Preface

In 1991 two of us, Luc Massart and Bernard Vandeginste, discussed, during one of
our many meetings, the possibility and necessity of updating the book Chemometrics:
a textbook. Some of the newer techniques, such as partial least squares and expert
systems, were not included in that book which was written some 15 years ago.
Initially, we thought that we could bring it up to date with relatively minor revision.
We could not have been more wrong. Even during the planning of the book we
witnessed a rapid development in the application of natural computing methods,
multivariate calibration, method validation, etc.

When approaching colleagues to join the team of authors, it was clear from the
outset that the book would not be an overhaul of the previous one, but an almost
completely new book. When forming the team, we were particularly happy to be
Jjoined by two industrial chemometricians, Dr. Paul Lewi from Janssen Pharmaceutica
and Dr. Sijmen de Jong from Unilever Research Laboratorium Vlaardingen, each
having a wealth of practical experience. We are grateful to Janssen Pharmaceutica
and Unilever Research Vlaardingen that they allowed Paul, Sijmen and Bernard to
spend some of their time on this project. The three other authors belong to the Vrije
Universiteit Brussel (Prof. An Smeyers-Verbeke and Prof. D. Luc Massart) and the
Katholieke Universiteit Nijmegen (Professor Lutgarde Buydens), thus creating a
team in which university and industry are equally well represented. We hope that
this has led to an equally good mix of theory and application in the new book.

Much of the material presented in this book is based on the direct experience of
the authors. This would not have been possible without the hard work and input of
our colleagues, students and post-doctoral feflows. We sincerely want to acknow-
ledge each of them for their good research and contributions without which we
would not have been able to treat such a broad range of subjects. Some of them
read chapters or helped in other ways. We also owe thanks to the chemometrics
community and at the same time we have to offer apologies. We have had the
opportunity of collaborating with many colleagues and we have profited from the
research and publications of many others. Their ideas and work have made this
book possible and necessary. The size of the book shows that they have been very
productive. Even so, we have cited only a fraction of the literature and we have not
included the more sophisticated work. Our wish was to consolidate and therefore
to explain those methods that have become more or less accepted, also to newcomers
to chemometrics. Our apologies, therefore, to those we did not cite or not exten-
sively: it is not a reflection on the quality of their work.
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Each chapter saw many versions which needed to be entered and re-entered in
the computer. Without the help of our secretaries, we would not have been able to
complete this work successfully. All versions were read and commented on by all
authors in a long series of team meetings. We will certainly retain special memories
of many of our two-day meetings, for instance the one organized by Paul in the
famous abbey of the regular canons of Prémontré at Tongerlo, where we could
work in peace and quiet as so many before us have done.

Much of this work also had to be done at home, which took away precious time
from our families. Their love, understanding, patience and support was indispen-
sable for us to carry on with the seemingly endless series of chapters to be drafted,
read or revised.

September 1997



Chapter 1

Introduction

1.1 The aims of chemometrics
1.1.1 Chemometrics and the “arch of knowledge”

Scientific methodology follows a two-fold pathway for the establishment of
knowledge. As explained by Oldroyd [1], these pathways lead through an exami-
nation of observable phenomena to general rational “first principles” (analysis);
and from such “first principles” back again to observables, which are thereby
explained in terms of the principles from which they are held to be deducible
(synthesis). The shape of this methodological project led Oldroyd to the concept of
the “arch of knowledge”. Chemometrics conforms to this general pattern. This will
become apparent from its definition. For the purposes of this book, we define
chemometrics as follows: “Chemometrics is a chemical discipline that uses mathe-
matics, statistics and formal logic (a) to design or select optimal experimental
procedures; (b) to provide maximum relevant chemical information by analyzing
chemical data; and (¢) to obtain knowledge about chemical systems”.

This definition is derived and adapted from the one given in an earlier version
of this book [2].

Starting with a certain chemical knowledge (the “first principles”) (Fig. 1.1),
chemists define a hypothesis. To be able to test this hypothesis and thereby verify
its validity, they need experimental data (the “observables”). They therefore first
decide which experiments to carry out (point (a) of the definition). The chemomet-
rician’s approach will be to do this with the help of mathematical and statistical
techniques, such as the use of experimental design methodology. The experiments
generate data and the chemometrician uses them to extract information (point (b)
of the definition), for instance to derive a model by computing a regression
equation that describes how the resuit of the measurement (the response) is related
to the experimental variables. A chemist can use this information and chemical
intelligence to generate more knowledge about the system (point (c) of the defini-
tion). If, for example, the chemical domain investigated is the study of chemical
reactions, the chemist may conclude that the reaction kinetics are second order
(analysis). With the increased knowledge about the system the chemist can formulate
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Fig. 1.1. The arch of knowledge (adapted from Ref. [1]).

an experimental design (synthesis) to obtain still more data and therefore more
information and insight and eventually build a solid arch of knowledge.

The chemometrics relating to points (a) and (b) have hitherto been more
extensively investigated than those relating to (c). Many of the 44 chapters of this
book will refer to (a) and (b), and some also to (c). However, most chapters stress
one of the three points to a greater extent than the others. In Sections 1.2.1 to 1.2.3
we will give for each a short overview of the main subjects to be discussed.

1.1.2 Chemometrics and quality

Chemometrics is not always involved in obtaining new knowledge and this is
particularly so in industrial applications. Chemometrics is involved in the process
of producing data and in the extraction of the information from these data. If the
quality of the measurement processes and therefore the quality of the data is not
good enough, the information may be uncertain or even wrong.

Quality is an essential preoccupation of chemometrics and this is also the case
for industry. It is, therefore, not surprising that chemometrics has been recognized
in recent years as an important subject. Indeed, many of the techniques that
chemometricians apply to obtain better measurement processes are also used to
obtain better processes in general or better products. The measurement processes
themselves often have the aim of assisting the development of better products or
of controlling processes.

Very often, therefore, the ultimate aim of chemometrics is to improve or optimize
or to monitor and control the quality of a product or process. Several chapters are
devoted to such domains or to quality aspects. An overview is given in Section 1.2.4.



1.2 An overview of chemometrics
1.2.1 Experiments and experimental design

Whenever experimentation is considered, one should first decide which experi-
ments should be carried out (point (a) of the definition). This is discussed in many
chapters. For instance, in Chapter 4 one of the questions is how many experiments
must be carried out to be able to accept or reject a hypothesis with sufficient
confidence that the decision is correct; in Chapter 5 we explain that to compare two
means one can opt for a paired or an unpaired design; and in Chapter 6 we describe
when an analysis of variance should be carried out according to a crossed or a
hierarchical design. The chapters that discuss regression for calibration or modelling
purposes such as Chapter 8 (linear regression), Chapter 10 (multivariate regression)
and Chapter 36 (multivariate calibration) insist on the importance of the selection of
the calibration design to obtain the best-fitting models or the best predictions.

The design of experiments is the more important element in Chapters 21 to 27.
These chapters describe how to design experiments to decide in a cost-effective
way which variables are important for the quality of a product or a process and then
how to find the optimal combination of variables, i.e. the one that yields the best
result. An overview is given in Table 1.1.

TABLE 1.1

Brief contents of the chapters on experimental design

Chapter 21: General introduction into experimental design.

Chapter 22: Two-level factorial designs to decide which variables are important and which variables
interact, and to describe the effects of variables on responses with first-order models.

Chapter 23: Two-level fractional factorial designs to achieve the aims of Chapter 22 but with fewer
experiments and with the lowest loss of information possible.

Chapter 24; More than two-level designs to obtain second- (or higher-) order models for the responses in

function of the variables affecting the process (response surfaces) and to obtain optimum
responses for these process variables.

Chapter 25: Mixture designs to model mixture variables and to optimise mixtures.

Chapter 26: Sequential approaches to optimization, selection of evaluation criteria, including Taguchi
designs.

Chapter 27: Numerical optimization through the use of genetic algorithms and related techniques.

1.2.2 Extraction of information from data

1.2.2.1 Displaying data

The extraction of information from data or data analysis (point (b) of the
definition) usually starts by describing or displaying the experimental data ob-
tained. In general, these data constitute a data table or tables. Let us first consider



the situation where a single table is obtained (Figs. 1.2a—d). This consists of
columns (and in the simplest case, one single column) each giving the value of one
variable for a set of objects. Very often these objects are samples of a population
of objects and the reason for making the measurements is to infer from the results
obtained some characteristic of the population. An example is the estimation of the
mean and standard deviation (Chapters 2 and 3). Often we want to know whether
the data follow a certain distribution, such as the normal distribution (Chapter 3)
or other distributions (Chapter 15), or whether outliers are present (Chapter 5).

It is very important to look at the data whenever possible. To be able to do this
we need methods to display them. Histograms (Chapter 2) and box plots (Chapter
12) are among the methods that best allow visual evaluation for univariate data
(i.e., data for a single variable x; Fig. 1.2a). Plots for special purposes, such as
normal distribution plots, that allow us to evaluate visually whether a data set is
normally distributed are also available (Chapter 3).

In many cases the objects are described by many variables (multivariate data;,
Fig 1.2b). To plot them we need as many dimensions as there are variables. Of
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Fig. 1.2. Data structures for display: (a) univariate; (b) multivariate; (c) univariate, with objects
subjected to some kind of order, e.g. ordered in time; (d) multivariate, with ordered objects.



course, as soon as there are more than three dimensions a straightforward plot of
the data is no longer possible so that displaying them for visual evaluation becomes
more difficult. Chemometrics offers methods that allow the display of such multi-
dimensional data by reducing the dimensionality to only a few dimensions. The
most important technique in this respect is principal component analysis, which is
first treated in a relatively non-mathematical way in Chapter 17. Principal compo-
nent analysis is also the starting point for studying many other multivariate
techniques and so-called latent variable techniques such as factor analysis (Chapter
34) and partial least squares (Chapter 35). For this reason, principal components
analysis is considered again in a more formal and mathematical way in Chapter 31.

