اختراق الخلية الحية، وتكون غير فعالة او خاملة خارج الجسم الحي.


الصفات العامة للفاير وسات

- 1- حجمها اصغر من الخلية (اصغر من الرايبوسومات)تتراوح اقطارها بين 20- 300 نانوميتر.
 - 2- جسيمات تصيب الخلايا الحية مثل البكتريا والخلايا النباتية والخلايا الحيوانية.
- 3- جميع الفاير وسات تمتلك غلاف بروتيني يسمى الكابسد capsid . يغلف الحامض النووي ويحميه من المؤثرات الخارجية وينقسم الى ثلاث انواع رئيسية:
 - الغلاف الخلزوني helical مثل helical الغلاف الخلزوني
 - الغلاف متعدد السطوح polyhedral مثل adenovirus
 - الغلاف المعقد complex مثل الفاج البكتيريbacteriophage
 - 4- تدعى الوحدات الفرعية المكونة للكابسد بالكابسومير Capsomere

- 5- بعض الفيروسات تمتلك غلاف اضافي يسمى envelope يتالف ن مواد سكرية ودهون (مستمدة على جزئيا من جدار الخلية المضيفة).
- 6- تمتلك بعض الفايروسات لواحق spike مرتبطة بالغلاف الدهني مكونة من كلايكوبروتين مثل هيماكلوتينين HA) hemagglutinin لفايروس الانفلونزا.
- 7- وجود نوع واحد من الاحماض النووية اما RNA او DNA، قد يتواجد احادي الشريط اومزدوج الشريط، من قطعة واحدة او عدة قطع، خطى linear او حلقي circular.
- 8- تستغل الفايروسات مكونات الخلية المصابة لاتمام عملية التكاثر، حيث انها لا تمتلك الانزيمات والرايبوسومات والية صنع البروتين.
- 9- لاتتكاثر الفايروسات بالانشطار بل تتكون الجسيمات الجديدة نتيجة لعمليات كيميائية حيوية (بايو كيمياوية) معقدة تبدأ بعد تحلل الجسيمة الفايروسية الى مكوناتها من البروتين والحامض النووي.
 - 10- لاتمتلك المعلومات الوراثية الخاصة لصنع او تحرير الطاق
- 10- يسيطر الحامض النووي الفايروسي على الخلية ويوجهها لصنع حامض نووي جديد خاص بالفايروس ثم صنع بروتين او بروتينات خاصة بالفايروس.
 - 11- تتكاثر داخل خلايا حية في النواة او السايتوبلازم او كلايهما ولا تمتلك أي فعالية حيوية خارج الخلية.
- 12- تسمى الجسيمة الكاملة بـ الفريون Virion (وجمعها فريونات) وتتالف من حامض نووي مغلف بسترة بروتينية Protein coat خاص تسمى الكابسيد Capsid وهو الذي يكون فيه خارج الخلية وله القابلية على الحداث الاصابة اما الطور الداخلي فيكون الفايروس على شكل حامض نووي في حالة استنساخ فضلاً عن انه يقوم بمثابة رسالة وراثية لتخليق البروتينات الفايروسية بوساطة امكانات الخلية المضيف.
- 13- بعض الفاير وسات تسبب امراض للانسان مثل: الجدري smallpox، الحصية measles، الانفاونز influenza، الايدز AIDS.

شكل (1) يوضح تراكيب الفايروسات المختلفة $\bf A$ فايروس عشرون وجه ، عادي/ $\bf B$ فايروس عشرون وجه ، مغلف/ $\bf C$ فايروس حلزون مغلف $\bf B$

محاضرة (13)

Virion Structure

تركيب الفايروس

اولاً: الحامض النووي

- يحتوي الفريون على نوع واحد من الحامض النووي وخاصة ان معظم الفاير وسات تحتوي على DNA الثنائي الشريط او RNA الاحادي الشريط.
- المادة النووية هي الجزء الحيوي الفعال من الفيريون وتحمل كافة المعلومات الوراثية الخاصة بالفايروس وتستطيع المادة النووية من احداث الاصابة لوحدها في الخلية المضيفة.
 - يشكل الحامض النووي 5-40% من وزن الفيرون (حسب نوع الفايروس)
- طول الحامض النووي ثابت في الانوع الفايروسي الا انه يختلف من فايروس الى اخر ويقع هذا الاختلاف في بعض الاف من الازواج النيوكليوتيدات حتى يصل طول الجزيئة في بعض الفايروسات الـ 520 الف زوج من النيوكليوتيدات واذا ما عرفنا ان الجين الواحد يحتوي على الف زوج من النيوكليوتيدات فان اصغر فيروس يحتوي على ما يقارب عشرة جينات في حين ان الفايروسات الكبيرة تحتوي على بضعة مئات من الجينات.
- DNA ويتخذ الـ DNA في العديد من الفايروسات الحيوانية والبكتيرية شكلاً دائرياً او حلقياً اما بقية الـ DNA الفايروسي وجميع الـ RNA الفايروسي فتكون خطية Linear الا في حالة البكتريوفاج لامبدا λ فان الـ DNA فيه يكون خطياً ولكنه يتدور حالما يدخل الخلية المضيفة.
- يحتوي الحامض النووي للعاثيات على قواعد نتروجينية شاذة اضافة الى القواعد الاساسية (Thymine و Thymine) مثل (Adenine و Guanine) مثل (S-hydroxy methyl deoxy مثل (Adenine) T-even التي تصيب القولون وكذلك 5HMU (5Hydroxy methyl deoxy) acid) . Bacillus subtilis الموجود في فايروس SP8 الذي يصيب بكتريا

ثانياً: البروتين

يتألف البروتين في الفاير وسات من ارتباط الاحماض الامينية مع بعضها بأصرة ببتيدية peptide bond يتألف البروتين في الفاير وسات من ارتباط الاحماض المينية مع مجموعة كاربوكسيل COOH في حامض الميني اخر مع فقدان جزيئة ماء) لتكوين سلسلة من الاحماض الامينية التي تلتف حول نفسها بصورة متميزة لكل بروتين وحسب تسلسل الاحماض الامينية لتكوين الشكل والحجم والوظيفة المميزة لذلك البروتين وتوجد اربع مستويات من البناء البروتيني وهي: Primary structure و Secondary structure و Quaternary structure.

وظائف البروتين الفايروسى:

1- حماية الحامض النووي الفايروسي من التأثيرات الخارجية مثل الانزيمات والمواد الكيميائية والعوامل الفيزيائية الاخرى التي تؤدي الى تقطيع خيط الحامض النووي.

2- تخصص الفايروسات لاصابة خلايا معينة حيث يلعب البروتين الخارجي للفايروس دور مهم في تحديد نوع الخلية القابلة للاصابة عن طريق عملية الالتصاق والدخول.

3- الخاصية المصلية وانتاج الاجسام المضادة. ان دخول الفايروسات الى الخلايا الحيوانية يعمل على تحفيز الخلايا على تكوين الاضداد Ab وتعتمد شدة التحفيز على نوع البروتين (المستضد) فمثلاً بعض الاصابات الفايروسية مثل الجدري والحصبة تمنح مناعة دائمية، في حين بعض الفايروسات لاتحفز الجسم لتكوين الاضداد ولذلك يمكن ان تحدث الاصابة في نفس الشخص عدة مرات مثل فايروس الانفلونزا وهيريس (Herpes) لطمة الحمى.

ثالثاً: الانزيمات

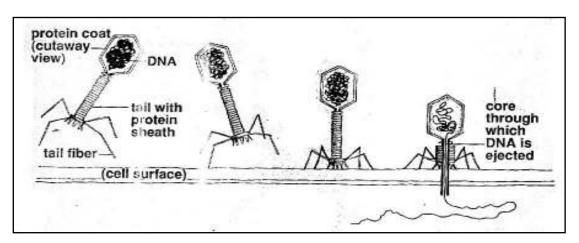
تحتوي بعض الفايروسات على انزيمات خاصة اضافة الى الانزيمات التي تتكون اثناء عملية التكاثر (بتوجيه المعلومات الوراثية في الحامض النووي الفايروسي) ولهذه الانزيمات وظائف مهمة في عملية الاصابة مثل الانزيمات المحفزة من قبل Bacterophage تعمل على تحلل جدار الخلية البكتيرية اثناء حقن الحامض النووي، او عملية صنع مكونات الفيريون مثل انزيم الاستنساخ في Reo virus وانزيم الاستنساخ الرجعي Reverse transcriptase في Reverse transcriptase

رابعاً: الشحوم

تدخل الشحوم في تركيب بعض الفايروسات الحيوانية والنباتية مثل كولسترول Cholesterol وفوسفاتيديل كولين Phosphotidyl serine وفوسفاتيديل سيرين Phosphotidyl serine ، وتشير ادلة كثيرة الى ان الغلاف الخارجي للفايروس مستمد ولو جزئيا من اغشية المضيف.

