Chapter Five : Some Applications of Groups الفصل الخامس : بعض تطبيقات الزمر

Theorem 5.1: (Cayle's Theorem)

Every group is isomorphic to a group of permutations. That is:

If (G, *) is any group, then $(G, *) \cong (F_G, o)$, where

$$F_G = \{f_a : a \in G\}, \, f_a : G \to G \; ; \; \, f_a(x) = a * x, \; \; \forall \; \; x \in G.$$

Proof:

Define $g:(G,*) \rightarrow (F_G,o)$ by $g(a) = f_a, \forall a \in G$.

To prove, g is homo., 1-1, onto.

(1) Is g homo. ?

Let $a, b \in G$, $g(a*b) = f_{a*b} = f_a \circ f_b = g(a) \circ g(b) \Rightarrow g$ is homo.

(2) Is g 1-1?

Let
$$g(a) = g(b) \ \forall \ a, b \in G \ \Rightarrow \ f_a = f_b \ \Rightarrow \ f_a(x) = f_b(x) \Rightarrow a*x = b*x$$

$$\Rightarrow \ a = b \ \Rightarrow \ g \ is \ 1\text{-}1 \ .$$

(3) Is g onto?

$$Rg = \{g(a) : a \in G\} = \{f_a : a \in G\} = F_G.$$

$$\therefore (G, *) \cong (F_G, o).$$

Corollary5.2: Every finite group G of order n is isomorphic to a subgroup of S_n .

Example 5.3:

Consider the following Cayley table of a group $G = \{e, a, b, c\}$

*	e	a	b	c
e	e	a	b	c
a	a	e	С	b
b	b	С	e	a
С	С	b	a	e

نظر بة الزمر ٢٠٢٦-٢٠٢٥ Groups Theory

Then:

$$f_e = \begin{pmatrix} e & a & b & c \\ e & a & b & c \end{pmatrix}, \quad f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4) = (1)$$

$$f_a = \begin{pmatrix} e & a & b & c \\ a & e & c & b \end{pmatrix}, \quad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34)$$

$$f_b = \begin{pmatrix} e & a & b & c \\ b & c & e & a \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$$

$$f_c = \begin{pmatrix} e & a & b & c \\ c & b & a & e \end{pmatrix}, \quad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (14)(23)$$

G is isomorphic to the subgroups of S_4 : {(1), (12)(34), (13)(24), (14)(23)}.

(i.e.)
$$G \cong \{ f_1, f_2, f_3, f_4 \}$$

Exercise (1): (H.W)

- (1) Let $(G = \{1, -1, i, -i\}, \cdot)$ be a group using the Cayley's Theorem of G.
- (2) Show that $(Z_3, +_3) \cong$ a subgroup of S_3 .

The Chain of the Group

<u>Definition 5.4:</u> Let $(H_i, *)$ be all subgroups of (G, *), then the chain of the group (G, *) is any finite sequence of subsets of G such that :

$$G=H_0 \supseteq H_1 \supseteq H_2 \supseteq \ldots \supseteq H_{n\text{-}1} \supseteq H_n = \{e\}$$

Remarks 5.5:

- (1) The integer n is called the length of the chain.
- (2) If each (H_i, *) is normal subgroup, then the chain is called normal chain.
- (3) The chain which has length 1 is called the trivial chain.

Example 5.6:

(1) The group $(Z_4, +_4)$ has two chains:

$$Z_4 \supseteq \{\bar{\mathbf{0}}\}\$$
 (length 1, trivial chain)
 $Z_4 \supseteq \{\bar{\mathbf{0}}, \bar{\mathbf{2}}\} \supseteq \{\bar{\mathbf{0}}\}\$ (length 2, normal chain)

(2) The symm. group of square has normal chain of length 2 is:

$$G_s \supseteq \{r_1, r_3\} \supseteq \{r_1\}.$$

نظر بة الزمر ۲۰۲۵-۲۰۲۶ Groups Theory ۲۰۲۲-۲۰۲۰

Composition Chain

<u>Definition 5.7:</u> In the group (G, *), the descending sequence of sets:

 $G=H_0\supseteq H_1\supseteq H_2\supseteq\ldots\supseteq H_{n\text{--}1}\supseteq H_n=\{e\}$ forms a composition chain of G if :

- (1) $(H_i, *)$ is a subgroup of (G, *).
- (2) $(H_i, *)$ is a normal subgroup of $(H_{i-1}, *)$.
- (3) The inclusion $H_{i-1} \supseteq K \supseteq H_i$, when (K, *) Is a normal subgroup of $(H_{i-1}, *)$ implies either $K = H_i$ or $K = H_{i-1}$.