In some instances the objects in a table are ordered, for example, in time when
samples are taken from a (measurement) process. In Chapter 7 measurements of a
single variable are displayed in control charts to find out whether a process is under
control (Fig. 1.2¢). In Chapter 20 the same is done for multivariate data (multivari-
ate quality control) and we investigate how to sample processes in time or space to
be able to predict the value at other times or locations. In data sets ordered in time
(data taken from a continuous process) or according to wavelength (spectra) the
individual responses that are measured are subject to noise, as is the case for all
measurements. The signal processing techniques described in Chapter 40 allow a
better and more informative description of the process by reducing the noise.

Many of the techniques described in Chapter 34 are also applied to data that are
ordered in some way. However, the data are now multivariate (Fig. 1.2d). A typical
situation is that of spectra obtained for samples ordered in time. In such
situations one suspects that there are several compounds involved, i.e. the
measured spectra are the sum of spectra of different compounds. However, one
does not know how many compounds, or their spectra, or their individual
concentration profiles in the time direction. The techniques described attempt
to extract this type of information.

1.2.2.2 Hypothesis testing

The description of the data often leads to the formulation of hypotheses (which
are then verified by hypothesis testing), to describe quantitatively the value of one
or more variables as a function of the value of some other variables (modelling) or
to try to classify the objects according to the values of the variables obtained
(classification). Hypothesis testing, modelling and classification are the main
operations required when we want to extract information from data in a more
formal way than by visual evaluation. They are related: classification can be
considered as a special kind of modelling and a model is often validated through
the use of hypothesis tests.

Hypothesis testing is the main subject of the chapters listed in Table 1.2. In these
chapters the characteristics of two sets of data are often compared, for instance



TABLE .2

Brief contents of the chapters in which the emphasis is on hypothesis testing

Chapter 4: General principles; comparing an experimentally obtained mean with a given value.

Chapter 5: Comparison of two means or variances, detection of extreme values, comparison of an
experimental distribution with the normal distribution.

Chapter 6: Comparison of more than two means and/or variances (analysis of variance).

Chapter 13: Applications to method validation.

Chapter 16: Tests of hypotheses about frequency (contingency) tables involving only two variables.

their means or their standard deviations and the hypothesis tested is their equality
(or sometimes their inequality). However, other hypotheses can also be tested, such
as, e.g., whether a certain result belongs to a set of results or not (outlier testing).

The subject of hypothesis testing is so essential for statistics and chemometrics
that it is applied in most chapters. It is for instance important in the chapters on
modelling, e.g. Chapters 8 and 10. In these chapters a model is proposed and a
hypothesis test is required to show that the model can indeed be accepted. In the
chapters on experimental design (Section 1.2.1) techniques are described that
allow us to detect factors that may have an effect on the response under study. A
hypothesis test is then applied to decide whether indeed the effect is significant.

Certain tests are specific to certain application domains. This is the case for
Chapter 38, for instance, where tests are applied to sensory analysis that are not
applied in other domains.

1.2.2.3 Modelling

Modelling is the main emphasis of the chapters described in Table 1.3. These
chapters describe regression techniques of different complexity. Modelling is also
an important aspect in: Chapter 44 on neural networks; Chapters 12 and 19, where
methods are explained for robust and fuzzy regression, respectively; and in Chapter
41, where Kalman filters are applied to the modelling of dynamic processes. It is
an important tool in many other chapters, e.g. Chapter 13 (method validation),
Chapter 24 (response surface methodology), Chapter 37 (quantitative structure—
activity relationships), and Chapter 39 ( pharmacokinetic models).

TABLE 1.3

Brief contents of the chapters in which the emphasis is on modelling

Chapter 8: Univariate regression and calibration.

Chapter 10: Muitivariate and polynomial regression.

Chapter 11: Non-linear regression.

Chapter 35: Latent variable-based methods for relating two data tables.

Chapter 36: Multivariate calibration.




Modelling is applied when two or more characteristics of the same objects are
measured, for example when one tries to relate instrumental responses to sensory
characteristics (Chapter 38), chemical structure of a drug to its activity (Chapter
37), or the performance of two analytical methods by analysing the same objects
with the two methods (Chapter 13). This is also the case when one verifies whether
there is a (linear) relationship between objects of two populations by measuring the
correlation coefficient (Chapter 8). The purpose of the modelling is to find rela-
tionships that explain the data and/or to allow us to make predictions.

The data structure is shown in Figs. 1.3a—. Two sets of data are related: the y
or Y data have to be explained or predicted from the x or X data. In Fig. 1.3a a
single column of y values are related to a single column of x values. In a classical
univariate calibration experiment (Chapter 8) the x values would be concentrations
and the y values some response such as absorbance. Both Figs. 1.3b and c are
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Fig. 1.3. Data structures for modelling: (a) relationship between two variables x and y for a set of
objects, i.e. between vectors x and y; (b) relationship between a set of variables x (matrix X) and a
single variable y (vector y); (¢) relationship between two sets of variables (X and Y).



multivariate situations with one y and several x values, respectively (Chapter 10),
or even several x and several y values per object (Chapter 35). Techniques that
allow us to work with such data structures are extremely important topics in
chemometrics. However, we do not share the tendency of some chemometricians
to consider this as the only topic of importance.

The modelling element can be important without being explicit. This is the case
with the neural networks of Chapter 44. One of its main uses is to model complex
phenomena. Very good results can be obtained, but the model as such is usually
not derived.

Modelling and hypothesis testing are related. In many cases they are either
alternatives or complementary. When the methods that emphasize hypothesis
testing are applied, the question is often: does this process (or measurement) yield
the same result (or response) at pH = 6 and at pH = 7 or pH = 8? It does not give
an immediate answer to what will happen at pH = 7.5 and this can be answered by
modelling techniques. When such a technique is applied, the question will be: how
does the result or response depend on pH? When simplifying both questions, one
eventually is led to ask: does the pH influence the result or response? It is,
therefore, not surprising that the same question can be treated both with hypothesis
tests and modelling approaches, as will be the case in Chapters 13 on method
validation and Chapter 22 on two-level factorial designs.

1.2.2.4 Classification

In classification one tries to decide whether the objects can be classified into
certain classes, based on the values they show for certain variables. The data
structures are shown in Figs. 1.4a—c. Chapters 30 and 33 are devoted entirely to this
aspect and it 1s an important topic in Chapter 44.

Basically, there are three types of question:

— Can the objects be classified into certain classes (see also Fig. 1.4a)? The
classes are not known a priori. This is called unsupervised pattern recognitton
or learning or also clustering; it is discussed in Chapter 30. The Kohonen and
fuzzy adaptive resonance theory networks of Chapter 43 have the same purpose.

— Can a new object be classified in one of a number of given classes (see also
Fig. 1.4b) described by a set of objects of known classification? This is called
supervised pattern recognition or discriminant analysis and is described in
Chapter 33. Most of the neural networks described in Chapter 44 can be
applied for the same purpose and so can the inductive expert systems of
Chapter 18.

— Does the object belong to a given class described by a set of objects known
to belong to that class (see also Fig 1.4¢)? This can be studied with the disjoint
class modelling by supervised pattern recognition methods such as SIMCA
or UNEQ described in Chapter 33.
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Fig. 1.4. Data structures for classification: (a) classification of a set of objects, characterized by several
variables, classes not known a priori; (b) classification of a new object into one of a number of given
classes, each class being described by a set of objects for which several variables were measured; (c)
does a new object belong to a given class, described by a set of objects for which several variables
were measured?

Additional aspects are discussed in Chapter 16 (quality of attributes in relation
to classification in one of a few classes) and Chapter 19 (fuzzy search).

We should stress here again the relationship between classification on the one
hand and modelling or hypothesis testing on the other. For instance, supervised
pattern recognition methods can, in certain cases, be replaced by modelling meth-
ods such as PLS (see Chapter 33) when the y-variables are class indicator variables
(e.g. O for class A and 1 for class B), while SIMCA can be reformulated as a
multivariate outlier test.
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1.2.3 Chemical knowledge and (artificial) intelligence

Deductive reasoning capacity in chemistry, as in all science branches, is the
basic and major source of chemical information. This reasoning capacity is gener-
ally associated with the concept of intelligence. With the development of numeri-
cal methods and computer technology it became possible to extract chemical
information from data in a way that had not previously been possible. Chemomet-
ric methods were developed that incorporated and adapted these numerical tech-
niques to solve chemical problems. It became clear, however, that numerical
chemometric techniques did not replace deductive reasoning, but rather were
complementary. Problems that can be solved by numerical techniques, e.g. pattern
recognition, cannot easily be solved by deductive reasoning. However, selection of
the best chemical analysis conditions, for example, is a deductive reasoning
process and cannot be solved in a straightforward way by mathematical methods.

To increase further the efficiency and power of chemometric methods the
deductive reasoning process must be incorporated. This has resulted in the devel-
opment of the so-called “expert systems” (Chapter 43). These are computer
programs which incorporate a small part of the formalized reasoning process of an
expert. In the 1980s they were very popular but their performance to solve difficult
problems was clearly overestimated. In the early 1990s there was a dip in their
application and development and the phrase “expert system” became almost taboo.
Recently, however, they have reappeared under the name of decision support
systems, incorporated among others in chemical instruments. In combination with
the numerical chemometric methods they can be very useful.