خامساً: السكريات

السكريات الموجودة في المادة النووية هي سكر الرايبوزي وسكر الرايبوزي المنقوص الاوكسجين اما الفايروسات الحيوانية والنباتية تحتوي على بعض السكريات المقترنة بالبروتين Glycoprotein.


بناء الفيرون:

- تصنف معظم الفيريونات اعتماداً على شكل الكابسيد الى صنفين اما ان يكون لولبي Helical او يكون شكلاً متعدد السطوح Polyhedral او المعقد فقد تتحور هذه الاشكال مثلاً Baterophage نجده مكونا من رأس متعدد السطوح ومرتبط بذنب لولبي التركيب.
- اما الشكل المتعدد السطوح Icosahedral (عشروني الوجه) فهو شكل متناظر يتكون من عشرين مثلثاً واثني عشر زاوية وثلاثين حافة حيث يكون على شكل لب او فراغاً ينظمر فيه الحامض النووي ويعتمد حجمه على عدد الكابسومبرات المكونة له، اذ ان اكبر فريون متعدد السطوح هو فايروس لبعض الحشرات حيث يحتوى على 812 كابسومبر.
- اما الفيريونات اللولبية مثلاً فايروس تبقع التبغ فيوجد الـ RNA في الاخدود الحاصل من التركيب اللولبي للكابسد، ويكون مظهره الخارجي على شكل قضيب يحتوي على 2000 من الكابسوميرات.

طرق الاصابة الفايروسية:

تختلف طريقة الاصابة في الخلايا النباتية والحيوانية والبكترية اعتماداً على طبيعة جدران هذه الخلايا

- فالخلايا الحيوانية فليس له جدار صلب لذا فان العدوى بالفاير وسات الحيوانية تتم عن طريق البلعمة.
- اما الخلايا النباتية فتمتاز بجدار صلب من السيليلوز لذا تدخل الفايروسات عن طريق وجود جروح او مسالك معينة.
- والخلايا البكتيرية فجدار ها اقل صلابة والحامض النووي لراشح البكتريا DNA يدخل السايتوبلازم عن طريق عملية الحقن.

تسمية وتصنيف الفايروسات

تتباين انظمة التصنيف المعتمدة للفيروسات، لذا ندرج بعض من هذه الانظمة:

اولا- التسمية على اساس الاعراض المرضية مثل فايرس موزائيك التبغ.

ثانيا- طريقة الترقيم، بوضع رقم يدل على تسلسل اكتشاف الفيرس في ذلك النبات مثل فايرس التبغ 1 (Tobacco Virus 1).

ثالثاً طريقة الحروف الهجائية والالفباء، مثال على ذلك: فايرس يصيب نبات البطاطا احدهما ينتقل بواسطة حشرة المن ويطلق عليه فايرس البطاطا واي Potato Virus Y والفايرس الثاني لا ينتقل بواسطة الحشرة يسمى اكس Potato Virus X.

رابعا- تسمية مجموعات فايرسية ، باعتماد الصفات التركيبية للفايرس والخواص المصلية وليس نوع الحالة المرضية.

خامسا- التسمية اللاتينية العلمية، كما اعتمدت في تصنيف باقى الكائنات الحية:

- 1- اسم العائلة ينتهي بمقطع viridae
 - 2- اسم الجنس بنتهي بمقطع- virus
- 3- النوع الفيروسي-هي مجموعة فايروسات تشترك بصفات وراثية وبيئية (المضيف).
 - 4- الاسم الشائع هو اسم النوع.
 - 5- تحت النوع Subspecies يتم باعتماد الارقام. و مثال على ذلك :

Ex.1 Family: Herpesviridae

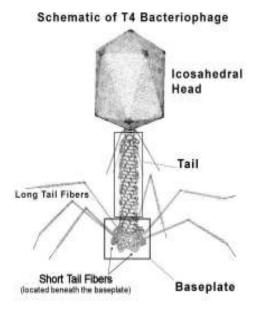
- Genus: Herpesvirus

- Species: Human herpes virus 1, HHV 2, HHV 3

Ex. 2 Family: Retroviridae

- Genus: Lentivirus

- Species: Human Immunodeficiency Virus 1, HIV 2


Herpes Virus

Bacteriophage النكتيرية

هي تلك الفايروسات التي تتطفل على البكتريا على وتدعى بالفاجات البكتيرية Bacteriophage واختصارا بـ phage وتدعى باللغة العربية بالعاثيات لانها تعبث تدميراً بالخلايا البكتيرية التي تصيبها ويمكن تسميتها بالاقمات او الاكلات وقد وجد ان كل نوع بكتيري تقريباً يعمل مضيفاً لواحد او اكثر من البكتريوفاجات.

تتألف العاثيات شأنها شأن الفايروسات الاخرى – من حامض نووي اما يكون على صورة DNA او RNA وان معظم الفاجات تحتوي على DNA احادي الشريط ويغلف الحامض النووي ببروتين يدعى بالكابسد Capsid ويبنى هذا الغلاف من وحدات فرعية متماثلة مرصوصة بعضها مع البعض الاخر لتشكل بناء موشورياً يظهر عادة على شكل مسطح سداسي الاضلاع نجد ان رأس بعض الفاجات يتألف من بروتينين مختلفين فقط كما في فاج MS_2 في حين نجد فاج MS_2 يتألف من 10 نوع من البروتينات.

ان جزيئة الفاج تحتوي على رأس وذنب ويمثل الرأس لباً من الحامض النووي المحاط بـ Capsid في حين نجد الذنب يختلف في مدى تعقيده من فاج الى فاج اخر الا ان الذنب الاكثر تعقيداً نجده في الفاج T₂ وفاجات بكتريا الذنب يختلف في مدى تعقيده من فاج الى فاج اخر الا ان الذنب على ثلاثة اجزاء ففي المركز نجد لباً فارغاً بعرض E.coli وبكتريا Salmonella typhi حيث يحتوي الذنب على ثلاثة اجزاء ففي المركز نجد لباً فارغاً بعرض 6-10 نانومتر ويغلف هذا اللب الفارغ بصفيحة متقلصة يبلغ عرضها 15-25 نانومتر ثم تأتي قاعدة الطرفية وهي ذات شكل سداسي ايضاً وقد يتصل بهذه القاعدة اجسام مخروطية الشكل او الياف ذنبية او كلاهما هذين التركيبين. ويمثل الذنب عضو التصاق يستفيد منه الفايروس.

تكاثر الفايروسات البكتيرية Bacteriophage

تمر الفايروسات بخمس مراحل خلال تكاثرها، الا ان هناك بعض الخصوصية في كل مرحلة وذلك بسبب التباين الموجود في طبيعة كل من الطفيلي والعائل. فاننا نجد عند اصابة البكتريا بالفايروس نجد ان الفايروس اما يحلل البكتريا المصابة او لا يحللهاو وفي الحالة الاخيرة نلاحظ استمرار تكاثر الفيرس والبكتريا المصابة في ان واحد ولعدة اجيال.

1- الادمصاص (الامتزاز) Adsorption

اذا ما مزج معلق من دقائق العاثية T-even مع سلالة حساسة من E.coli عندها ستتصادم العاثية مع البكتريا الصدفة وان الالياف الموجودة عند نهاية ذيل العاثية هي موقع ادمصاصها التي ترتبط بمستقبلات معينة على الجدار الخلوى البكتيري. ويتحتم على الفايروس ان يجري بعض التعديلات على سطحه قبل ان يستطيع الادمصاص على سطح الخلية المضيفة وهذه التعديلات هي زيادة الايونات الموجبة الشحنة على سطحه وتختلف طبيعة هذه الايونات وعددها اعتماداً على نوع الفايروس وفي بعض الحالات يقوم الحامض الاميني الـ Tryptophan بهذا الدور كما ان هناك عوامل مساعدة اخرى مثل درجة الحرارة واعداد الجسيمات الفايروسية وحالتها وحالة الخلية الفسلجية . بسبب اختلاف تركيب جدار البكتريا G^+ و G^- ، فنجد ان بكتريا G^- تتكون من ثلاث طبقات وهي الطبقة الغشائية الخارجية والتي تتمثل بالبروتينات الدهنية وطبقة وسطى وهي سكريات دهنية وطبقة داخلية و هي الببتيد وكلايكان فمثلاً نقع مستلمات الفاجات T_3 و T_4 و T_5 ضمن طبقة السكريات الدهنية في حين نجد ان مستلمات الفاجات T_2 و T_3 تقع في الغشاء الخارجي ضمن الطبقة البروتينية الدهنية للجدار. يعقب عملية الادمصاص او الالتصاق مباشرة عملية الاختراق (penetration) اذ يقوم انزيم معين (انزيم حال عاث Phage lysozyme) مستقر في ذيل العاثية بتحليل جزء صغير من الجدار الخلوي البكتيري وبعد ذلك يتقلص غمد ذيل العاثية وعند ذلك يخترق محور الذيل الجدار الخلوى ميكانيكياً وعندما تفتح قمة ذيل العاثية بحيث يصبح الـ DNA الفايروسي الموجود في رأس العاثية حر الحركة ليمر عن طريق قناة ذيل العاثية ثم يدخل الـ DNA ببساطة خلال الجدار الخلوي ثم يخترق الغشاء السايتوبلازمي بألية غير معروفة بزرق الحامض النووى الـ DNA بأكمله الى داخل الخلية المضيف.