Example 5.8: In the group $(Z_{24}, +_{24})$, the normal chain $Z_{24} \supseteq \langle \bar{2} \rangle \supseteq \{\bar{0}\}$ is not composition chain since $\langle \bar{4} \rangle$ and $\langle \bar{8} \rangle$ least than $\langle \bar{2} \rangle$ and the chain:

$$\begin{split} Z_{24} &\supseteq <\overline{2}> \supseteq <\overline{4}> \supseteq <\overline{8}> \supseteq \{\overline{0}\} \\ Z_{24} &\supseteq <\overline{3}> \supseteq <\overline{6}> \supseteq <\overline{12}> \supseteq \{\overline{0}\} \end{split}$$

are composition chain.

<u>Definition 5.9:</u> A normal subgroup (H,*) is called a maximal normal subgroup of (G,*) if $H \neq G$ and there exist no normal subgroup (K,*) of (G,*) such that $H \supset K \supset G$.

Remark 5.10: A chain $G = H_0 \supseteq H_1 \supseteq H_2 \supseteq ... \supseteq H_{n-1} \supseteq H_n = \{e\}$ is a composition n chain for (G, *), if each subgroup $(H_i, *)$ is a maximal subgroup of $(H_{i-1}, *)$.

Example 5.11: In $(Z_{12}, +_{12})$, the normal cyclic subgroup $<\overline{2}>=\{\overline{0}, \overline{2}, \overline{4} \dots, \overline{10}\}$ and $<\overline{3}>=\{\overline{0}, \overline{3}\dots, \overline{9}\}$ are maximal normal subgroup of Z_{12} . The chain $Z_{12}\supseteq<\overline{2}>\supseteq<\overline{4}>\supseteq\{\overline{0}\}$ is a composition since $<\overline{2}>$ is a maximal of Z_{12} , $<\overline{4}>$ is a maximal of $<\overline{2}>$ and $\{\overline{0}\}$ is a maximal of $<\overline{4}>$.

Theorem 5.12: A normal subgroup (H, *) of a group (G, *) is maximal if and only if $(G/H, \otimes)$ is simple.

Proof: (\Leftarrow) Let G/H be simple, to prove H is maximal.

: G/H simple \Rightarrow G/H has only e*H and G/H itself normal.

$$\Rightarrow$$
 e*H = H is maximal

 (\Rightarrow) Let H be a maximal, to prove G/H is a simple. (H.W)

۸١

<u>Corollary 5.13.</u> The group $(G/H, \otimes)$ is a simple if o(G/H) is a prime number.

Corollary 5.14: A chain $G = H_0 \supset H_1 \supset H_2 \supset ... \supset H_{n-1} \supset H_n = \{e\}$ is a composition chain if $(G/H, \bigotimes)$ is a simple group.

 $\forall H_i (H_{i-1} \mid H_i), i = 0, 1, ..., n.$

Example 5.15: The chain $Z_{60}\supset <\bar{\bf 3}>\supset <\bar{\bf 6}>\supset <\bar{\bf 12}>\supset \{\bar{\bf 0}\}$ is a composition, since every normal subgroup of $(Z_{60},+_{60})$ is normal.

 $o(Z_{60} \mid <\bar{3}>)=3 \text{ prime} \Rightarrow (<\bar{3}>, +_{60}) \text{ is max of } Z_{60} \text{ and simple group.}$

 $o(<\overline{3}>|<\overline{6}>)=2$ prime \Rightarrow $(<\overline{6}>,+_{60})$ is max of $(<\overline{3}>,+_{60})$ and simple group.

 $o(<\overline{6}>|<\overline{12}>)=2$ prime \Rightarrow $(<\overline{12}>,+_{60})$ is max of $(<\overline{6}>,+_{60})$ and simple group.

 $o(<\overline{12}>|\{\overline{0}\})=5$ prime \Rightarrow simple group and $<\{\overline{0}\},+_{60}>$) is max of $<\overline{12},+_{60}>$.

