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Chapter Five : Some Applications of Groups
i) ciliphsi s+ (el Juadll

Theorem 5.1: (Cayle's Theorem)

Every group is isomorphic to a group of permutations. That is:
If (G, *) is any group, then (G, *) = (Fg, 0), where
Fe={f.:aeG}HLf,:G—->G; f(X)=a=*Xx, V xeG.
Proof:
Defineg: (G, *) »(Fg,0) by g(a)=f,,VaeG.
To prove, g is homo. , 1-1, onto.
(1) Isghomo.?
Leta, b € G, g(axb) =f,.,=f,0f,=g(a) og(b) = g is homo.
(2) Isgl-1?
Letg(@d)=g(b)Va,be G = f,=1, = f,(X) =f(X) = a*x = b*x
= a=b = gisl-1.
(3) Isgonto?
Rg={g(@):aeG}={f.:aec G} =Fg.
~ (G, *) = (Fg, 0).

Corollary5.2: Every finite group G of order n is isomorphic to a subgroup
of S, .

Example 5.3:
Consider the following Cayley table of a group G = {e, a, b, c}
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Then:
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G is isomorphic to the subgroups of S4: {(1), (12)(34), (13)(24), (14)(23)}.
(le) Gz { fl, f2’ fg, f4}

Exercise (1): (H.W)
(1) Let(G={1,-1,1,-i}, ) be a group using the Cayley’s Theorem of G.
(2) Show that (Z3, +3) = a subgroup of Ss.

The Chain of the Group
Definition 5.4: Let (H;, *) be all subgroups of (G, *), then the chain of the
group (G, *) is any finite sequence of subsets of G such that :
G=HyoHioH;>...oHuu o Hy={e}

Remarks 5.5:

(1) The integer n is called the length of the chain.

(2) If each (H;, *) is normal subgroup, then the chain is called normal
chain.

(3) The chain which has length 1 is called the trivial chain.

Example 5.6:

(1) The group (Z4, +4) has two chains:
Z,o{0} (length 1, trivial chain )
Z,2{0,2} {0} (length 2, normal chain)

(2) The symm. group of square has normal chain of length 2 is:
Gs 2 {ry, r3} 2 {r.}.
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Composition Chain

Definition 5.7: In the group (G, *), the descending sequence of sets:
G=HyoH;oH, > ... o Hy,1 2 H, ={e} forms a composition chain of G
if:
(1) (H;, *) is a subgroup of (G, *).
(2) (H;, *) is a normal subgroup of (Hi.1, *).
(3) Theinclusion Hi.; o K o H;, when (K, *) Is a normal subgroup of

(Hi.1, *) implies either K =H; or K = Hj .

Example 5.8: In the group (Z4, +24), the normal chain Z,, o <2> o {0} is

not composition chain since <4> and <8> least than <2> and the chain:
Zyu 2 <2> 0 <4> 2 <8> 5 {0}
Zos D <3> 5 <6>5<12> 5 {0}

are composition chain.

Definition5.9: A normal subgroup (H,*) is called a maximal normal
subgroup of (G, *) if H#G and there exist no normal subgroup (K, *) of
(G, *) suchthatH o Ko G.

Remark 5.10: Achain G=HyoH,oH, o ... o H. .o H,={e}isa
composition n chain for (G, *), if each subgroup (H;, *) is a maximal
subgroup of (Hi_, *).

Example 5.11: In (Zy,, +15), the normal cyclic subgroup <2> = {0, 2, 4 ...,
10} and <3>={0 3...,9} are maximal normal subgroup of Z,. The chain

Z1» D <2> o <4> 5 {0} is a composition since <2> is a maximal of Z;5,
<4> js a maximal of <2> and {0} is a maximal of <4> .