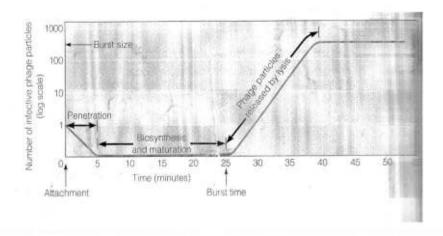
فقد وجد ان بعض الفاجات الخيطية لا تمتلك ذنباً ولكن تستطيع حقن حامضها النووي عن طريق ادمصاص الفاج على قمة الاهلاب في البكتريا Sex pili ويتحرك الى ان تصل الى قاعدة الهلب ثم يخترق الجدار الخلوي وهو بهيأته الكاملة الا انه يترك معظم غلافه البروتيني على الغشاء السايتوبلازمي.

2- تخليق الانزيمات الضرورية لاستنساخ الحامض النووي الفايروسي

عندما يصل الـ DNA الفايروسي الى سايتوبلازم الخلية المضيفة نلاحظ يمر بطور ركود (cclipse period) لدقائق معدودة اذ يتم خلال هذه الدقائق تخليق العديد من الانزيمات الضرورية لاستنساخ الحامض النووي الفايروسي اذ يستنسخ جزء من DNA الفايروسي مباشرة بواسطة انزيم RNA polymerase الخلوي ليكون الكام شم يقوم رايبوزوم الخلوي بترجمة الـ mRNA لتخليق انزيمات فايروسية جديدة مثل -DNA وpolymerase و solymerase الضروري لتخليق الـ ATP.

وتعتمد الفايروسات على DNA الخلية المضيفة في تزويدها ببعض الانزيمات الضرورية لذلك فأن DNA الخلية لا ينكسر وانما يستمر في تخليق بروتينات جديدة.

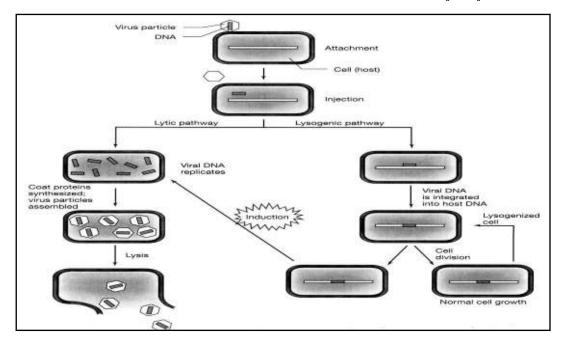
3- تخليق المكونات الفايروسية Synthesis of Viral components


ان الفايروسات ذات الـ DNA المفرد الشريط في حالة حقنها الى داخل البكتريا يتحول الـ DNA الثنائي الشريط بواسطة انزيم DNA polymerase الخلوي. اما الشريط DNA الحلقي فانه يدخل على هيئة او شكل خيطي ولكن يحتوي نهايتيه على تعاقب قصير من القواعد النتروجينية المتمم بعضها للبعض الاخر وبأتحاد هذه القواعد في احد نهايتين مع متمماتها في النهاية الاخرى يتحول الحامض من خيطي الى حلقي وتكمل الحلقة في حالة وجود فراغات في شريط الـ DNA بمساعدة انزيم Ligase.

4- التجميع و البلوغ Assembly & Maturation

بعد توقف عملية الاستنساخ الـ DNA الفايروسي يقوم الـ DNA مقام القالب لتخليق الـ m-RNA الفايروسي الجديد والمسؤول عن تخليق المكونات الفايروسية المسؤولة عن انتاج الكابسد والذنب والالياف حيث يتم تجميع رؤوس وذيول العاثية بصورة مستقلة بواسطة عمليات تدريجية تتضمن تجميع الوحدات الفرعية للبروتين وحالما يتكون الرأس فانه يرزم مع DNA العاثية ويتصل الذيل بعد ذلك به.

5- تحرير الفايروس Release


اثناء الادوار الاخيرة من فترة الاصابة هناك انزيم اخر مستحث بالعاثية ومشفر له بـ DNA العاثية يبدأ بالظهور وهو Phage lysozyme الذي يقوم في مهاجمة طبقة الببتيدوكلايكان الخلوي محلل بذلك الاواصر الرابطة بين الجزيئات السكرية الموجودة في السلسلة الرئيسية للجدار الخلوي مما يؤدي ذلك الى انحلال الخلية وتحرر العديد من الفيرونات نتيجة للضغط التنافذي العالي الموجود داخل الخلية وبهذا تموت الخلية وتتحرر الفاجات في البيئة المحيطة بالخلية.

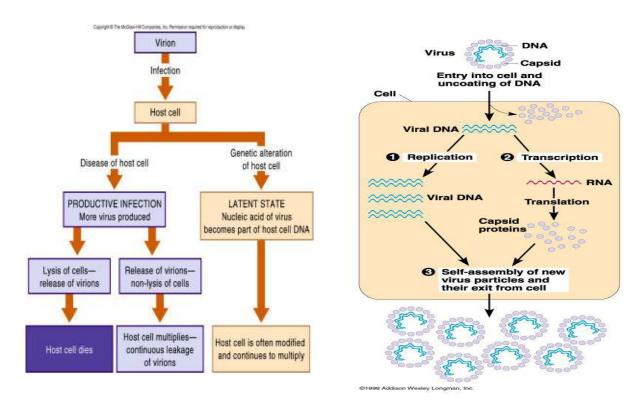
A bacteriophage one- step growth curve. No new infective phage particles are found in a culture until after biosynthesis and maturation have taken place.

دورة توليد المواد الحالة Lysogeny او دورة الفايرس الخفي(Viral Latency)

وهي قابلية الخلية المضيفة على التكاثر بعد اصابتها بالفاج وفي هذه الحالة فان معظم الجينات الفايروسية تثبيط او تكبح Repressed وبهذا تتوقف عملية تخليق البروتينات التركيبية الفايروسية في معظم الخلايا البكتيرية المتولدة. الا ان هذا الكبح قد يزول تلقائياً بين وقت واخر ويعود الهيكل الوراثي الفايروسي ببدء دورة تحلل جديدة. والخلايا التي تعانى من هذه الحالة تتحلل وتنطلق منها الفايروسات البالغة.

الشكل يوضح عملية التحلل lytic وعملية

العاثيات ذات الحامض النووى الرايبوزى RNA


عندما يصل الـ RNA الفايروسي سايتوبلازم الخلية المضيفة تتعرف الخلية مباشرة على انه m-RNA فيتحد مع الرايبوسومات الخلوية وتبدأ عمليات الترجمة الى البروتينات الفايروسية. ومن البروتينات الرئيسية هو انزيم تخليق الحامض النووي الرايبوزي الرايبوزي Synthetase RNA الذي يبدأ عملية استنساخ الـ RNA الفايروسي.