Theorem 5.16: Every finite group (G, *), $G \neq \{e\}$ has a composition chain. (کل زمرة منتهیة غیر تافهة تحوي علی سلسلة ترکیبیة او مرکبة)

Jordan-Holder Theorem 5.17: If (G, *) is finite group has more than one element, then any two composition chain are equivalence.

Example 5.18: In $(Z_{60}, +_{60})$, the two chains

$$\begin{split} Z_{60} \supset <\overline{3}>\supset <\overline{6}>\supset <\overline{12}>\supset \{\overline{0}\} \\ Z_{60}\supset <\overline{2}>\supset <\overline{6}>\supset <\overline{30}>\supset \{\overline{0}\} \end{split}$$

are composition and equivalence, since

Note that each quotient group is simple and all the cyclic group has prime order.

Example 5.19: In $(Z_{12}, +_{12})$, the two chains

$$Z_{12}\supset \langle \overline{2}\rangle\supset \langle \overline{4}\rangle\supset \{\overline{0}\}$$
$$Z_{60}\supset \langle \overline{3}\rangle\supset \langle \overline{6}\rangle\supset \{\overline{0}\}$$

are composition and equivalence, since

$$\begin{array}{c|c} (Z_{12} & <\bar{2}>, \otimes) \cong (<\bar{3}> & <\bar{6}>, \otimes) \\ o(Z_{12} & <\bar{2}>) = o(<\bar{3}> & <\bar{6}>) = 2 \\ & Z_{60} & <\bar{3}> & = 3 = & <\bar{2}> & <\bar{6}> \\ (<\bar{2}> & <\bar{4}>, \otimes) \cong (<\bar{6}> & \{\bar{0}\}, \otimes) \\ o(<\bar{2}> & <\bar{4}>) = o(<\bar{6}> & \{\bar{0}\}) = 2 \\ (<\bar{4}> & \{\bar{0}\}, \otimes) \cong (Z_{12} & <\bar{3}>, \otimes) \\ o(<\bar{4}> & \{\bar{0}\}) = o(Z_{12} & <\bar{3}>) = 3 \\ \end{array}$$

The Solvable Group الزمر القابلة للحل >

<u>Definition 5.20:</u> A group (G, *) is called solvable group if and only if \exists a finite collection of subgroups of (G, *) H_0 , H_1 , H_2 , ..., H_{n-1} , H_n such that

- (1) $G = H_0 \supset H_1 \supset H_2 \supset ... \supset H_{n-1} \supset H_n = \{e\}$.
- (2) $H_{i+1} \Delta H_i \quad \forall i = 0, ..., n-1$.
- (3) $H_i \mid H_{i+1}$ commutative group $\forall i = 0, ..., n-1$.

Example 5.21: Every commutative group is a solvable group.

Solution:

Let (G, *) be a commutative group.

To prove (G, *) is a solvable group.

Let $H_0\!=\!G$, $H_1\!=\!\{e\}$

- (1) $G = H_0 \supset H_1 = \{e\}$
- (2) $H_1 \Delta H_0$ is true, since {e} ΔG or (every subgroup of a commutative group is normal).
- (3) G | {e} = G is a commutative group or the quotient of commutative group is commutative.
- \Rightarrow (G, *) is a solvable group.

Example 5.22: Show that (S_3, o) is a solvable group.

Solution: Let $H_0 = S_3$, $H_1 = \{ f_1, f_2, f_3 \}, H_2 = \{ f_1 \}$

- (1) $S_3 = H_0 \supset H_1 \supset H_2 = \{ f_1 \}$
- (2) $H_2 \Delta H_1$ is true, since $\{f_1\} \Delta \{f_1, f_2, f_3\}$ $H_1 \Delta H_0$ is true, since $[S_3:H_1] = 2 \Rightarrow H_1 \Delta S_3$
- (3) To prove $H_i \mid H_{i+1}$ commutative group $\forall i = 0, 1$ $o(H_1 \mid H_2) = \frac{o(H_1)}{o(H_2)} = \frac{3}{1} = 3 < 6 \Rightarrow H_1 \mid H_2 \text{ is a commutative group.}$ $o(H_0 \mid H_1) = \frac{o(H_0)}{o(H_1)} = \frac{6}{3} = 2 < 6 \Rightarrow H_0 \mid H_1 \text{ is a commutative group.}$

 \therefore (S₃, o) is a solvable group.