Theorem 5.12: A normal subgroup (H, *) of a group (G, *) is maximal if
and only if (G/H, &®) is simple .
Proof: (<) Let G/H be simple, to prove H is maximal.
. G/H simple = G/H has only exH and G/H itself normal.
= exH =H is maximal
(=) Let H be a maximal , to prove G/H is a simple. (H.W)
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Corollary5.13. The group (G/H, &) is a simple if o(G/H) is a prime
number.

Corollary 5.14: AchainG=Hy>DH; D H, > ... o H, 1 D H,={e}isa
composition chain if (G/H, Q) is a simple group.

VH (Hyl H)i=0,1, .. .0

Example 5.15: The chain Zg 2 <3> o <6> o <12> o {0} is a
composition, since every normal subgroup of (Zg, +¢0) is normal.

0(Zgo | <3> )=3 prime = (<§>, + g0) 1S Mmax of Zgg and simple group.
o(<3> | <6> )= 2 prime = (<6>,+ ¢o) is max of (<3>, + &) and simple
group.

0(<6> | <12 )= 2 prime = (<12>+ g) is max of (<6>,+ g) and simple
group.

o(<12> | {0} )=5 prime = simple group and <{0}+ ) is max of
<12 + 4>,

Theorem 5.16: Every finite group (G, *), G #{e} has a composition chain.
(RS e o) AnsS yialule o (5 i 408l e dagiin s e ) (S)

Jordan-Holder Theorem 5.17: If (G, *) is finite group has more than one
element, then any two composition chain are equivalence.

Example 5.18: In (Zgg, +40), the two chains
Zeo O <3> D <6> 5 <12> 5 {0}

Zeo D <2> D <6> 5 <30> > {0}
are composition and equivalence, since
(Zsol <3> Q) = (<§>| <6> ®)
Zso 3> =32 <3| <65
(<3>] <6> ®) = (Zeol <2> ®)
Zeo >l =22 <3| <65 |
(<6>| <12>  ®) = (<30> | {0}, ®)
<6>| <12> | =2= | <30> | {ﬁ}l
(<ﬁ>| {0}, Q) = (<E>| <30>, ®)
<12>| o =5=1 <651 30> |
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Note that each quotient group is simple and all the cyclic group has prime
order.
Example 5.19: In (Z15, +1), the two chains

ZipD <2>>o<4>> {ﬁ}

Zso D <3> D <6> o {0}
are composition and equivalence, since
(212| <> Q) = (<§>| <6> ®)

o( Z12 | <2>) = o(<3> | <6>) =2
| Zo 3> =3=| <25 <65
(<2>| <4>,Q) = (<6> | {0}, ®)
o(<2> | <4>) = o(<6> | {0} =2
<& {0}, ®) = 2| 3> ®)
o< | () =0z, | 3>)=3

The Solvable Group Jall dL0aY e 3

Definition 5.20: A group (G, *) is called solvable group if and only if 3 a
finite collection of subgroups of (G,*) Hy, Hy, H,, ..., Hy1, H;, such that
(1) G=Hy>oH;DH,>...oH, ;D> H,={e}.

(2) Hi+ AH, Vi:O,...,l’l-l.

(3) H; |1 Hi.; commutative groupVvVi=0, ..., n-1.

Example 5.21: Every commutative group is a solvable group.

Solution:

Let (G, *) be a commutative group.

To prove (G, *) is a solvable group.

LetHo=G, Hy = {e}

(1) G=Ho>oH;={e}

(2) H; AHgistrue, since {e} A G or ( every subgroup of a commutative
group is normal).

(3) G I {e} =G isacommutative group or the quotient of commutative
group is commutative.

= (G, =) is a solvable group.
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Example 5.22: Show that (S3, 0) is a solvable group.
Solution: LetHy=S;, H{={f, f,, T}, H,={f; }
(1) Ss=Hyd>H;D2H,={f1}
(2) H,AHjistrue,since {f; }A{f, T, f3}

H, A Hgis true, since [ Sz3:H]=2=>H; A S;3
(3) To prove H; | Hi.; commutative group Vi=0,1

H
o(Hy | Hy) = o)

H
o( Ho | Hy)= OEHO;

= (83, 0) is a solvable group.