The inductive reasoning process (learning from examples) is implemented in the
inductive expert systems (see Chapter 18). Neural networks can also be considered
as an implementation of the inductive reasoning process (Chapter 44).

1.2.4 Chemical domains and quality aspects

Quality is an important point in many chapters of this book. In Chapter 2, we
introduce the first elements of statistical process control (SPC), and Chapter 7 is
entirely devoted to quality control. Chapters 13 and 14 describe an important
element of quality assurance in the laboratory, namely, how to validate measure-
ment methods, i.e. how to make sure that they are able to achieve sufficient
precision, accuracy, etc. Chapter 14 also describes how to measure proficiency of
analytical laboratories. It makes no sense to carry out excellent analysis on samples
that are not representative of the product or the process: the statistics of sampling
are described in Chapter 20.

The treatment of sensory data is described in Chapter 38. Their importance for
certain products is evident. However, sensory characteristics are not easy to
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measure and require expert statistical and chemometrical attention. Chapter 40 is
devoted to the analysis of signals and their improvement. It is also evident that in
many cases the experimental design in Chapters 21-26 has as its final objective to
achieve better quality measurements or products.

1.2.5 Mathematical and statistical tools

Statistics are important in this book, so we have decided to give a rather full account
of it. However, the book is not intended to be an introduction to statistics, and therefore
we have not tried to be complete. In certain cases, where we consider that chemomet-
ricians do not need that knowledge, we have provided less material than statistics
books usually do. For instance, we have attached relatively little importance to the
description of statistical distributions, and, while we need of course to use degrees of
freedom in many calculations, we have not tried to explain the concept, but have
restricted ourselves to operational and context-dependent definitions.

Most chapters describe techniques that often can only be applied to data that are
continuous and measured on so-called ratio or interval scales (lengths, concentra-
tions, temperatures, etc.). The use of other types of data often requires different
techniques or leads to other results. Chapters 12, 15, 16, 18 and 19 are devoted to
such data. Chapter 12 describes how to carry out hypothesis tests and regression
on ranked data or on continuous data that violate the common assumption of
normal distribution of measurement errors; Chapter 15 describes distributions that
are obtained when the data are counts or binary data (i.e., can only be 0 or 1);
Chapter 16 concerns hypothesis tests for attributes, i.e. variables that can take only
two or a few values. Chapter 18 describes information theory and how this is used
mainly to characterize the performance of qualitative measurements, and Chapter
19 discusses techniques that can be used with fuzzy data.

Figure 1.2 shows that in all cases the structure of the data is that of a table or
tables, sometimes reduced to a single column. Mathematically, the columns are
vectors and the tables are matrices. It is therefore important to be able to work with
vectors and matrices; an introduction is given first in Chapter 9 and a fuller account
later in Chapter 29.

1.2.6 Organization of the book

The book consists of two volumes. In the first volume (Part A) the emphasis is
on the classical statistical methods for hypothesis testing and regression and the
methods for experimental design. In the second volume (Part B) more attention is
given to multivariate methods, often based on latent variables, to signal processing
and to some of the more recent methods that are considered to belong to the
artificial intelligence area.



One can certainly not state that the methods described in Volume I are all
simpler, older, or used more generally than those described in Volume II. For
instance, techniques such as non-linear regression using ACE or cubic splines
(Chapter 11), robust regression (Chapter 12), fuzzy regression (Chapter 19) or
genetic algorithms (Chapter 27) are certainly not commonplace. However, the
general level of mathematics is higher in Part B than in Part A. For that reason
certain subjects are discussed twice, once at a more introductory level in Part
A, and once at a higher level of abstraction in Part B. This is the case for matrix
algebra (Chapters 9 and 29) and principal component analysis (Chapters 17 and
3.

1.3 Some historical considerations

The roots of chemometrics go back to 1969 when Jurs, Kowalski and Isenhour
published a series of papers in Analytical Chemistry [3-5] on the application of a
linear learning machine to classify low resolution mass spectra. These papers
introduced an innovative way of thinking to transform large amounts of analytical
data into meaningful information. The incentive for this new kind of research in
analytical chemistry was that “for years experimental scientists have filled labora-
tory notebooks which often has been disregarded because lack of proper data
interpretation techniques” {6]. How true this statement still is today, more than 25
years later! This new way of thinking was developed further by Wold into what he
called “soft modelling” [7] when he introduced the SIMCA algorithm for model-
ling multivariate data. These new techniques did not pass unnoticed by other
academic groups, who became actively involved in the application of ‘modern’
algorithms as well. The common interest of these groups was to take advantage of
the increasing calculation power offered by computers to extract information from
large data-sets or to solve difficult optimization problems. Dijkstra applied infor-
mation theory to compress libraries of mass spectra [8]. Compression was neces-
sary to store spectra in the limited computer memory available at that time and to
speed up the retrieval process. At the same time Massart became active in this field.
His interest was to optimize the process of developing new chromatographic
methods by the application of principles from operations research [9]. These
developments coincided with a fundamental discussion about the scientific basis
of analytical chemistry. In Germany this led to the foundation of the ‘Arbeitskreis
Automation in der Analyse’, which published a series of more or less philosophical
papers on the systems approach of analytical chemistry [10,11]. All this coincided
with the growing belief of analytical chemists that “some of the newer mathemati-
cal methods or theories, such as pattern recognition, information theory, operations
research, etc. are relevant to some of the basic aims of analytical chemistry, such
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as the evaluation, optimization, selection, classification, combination and assignment
of procedures, in short all those processes involved in determining exactly which
analytical procedure or programme should be used” [12]. Also in other fields
outside analytical chemistry, the application of pattern recognition received a great
deal of attention. An important area was the study of relationships between
chemical structures and their biological activity, e.g. in drug design, where several
papers began to appear in the early 1970s [13].

It took until June 1972 before this research was called “chemometrics”. This
name was mentioned for the first time by Wold in a paper published in a Swedish
Jjournal [14] on the application of splines to fit data. He christened his group
“Forskningsgruppen for Kemometri”, an example which would be followed by
Kowalski, who named his group the “Laboratory of Chemometrics”.

The collaboration between Wold and Kowalski resulted in the foundation of the
Chemometrics Society in 1974. A year later, the society defined chemometrics as
follows: “it is the chemical discipline that uses mathematical and statistical meth-
ods to design or select optimal measurement procedures and experiments and to
provide maximum chemical information by analysing chemical data” [15]. As one
may notice, in this book we have adapted this definition by including a third
objective “to obtain knowledge about chemical systems” and we have specified
that the chemical information should be “relevant”. With the distribution of the
software packages ARTHUR [16] by Kowalski and SIMCA [7] by Wold, many
interested analytical chemists were able to explore the potentials of pattern recog-
nition and multivariate statistics in their work. In 1976 a symposium was organized
entitled “Chemometrics: Theory and Application” sponsored by the Division of
Computers in Chemistry of the American Chemical Society, which published the
first book on chemometrics [17] with contributions from Deming (optimization),
Harper (ARTHUR), Malinowski (factor analysis), Howery (target-transformation
factor analysis), Wold (SIMCA) and others. This book already indicated some of
the main directions chemometrics would follow: design of experiments, optimiza-
tion and multivariate data analysis.

Two years later, in 1978, three European chemometricians, Kateman, Massart
and Smit organized the international “Computers in Analytical Chemistry (CAC)”
conference in Amsterdam — the first of what was to be a long series. This
coincided with the launching of Elsevier’s series “Computer Techniques and
Optimization” in Analytica Chimica Acta under the editorship of Clerc and Ziegler
[18]. On this occasion more than 100 analytical chemists from all over the world
gathered to hear about a new and exciting discipline. After the first book on
chemometrics was published by the ACS, other textbooks rapidly followed in 1978
by Massart et al. [12], in 1981 by Kateman and Pijpers [19], in 1988 again by
Massart et al. [2], in 1982 by Lewi [20] and in 1986 by Sharaf et al. [21]. Other, no
less important, textbooks are mentioned in the suggested reading list.



A milestone in the short history of chemometrics was certainly the introduction
of Partial Least Squares [22] by S. Wold and coworkers in 1983, based on the early
work of H. Wold [23]. Since 1972, Analytical Chemistry, an ACS publication,
included a section on Statistical and Mathematical Methods in Analytical Chemis-
try in their biannual reviews. In 1978 Shoenfeld and DeVoe [24] provided the
editor of Analytical Chemistry with the new title “Chemometrics”. This was a
formal recognition of the appearance of a new discipline in analytical chemistry,
which was emphasized by the special attention on chemometrics at a symposium
organized on the occasion of the celebration of the 50th anniversary of Analytical
Chemistry [25]. Since 1980, the field of research expanded rapidly and several new
centres in Europe and the USA emerged which became actively involved in
chemometrics. Norway, Italy and Spain, for instance, are three of the centres of
chemometrics in Europe. In 1974 two teams became active in chemometrics in
Italy, those of Forina in Genova and of Clementi in Perugia. Around this time, other
chemists began to pay more attention to the statistical side of analytical chemistry,
such as Dondi in Ferrara. In 1978 Forina and Armanino published “Elements of
Chemometrics”, the first book for second-cycle students of Chemometrics in Italy.
However, a milestone in the chemometrics history in Italy is certainly April 13,
1981, when the first Italian seminar on chemometrics was organized in Genova. In
1983 all major centres were represented at the most inspiring NATO Advanced
Study Institute on Chemometrics [26] in Cosenza, hosted by Forina. Experts
presented and discussed in a relaxed ambience recent developments in experimen-
tal design, multivariate calibration and factor analysis. The 1980s witnessed further
growth and diversification. In Seattle Kowalski focused on Process Analytical
Chemistry at his Centre for Process Analytical Chemistry (CPAC), a successful
consortium between the University of Washington and a number of industrial
partners, which would expand to the impressive number of 50 partners. In Europe
there was a growing belief that much analytical knowledge could not be caught in
either hard or soft models. Therefore, an EEC-funded research project “Expert
systems for chemical analysis” was initiated in 1986 with Vandeginste, Massart
and Kateman and three industrial partners. At the same time the EEC funded a large
chemometrics teaching network, Eurochemometrics, which would organize an
impressive series of short courses all over Europe. In the US leading chemometri-
cians gather annually at the prestigious Gordon Research Conference “Statistics in
Chemistry and Chemical Engineering” where advanced research topics are dis-
cussed and commented upon. The launching of two specialized chemometrics
journals in 1986, the Journal of Chemometrics (Wiley) and Chemometrics a.°d
Intelligent Laboratory Systems (Elsevier), confirmed that chemometrics had evolved
into an established science.