Exercise (2): Show that (G_s, o) is a solvable group. (H.W)

Theorem 5.23: Every subgroup of a solvable group is a solvable. **Proof:** (Without Proof).

Theorem 5.24: Let $H\Delta G$ and (G, *) is a solvable group, then $(G \mid H, \otimes)$ is a solvable group.

Proof: (Without Proof).

Theorem 5.25: Let $H\Delta G$ and both (H, *) and $(G \mid H, \otimes)$ are solvable groups, then (G, *) is a solvable group.

Proof: (Without Proof).

Finite P-Groups الزمر الاولية المنتهية

<u>Definition 5.26:</u> Let p a prime number. A finite group (G, *) is called p-group iff the order of G is a power of p.

i.e. G is a p-group \Leftrightarrow o(G) = p^k , $k \in Z^+$.

Example 5.27:

$$(Z_4, +_4)$$
, $o(Z_4) = 4 = 2^2$ is a 2-group.
 $(Z_8, +_8)$, $o(Z_8) = 8 = 2^3$ is a 2-group.
 $(Z_9, +_9)$, $o(Z_9) = 9 = 3^2$ is a 3-group.

$$(Z_7, +_7)$$
, $o(Z_7) = 7 = 7^1$ is a 7-group.

$$(S_3,o)$$
, $o(S_3) = 6 \neq p^k \Rightarrow (S_3,o)$ is not a p=group.

ظرية للزمر ۲۰۲۰-۲۰۲۰ خطرية للزمر ۲۰۲۰

Definition 5.28: A finite group (G, *) is called p-group iff the order of each element of G has power of p.

Example 5.29: Prove that each of the following groups are p-groups by two ways:

(1)
$$(Z_4, +_4)$$

 $\Rightarrow o(Z_4) = 4 = 2^2 \Rightarrow Z_4 \text{ is a 2-group}$
 $\Rightarrow Z_4 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$
 $o(\overline{0}) = 1 = 2^0 = p^0$
 $o(\overline{1}) = 4 = 2^2 = p^2$
 $o(\overline{2}) = 2 = 2^1 = p^1$
 $o(\overline{3}) = 4 = 2^2 = p^2$
 $\therefore (Z_4, +_4) \text{ is a 2- group.}$

(2) (Gs, o) (H.W)

Theorem 5.30: Let $H\Delta G$, then (G, *) is a p-group iff (H, *) and $(G \mid H, \otimes)$ are p-groups.

Proof: (Without Proof).

Remark 5.31: If G is non-trivial p-group, then $Cent(G) \neq e$.

Theorem 5.32: Every group of order p² is abelian.

Proof:

Let (G, *) be a group and $o(G) = p^2$, to prove G is abelian?

(Cent(G), *) is a subgroup of (G, *).

By Lagrange Theorem o(Cent(G)) | o(G)

$$\Rightarrow$$
 o(Cent(G)) | $p^2 \Rightarrow$ o(Cent(G)) = p^0 or p^1 or p^2

If
$$o(Cent(G)) = p^0 \Rightarrow Cent(G) = \{e\}$$
 $C!$ $\therefore o(Cent(G)) \neq p^0$

If
$$o(Cent(G)) = p^2 = o(G) \Rightarrow Cent(G) = G \Rightarrow G$$
 is comm.

If $o(Cent(G)) = p^1$, $o(G) | Cent(G) = \frac{p^2}{p} = p$, but p is a prime number

- $: G \mid cent(G) \text{ is cyclic}$
- ∴ G is comm.

Remark 5.33: The converse of Theorem 5.32 is not true in general.

Example 5.34: $(Z_8, +_8)$ is a comm. group, $o(Z_8) = 8 = 2^3 \neq p^2$.

First sylow Theorem 5.35: (نظرية سايلو الاولى)

Let p be a prime number and (G, *) be a finite group such that $p^x \mid o(G)$, x > 0, then G has a subgroup of order p^x which is called p-sylow subgroup of G.

If $m \mid o(G) \to \not\exists H$ such that o(H) = mIf $p^x \mid o(G) \to \exists$ subgroup H, $o(H) = p^x$ p-sylow group.

Example 5.36: Is the following groups have p-sylow subgroup?

(1) $(S_3, o), o(S_3) = G = 6 = 2^1.3^1$

 $2^{1}/6 \Rightarrow \exists$ subgroup H such that o(H) = 2 which is called 2-sylow subgroup.