طرق نكاثر الفايرس في الخلايا الحيوانية تمر الفايروسات عموما بخمس مراحل خلال تكاثر ها، وهي:

- 1- الالتصاق على سطح الحلية الحية Attachment to the cell
- 2- حقن الحامض النووي الفايروسي Penetration (injection) of viral DNA or RNA
- 3- التكاثر وبناء المواد الحيوية الفايروسية Replication (Biosynthesis) of new viral proteins and nucleic acids
- Assembly (Maturation) of the new viruses
- 4- التجمع والنضوج
- 5- تحرير الفايروس

Release of the new viruses into the environment (cell lyses)

يتم تحرير الفايروسات بطريقتين: اولا- الجسيمات الفيروسية المحاطة بغلاف envelope ، عن طريق التبر عم من الغشاء الخلوي budding، ثانيا- الجسيمات الفيروسية العارية naked virus تتحرر من خلال اتلاف الغشاء الخلوى للخلية المصابة

Modes of infection and replication of animal viruses

الفايروس الخفي Viral Latency

- 1- بعض الفيروسات تبقى خاملة داخل الخلية نتيجة اندماج الحامض النووي الفايروسي الدنا بالحامض النووي (DNA) اللخلية المصابة، ولهذا تدعى بالطور الخفي latent viruses.
 - 2- قد تبقى خاملة غير فعالة لفترة طويلة تمتد الى سنوات.
- 3- يمكن ان يحفز الدنا الفايروسي نتيجة عوامل خارجية ويعمل على انتاج مكونات فايروسية جديدة. مثل فايرس الايدز HIV و الهيربس Herpes viruses.

- طرق الاصابة بالامراض الفيروسية: 1- الانتقال بواسطة الرذاذ والافرازات التنفسية مثل فايروس الانفلونزا Influenza A virus
- 2- الانتقال الى الفم من الملوثات البرازية Faecal-oral transmission، مثل الفيروسات المعوية 2 virus المسبب للاسهال عند الاطفال
- 3- الفيروسات المنتقلة عن طريق الدمBlood-borne transmission مثل الفيروس المسبب للاتهاب الكبد الوبائي Hepatitis B virus.
- 4- الفايروسات المنتقلة جنسيا Sexual Transmission مثل فايروس الايدز acquired immunodeficiency syndrome(AIDS)او ما يسمى بمرض المناعة المكتسبة .human immunodeficiency virus
 - 5- الانتقال بو اسطة الحيوانات و الحشرات مثل الغيروس المسبب لداء الكلب Rabies virus.

المجاميع الفيروسية: - تقسم استنادا الى نوع الحامض النووي واحتوائها على غلاف envelope او عدم وجود الغلاف، كما في الجدول التالي:

TABLE 29-1 Families of Animal Viruses that Contain Members Able to Infect Humans

Nucleic Acid Core	Capsid Symmetry	Virion: Enveloped or Naked	Ether Sensitivity	Number of Capsomeres	Virus Particle Size (nm)*	Size of Nucleic Acid in Virion (kb/kbp)	Physical Type of Nucleic Acid	Virus Family
DNA	Icosahedrai	Naked	Resistant	32 72 72 72 252	18-26 45 55 70-90	5.6 5 8 26-45	ss ds circular ds circular ds	Parvoviridae Polyomaviridae Papillomaviridae Adenoviridae
		Enveloped	Sensitive	180 162	40-48 150-200	3.2 125-240	ds circular ^c ds	Hepadnaviridae Herpesviridae
	Complex	Complex coats	Resistant		230×400	130-375	ds	Poxviridae
RNA	Icosahedral	Naked	Resistant	32 32	28-30 28-30 27-40 27-34 60-80	7.2-8.4 6.4-7.4 7.4-8.3 7.2 16-27	ss ss ss ss ds segmented	Picornaviridae Astroviridae Caliciviridae Hepeviridae Reoviridae
		Enveloped	Sensitive	42	50-70	9.7-11.8	\$\$	Togaviridae
	Unknown or complex	Enveloped	Sensitive		40-60 50-300 120-160 80-110	9.5-12.5 10-14 27-32 7-11*	ss ss segmented ss ss diploid	Flaviviridae Arenaviridae Coronaviridae Retroviridae
	Helical	Enveloped	Sensitive		80-120 80-120 80-125 75×180 150-300 80×1000'	10-13.6 11-21 8.5-10.5 13-16 16-20 19.1	ss segmented ss segmented ss ss ss	Orthomyxoviridae Bunyaviridae Bornaviridae Rhabdoviridae Paramyxoviridae Filoviridae

^{*}Diameter, or diameter x length.

- الفايروسات المهمة طبيا تضم مجموعتين رئيسية استنادا الى نوع الحامض النووي: 1- الفايروسات ذات الحامض النووي RNA والمسببة الامراض للانسان مثل: فايرس شلل الاطفال poliomyelitis ، الانفلونزا influenza و الايدز.
- 2- الفايروسات ذات الحامض النووي DNA والمسببة الامراض للانسان مثل: الثالول warts، الجدري الماني chickenpox، قرحة الغم Herpes simplex، التهاب الكبد hepatitis type B.

خصوصية او تخصص الاصابة: تحدد الاصابة الفايروسية بنوع المضيف والخلية المستقبلة كما في الجدول التالي:

Cell surface recentor:

Virus	receptor	cell type
HIV EBV Influenza Rhinovirus Poliovirus Measles HHV6	CD4 CR2 sialic acid ICAM-1 poliovirus receptor CD46 CD46	Th cells B cells many cell types many cell types neurons many cell types many cell types

^{&#}x27;ds. double-stranded; ss, single-stranded.

The negative-sense strand has a constant length of 3.2 kb; the other varies in length, leaving a large single-stranded gap.

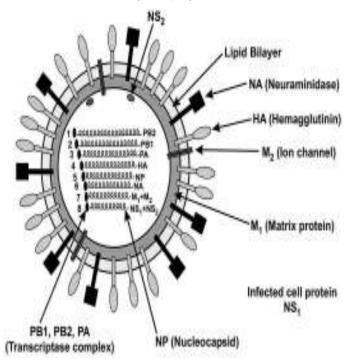
The genus Orthopoxvirus, which includes the better-studied poxviruses (eg. vaccinia), is ether-resistant; some of the poxviruses belonging to other genera are ether-

Size of manamer

1- الفايروسات ذات الحامض النووى RNA، ولا تمتلك غلاف خارجي envelope مثل:

- الفايرس المسبب لشلل الاطفال Poliovirus
- ينتقل عن طريق التلوث بالفضلات البرازية
- يسبب التهاب السحايا والشلل (بعد اختراقه بطانة الامعاء ينتقل بواسطة الدم الى الانسجة العصبية مما يسبب الشلل)

(Gut –Viraemia- Neuronal Tissues- Paralysis)


- · السيطرة تتم باستخدام القاحات، وتقسم الى نوعين:
 - أ. فايرس مقتول يدعى Salk
- ب. فايرس حي مضعف يدعى Sabin وهو اللقاح المستخدم للاطفال للتحصين ضد الاصابة بمرض شلل الاطفال.

2- الفايروسات ذات الحامض النووى RNA، وتمتلك غلاف خارجي envelope مثل:

- الانفلونزا فايرس Influenza virus
- . توجد ثلاث انواع من فايرس الانفلونزا وهي A,B,C
- تمتلك envelope ، وعدد من قطع RNA (7 segments
 - . تصيب مدى واسع من الحيوانات والانسان
 - تحدث فيها تغيرات وراثية كبيرة antigenic variation
- تسبب امراض الجهاز التنفسي وتنتقل عن طريق الرذاذ والافرازات التنفسية.
- تصيب وتسبب تلف الخلايا الطلائية للجهاز التنفسي، مما يجعلها عرضة للاصابة الثانوية بالبكتريا .Secondary bacterial infections
 - Influenza A المسبب الرئيسي للاوبئة نتيجة حدوث التغيرات الجينية وبما يعرف (Antigenic shift)
 - تركيب الفايرس Influenza A

■ Hemagglutinin (HA)

- -Receptor binding (sialic acid)
- -Neutralizing antibody target
- Neuraminidase (NA)
- -Remove sialic acid residues
- -Virion release
- Ion channel (M2)
- -H⁺-dependent uncoating
- -Influenza A only
- -Influenza A subtypes based on HA (16) and NA (9) ex. H1N1, H3N2.