By the end of the 1980s, industry had become increasingly interested in this new
and promising field and was offering positions to young chemometricians. A real
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challenge for them is to prove that chemometric algorithms are robust enough to
cope with the dirty data measured in practice, and powerful enough to derive the
requested information from the data. For instance, curve resolution methods should
not only be able to resolve the spectra of major co-eluting compounds by HPLC
but also compounds at a level below 1% detected with a diode array detector.

Although the study and introduction of novel multivariate statistical methods
remained in the mainstream of chemometric research, a distinct interest arose in
computationally intensive methods such as neural networks, genetic algorithms,
more sophisticated regression techniques and the analysis of multiway tables.
Chemometricians rapidly discovered the wealth of new opportunities offered by
modern communication tools such as e-mail and the Internet. An on-line discussion
group (“ICS-L”) on chemometrics has been set up for the International Chemomet-
rics Society, using the LISTSERV facility. More recently, the first worldwide
electronic conferences (InNCINC94 and InCINC96) have been organized by Wise
and Hopke, who have set an example which will certainly be followed by many
others. Also, many research groups in chemometrics have started to build home
pages with information about their current research activities.

Despite the enormous progress in our capability of analyzing two- and three-
way tables, a fundamental issue remains the poor precision reported in collabora-
tive analytical studies. Apparently, analytical methods which are essential in
process control and in research and development lack robustness and are not
suitable for their purpose. The application of multicriteria decision-making and
Taguchi designs as suggested by several chemometricians should lead to some
improvements. Such a study is the objective of an EU-funded project within the
Standards, Measurement and Testing Programme, carried out by a group of Italian,
Spanish and Belgian academic chemometrics centres in collaboration with major
European industries.

The 1990s appear to be the age of quality and quality improvement. Most
industrial and governmental laboratories are opting for compliance with one of the
quality systems: GLP, ISO 9000, etc. To demonstrate and maintain quality requires
a skilful application of statistics. This is the area of Qualimetrics which is the
synergy between chemometrics and quality assurance — an area of great impor-
tance for the industrial chemist.

1.4 Chemometrics in industry and academia

Many excellent researchers in academia as well as in industry have contributed
to the successful development of chemometrics in recent years. The interested
reader is referred to the Journal of Chemometrics {27,28], which devotes a column
on academic chemometric research, in which centres present their work and
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philosophies on chemometrics and its future. It shows that many distinguished
academic chemometricians either started their careers in industry, or (Windig,
Lewi, de Jong, Berridge, Vandeginste, etc.) still occupy a research position in
industry. We ought to realize that long before statistics and chemistry found their
synergy in chemometrics applied statistics was an indispensable tool in industrial
research and production. The first industrial chemometrician was probably W.S.
Gossett (Student), who developed the #-test, while working for the Guinness
breweries [29]. In 1947 Box from ICI published a book on “Statistical Methods in
Research and Production” [30], followed in 1956 by “The Design and Analysis of
Industrial Experiments” [31], which culminated in the book by Box, Hunter and
Hunter {32]. In his introduction Box writes “Imperial Chemical Industries Ltd has
long recognized that statistical methods have an important part to play in industrial
research and production”. This book, illustrated with many real-life examples from
ICI and written for the chemist is still recommended basic reading on experimental
design. Lloyd Currie at the National Bureau of Standards (now the National
Institute of Standards and Technology) has been an early promoter of the applica-
tion of statistics in analytical chemistry. Certainly the work of Malmstadt, Enke
and Crouch, while not directly chemometrics in the early days, led to its develop-
ment by getting more people involved in the details of data collection. Very
rapidly, chemometrics started to cover the whole range from fundamental research
to development. For obvious reasons industry became active in developing chemo-
metrics applications and tools. Optimization in HPLC is a very good illustration.
For many years sequential and simultaneous optimization strategies by Simplex
and experimental design were the subject of research for many academic chemo-
metricians. The importance of optimization for productivity improvement was
quickly recognized by industrial researchers who demonstrated its practical appli-
cability — Berridge at Pfizer, and Glajch and Kirkland at DuPont de Nemours, to
name but a few. Instrument manufacturers took over the idea and developed this
technique further to systems integrated with HPLC equipment. As a result, optimi-
zation strategies are now widely available and routinely applied in industrial
laboratories. The same happened to PLS which is included in the software of NIRA
instruments and in molecular modelling software.

Chemometrics is fairly well disseminated in industry. Many applications are
found in the pharmaceutical industry, e.g. the study of structure-activity correla-
tions is of great importance to guide the synthesis process in the search for new
active drugs. In the experimental phase synthesis conditions are optimized for
maximal yield. Once a compound is synthesized, a long and tedious route follows
in determining whether the compound is really active or not. In this area, Lewi
developed in 1976 a Biplot technique, called Spectral Map Analysis (SMA) [33].
Originally, SMA was developed for the visualization (or mapping) of activity
spectra of chemical compounds that had been tested in a battery of pharmacological
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assays. The problem of classifying compounds with respect to their biological
activity spectra is a multidimensional problem which can be solved by factor
analytical methods. In the food industry the analysis of sensory data in its various
facets requires a multivariate approach, as does, for example, the prediction of taste
keepability of vegetable oils from a few indicators, the classification of oils
according to their origin and the evaluation of nutrition trials. Complex modelling
techniques are applied to relate data blocks from several origins, e.g. the chewing
pattern of test persons to the intensity of their taste perception as a function of time
for various products. The petrochemical industry wants to predict the oil content
in rocks, e.g. by variable temperature FTIR.

Coinciding with early academic chemometrics activities, analytical chemists of
the Dutch States Mines (a large producer of bulk chemicals and fertilizers) realized
that the analytical laboratory is not simply a producer of numbers but forms an
integral part of a process control chain. The quality of the analytical results,
expressed in terms of speed, precision and sampling rate, defines the effectiveness
of process control. Van der Grinten [34] and Leemans [35] in their pioneering work
on process analytical chemistry derived a relationship between the properties of the
analytical method and the capability of process control. In-line analysis offers
speed often at the expense of precision, specificity and selectivity. This is the area
of sensors and NIRA in combination with multivariate calibration, where several
successful industrial applications have been reported [36].

Another important line of industrial applications is the retrieval of spectroscopic
data from libraries, and the interpretation of combined IR, NMR and MS spectra,
including the resolution of mixture spectra by Factor Analysis [37].

In the area of chromatography, the optimization of the mobile phase in HPLC
has received much attention from both instrument manufacturers and industrial
analytical chemists [38]. LC linked to full scan spectroscopic detectors (UV-Vis,
IR) is a common technique in many analytical laboratories, specifically for the
assessment of the purity of pharmaceutical compounds. In this area Windig at
Kodak developed the Variogram [39] and SIMPLISMA [40] to decompose bi-
linear data produced by hyphenated techniques in its pure factors (spectra).

The ultimate added value of chemometrics — better chemistry, more efficient
experiments and better information from data — is highly relevant and appealing
to any industry. This is also the incentive for collaboration with academic centres
of expertise, usually in a regional network, as there are in the Benelux, Spain,
Scandinavia and the USA. These centres fulfil a twofold function: the distribution
of chemometric principles to the bench of the industrial chemical researcher, and
a source of inspiration for improvements and new challenges to be picked up by
fundamental chemometrics researchers.

Which challenges can we expect for the future? A number of clear trends are
showing up. First, there is the still growing mass of data. An example is an image
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where each pixel is no longer characterized by a grey scale or by a colour but
instead by a complete spectrum. Supposing that the spectrum is measured at 1024
wavenumbers, this represents a stack of 1024 images of a typical size of 512x512
pixels, which should all be treated together by multivariate procedures! Secondly,
data have become increasingly complex. In high resolution NMR, for example,
spectra are measured in two and higher dimensions and contain an enormous
amount of information on the secondary and tertiary structure of large molecules.
This is an area in which advanced chemometric methods should provide real added
value. Thirdly, relationships or models being studied are increasingly complex, e.g.
complex multivariate models are necessary to relate product quality to all relevant
manufacturing conditions for process control, or to relate three-dimensional struc-
tures of macromolecules to pharmaceutical or biological activity. Computer-inten-
sive methods will become increasingly important in the development of robust
models and non-parametric inference methods based on randomization tests. By
using genetic algorithms the model itself is becoming part of the modelling
process. Many industries realize that the preservation and accessibility of corporate
knowledge stored in (electronic) lab notebooks or laboratory information manage-
ment systems is becoming the Achilles’ heel of success. Scientists should be able
to interrogate and visualize data available in various formats: spectra, structures,
texts, tables, images, catalogues, databases, etc. and their interrelationships in a
network of information. One can imagine that by using hypermedia [41] a re-
searcher will be able to navigate through a giant web of data, which are instanta-
neously processed into information by local modelling or artificial intelligence and
are displayed in a directly interpretable way, e.g. by virtual reality. This enormous
task will be one of the challenges for chemometricians and information scientists.
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Chapter 2

Statistical Description of the Quality of Processes
and Measurements

2.1 Introductory concepts about chemical data

Measurements generate data and these data are used to describe or evaluate the
quality of processes and measurement procedures. A first question we must answer
1s how to utilize the data so that they give us more insight into the performance
characteristics that will be used in the evaluation of the processes and measurements.
This description and the performance characteristics are the subject of this chapter.