 $3^{1}/6 \Rightarrow \exists$ subgroup K such that o(K) = 3 which is called 3-sylow subgroup.

(2) (Gs, o), $o(Gs) = 8 = 2^3$ is a 2-group.

Every subgroup H of Gs is 2-sylow subgroup, $o(H) = 2^0$ or 2^1 or 2^2 or 2^3

Second sylow Theorem 5.37: (نظریة سایلو الثانیة)

The number of distinct p-sylow subgroups is 1+tp, t=0, 1, ... which is divides the order of G.

i.e. the number k = 1+tp, t = 0, 1, ... and k/o(G).

هو عدد الزمر الجزئية من نوع سايلو. k

Example 5.38: Find the distinct p-sylow subgroups of (S_3, o) .

Solution:

$$o(S_3) = 6 = (2)(3)$$

 $2/6 \Rightarrow \exists H \text{ is a subgroup s.t. } o(H) = 2$

The number of 2-sylow subgroups is k_1

$$k_1 = 1+2t$$
, $t = 0, 1, 2, ...$ and $k_1/6$

 $t=0 \Rightarrow k_1 = 1 \text{ and } 1/\overline{6}$

 $t=1 \Rightarrow k_1 = 3$ and 3/6

 $t=2 \Rightarrow k_1 = 5 \text{ and } 5 \ \langle 6 \rangle$

$$t=3 \Rightarrow k_1 = 7 \text{ and } 7 \neq 6$$

∴ There are two 2-sylow subgroups.

 $3/6 \Rightarrow \exists$ a subgroup K s.t. o(K) = 3

The number of 3-sylow subgroups is k_2

$$K_2 = 1+3t$$
, $t = 0, 1, 2, ...$ and $k_2/6$

 $t=0 \Rightarrow k_2 = 1$ and 1/6

 $t=1 \Rightarrow k_2 = 4$ and $4 \nmid 6$

 $t=2 \Rightarrow k_2 = 7 \text{ and } 7 \nmid 6$

: There is one 3-sylow subgroup.

Example 5.39: Find the number of p-sylow subgroups of G such that o(G) = 12.

Solution: $o(G) = 12 = 3.2^2$

 $3/12 \Rightarrow \exists H \text{ a subgroup H s.t. } o(H) = 3$

The number of 3-sylow subgroups is k_1

$$k_1 = 1+3t$$
, $t = 0, 1, 2, ...$ and $k_1/12$

 $t=0 \Rightarrow k_1 = 1$ and 1/12

 $t=1 \Rightarrow k_1 = 4$ and 4/12

 $t=2 \Rightarrow k_1 = 7 \text{ and } 7 \nmid 12$

 $t=3 \Rightarrow k_1 = 10$ and $10 \ 12$

∴ There are two 3-sylow subgroups of G.

The number of 2-sylow subgroups of G is k₂

$$K_2 = 1+2t$$
, $t = 0, 1, 2, ...$ and $k_2/12$

 $t=0 \Rightarrow k_2 = 1$ and 1/12

 $t=1 \Rightarrow k_2 = 3$ and 3/12

 $t=2 \Rightarrow k_2 = 5$ and $5 \cancel{1} 12$

 $t=3 \Rightarrow k_2 = 7 \text{ and } 7 \text{ } 12$

∴ There are two 2-sylow subgroups of G.

Remark 5.40: G has exactly one p-sylow subgroup H iff $H\Delta G$.

Example 5.41:

$$(S_3, o)$$
, $H = \{f_1, f_2, f_3\}$, $H\Delta S_3$

H is a 3-sylow subgroup of S₃

∴ \exists one 3-sylow subgroup of S_3

<u>Definition 5.42:</u> Let (H,*) and (K,*) be two normal subgroups of (G,*), then (G,*) is called an internal direct product of H and K $\{G \text{ is decomposition by H and } K\}$ iff G = H*K and $H \cap K = \{e\}$.

Example 5.43:

Let
$$G = \{e, a, b, c\}, a^2 = b^2 = c^2 = e$$

 $H = \{e, a\}\Delta G$ since G is comm. group.

 $K = \{e, b\}\Delta G$ since G is comm. group.

$$H^*K = \{e, a, b, c\} = G \text{ and } H \cap K = \{e\}$$

∴G = H⊗K is decomposition by H and K.