=3<6=>H; | H,is a commutative group.

= 2<6=>Hg | H, is a commutative group.

Wl R, W

Exercise (2): Show that (Gs, 0) is a solvable group. (H.W)

Theorem 5.23: Every subgroup of a solvable group is a solvable.
Proof: (Without Proof).

Theorem 5.24: Let HAG and (G, *) is a solvable group, then (G | H, ®) is
a solvable group.
Proof: (Without Proof).

Theorem 5.25: Let HAG and both (H, *) and (G | H, ®) are solvable
groups, then (G, *) is a solvable group.
Proof: (Without Proof).

Finite P-Groups 4xgiiall 4d ¥ a3l

Definition 5.26: Let p a prime number. A finite group (G, *) is called p-
group iff the order of G is a power of p.
i.e. Gisap-group < o(G) =p“, ke Z".

Example 5.27:

(Z4, +4) , 0(Z4) =4 = 2% is a 2-group .

(Zs, +5) , 0(Zs) = 8 = 2% is a 2-group .

(Zo, +9) , 0(Zs) =9 = 3%is a 3-group .

(Z7,+7) ,0(Z7) =7 = 7 Isa 7-group .

(S3,0) , 0(S3) = 6 # p* = (S5,0) is not a p=group.
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Definition 5.28: A finite group (G, *) is called p-group iff the order of each
element of G has power of p.

Example 5.29: Prove that each of the following groups are p-groups by two
ways:
(1) (Zs +4)
>  0(Z,) =4=2°=Z,isa2-group
» 7,={0123}
0(0)=1=2=p° )
o)=4=2°=p* | =vaez,0(@)=2"xeZ
0o2)=2=2'=p'
0(3) =4 = 2% = p?
(24, +4) 1S @ 2- group.
(2) (Gs,0) (HW)

Theorem 5.30: Let HAG, then (G, *) is a p-group iff (H, *) and (G | H, Q)
are p-groups.
Proof: (Without Proof).

Remark 5.31: If G is non-trivial p-group , then Cent(G) £ e..

Theorem 5.32: Every group of order p? is abelian.
Proof:
Let (G, *) be a group and o(G) = p?, to prove G is abelian?

(Cent(G), *) is a subgroup of (G, *).

By Lagrange Theorem o(Cent(G)) | o(G)

= 0o(Cent(G)) | p?> = o(Cent(G)) = p° or p* or p?

If o(Cent(G)) =p’= Cent(G)={e} C! - o(Cent(G))+#p°
If o(Cent(G)) = p*=0(G) = Cent(G) =G = G is comm.

If o(Cent(G)) = p*, o( (G) | Cent(G) ) = p?i = p, but p is a prime number
~ G | cent(G) is cyclic

~ G is comm.
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Remark 5.33: The converse of Theorem 5.32 is not true in general,

Example 5.34: (Zs, +5) is a comm. group , o(Zg) = 8 = 2° £ p?.

First sylow Theorem 5.35: (oY) sl 4y )lai)
Let p be a prime number and (G, *) be a finite group such that p*| o(G),

X > 0, then G has a subgroup of order p* which is called p-sylow subgroup
of G.

If m | 0o(G) — Z H such that o(H) = m
If p*|0o(G) — 3 subgroup H, o(H) = p* p-sylow group.

Example 5.36: Is the following groups have p-sylow subgroup?
(1) (S3, 0), 0(S3) = G = 6 = 2*.3*
2'/6 = 3 subgroup H such that o(H) = 2 which is called 2-sylow

subgroup.
3'/6 = 3 subgroup K such that o(K) = 3 which is called 3-sylow
subgroup.
(2) (Gs, 0) , 0(Gs) = 8 = 2% is a 2-group.
Every subgroup H of Gs is 2-sylow subgroup, o(H) = 2° or 2* or 2° or 2°
Second sylow Theorem 5.37: (A&l sbibu 4y ,4a1)

The number of distinct p-sylow subgroups is 1+tp, t =0, 1, ... which is
divides the order of G.