2.1.1 Populations and samples

Let us suppose that we have determined the concentration of sodium in five
randomly selected bottles of water of a certain brand. These five bottles then
constitute a sample in the statistical sense. They are a sample of the population of
all existing bottles of water of that certain brand. In the same way, if we carry out
six replicate determinations of sodium in a certain material, then the six individual
observations constitute a sample — in this case from a population of all determi-
nations of sodium that could have been made with that measurement technique on
that specific matrix if its supply were unlimited.

The population of measurements consists of all the possible measurements that
can be made and a set of experiments is considered to be a sample of the population
of all the experiments that can be made, given unlimited resources.

We observe that populations are often very large (the number of bottles) or
infinite (the number of determinations). Although the number of existing bottles
may be considered finite, it will be treated as infinite. There are, however, cases
where populations are clearly finite. For instance, if we were to measure some
characteristic for the 50 states of the USA, then that population (of states) is finite
and small enough to be completely measured. In a few instances, statistical texts
make distinctions between finite and infinite populations, but in almost all cases
the population will be considered to consist of an infinite number of individuals,
objects, measurements and we would investigate a finite sample of these to make
conclusions about the whole population.



22

There is clearly a problem in terminology due to the use of the term “sample”
and derivations such as “sampling” by analytical chemists, where the word means
any material or test portion to be analyzed without necessarily supposing that that
material is a sample of a larger population. For instance, if a forensic toxicologist
is asked to analyze a tablet collected on the scene of a crime, he will call that his
sample although the object is unique. To avoid confusion between statistical and
chemical usage of the word, IUPAC [1] has proposed that in chemistry “sample”
should only be used when it is a portion of a material selected from a larger quantity
of material. This is consistent with statistical terminology. It also implies the
existence of a sampling error, since the sample may not reflect accurately the
content of the larger quantity. Sampling and sampling errors are discussed in
Chapter 20. When sampling errors are negligible, such as when the parent material
is a liquid and a small portion of it is analyzed, then the IUPAC guideline suggests
the use of terms such as test portion, aliquot or specimen.

2.1.2 Variables and attributes

Variables can be defined as properties with respect to which individual elements
in a sample differ in some ascertainable way [2].

Variables can be measured on three types of statistical scales:

— The nominal scale is used when the individuals or objects can only be
described in words. An object may be black, white or red, an individual
manufactured object may be defective or acceptable, etc. The terms black,
white and red or defective and acceptable constitute the nominal scale.
Variables measured in this way are often called qualitative or categorical
variables or attributes.

— The ordinal scale consists of giving ranked values to a variable. An individ-
ual object’s quality may be rated as “very poor”, “poor”, “average”, “good”,
“excellent”. There is a clear gradation in these terms. Variables measured in
this scale are often called ranked variables.

— The interval and ratio scales are measured on a scale in which the distance
along that scale can be measured as a number. We sometimes distinguish
between the two scales (the ratio scale has a zero point with an absolute value,
e.g. temperature in degrees Kelvin; the interval scale has an arbitrary zero
point, e.g. temperature in degrees Celsius), but this distinction is often not
important to us. Variables measured in this scale are often called measure-
ment variables or quantitative variables.

Of equal importance is the difference between continuous variables, such as
temperature or concentration, and discrete variables, which can take only certain
values. The latter are often the result of counting (bacterial counts, number of
defects on an object) and the only possible values are then integer numbers.
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We should be cautious about confusion between discrete variables and ranked
variables. We could code the terms “very poor”, ... “excellent” used above as 1, ...,
5. This does not make it a variable on an interval or ratio scale because the distance
between “very poor” and “poor” is not necessarily equal to that between “good”
and “excellent”.

The type of scale of a variable determines the statistical tests that can be carried
out and the distributions with which they are described. This is discussed further,
for instance in Chapters 12 and 15.

While we are discussing the meaning of the term variables, it is useful to make
the distinction between univariate and multivariate. More precise definitions of
terms such as univariate and multivariate distribution or space will be required
later, but for the moment it is sufficient to state that a data set is univariate when
the individual elements are described by only one variable and multivariate when
the same individual element is described by two (sometimes also called bivariate) or
more variables. In the next few sections and chapters only univariate data sets will be
considered, but multivariate data sets will be discussed at length later in this book.

2.1.3 Histograms and distributions

When one has many data available and wants to describe them, it is useful to
group them into classes and visualize their distribution with a histogram. This is
demonstrated with the data of Table 2.1 concerning fluoride in the enamel of young
children as obtained by Cleymaet and Coomans [3]. In this case the range of the
data is 3754-722 = 3032. A convenient class interval is 200. This yields 16 classes
and leads to Table 2.2. The number of classes is chosen so that there is neither too
much nor too little detail. This may require some trials, but in general one should
not make fewer than 5 classes (for small numbers of data) and not more than 25
(for large data sets). Another rule of thumb is that the number of classes should be
equal to the square root of the number of data.

TABLE 2.1

Fluoride concentrations in pg/g in the enamel of teeth of n = 63 young children in Antwerp, Belgium (from
Cleymaet and Coomans [3})

1506 3063 2657 1964 2220 2730 3754 1128
1946 1186 1375 2196 2284 1654 1631 3081
2150 1898 2452 2187 2443 2154 3292 2162
1418 2360 2897 3208 2260 722 2495 2382
1130 2357 1890 1622 1738 2332 1399 2234
2041 1358 2733 2225 1195 2237 1975 1811
2842 1288 1862 2212 1194 1813 2189 2726

1628 1909 2239 2154 2116 2509 2004
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TABLE 2.2

Relative and cumulative frequency distribution for the data of Table 2.1

Class interval Class mark Frequency Relative Cumulative Cumulative rel.
frequency frequency frequency
700- 900 800 | 0.016 I 0.016
900-1100 1000 0 0 i 0.016
1100-1300 1200 6 0.095 7 0.11t
1300-1500 1400 4 0.063 1 0.174
1500-1700 1600 5 0.079 16 0.254
1700-1900 1800 6 0.095 22 0.349
1900-2100 2000 6 0.095 28 0.444
2100-2300 2200 16 0.254 44 0.698
2300-2500 2400 7 0.111 51 0.810
2500-2700 2600 2 0.032 53 0.841
2700-2900 2800 5 0.079 58 0.921
2900-3100 3000 2 0.032 60 0.952
3100-3300 3200 2 0.032 62 0.984
3300-3500 3400 0 0 62 0.984
3500-3700 3600 0 0 62 0.984
3700-3900 3800 1 0.016 63 1.000

ISO [4] has defined the term class in the case of quantitative characteristics as
each of the consecutive intervals into which the total interval of variation is
divided. The class limits are the values defining the upper and lower bounds of a
class. The mid-point of a class is then the arithmetic mean of the upper and lower
limits and the class interval the difference between upper and lower limits of a
class. The mid-point is sometimes also called class mark (although this is not
recommended by ISO).

By counting the number of individuals in each class and dividing by the total
number of all individuals, one obtains the relative frequency of a class and the table
of these values is the relative frequency distribution. This can be plotted in function
of the class mid-point and yields then Fig. 2.1.

By summing all frequencies up to a certain class, we obtain the cumulative
frequency. For instance, the cumulative frequency up to and including class
1300-15001s 1 + 0 + 6 + 4 = 11. The relative cumulative frequency is then 11/63
=0.174 or 17.4%. Again, it is possible to plot the cumulative relative frequency
distribution to obtain Fig. 2.2. It should be noted that, in practice, we often drop
the word relative.

All these distributions are discrete, because the frequencies are given for
discrete classes or discrete values of x (the class midpoint). When the x-values can
assume continuous values, continuous distributions result. If the data of Table 2.2
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Fig. 2.1. Relative frequency distribution of the data of Table 2.1.

are truly representative of the population (i.e. the population of fluoride concentra-
tions of the enamel of young Belgian children), then the frequencies can also be
considered to be probabilities to encounter certain fluoride-values in that popula-
tion. We could then state that the probability of obtaining fluoride values between
1300 and 1500 pg/g is 0.063 and that the cumulative probability of encountering
values up to 1500 is 0.174. The plots of Figs. 2.1 and 2.2 could then be considered
as the probability distribution (also called the probability density function) and
cumulative probability distribution, respectively. Although, at first sight, the fre-
quency and probability distributions are really the same, we often make a distinc-
tion between them. The frequency distribution describes the actual data, that is the
data of a sample of the population. The probability distribution describes the
population as such, i.e. the distribution that would be obtained for an infinite
number of data. In Section 3.8 we will show that the fluoride data can be considered
to be normally distributed. We can then state that the data for the n = 63 children
yield the frequency distribution, while the probability distribution is really the
normal distribution.
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Fig. 2.2. Cumulative relative frequency distribution of the data of Table 2.1.