Example 5.44:

Let (G,\times) be any group and H=G, $K=\{e\}$, then $H\Delta G$, $K\Delta G$.

- (1) $H*K=G*{e} = G$
- $(2) \quad H \cap K = G \cap \{e\} = \{e\}$

$$:: G = H \otimes K = G \otimes \{e\}$$

G has a trivial decomposition.

Example 5.45: Let $(Z_4, +_4)$ be a group. Is Z_4 has proper decomposition? **Solution:** The subgroups of Z_4 are Z_4 , $\{\bar{0}\}$, $\{\bar{0}, \bar{2}\}$.

Let
$$H = Z_4$$
, $K = {\bar{0}, \bar{2}}$

$$H \bigoplus_4 K = Z_4 \bigoplus_4 \{\overline{\mathbf{0}}, \overline{\mathbf{2}}\} = Z_4$$

$$H \cap K = \mathbb{Z}_4 \cap \{\overline{\mathbf{0}}, \overline{\mathbf{2}}\} = \{\overline{\mathbf{0}}, \overline{\mathbf{2}}\}\$$

$$\therefore Z_4 \neq Z_4 \otimes \{\overline{\mathbf{0}}, \overline{\mathbf{2}}\}\$$

Let
$$H = \{\bar{0}\}, K = \{\bar{0}, \bar{2}\}\$$

$$H \bigoplus_4 K = K \neq Z_4$$

 \therefore Z₄ has no proper decomposition.

Theorem 5.46: Let H and K be two normal subgroups of G and $G = H \otimes K$, then $G|H \cong K$ and $G|H \cong H$.

Proof:

Since $G = H \otimes K \Rightarrow H^*K = G$ and $H \cap K = \{e\}$.

G|H = (H*K)|H, $(H*K)|H \cong K|(H\cap K)$ (By second theorem of isomorphism)

 $G|H \cong K|\{e\} \Rightarrow G|H \cong K$

And G|H = (H*K)|K, $(H*K)|K \cong H|(H \cap K)$

 $\therefore G|H \cong H|\{e\} \Rightarrow G|H \cong H$

Definition 5.47: Let $(G_1, *)$, (G_2, \cdot) be two groups, define

 $G_1 \times G_2 = \{(a, b) : a \in G_1, b \in G_2\}$ such that

 $(a, b) \odot (c, d) = (a*c, b \cdot d) \ni a, c \in G_1, b, d \in G_2.$

Then $(G_1 \times G_2, \Theta)$ is a group and called external direct product of G_1 and G_2 .

Remark 5.48: Prove that $(G_1 \times G_2, \Theta)$ is a group. (H.W)

Example 5.49: Let $G_1 = (Z_3, +_3)$, $G_2 = (Z_2, +_2)$. Find $G_1 \times G_2$.

Solution:

$$Z_3 \times Z_2 = \{(\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1}), (\bar{2}, \bar{0}), (\bar{2}, \bar{1})\}$$

 $(\bar{1},\bar{1}) \odot (\bar{2},\bar{1}) = (\bar{0},\bar{0})$

$$o(Z_3 \times Z_2) = o(Z_3) \cdot o(Z_2) = 6$$

Theorem 5.50: Let $(G_1, *)$, (G_2, \cdot) be two groups, then:

- (1) $(G_1 \times G_2, \Theta)$ is abelian iff both G_1 and G_2 are abelian.
- (2) $G_1 \times \{e_2\} \Delta G_1 \times G_2$.
- (3) $\{e_1\}\times G_2 \Delta G_1\times G_2$.
- $(4) \quad G_1 \cong G_1 \times \{e_2\}.$
- (5) $G_2 \cong \{e_1\} \times G_2$.

Proof:

(1) (\Rightarrow) Suppose that $G_1 \times G_2$ is abelian.

To prove G_1 and G_2 are abelian.

نظر بة الزمر ۲۰۲۵-۲۰۲۶ نظر به الزمر ۲۰۲۵-۲۰۲۵

Let (a, e_2) , $(b, e_2) \in G_1 \times G_2$ such that $a, b \in G_1$, $e_2 \in G_2$

Since $G_1 \times G_2$ is abelian, then $(a, e_2) \odot (b, e_2) = (b, e_2) \odot (a, e_2)$

 $(a*b, e_2) = (b*a, e_2) \Rightarrow a*b = b*a \Rightarrow (G_1, *)$ is an abelian group.