I.e. the numberk = 1+tp ,t=0, 1, ... and k/o(G) .

K. sbbug 58 0adisall sl o s

Example 5.38: Find the distinct p-sylow subgroups of (S3, 0).
Solution:

0(S3) =6 =(2)(3)

2/6 = 3 H isasubgroup s.t. o(H)=2

The number of 2-sylow subgroups is Kk,
ki=1+2t,t=0,1,2,... and ky/6
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t=0=>k;=1 and 1/6

t=1 = k; =3 and 3/6

t=2=>k; =5 and 516

t=3=k;=7 and7}6

= There are two 2-sylow subgroups.
3/6 = 3 asubgroup K s.t. o(K)=3
The number of 3-sylow subgroups is k,
Ko=1+3t,t=0,1,2,... and k,/6
t=0=>k,=1 and 1/6

t=1 =k, =4 and 4/6

t=2=>k,=7 and 7Y 6

~. There is one 3-sylow subgroup.

Example 5.39: Find the number of p-sylow subgroups of G such that

o(G) =12.

Solution: 0o(G) =12 = 3.2°

3/12 = 3 H asubgroup Hs.t. o(H) =3
The number of 3-sylow subgroups is k;
ki=1+3t,t=0,1,2,... and k;/12
t=0=>k; =1 and 1/12

t=1=k; =4 and 4/12

t=2=>k; =7 and 7Y 12

t=3 = k; =10 and 10 12

=~ There are two 3-sylow subgroups of G.
The number of 2-sylow subgroups of G is k;
Ky=1+2t,t=0,1,2,... and ky/12
t=0=>k,=1 and 1/12

t=1 = k, =3 and 3/12

t=2=>k,=5 and 5} 12

t=3=k,=7 and 7§12

= There are two 2-sylow subgroups of G.
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Remark 5.40: G has exactly one p-sylow subgroup H iff HAG.

Example 5.41:
(83, 0) , H= {fl, f2, f3} , HA 83

H is a 3-sylow subgroup of S;

=~ 3 one 3-sylow subgroup of S;

Definition 5.42: Let (H,*) and (K,*) be two normal subgroups of (G,*),
then (G,*) is called an internal direct product of H and K

{G is decomposition by H and K} iff G = H*K and HNK = {e}.

Example 5.43:
Let G ={e, a, b, c}, a°=b’=c*=e

H = {e, a}AG since G is comm. group.

K ={e, b}AG since G is comm. group.

H*K ={e, a, b, c} = G and HNK = {e}

~G =H®K is decomposition by H and K.

Example 5.44:

Let (G,x) be any group and H=G, K={e}, then HAG, KAG.
(1) H*K=G*{e} =G

(2) HNK=GN{e} ={e}

~G =HQK = G®{e}
G has a trivial decomposition.

Example 5.45: Let (Z4, +4) be a group. Is Z, has proper decomposition?
Solution: The subgroups of Z, are Z, {0}, {0, 2}.

LetH=727,, K={0, 2}

H®,K=2Z, ®,{0,2}=2,

HNK =2Z, N {0, 2} ={0, 2}

~Z4#Z, ®{0, 2}

Let H= {0}, K={0, 2}

HP,K=K#2Z,

~. Z4 has no proper decomposition.
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Theorem 5.46: Let H and K be two normal subgroups of G and G = HRK,
then G|[H=K and G|H = H.
Proof:
Since G = HRYK = H*K = G and HNK= {e}.
G|H = (H*K)|H , (H*K)|H = K|(HNK) (By second theorem of
isomorphism)
GH=K|{e} > GH= K
And G|H = (H*K)|K , (H*K)|K = H|(HNK)
~GH=H{e}=>GH=H
Definition 5.47: Let (G4, *), (G, -) be two groups, define

G1xG,=A{(a, b) : aeG4, beG,} such that

(a, b) O (c,d)=(a*c,b-d) > a,c €Gy, b, deG,.