- الفايروسات الراجعة Retroviruses الصفات العامة
 - تمتلك حامض نووي RNA
 - عائلة Retroviridae
- تمتلك انزيم Reverse Transcriptase : عندما صيب الفيرس الخلية يحقن الحامض النوي RNA والانزيم الراجع الى بناء نسخة من reverse transcriptase الى داخل السايتوبلازم. يعمل الانزيم الراجع الى بناء نسخة من الـ RNA الفيروسي.
- مثال على ذلك : مُرض الايدز acquired immunodeficiency Syndrome) او ما HIV (Human Immunodeficiency Virus) يعرف بفايرس ضعف المناعة المكتسبة
 - اكتشف في عام 1986 في شرق افريقيا كمرض متوطن.
 - مسجل حاليا 30 مليون اصابة حول العالم.
 ينتقل عن طريق الدم الملوث والاتصال الجنسي وعدد من الدراسات تشدر الساحة المالية المالي
 - يتنفل عن طريق الذم الملوت والانصال الجنسي وعدد من الدراسات تشير الى احتمال انتقاله عن طريق السوائل الجسمية (اللعاب، البول، العرق، حليب الام).
 - o أول خطوة في الاصابة تعتمد التماس مع الخلايا المستقبلة في المصنيف، مثل الخلايا اللمفوية المساعدة helper T cells) T الخلايا اللمفوية المساعدة 'helper T cells'، الخلايا الملتهمة 'B cells 'monocytes 'macrophages' التي تمتلك المستقبل CD4.
 - الغلاف الخارجي envelope يحتوي على مادة دهنية وبروتينات كاربوهيراتية مسؤولة عن عملية الارتباط بالمستقبل للخلية المضيفة.
 - و يمتلك envelope معقدات بروتينية مهمة مثل (envelope معقدات بروتينية مهمة مثل (glycoprotein (gp)، بالاضافة الى مستضدات من stem gp14، و (viral protein p24) capsid بروتينات الغلاف الداخلي (viral protein p24).

دورة حياة فايرس الايدز: كما موضح في الشكل

- 1- الاصابة الخفية latent infection (يستمر لعدة سنوات).
- 2- الاصابة النشطة active infection (تظهر الاعراض بعد 2-4 اسابيع من الاصابة: الحرارة، التهاب العنجرة، التهاب العقد اللمفوية، طفح جلدي) و تظهر الاجسام المضادة للفايرس خلال شهرين من حدوث الاصابة.

Life Cycle of HIV

Anatomy of the AIDS Virus

gp41 Envelope

Protein

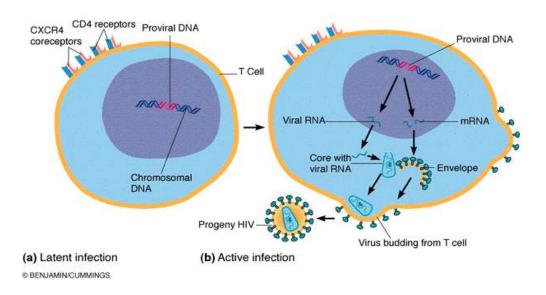
gp120 Envelope

Protein

p17 Matrix

Lipid

Membrane


p24 Capsule

Proteins

Reverse Transcriptase

Proteins

RNA

3- الفايروسات ذات الحامض النووي DNA، وتمتلك غلاف خارجي envelope مثل:

- Herpes simplex virus type 1 فايرس الهربس
- ينتقل عن طريق الاتصال المباشر والرذاذ والعاب من الجهاز التنفسي.
- o يسبب قرحة الفم cold sores، القرحة الناتجة عن الحرارة fever blisters والتهاب القرنية keratitis
- و . . وي المستحد المسلم المسل
- تزداد نسبة الاصابة بين الاطفال من عمر 6 اشهر الى عمر ثلاث سنوات ، وتظهر الاجسام المضادة
 في البالغين وبنسبة 70-99%.
 - تتشط في حالة ضعف المناعة.

■ الفيرس المسبب لالتهاب الكبد نوع بي Hepatitis type B

- يسبب التهاب الكبد الحاد والمزمن
- ينتقل بواسطة الدم الملوث والمصل وللخديج اثناء الولادة
- سجلت اكثر من 250 مليون اصابة في الولايات المتحدة
 حوالى 25% من المصابين يتطور المرض من حاد الى مزمن Hepatitis
 - فترة حضانة المرض تتراوح بين 50-180 يوم

4- الفايروسات ذات الحامض النووى DNA، ولا تمتلك غلاف خارجي envelope مثل:

- Adenoviruses •
- يسبب التهاب الجهاز التنفسي العلوي والسفلي، مثل: التهاب الحنجرة، التهاب الجفن، التهاب القرنية،
 النزف الخلوي، التهاب الامعاء.
 - تنتقل عن طريق الرذاذ المتطاير من الفم والانف وافرازات الجهاز الهضمى.

Papillomaviruses •

- و نواع تسبب سرطان عنق الرحم.
 - یوجد 60 نوع لهذا الفایرس
 - ينتقل عن طريق التماس المباشر للجلد والاتصال الجنسي.
 - تزداد الاصابة عند الاطفال وتقل عند البالغين
 - o تصيب الانسان والحيوان بانواع متباينة

السيطرة وعلاج الامراض الفيروسية

- 1- اللقاحات
- 2- الانترفيرونInterferon
- 3- الدواء الكيميائي، مثل (acyclovir)
- 4- انزيم Protease inhibitors مثبط لتكوين البروتين: يمنع تكون الكابسدcapsid.

امراض ناتجة عن مسببات غير مألوفة:

البرايونPrions : البروتين المعدي المسبب لمرض جنون البقر mad cow disease . تم اكتشافه عام 1982 من قبل عالم الاعصاب Stanley Prusine في الاغنام المصابة، يزداد انتاج البروتين داخل الخلية محولة النسيج الى نسيج فجوي يشبه الاسفنج نتيجة تحفيز الجين (PrPsc) لانتاج بروتين فعال غريب عن فسلجة الخلية وتم علاجة باستعمال محلل البروتينات proteases .

الفريود Viroids: حامض RNA العاري يتكون من 300-400 وحدة نيوكلوتايد وبدون غلاف بروتيني، له قابلية الاستنساخ الذاتي، ولا يشفر عن اي بروتين. يصيب النباتات (مثل نخر البطاطا) ومقاوم للانزيم المحلل للبروتينات والاحماض النووية، وينتقل عن طريق الحشرات.

-: Pathogenic microorganisms الاحياء المجهرية المرضية

تشكل احياء المجهرية المرضية مجموعة صغيرة من الاحياء المجهرية بشكل عام ؛ ولكنها ذات اهمية بالغة لما لها من علاقة بصحة الانسان ومجتمعه واقتصاده ولايزال الملابين من البشر في كل عام عرضة للاصابة بانواع مختلفة من الامراض الخامجة infectious disease المتسببة عن واحدة من الكائنات المرضية كالبكتريا Bacteria والفطريات Fungi والفايروسات Viruses والابتدائيات Bacteria . ان تطور البحوث والدراسات المستمرة في المجالات المختلفة مثل فسلجة الاحياء المجهرية الطفيلي بالعائل وphysiology وعلم الوراثة Genetics وعلم المناعة Genetics . Pathogens . Pathogens . العديد من هذه الممرضات Host parasite relationships

العلاقة بين الاحياء المجهرية والانسان Human being Microorganism relationships العلاقة بين الاحياء المجهرية والانسان

لكل كائن مجهري متطلبات معيشية محددة من اجل نموه وتكاثره ؛ ويحصل على هذه المتطلبات من البيئة المحيطة به ولاتنمو هذه الكائنات في عزلة عن بقية الكائنات الحية Organisms بل تشكل معها علاقات فيزيولوجية مختلفة. نظراً لانتشارها الواسع في الطبيعة تستوطن جسم الانسان مشكلة معه علاقات تعايشية فيزيولوجية مختلفة. Symbiotic relationships مفيدة للعائل او مضره له ومسببة الموت ، ولوجود اليات دفاع نوعية وغير نوعية Specific and non specific defense mechanisms في جسم الانسان استطاع الانسان تكوين علاقات سليمة مع الاحياء المجهرية المستوطنة والحد من العلاقات المسببة للمرض والموت. أي خلل يصيب وظائف هذه الاليات يؤدي الى ضعف مقاومة الجسم للكائنات المجهرية مما يظهر تأثيرها السلبي الضار على الجسم ويجعله عرضة لامراض مختلفة.

الكائنات المجهرية التي تعيش على جسم الانسان بشكل طبيعي :-

تسمى (الفلورا) الطبيعي Normal Flora ومنها ما تستوطنه لفترات منقطعة تدعى بالفلورا العابرة ومن الانواع الرئيسية المستوطنه على جسم الانسان المكورات العنقودية البشروية Transient flora و Staphylococcus epidermis الموجودة على الجلد ؛ والعقدية المخضرة Staphylococcus viridians التي تجدها في الحنجرة في حين نجد في الامعاء البكتريا المعوية Enterobacter والعصويات Streptococcus viridians اضافة الى بعض انواع الفطريات Fungi والفايروسات Bacteroides fragillis اضافة الى بعض انواع الفطريات والفايروسات Viruses الكائنات المجهرية سطح جسم الانسان والوصول الى انسجته والتكاثر فيها والفايروسات كون الخمج او مايعرف بالاصابة Infection والعائل حينذاك يكون مخموج (مصاب) Infections والمرض المتكون يكون خامج Infectious. الكائنات المجهرية التي لها القدرة على توليد المرض تدعى بالممرضات Pathogenicity فهو الذي يستطيع في تسبب المرض في فهي القابلة على تكوين المرض. اما الكائن الانتهازي Opportunist والتي قد تحدث في الجروح او من جراء المعالجة بالعقاقير المثبطة للمناعة Immune Suppressive drug المجهرية بدرجة امراضيتها للانسان باختلاف انواعها Virulence وكون والمدراوة) Virulence والسلالات Strains ضمن النوع الواحد.