2.1.4 Descriptive statistics

2.1.4.1 Population parameters and their estimators

The essential statistical information for describing a simple data set consists of:

— the number of observations or individuals in the set, n;

— a parameter for central tendency or location, such as the (arithmetic) mean

(or average),

— a parameter for dispersion, such as the standard deviation.
Probability distributions are characterized by population parameters, such as the
mean and the standard deviation. To determine them would require an exhaustive
number of determinations. For instance, suppose we need to determine the pH of
a certain solution, then an infinite number of measurements would yield the prob-
ability distribution of the outcome of the pH measurement of that solution with a
population mean of the measurements, W, and a population standard deviation ©.
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In practice, we would make a limited number of measurements, n. This is called
the sample size because the measurements are viewed as a random sample of n
measurements taken from all possible measurements. The mean obtained in this
way is called the sample mean. The sample mean is an estimator of the true
population mean. The concept of estimators will be discussed further in Section 3.1.

2.1.4.2 Mean and other parameters for central location
The mean, x, is given by:

n

x=| Xx|/m 2.1
i=1

where x; is the ith individual observation or measurement. To avoid too cumber-

some a notation, this type of equation will in future usually be written as:

}=Zx,-/n

In Chapter 12 a non-parametric measure of central tendency, the median, will
be described. In that Chapter we will also explain the term “non-parametric”. For
the moment, it is sufficient to state that non-parametric measures are preferred
when the distribution characteristics are not known.

2.1.4.3 Standard deviation and variance
The standard deviation, s, is given by

Y
oo IZ(:— lx) (2.2)

and the variance by the square of the standard deviation, s>. They estimate respec-
tively o, the population standard deviation and 62, the population variance. The
term (n — 1) gives the number of degrees of freedom (df). In some cases, one does
not divide by (n — 1) but by n. When to do this is described in Chapter 3. However,
eq. (2.2) can be used without problems in the rest of this chapter.

The relative standard deviation is given by:

ss=s/x  (x>0) 2.3)
and whenitisexpressed asapercentage,by:
s (%) =100 s; 2.4)

The latter is sometimes called the coefficient of variation. IUPAC prefers not to
use this term.

As will be described further in Chapter 3, experimentally obtained means are
also subject to variation. The standard deviation of the means is called standard
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error of the mean (SEM) and is given by

_ 2
ss= s, An = 2i=x)° (2.5)
nn—1)
55 should not be confounded with s. The term standard error is further defined in
Chapter 3.

Here again we will introduce in Chapter 12 a non-parametric measure of dispersion.

The mean is also called the first (statistical) moment, and the variance the
second moment of a distribution. Moments, including higher order moments such
as skewness, are discussed further in Chapter 3.

2.1.4.4 Pooled standard deviation and standard deviation from paired data

In many cases groups of data have been obtained at different times or on
different (but similar) samples and one wants to obtain a standard deviation from
these grouped data. Let us suppose, for instance, that we want to determine the
standard deviation for a determination of water in cheese [5]. Replicate determina-
tions on several types of cheese have been carried out (see Table 2.3). Consider
first only the 7 first types of cheese (k = 7). We would be able to determine a
standard deviation for each of the 7 types of cheese separately. However, we would
prefer to determine one single standard deviation for cheese as a whole. This can
be done by pooling the variances according to:

(ny — Ds?+ (o — s+ ... (n— 1)s?
(m-D+m—D+...(m—-1

R
Spooled = (26)
TABLE 2.3

Example of calculation of pooled standard deviation. The data are results of moisture determinations in cheese
products with the Karl Fischer method (adapted from ref. {5]). The result for type 8 is artificial.

No (j) Type of cheese product x(%) 5 n; df; df; 57
1 Processed cheese food 43.36 0.29 10 9 0.7569
2 Processed cheese food 43.45 0.31 10 9 0.8649
3 Monterey jack 41.20 0.35 8 7 0.8575
4 Cheddar 34.96 0.24 8 7 0.4032
5 Processed American 40.41 0.30 8 7 0.6300
6 Swiss 38.52 0.31 8 7 0.6727
7 Mozzarella 52.68 0.24 9 8 0.4608
Y= 61 54 4.6460

55 = 4.6460/54 = 0.0860 5p=0.29

8 Type 8 51.00 112 8
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where ny, ... n, are the number of replicates in the first, ..., kth type of cheese and
s1, ... S are the corresponding standard deviations. The notation can be simplified,
since n; — 1, ..., ny — 1 are the degrees of freedom df}, ..., df, for each type. We can
then write:

52 _df}S%+df25%+...dka%_de]‘S,2
pooled de/ - zdfl

forj=1, .. k.

The computations are performed in Table 2.3. The pooled standard deviation is
0.29. Suppose now that we add an 8th type of cheese as in the last line of the table.
Would we be able to make the computations in the same way? At first sight, we
could use eq. (2.7) with the 8 categories instead of 7. However, the standard
deviation from type 8§ is clearly very different from that of the 7 others. The pooled
standard deviation would be (too) heavily influenced by the type 8 cheese, so that
the resulting value would not be representative. This example shows that only
similar variances should be pooled. Stated in a more scientific way, we can pool
variances provided that they are homogeneous.

For the special case of paired replicates (i.e. each determination was carried out
in duplicate, all n; = 2), we can also use eq. (2.7). However, we often find the
following equation:

2
sa= [2 g ]/k (2.8)

where d; = x;; — xp, 1.e. the difference between the two replicate values for the jth
sample and k the number of pairs. An example is given in Table 2.4.

This useful result can be derived as follows. Let us first consider the standard
deviation computed for a single pair of results, x; and x,, with mean x. It is equal to

\/(xl — %)%+ (Xz‘x)z

As in this special case [x — x;| = [x — x,), it follows that

2.7

s7=2(x —x1)’
or

+ +
s2=2((xl—2xzjz—2x—lzﬂxl +x?]
_ (x; —)Cz)2

2
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TABLE 2.4

Example of calculation of s using paired data. The data concern moisture in American Cheese measured on 20
successive days (adapted from ref. [6]).

Day j Xj1 X2 d; &
! 42.68 4277 —0.09 0.0081
2 42.08 4238 -0.30 0.0900
3 4339 4333 0.06 0.0036
4 42.87 4298 —-0.11 0.0121
5 4270 42.95 -0.25 0.0625
6 42.93 4295 —0.02 0.0004
7 4278 4297 -0.19 0.0361
8 4292 43.20 -0.28 0.0784
9 4334 42.89 0.45 0.2025
10 43.12 43.26 -0.14 0.0196
1 4243 42.54 -0.11 0.0121
12 43.05 43.15 -0.10 0.0100
13 42.99 42.86 0.13 0.0169
14 43.04 4278 0.26 0.0676
15 4341 4314 0.27 0.0729
16 43.12 4323 -0.11 0.0121
17 4225 42.53 -0.28 0.0784
18 42.96 42.78 0.18 0.0324
19 42.83 4272 0.11 0.0121
20 42.83 43.04 -0.21 0.0441
= 0.8719

§3=0.8719/(2 x 20) = 0.0218.
sq=0.148.

Using eq. (2.7) for pooling the variances of the k pairs, we then obtain eq. (2.8).
Since this is a pooled standard deviation it is subject to the same assumptions,
namely that the variance is the same for all samples analyzed. It should be noted
that the number of degrees of freedom on which s, is based is not equal to 2k as
might be thought at first, but to k.

2.1.4.5 Range and its relation to the standard deviation

The range, R, of a set of measurements is the difference between the highest and
the lowest value. Taking the lowest and highest value means that one implicitly
orders the data in order of numerical value. Statistics applied to ordered data are
called order statistics and the range is therefore such an order statistic. Another
application of order statistics is shown in Chapter 3 where data are ordered to apply
the graphical test for a normal distribution. A good approximation of s and
therefore an estimation of ¢ can be obtained by dividing the range by a constant d,
or d, (the habitual symbols in the statistical process and the quality control
literature).
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TABLE 2.5
The coefficient d (or d») (adapted from [9])

No. of sets (k) Number of replicates in a set (n)
2 3 4 5 6 7 8 10
| 1.41 1.91 224 248 2.67 2.82 2.95 3.16
3 1.23 1.77 2.12 2.38 2.58 2.75 2.89 311
5 1.19 [.74 2.10 2.36 2.56 273 2.87 3.10
10 1.16 1.72 2.08 2.34 2.55 272 2.86 3.09
o0 1.13 1.69 2.06 2.33 2.53 2.70 2.85 3.08
R R
S=-== 2.9
4°d (2.9)

The values of d, [7] are given in Table 2.5. The value of d; depends on the
number k of sets of data used to determine the range and on the number of replicates
in the set, n. The value for &k = = is sometimes called d, or Hartley’s constant.

Let us suppose that the following results have been obtained in chronological
order: 2.3,2.8,2.2,2.9, 2.7, 2.4, The lowest value is 2.2 and the highest 2.9 and a
single set of data was obtained. The range is therefore 0.7 and s estimated from the
range, using eq. (2.9) is therefore 0.7/2.67 = 0.26. The estimation with eq. (2.2)
would have yielded s = 0.29.

The range is rarely used for n > 15. It is useful to note that for n = 3 to 10, d, is
very close to Vn so that a rapid approximation of s can be obtained by

s=RAn  (3<n<10) (2.10)

In the same way as we can pool variances to obtain a common estimate of the
standard deviation from a set of the standard deviations, we can pool ranges. When
there are k sets of n data, then:

R=(1W) 3R,

where R; is the range of the jth set of data. R is called the average range and ©, the
pooled standard deviation, can be estimated from

s=R/A, = RA, (2.11)

An example of this calculation is given in Table 2.6. Since R = 0.565 and n =4,
it follows that s = 0.565/2.06 = 0.27.