Similarly we prove that (G_2, \cdot) is an abelian group.

 (\Leftarrow) Suppose that $(G_1, *)$ and (G_2, \cdot) are abelian.

To prove $G_1 \times G_2$ is abelian.

Let (a, b), $(c, d) \in G_1 \times G_2$. To prove $(a, b) \odot (c, d) = (c, d) \odot (a, b)$

$$(a, b) \odot (c, d) = (a*c, b.d) \dots (1)$$

$$(c, d) \Theta (a, b) = (c*a, d.b) \dots 2$$

a*c = c*a (G₁ is abelian)

b.d = d.b (G_2 is abelian)

 \therefore (a, b) Θ (c, d) = (c, d) Θ (a, b) \Rightarrow $G_1 \times G_2$ is abelian.

(2) To prove $G_1 \times \{e_2\} \Delta G_1 \times G_2$.

$$G_1 \times \{e_2\} = \{(a, e_2), a \in G_1\} \neq \emptyset$$

To prove $(G_1 \times \{e_2\}, \Theta)$ is a subgroup of $G_1 \times G_2$.

Let (a,e_2) , $(b,e_2) \in G_1 \times \{e_2\}$

$$(a,e_2)\Theta(b,e_2)^{\text{-}1} = (a,e_2)\Theta(b^{\text{-}1},e_2^{\text{-}1}) = (a*b^{\text{-}1},e_2) \in G_1 \times \{e_2\} \quad (a*b^{\text{-}1} \in G_1)$$

 $: (G_1 \times \{e_2\}, \Theta)$ is a subgroup of $G_1 \times G_2$.

To prove $G_1 \times \{e_2\} \Delta G_1 \times G_2$.

Let
$$(x, y) \in G_1 \times G_2 \land (a, e_2) \in G_1 \times \{e_2\}$$

To prove $(x, y) \Theta (a, e_2) \Theta (x, y)^{-1} \in G_1 \times \{e_2\}$

$$(x^*a^*x^{-1}, y \cdot e_2 \cdot y^{-1}) = (x^*a^*x^{-1}, e_2) \in G_1 \times \{e_2\}$$

 $\therefore G_1 \times \{e_2\} \ \Delta \ G_1 \times G_2.$

(3) $\{e_1\} \times G_2 \Delta G_1 \times G_2$. (H.W)

نظر بة الزمر ٢٠٢٥-٢٠٢٠ Groups Theory

(4) To prove $G_1 \cong G_1 \times \{e_2\}$.

Define
$$f: (G_{1,*}) \to (G_1 \times \{e_2\}, \Theta) \ni f(a) = (a, e_2)$$

f is a map?

Let $a_1, a_2 \in G_1$ and $a_1 = a_2$

$$\Rightarrow$$
 $(a_1, e_2) = (a_2, e_2) \Rightarrow f(a_1) = f(a_2)$

∴ f is a map.

f is 1-1?

Let
$$f(a_1) = f(a_2) \Rightarrow (a_1, e_2) = (a_2, e_2) \Rightarrow a_1 = a_2$$

∴ f is 1-1.

f is a homo. map?

$$f(a*b) = (a*b, e_2) = (a, e_2) \Theta(b, e_2) = f(a) \Theta(b)$$

∴ f is a homo. map.

f is onto?

$$R_f = \{ f(a) : a \in G_1 \} = \{ (a, e_2) : a \in G_1 \} = G_1 \times \{ e_2 \}$$

∴ f is onto.

$$\Rightarrow$$
 $(G_{1,*}) \cong (G_1 \times \{e_2\}, \Theta)$

(5) $G_2 \cong \{e_1\} \times G_2$. (H.W)

Theorem 5.51: Let $(G_1, *)$ and (G_2, \cdot) be two groups, then $G_1 \times G_2$ is a p-group.

Proof:

Since G_1 is a p-group \Rightarrow $o(G_1) = p^{k_1}$, where $k_1 \in Z^+$

And Since G_2 is a p-group \Rightarrow $o(G_2) = p^{k2}$, where $k_2 \in Z^+$

$$\begin{split} o(G_1 \times G_2) &= o(G_1) \times o(G_2) \\ &= p^{k1} \times p^{k2} = p^{k1+k2} \text{ , } k_1 + k_2 \in Z^+ \end{split}$$

 $: G_1 \times G_2$ is a p-group.