وهذه الخاصية قد تكون مرتبطة في بعض الاحيان بوجود المحفظة capsule كما في المكورات العقدية الرئوية Streptococcus pneumonia فالبكتريا الحاوية على المحفظة تكون كائنات ضارية وغالباً ما

تكون مرضية اما تلك التي تفقد هذه المحفظة فتكون كائنات غيرضارية وغالباً تكون قدرتها الامراضية طفيفة. او قد تكون ذات علاقة بتوليد الذيفانات Toxins كما في بكتريا الخناق . Corynebaterium diphtheria

امكانية أحداث المرض Pathogenesis:- تعتمد على:

- أ- القدرة على الغزو والدخول والتكاثر في الانسجة Invasiveness.
 - ب- القدرة على إنتاج الذيفان (السموم) Toxigenicity.

حيث يقاوم الميكروب الوسائل الدفاعية في الجسم (مثل الانزيمات الحالة في الدم ، الدمع ، ...الخ) والخلايا البلعمية Neutrophil والاضداد وغيرها) وكذلك بامتلاك مكونات تركيبية او افراز مواد او انزيمات تساعد على الانتشار في الأنسجة.

المواد او الانزيمات المفرزة من قبل الأحياء المجهرية المرضية:

- 1- Collagenase: يحلل Collagen الموجود في العظام والغضاريف اذ يسهل من انتشار المسبب المرضي الى الانسجة مثل بكتريا Clostridium perfrenges.
- 2- Neuraminidase:-انزيم يفرز من قبل مختلف البكتريا والفايروسات ويساعد على تحلل الميوكوبروتين Mucoprotein (البروتين الموجود على سطح الخلايا) مما يجعل الخلايا اقل مقاومة لمجابهة البكتريا.
- 3- Deoxyribonuclease:-انزيم يؤثر على الحامض النووي DNA ويفرز من قبل بعض البكتريا مثل Streptococcus pyogens.
- 4- Coagulase يفرز من البكتريا S. aureus ولها القابلية على تخثير البلازما وهذا يساعد على احاطة البكتريا الـ Fibrin مما يساعد على مقاومة الوسائل الدفاعية للجسم من بلعها.
- 5- Hyaluronidase او عامل الانتشار Spreading factor: وهو انزيم يؤثر على حامض الـ Hyaluronidase او المادة الرابطة للخلايا ، وهذا يسهل انتشار الممرضات في الانسجة ويفرزه كل من بكتريا S. pyogens, S. aureus.
- 6- Fibrinolysin او الـ Streotokinase :Kinas يحلل خثرة البلازما المتراكمة حول الانسجة المصابة وبهذا يساعد البكتريا على الانتشار مثل بكتريا Streptococcus pyogens.
- 7- Hemolysis: يحلل الهيموكلوبين تحلل كامل يسمى بيتا α -hemolysis فيحدث منطقة شفافة حول المستعمرة البكتيرية ، او تحلل من نوع الفا α -hemolysis محدثة منطقة خضراء حول المستعمرة (في الوسط الزرعي و هو وسط اكار الدم Blood agar).
- 8- Leucocidin: محلل اومحطم للكريات البيضاء ويفرز من قبل بعض انواع البكتريا مثلS. aureus.
 - 9- القدرة على انتاج الذيفان (السموم): وتقسم الى نو عين الذيفان خارجي والذيفان داخلي.

الذيفان الخارجي Exotoxin: هو بروتين يفرز خارج جسم البكتريا وخلال نموها في الوسط الزرعي مثل كتريا Corynebacterium diphtheria, S. aureus

الذيفان الداخلي Endotoxin: وهذا النوع من السموم مرتبط بجدار الخلية ويحرر بعد تكسر الخلية نفسها. وهو عبارة عن معقد مكون من شحم فسفوري متعدد السكريات وبروتين. غالباً ما يكون مرتبط بجدار البكتريا السالبة لصبغة كرام Salmonella, Shigella.

الخمج Infection او مايعرف بالاصابة تكون على نوعين:-

- 1- موضعي Local: الاصابة تكون في موقع معين من الجسم مثل الدمامل S. aureus الدرنتري البكتيري Shigella في الامعاء.
 - 2- عمومي Systematic: بهذه الحالة المسبب المرضي ينتشر بالجسم وبطرق مختلفة:

1-الطريقة المباشرة: انتشار الخمج في الجلد او تحت الجلد مثل بكتريا Streptococcus او في الامعاء عن طريق النسيج المخاطى.

2- عن طريق الدم: المسبب يكون بلازما او بداخل كريات الدم البيضاء و هكذا الى مناطق الجسم المختلفة. البكتريا في الدم Bacteremia (الانتقال عن طريق الدم).

وجود الميكروب وسمومه في الدم Septicemia (تكاثر المكروب في الدم).

الذيفان في الدم Toxemia (انتاج السم في موضع الاصابة فتسمح بانتشاره عن طريق مجرى الدم).

- 3- **الانتشار عن طريق اللمف**: مثل بكتريا السل والطاعون.
- 4- الانتشار عن طريق السائل المخي الشوكي Cere bral spinal Fluid CSF : حيث تصل البكتريا الى السائل المخي الشوكي عن طريق الدم مثل بكتريا السحايا Neisseria meningitides .

توجد سبع طرق ينتشر بها الخمج:-

- 1- القناة التنفسية Respiratory Infection :- تنتقل بهذه الطريقة ممرضات القناة التنفسية مثل المكورات الرئوية المسببة لذات الرئة او ممرضات تصيب الاجهزة العامة مثل الاصابة بالحصبة (عن طريق الرذاذ المتطاير، وعن طريق اللمس).
- 2- انتشار الخمج عن طريق القناة الهضمية Alimentary tract Infection :- مثل الكوليرا ، الديزنتري وذلك بعد تناول الممرضات عن طريق الفم (تلوث الماء والغذاء).
- 3- انتشار الخمج عن طريق القناة التناسلية Venereal Infection -، مثل بكتريا Treponema pallidum و بكتريا
- 4- انتقال الخمج عن طريق الجلد ، الحروق ، والجروح :- ينتج عن الملامسة بالايدي الملوثة ، الملابس ، الادوات او التعرض للرذاذ المتطاير الملوث من فم وانف المصابين او تلوث الجروح ببكتريا الكزاز.
- 5- انتشار الخمج بواسطة بعض المفصليات Arthropods borne blood Infection:- وتشمل الحشرات الماصة للدم مثل مرض الملاريا (الناقل هو البعوض).
- 6- انتشار الخمج عن طريق المختبرات والعاملين بالمختبرات معرضين للاصابة وخاصة عند استعمال الحيوانات المختبرية.
- 7- انتشار الخمج عن طريق المشيمة Congenital Infection:- ويحدث نتيجة اصابة الام بالسفلس وانتقال بعض الغيروسات مثل الحصبة الالمانية عند اصابتها بالاشهر الثلاثة الاولى من الحمل.