R is used less often than s, because it is more vulnerable to extreme values.
However, in routine work, for instance in quality control, and for small samples it
is used rather often.
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TABLE 2.6

Computation of the average range for a characteristic of a product. Four replicates of each sample are measured.

Sample Concentration Mean Range
H @ 3) Gy (R)
1 9.6 9.8 102 9.9 9.875 0.6
2 10.0 10.2 10.0 10.4 10.15 0.4
3 9.3 10.1 9.6 9.9 9.725 038
4 9.4 9.9 99 95 9.675 0.5
5 10.3 9.8 10.1 10.2 10.1 0.5
6 9.9 104 10.0 9.9 10.05 a.5
7 103 104 104 10.1 10.3 0.3
8 10.0 9.7 10.0 9.8 9.875 0.3
9 9.9 9.7 9.3 10.0 9.725 0.7
10 10.4 9.5 10.0 9.3 98 .1
1 10.1 10.4 10.2 10.0 10.175 0.4
12 10.2 9.9 10.3 9.9 10.075 04
13 9.6 9.8 10.2 10.2 9.95 0.6
14 10.2 10.1 10.0 9.9 10.05 0.3
15 10.3 9.9 10.2 9.5 9.975 0.8
16 9.7 9.9 9.9 10.2 9.925 0.5
17 10.1 9.6 10.1 9.6 9.85 0.5
18 9.6 9.5 10.3 10.4 9.95 0.9
19 9.9 98 10.2 10.4 10.075 0.6
20 9.8 10.1 10.2 10.4 10.125 0.6

Grandmean = 997 R = 0.565

2.2 Measurement of quality
2.2.1 Quality and errors

Quality assurance has been defined [8] as a system of activities whose
purpose is to provide the producer or user of a product or service with the
assurance that it meets defined standards of quality with a stated level of
confidence. A process must yield a product with certain characteristics within
certain error margins and quality in measurement is obtained if the stated result
approaches the true result closely enough, i.e. is not subject to an error larger
than that considered acceptable.

A negative definition would therefore be that process quality 1s to avoid process
and measurement errors larger than a given and accepted level and to do that all the
time. Clearly, therefore, we must study errors and types of errors.
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TABLE 2.7

Types of errors as illustrated by a set of simulated data

=i

X1 X2 X3 X4 X5 X6 X7
A 102 98 101 99 100 103 97 100
B 103 97 1015 98.5 100 104.5 95.5 100
C 112 108 111 109 110 113 107 L0
D 102 98 101 99 100 103 125 104
E 103 102 101 100 99 98 97 100

2.2.2 Systematic versus random errors

Suppose the correct value for the result of a process or a measurement is known
to be 100. In Table 2.7 several possible sets of replicate results are given. Situations
A and B yield the correct mean but the individual results show a dispersion around
that mean. One says that the individual results are subject to random error. In
situation A the dispersion is less than in situation B. Process or measurement A
shows more quality. In statistical process control (see Section 2.3.1) one would say
that the process capability index for dispersion is better for A than for B, in
chemical analysis and in measurement science in general one would say that
precision (or one of its components, repeatability or reproducibility; see Chapter
13) is better. In situation C all results are clearly too high. There is a systematic
error. This systematic error is accompanied by some dispersion around the ob-
served mean: there is at the same time a random error. Systematic error is always
combined with random error. Much of statistical hypothesis testing is basically
needed to make a difference between systematic and random effects: is the
observed difference between categories systematic or due to random effects? In
statistical process control one describes systematic errors with the capability index
for setting (see Section 2.3.2) and in metrology one says that there is a bias (see
Section 2.5) in the measurement result. The term bias is also used in statistical
process control. Situations D and E will be discussed in Section 2.6.

2.3 Quality of processes and statistical process control

Statistical process control or SPC is concerned with the situation of the prob-
ability distribution of a parameter describing a product relative to the tolerance
limits. Industry tries to develop processes that produce products within the toler-
ance limits all the time and preferably with a large margin. Such processes are
called capable. The population of the objects produced should ideally be centered
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Fig. 2.3. Tolerance limits around a target value (NORM).

around the norm or target and have a dispersion such that a negligible part of the
production falls outside the tolerance limits and must be rejected.

Suppose one produces a bottled product, the concentration of which should be
10.0 (for ease of notation, we will not specify the concentration units), but accepts
that it may have values as low as 9.0 and as high as 11.0, i.e. a tolerance T of 1.0
on either side. The lower tolerance limit (LTL) is 9.0 and the upper tolerance limit
(UTL) is 11.0 (see Fig. 2.3). Batches with contents outside those limits must be
rejected: 10.0 is then the norm and 9.0 and 11.0 the tolerance levels. The difference
between the norm and the actual average of the population is a systematic error and
should be as small as possible. The dispersion of the population (i.e. the variation
due to random error) should be as small as possible. In SPC performance criteria
called process capability indexes are used to measure both types of errors and to
relate them to the tolerance interval (2.0 in our example). This interval goes from
LTL = NORM - T to UTL = NORM + T, so that it is 2 T wide. In the following
sections we will describe the process capability indexes that are used most often.
We will follow the terminology as used by Oakland [9] to do this.

2.3.1 Process capability indexes for dispersion

Suppose the probability distribution of a process is normal. The normal distri-
bution is described in more detail in Chapter 3. Suppose also that it is exactly
centered around the NORM, then if

2T > 66 (2.12)

only a very small amount of batches (<0.26%) will need to be rejected (see Fig.
2.4). In SPC, we often use the quantity Cp (process capability index) or CI to
characterize the magnitude of ¢ compared to T

Cp =2T/60 (2.13)

If ¢ is not known, it must be estimated and in SPC we usually apply R for this
purpose (see eq. (2.11))

Cp=2Td,/ 6R (2.14)
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Fig. 2.4. A process with Cp = 1.

When Cp > 1, at least 3 standard deviations on either side of the mean fall within
the tolerance limits (at least when the setting of the process, see Section 2.3.2, is
correct). For a normally distributed population this means (see Chapter 3) that at
least 99.74% of the objects fall inside the tolerance intervals. It is customary to
evaluate Cp as follows:

— Cp 2 1.33: reliable or stable situation. However, some companies require Cp
to approach 2. By requiring such strict control on variability shifts in setting
may occur without immediately causing values to fall outside the tolerance
intervals (see further).

— 1.33 > Cp = 1: control of setting required. Small changes in the setting may
lead to a rapid increase of proportion outside the tolerance interval

— 1> Cp 20.67: unreliable situation

— Cp < 0.67: unacceptable.

In the example of Table 2.6, for T = 1.0, Cp = 2 X 2.06/6 x 0.565 = 1.22. This
process would be qualified as requiring control.

Another index of dispersion is the relative precision index (RPI). Equation
(2.14) can be rewritten for Cp 2 1, i.e. 3 ¢ limits:

2T > 6R/d, or

2T/R > 6/d, (2.15)

2T/R is the RPL For the example of Table 2.6 with n = 4, the RPLis 2 x 1.0/0.565
=3.54.

Since 3.54 = 6/2.06, the condition is met to ensure that 3 ¢ units on either side
of the mean fall within the tolerance interval, at least when there is no systematic
error or bias.

2.3.2 Process capability index for setting
This index describes how different the measured mean x is from the required

mean (= NORM). x estimates the true mean | and x — NORM is the estimated bias
(see Fig. 2.5)
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Fig. 2.5. Effect of bias on a process with Cp = 1 (2 T = 60).

C, = NORM=A 4, (2.16)
T

Ca 1s sometimes called the index of accuracy. The term accuracy requires some
comment. In this context accuracy measures the systematic error. For a long time,
metrologists and analytical chemists have used the term with that same meaning.
However, ambiguity was introduced by the ISO definition of the term. According
to ISO, accuracy describes the sum of systematic and random errors. For this
reason, we no longer use this term when describing systematic errors and prefer the
term capability index for setting,.

When C, < 12.5 the setting of the process is considered reliable, for 12.5 < Cp <
25 control is required, for 25 < C4 <50 the process is considered unreliable and for
Ca > 50 it is unacceptable. In the case of Table 2.6:

_110.0-9.97

CA—TX100=3

and the setting of the process is reliable.

2.3.3 Process capability indexes for dispersion and setting

The overall quality index Cpk is given by

Cpk = distance of x to the nearest tolerance limit @2.17)
3¢

Also

T—x—NORM T-Ix—NORMI T
Cpk = = -

36 T 36
x — NOR

_ Cp[ - [x 7? M]]

or
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Ca
Cpk = Cp(l - 100) (2.18)

When C, =0, Cpk = Cp. Cpk is also called the corrected process capability index
(Cp corrected with C,). We can show that if Cpk = 1 the number of defectives is
between 0.13% (when objects falling outside the tolerance levels, all have either
too large or else all too small values) and 0.26% in the improbable case that exactly
as many bad objects have too low and too high values. For Cpk > 1.33 the number
of defectives is < 0.006%. When Cpk < 1 the number of defectives is > 0.13%,
which is deemed too much and the process is not considered capable of achieving
the tolerance specifications.

2.3.4 Some other statistical process control tools and concepts

There are seven basic graphical tools [10] in SPC or SQC (statistical quality
control), namely the flow chart describing the process, histograms (see Section
2.1.3) to describe the distribution of occurrences, correlation charts (also known as
scatter diagrams) (see Chapter 8), run and control charts (see Chapter 7), the
cause—effect diagram and the Pareto diagram. The latter two will be discussed here
in somewhat more detail.