Then (G1xG,, O) is a group and called external direct product of G; and G..
Remark 5.48: Prove that (G1xG,, O) is a group. (H.W)

Example 5.49: Let Gy = (Zg, +3), G, = (Zg, +2). Find G1xGs.
Solution:

Z3x Z,={(0,0), (0, 1), (1,0), (1, 1), (2,0), (2, 1)}

(1,1) O (2,1) = (0,0)

0(Z3x Z5) = 0(Z3) . 0(Z2) = 6

Theorem 5.50: Let (G4, *), (G,, -) be two groups, then:
(1) (G1xG,, O) is abelian iff both G, and G, are abelian.
(2)  Gix{ex} A G1xGo.
(3)  {e1}xGy A G1xG,.
(4) Gy = Gix{ey}.
(5) Gy ={e}xGy.
Proof:
(1) (=) Suppose that G;xG, is abelian.
To prove G; and G, are abelian.
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Let (a, e,), (b, &) € G1xG,suchthata, b € Gy, e, € G,
Since GxG, is abelian, then (a, e,) O (b, e,) = (b, &,) O (a, e,)

(a*b, e,) = (b*a, e,) = a*b = b*a = (G,, *) is an abelian group.

Similarly we prove that (G,, -) is an abelian group.

(<) Suppose that (G4, *) and (G, -) are abelian.

To prove G;xG, is abelian.

Let (a, b), (c, d) € G;xG,. To prove (a, b) O (c,d) =(c,d) O (a, b)
(a, b) O (c,d) =(a*c,b.d) ....(D

(c,d) O (a,b) =(c*a,db) ....(2

a*c=c*a (G is abelian)

b.d=db (G,isabelian)

~ (@ b)O(c,d)=(cd) O(ab) = GxG,is abelian.

(2) To prove Gix{e,} A G;xG,.
Gix{ez}={(ae,), a€ G} #
To prove (Gyx{e,}, O) is a subgroup of G;xG..
Let (a,e2), (b,e;) € Gyx{e,}
(2.62)0(b.e2)" = (a.)O(b™ e, ") = (a*b™, e)eGrx{ez} (a*h™€Gy)
. (Gyx{e,}, ©) is a subgroup of G;xG,.
To prove Gy x{e,} A G1XG,.
Let (X,Y) € G1xG, A (a, &) € Gix{e,}
To prove (x, y) O (a, &) O (X, y)* €G;x{e,}
(x*a*x ", y-e2y") = (x*a*x™, &;) € Gyx{es}
=~ Gyx{ey} A G1xG,.

(3) {euxGrA G1xG,. (H.W)
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(4) To prove G; = Gyx{e,}.
Define f: (Gy «) — (G1x{e,}, O) = f(a) = (a, &)
f is a map?
Leta;, ay € Giand a; = a,
= (a1, €2) = (az, &2) = f(a1) = f(ar)
=~ fis a map.
fis1-1?
Let f(a;) = f(a2) = (a1, €2) = (a2, €2) > a1 = &
~ fis 1-1.
f is a homo. map?
f(a*b) = (a*b, e,) = (a, e2) O (b, &) = f(a) O f(b)
=~ fis a homo. map.
f is onto?
Re={f(a) : a€ G1} = {(a, &) 1 a€ G1} = Gyx{e,}
=~ T is onto.
= (Gy,») = (Gix{e.}, 0)

(5) Gr={e}xGy. (HW)

Theorem 5.51: Let (G4, *) and (G,, ) be two groups, then G;xG, is a p-
group.

Proof:

Since G, is a p-group = 0o(G,) = p** , where k; € Z°

And Since G, is a p-group = 0(G,) = p, where k, € Z*
0(G1xGy) = 0(Gy) x 0(Gy)
— pkl % pk2 - pk1+k2 ’ k1+ k2 = Z+

~ G1XG, is a p-group.
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