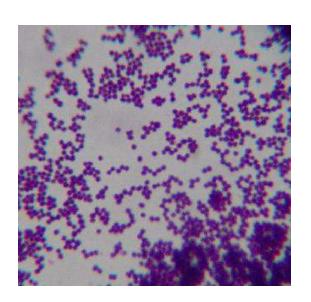
البكتريا المرضية تقسم الى عدة مجاميع:

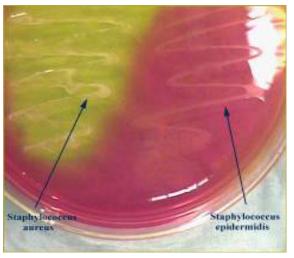
اولاً: العنقوديات Staphylococcus: تتواجد بنسبة 40 % في الاشخاص الاصحاء في الانف والجلد والابطين وتتميز بانها مكورات عنقودية الترتيب ، موجبة لصبغة كرام ؛ خلايا كروية الشكل .هوائية لاهوائية اختيارية وتتميز بانها مكورات عنقودية الترتيب ، موجبة لصبغة كرام ؛ خلايا كروية الشكل .هوائية لاهوائية اختيارية .Facultative anaerobes .capsule تكون موجبة في فحص Coagulase .تكون حامض من تخمر الكلوكوز بدون انتاج غاز Gas .غير متحركة وغير مكونة للسبورات. قسم منها تكون المحفظة add عنور ها من (0.8M). تنمو بشكل مستعرات دائرية قطرها (mm) 3-2) ملساء الحافة، لماعة، غير شفافة، بيضاء او ملونة، وسطها املس ناعم. تنمو في اوساط حاوية على نسبة عالية من الملح تصل الى NaCl % . تعزل من الهواء و الجلا و الغذاء والماء. تنمو بسرعة على اوساط زرعية اعتيادية مثل الـ Nutirent agar و وسط Species و المواع هي المهاء الحفاف والحرارة . يحتوي هذا الجنس على اكثر من 30 نوع Species و المواع هي:

epidermidis Staphylococcus مرضة ، Staphylococcus aureus ممرضة . Saphylococcus saprophyticus وبكتريا Saphylococcus saprophyticus

S. aureus ممرضة للانسان تسبب انواع مختلفة من الخمج القيحي Pood poisoning ، تسبب العديد من الامراض والتي تكون واسعة الانتشار ومنها التسمم الغذائي Food poisoning والاتهابات الجلاية. والاكزيما والتهابات الجروح والحروق جروح العمليات ، التهاب الاغشية المخاطية. ؛ التهابات الرئوية التي تكون نادره وتعقب الاصابة بالانفلونزا ؛ والتهاب العظام والتهاب نخاع العظم والمفاصل والتهاب شغاف القلب endocarditis . التهاب في سائل النخاع الشوكي والتهاب النهاب التهاب التهاب في سائل النخاع الشوكي والتهابات العظام والتهاب القياب القياب القياب التهاب التهاب التهاب والتهاب التهاب التهاب والتهاب والتهاب التهاب والتهاب التهاب التهاب التهاب التهاب التهاب التهاب التهاب والتهاب التهاب التهاب التهاب والتهاب التهاب التهاب والتهاب التهاب التهاب التهاب والتهاب التهاب التهاب والتهاب التهاب التهاب التهاب والتهاب التهاب التهاب والتهاب التهاب والتهاب التهاب التهاب والتهاب التهاب التهاب التهاب والتهاب التهاب التهاب والتهاب التهاب التهاب والتهاب التهاب التهاب التهاب والتهاب التهاب التهاب التهاب التهاب والتهاب التهاب التهاب

S. aureus التي تفرزها


- β- hemolysin, α- hemolysin, -1
 - Leucocidin -2
 - Enterotoxin -3
 - Toxic shock toxin -4
 - Coagulase -5
 - Hyaluronidase -6
 - Deoxyribonlease -7
 - Staphylokinase -8
 - Lipase -9
 - Catalase -10
 - Protease -11
 - Penicillinase -12


S. epidermidis

coagulase negative وتنمو على وسط المانتول الملحي بشكل مستعمرات وردية اللون. عادة تكون تواجدها طبيعي وغير ممرض Normal Flora وقد تكون ممرضة انتهازية في حالة انخفاض المناعة ، وعند كبار السن.

S. saprophyticus تسبب التهابات المجاري البولية عند النساء .

S. epidermidis :- اقل شيوعا من بكتريا S. epidermidis وتكون مسببة لنفس الامراض التي تسببها هذه البكتريا وتختلف عن S. epidermidis بانها تحلل الدم على وسط اكار الدم .

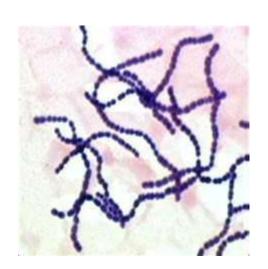
شكل وتجمع الخلايا بالمجهر الضوئي

شكل المستعمرات على وسط اكار المانتول

ثانياً: المسبحيات Streptococcus مكورات موجبة لصبغة كرام ؛ مرتبة بشكل سلاسل او مزدوجة ؛ غير متحركة ؛ غير مكونة للسبورات ؛ هوائية او لاهوائية اختيارية ؛ قسم منها normal flora بالجسم وقسم ممرضة ؛ اختبار الله شعير مكونة للسبورات ؛ هوائية او لاهوائية اختيارية ؛ قسم منها normal flora بالجسم وقسم ممرضة ؛ اختبار الله Catalase سالب. تحلل الدم محاميع مصلية تعرف بـ Lancefieled من (A-U). قطرها من (1-2mm) تكون المحفظه المحاميع الحالة للدم الى مجاميع مصلية تعرف بـ Lancefieled من (A-U). قطرها من (apsule تنمو بصورة ضعيفة على الوسط الصلب او السائل وتحتاج الى مواد اغنائية مثل الدم المحفظه septicaemia تتما الدم الى مواد اغنائية مثل الدم التهاب البلعوم ؛ تسمم الدم blood, tissue fluids ؛ التهاب الرئوي pneumonia ؛ التهابات العظم ونقي العظم ونقي العظم osteomyelitis ؛ التهابات الجلد والجروح والاحمرار ؛ النفاسي وسمية شديدة.

الانزيمات المفرزة:

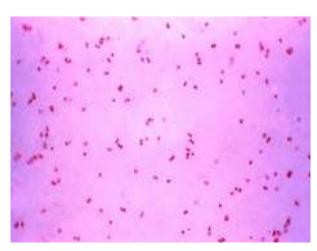
- streptokinase -1
- . DNA المحلل لل deoxyribonuclease -2
 - hyaluronidase -3
 - pyrogenic exotoxins -4 رافع الحرارة.
 - hemolysin -5 المحلل للدم


- immunoglobulin proteases -6
 - hyaluronidase -7
 - .collagenases -8

اهم الانواع:

- 1- Streptococcus pyogenes محللة للدم من نوع Streptococcus pyogenes محللة للدم من نوع B-hemolysis تسبب اصابة موضعية وجهازية Streptococcus pyogenes واضطرابات مناعية immunologic disordes بعد الاصابة بالتهاب اللوزتين المزمن مثل حالة الـ systemic infection واصابة الجهاز البولى. حساسة للـ bacitracin.
- normal flora جزء من الـ Streptococcus agalactiae -2 جزء من الـ Streptococcus agalactiae في القناة التناسلية genital tract والمسبب الرئيسي السحايا emital tract محللة للدم من نوع hemolysis.
- 3- Streptococcus pneumonia عكورات مزدوجة diplococcic ؛ تمتلك كبسولة مما يجعلها مقاومة لعملية البلعمة ومحللة للدم من نوع α- hemolysis ؛ تتحلل بأضافة محللة للدم من نوع α- hemolysis ؛ تتحلل بأضافة الملاح الصفراء (صفة تميزها عن باقي انواع الـ Streptococcus) ؛ تسبب الالتهابات الرئوية الحادة والتهابات الاذن الوسطى الحاد ؛ التهاب الجيوب الانفية ؛ تمتلك انزيم Pneumolysin .

شكل المستعمرات Streptococcus على وسط اكار الدم



شكل الخلايا Streptococcus بالمجهر الضوئي

ثالثاً: مكورات سالبة لصبغة كرام Neisseriae كريات سالبة لصبغة كرام مزدوجة diplococci السطحان المتقابلان مسطحة ، القطر معالم و الله المتعابلات المتعابلات المتعابلات المتعابلات المسطحة ، القطر معالم المتعابلات المسطحة ، القطر معالم المتعابل المتعابلات الم

hydrochloride) قطرة من المحلول مع البكتريا على ورق النشاف filter paper قطرة من المحلول مع البكتريا على ورق النشاف hydrochloride) الارجواني purple الغامق. تضم عدد من الانواع منها مرضية ومنها بكتريا طبيعية N.F انتهازية الانواع المرضية مثل meningitides المسببة لالتهاب السحايا ، تسبب تسمم الدم septicemia و septicemia تصيب الاغشية المخاطية للجهاز التناسلي في الاناث تسبب التهاب المهبل القيحي purulent vaginitis ، وفي الذكور تسبب التهاب المستقيم القيحي والتهاب الجلدي البثري .

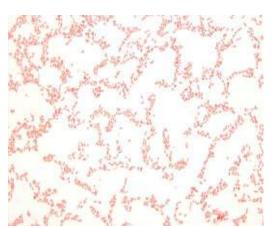
شكل مستعمرات البكتريا Neisseria على وسط اكار الدم

شكل خلايا بكتريا Neisseria تحت المجهر الضوئي

رابعاً: Enterobacteriaceae) Enteric gram-negative rods : تشمل مجموعة كبيرة من العصيات السالبة لصبغة كرام ، واسعة المعيشة وتشكل بيئة طبيعية في امعاء الانسان والحيوانات. هذه العائلة تضم عدد من الاجناس مثل Escherichia , Shigella , Salmonella, Enterobacter , Klebsiella , Serratia , Proteus تكون ممرضة للانسان. هوائية ولا هوائية اختيارية ؛ مخمرة لمجموعة كبيرة من الكاربو هيدرات ؛ تمثلك صفات مستضدية مهمة في التشخيص المناعي ؛ تفرز سموم وانزيمات ؛ معظمها متحركة ؛ غير مكونة للسبورات ؛ قسم تكون المحفظة مثل . Oxidase ؛ سالبة في اختبار Enterobacter .

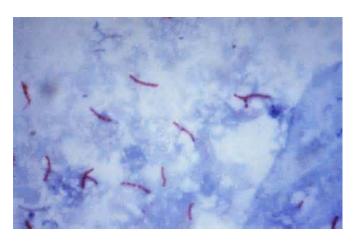
الامراضية:

- 1- E.coll تسبب خمج المجاري البولية والجهاز التناسلي والجهاز العصبي وتسمم الدم.
- 2- Klebsiella rhinoscleromatis تسبب التهاب الغشاء المخاطي للاذن والحنجرة المزمن
- -3 Proteus تتميز بأفراز انزيم urease ، ولها خاصية الانتشار Swarming وتشمل نوعين: . P. vulgaris, P. ولها خاصية الانتشار mirabilis ؛ تسبب سحايا محيث المجاري البولية ؛ تسبب سحايا الطفال حديثي الولادة ؛ تسبب تسمم الدم.
 - 4- Salmonella وتشمل عدة انواع ممرضة للانسان .S. typhi المسببة للحمى التايفوئيدية.
 - S. paratyphi_A,B,C, والمسببة للحمى الباراتيفوئيدية.
 - S. typhimurium, S. enteritidis
- 5- Sh. dysentariae, Sh. Flexneria, Sh. Poydii, Sh. Sonnei المسببة للتسمم Sh. dysentariae, Sh. Flexneria, Sh. Poydii, Sh. Sonnei الغذائي للاطفال.

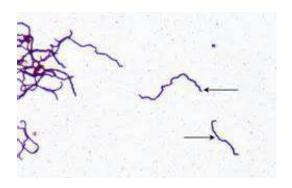

خامسا: - بكتريا سالبة لصبغة كرام ضمات الكوليرا Vibrio cholerae الخسبات هي عصيات منحنية متحركة احادية السوط وسالبة لصبغة كرام ، هناك أكثر من ثمانية أنواع من ضمات الكوليرا و تعد من مسببات الأمراض البشرية الرئيسية. وينقسم ضنات الكوليرا على اساس مستضدات O جسدية الى O19 و 7030 وتكون البكتريا قادرة على العيش بحموضة المعدة ، وتنتج سموم البروتين multimeric (توكسين الكوليرا) ، الذي يحفز داخل الخلايا المعوية ، مما أدى إلى إفراز الماء والشوارد في تجويف الأمعاء . الكوليرا هو مرض يصيب الإنسان حصرا فهو ينتقل عبر المياه الملوثة والمواد الغذائية. عادة ما يتم العثور عليه في البلدان النامية حيث تكون امدادات المياة غير مامونه وملوثه بمياه الصرف الصحي . وينتشر الوباء خلال الحروب والهجرة .المظاهر السريرية لمرض الكوليرا ما يلي: اسهال شديد غيرمؤلم ؛ ما يصل إلى 20 مرة في اليوم الواحد ؛ تقئ ؛ الجفاف الشديد. التشخيص يستند التشخيص السريري على وجود البكتريا الكوليرا في الإسهال (البراز) مع التشخيص المصلي السريع .يمكن زراعتها على الوسلط الزرعية الخاصة مثل وسطع TCBs. واجراء الفحوصات البايوكيميائية.

علاج اعطاء السوائل عن طريق الفم (الملح والسكر) .اعطاء السوائل عن طريق الوريد في الحالات الشديدة . اعطاء مضادات التتراسيكلين أو سيبروفلوكساسين يمكن تقصير مدة المرض و تقليل شدة.

الوقاية والمكافحة إمدادات المياه الصالحة للشرب هي الدعامة الأساسية للوقاية . انتشار التعليم الجماعي والتوعية الصحية . انتاج لقاحات ضد المرض قيد التجارب.


شكل المستعمرات على وسط زرعى TCBs

شكل بكتريا الكوليرا تحت المجهر


سادسا: بكتريا السل ويتطور المرض الى التهابات موضعية اخرى مثل التهاب السحايا والتهاب العظم والنقئ. ويصيب كل انحاء الجسم ويتطور المرض الى التهابات موضعية اخرى مثل التهاب السحايا والتهاب العظم والنقئ. تتميز بكتريا السل بانها عصيات او بشكل قضبان مستقيمة رفيعة 0.4 – 3 ملم غير متحركة وغير مكونه للسبورات وتكون متغايرة من نوع الى اخر ولايمكن ادارجها ضمن البكتريا السالبة لصبغة اوالموجبة لصبغة كرام وذلك لاحتواء جدارها على طبقه دهنية عالية ومواد شمعية waxy envelope والتي لايمكن تصبيغها بالصبغات الاعتيادية لذلك تستعمل صبغة زيل نلسن Ziehl-Neelsen technique وبوجود الكحول الايثانولي 95 % المحمض بحامض الهيدروكلويك 3% من اجل تصبيغها ويتم ذلك عن طريق تصبيغ القشع او النسيج الماخوذ من موقع الاصابة بهذه الصبغة للتعرف على وجود البكتريا . ويمكن الاعتماد على اوساط زرعية خاصة لتنمية البكتريا مثل الاوساط الحاوية على البيض والغنية بالدهون. مثل وسط Lowenstein — Jensen الذي يحتاج الى وقت طويل لنموها.

العلامات السريرية للمرض الالتهاب الرئوي: السعال المزمن، نفث الدم والحمى و فقدان الوزن، و الالتهاب الرئوي الجرثومي المتكرر. إذا لم يعالج، فإنه يلي التهاب مزمن. التهاب السحايا: الحمى وفقدان الوعي. التهاب الكلوى: الحمى و فقدان الوزن ومعقدة بالتليف الحالبي والكلية. التهاب العظام: العمود الفقري والفقرات القطنية والعجزية التهاب المفاصل والتهابات البطن: تضخم العقد اللمفية المزمنة والحمى، و فقدان الوزن، و الاستسقاء و الأمعاء وسوء الامتصاص. العلاج يكون باعطاء المضادات الحيوية واعطاء اللقاح (BCG) ضد مرض السل.

تظهر بكتريا السل باللون الاحمر بعد تصبيغها بصبغة زيل نلسن (تحت المجهر الضوئي)

سابعا الحازونيات Spirochetes ومنها بكتريا السفلس Treponema pallidum: - خلايا لولبية الشكل ، لا تصطبغ بالصبغات الاعتيادية ولا تنمو على الاوساط الزرعية الا انها من الممكن ان تصطبغ بصبغة كمزا Giemsa . من اهم الحلزونيات من الناحية الطبية هي الحلزونية الشاحبة الشاحبة pallidum المسببة لداء السفلس syphilis و الزهري وهو من الامراض المنتقلة جنسيا اذ تظهر الاصابة على شكل قرحة صلبة في مكان اختراق الجرثومة للجلد بعد مدة حضانة تتراوح من 2 – 4 اسابيع ، يمر المرض بعدها بثلاثة اطوار رئيسة هي السفلس الاولي الذي يكون التهاب بسيط والثانوي والذي يودي الى التهابات في العقد اللمفاوية والمنتشر الذي ينتهي بتشوهات جهازية كثيرة ويسبب التهابات جهازية مثل التهاب الابهر وقد تؤدي للموت. تشخص هذه البكتريا خلال الفترة الاولى من الاصابة بالمجهر المظلم و بالطرق المصلية مثل التهاب Dark field microscope اذ تظهر البكتريا براقة في محيط مظلم او بالطرق المصلية مثل فحص JPHA و TPHA.

شكل خلايا بكتريا السفلس الحلزونية