The cause—effect diagram is also called the fishbone diagram or Ishikawa
diagram. Ishikawa is the inventor of this diagram, which he used to introduce
process control, i.e. the control of all factors that have an influence on the
quality of the product. It often takes the form of Fig. 2.6, and then includes

Policies People

N o
F 7

Procedures Plant

Causes

Materials Machines

~ X =
A S

Methods Manpower

Fig. 2.6. Ishikawa diagrams: the four P and four M versions.
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Fig.2.7. Ishikawa diagram showing process steps and critical parameters for a photographic emulsion
manufacturing process (from [11]).

technical, organizational and human factors, but can also be devoted to entirely
technical aspects such as in Fig. 2.7 [11]. One identifies major groups of causes
that can introduce variation in a process or produce a problem (the effect). Around
these major causes one identifies more detailed causes that relate to the major
groups.

The Pareto diagram (Fig. 2.8) is also called after its inventor, Vilfredo Pareto,
an economist who formulated the 80/20 rule. This Pareto diagram should not be
confused with the Pareto optimality diagram or plot described in Chapter 26.
Pareto concluded that 20% of the population owns 80% of the wealth and in the
same way quality control researchers concluded that 20% of the causes that
influence a process often produce 80% of the variation in that process. The chart
consists of a histogram listing in order of importance the causes of variation or
non-compliance to the requirements and is used as a tool to focus attention on the
priority problems. The Pareto chart is sometimes used, too, in connection with
latent variable methods (see Chapters 17, 35-36, etc.). Latent variables describe
decreasing amounts of variance present in the original data and it is often found
that the variance present in a data set characterized by many (hundreds or even
more than one thousand) variables can be explained by very few latent variables
(much less than 20% in many cases). The amount of variance explained by the
so-called first latent variables can then be depicted with a Pareto chart. An example
is given in Section 36.2.4.
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Fig. 2.8. A Pareto diagram. The bar diagram lists reasons for rejection of a batch of dyestuff and the
relative frequency of these reasons. The line is the cumulative relative frequency (adapted from [9]).

2.4 Quality of measurements in relation to quality of processes

When we measure the quality of a process, the dispersion of the results is due to
two sources, namely, the dispersion due to the process and the dispersion due to
the errors in the measurement. We would like to be able to state that the latter
source is comparatively small, so that we can conclude with little error that the
dispersion observed is due only to the process. Let us therefore try to relate the
quality of the measurement to the quality of the process and to the required quality.

Before we do so, we should note that there are two different problems. The one
we will discuss here is how good the quality of the measurement should be to
control the specifications of a product. The second problem, which will be treated
in Chapter 20 is what the characteristics of a measurement process should be to
allow control of the process. This characteristic, called measurability, includes also
time aspects.

Variances from independent sources are additive (see further Section 2.7) and
therefore:
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O; =G, + On,

where 67 is the total variance, 63 the variance due to the process and 67, the variance
due to the measurement.

If, for instance 6, = 0.1 ©,, then 6, = 1.005 &, or, in other words, the contribution
of the measurement in the total dispersion is 0.5%. Let us now relate this to
tolerance limits in the same way as we did for Cp and call this the measurement
index [12], MI.

M

60, 60,

MI for 6, = 0.1 6, would be equal to 10 for an acceptable process with Cp = 1.
For such acceptable processes MIs of 5 to 3 are usually required. M/ = 3 for Cp =
| means that 6, = 0.33 ¢, and 6, = 1.053 G,, so that the contribution of the
measurement to total dispersion is about 5%. As an example, let us suppose that
we have to develop a measurement method to follow a process. The relative
tolerance interval of the process is specified to be 2% and we envisage the use of
a titration method with relative standard deviation 0.15%. Does this reach the M/
= 3 standard? Since MI = 2/0.9 = 2.22, the answer is that since MI < 3 the method
is not sufficiently precise. We should use another method or else carry out each
titration in duplicate. Indeed, in that case the mean of the two determinations would
be used and the standard deviation on that mean would be 0.15%/N2 = 0.106% and
MI=3.14.

2.5 Precision and bias of measurements

The purpose of chemical measurement is in principle to find the true value of a
chemical quantity parameter, such as concentration. ISO [4] defines true value as:
“The value which characterizes a quantity perfectly defined in the conditions
which exist at the moment when that quantity is observed (or the subject of a
determination). It is an ideal value which could be arrived at only 1if all causes of
measurement error were eliminated and the population was infinite”.

As explained in Section 2.2.2, there are two reasons why an analytical result
should deviate from the true value, namely the occurrence of either random or
systematic errors. When a single analytical result x; is obtained it differs from the
true value p. The difference is the error:

€ =xi—Ho (2.19)

If more measurements are made, i.e. a sample from the population of measure-
ments is obtained, then a mean x can be computed for that sample of measurements.
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This x estimates W, the mean of the population of measurements and, if the sample
is large enough, one can state that x = . One can then split up eq. (2.19) as

&= (5 — ) + (L — o) (2.20)

The first part, x; — |, is the random error of x; and [ — g is the systematic error
which will be present in all measurements and therefore also in x;. Systematic
errors lead to inaccuracy and bias, random errors to imprecision. The accuracy of
the mean 1s defined by ISO [4] as: “The closeness of agreement between the true
value and the mean result which would be obtained by applying the experimental
procedure a very large number of times. The smaller the systematic part of the
experimental errors which affect the results, the more accurate is the procedure”.

A TUPAC document [14] defines at the same time the bias as follows: “A
measure of the accuracy (or inaccuracy) of the limiting mean is the bias” and “The
difference between the population mean and the true value, paying regard to sign”.
In other words accuracy is the concept, bias the measure.

The latter term can be further specified and in this context laboratory bias and
method bias [15] are of importance. They are discussed further in Chapter 3.

The precision is defined as follows [13]: “The closeness of agreement between
the results obtained by applying the experimental procedure several times under
prescribed conditions. The smaller the random part of the experimental errors
which affect the results, the more precise is the procedure”.

The measure of precision in analytical chemistry is the standard deviation.
Results are often expressed as a relative standard deviation. It should be noted that
the experimental standard deviation s estimates G, the true value of the precision.
When the number n of replicate measurements is large enough one can consider
that s = 6. When #n is “large enough” it is customary to replace s by © in equations.
What is meant by “large enough” is somewhat subjective. IUPAC [14] stated that
one can use ¢ for n = 10, but in most textbooks the limit is situated at n > 25 or
n 2 30. According to the exact conditions used, two types of precision are distin-
guished. They are called repeatability and reproducibility and are discussed in
detail in Chapters 13 and 14.

2.6 Some other types of error

In the previous sections we have focused on systematic and random errors.
There are some other sources of error which must be considered, namely:

— Spurious errors, leading to outliers or aberrant values. It may happen that
through a wrong operation, going from a wrong setting of an instrument to
transcription errors, an atypical value is obtained. This error is clearly neither
random nor systematic in nature. In Table 2.7 value 125 in series D is clearly
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an outlier. Outliers would falsify the estimation of parameters such as the
mean and the standard deviation, and at the same time lead to non-useful
descriptions of random and systematic error. From a statistical point of view,
outliers must be detected (see Section 5.5), removed and/or one must work
with methods resistant to outliers (robust methods, see Chapter 12). From the
quality management point of view outliers must be prevented. When an
outlier is found, it should be flagged and, when possible, the reason should
be ascertained.

Drift, indicative of a process that is not under (statistical) control. This is
exemplified in situation E of Table 2.7. If these data were obtained in
chronological order then one would conclude that there is a downwards drift.
It is an unstated, but always present, hypothesis that processes described in a
statistical way, are under statistical control. This means that the mean setting
and the dispersion of the result are assumed to be constant. The process
yielding the data of E would therefore not be under control. When this is the
case, it makes no sense to compute statistical parameters. As quality manage-
ment to a large extent consists of restricting variation, it is evident that drift must
be avoided. Drift is not the only type of error occurring when a process is not
under control. How to detect them is described in Chapter 7 on quality control.
Baseline noise. While all the other sources of errors are equally relevant for
processes and for measurements, this source of error affects only chemical
analysis results. Measurements often result from a difference between a
signal obtained when the analyte is measured and a signal obtained for a
blank. There are different types of blank (see Section 13.7.4), but for the
moment we can define the blank as consisting of the same material but
without the analyte. Both signals show variation due to random error. The
variation for the blank signal is also called the baseline or background noise.
The measured signal is due to the analyte plus the baseline noise and, when
the signal due to the analyte becomes very small, its contribution cannot be
distinguished from that of the baseline. It is then no longer possible to state a
result for the analyte. One says that its concentration is below the detection
limir (and should never say that it is equal to 0). The detection and related
limits are discussed in Chapter 13.

2.7 Propagation of errors

When the final result is obtained from more than one independent measurement,

or when it is influenced by two or more independent sources of error (for instance
measurement and process — see Section 2.4), these errors can accumulate or
compensate. This is called the propagation of errors.
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Random errors accumulate according to the law of propagation of errors given
by:

0z 0z
2_ 2 4 [ 2% 2 2.21
o [ax 1 JZ GX' * [axz]z ze ( )

where z = f (x1,x2) and x; and x, must be independent variables.
For instance, for the sum of two variables, 7 = x; + x2, eq. (2.21) can be written
as:

0§,+x2 _ [a(xl + xz)J2 o+ (a(xl +xz)1Z o
a)ﬁ axz

=10z + 107 or
O} +x,= O}, + O}, (222)

One can verify that:

6} _, =02 +0? (2.23)
Ol +hx, = 4’0}, + b’C%, (2.24)
(Ouyx, /X132)* = (O, /%1)* + (O, /x2)? (2.25)
(O, 1, 1 /%2))? = (O, /x1)* + (O, /x2)° (2.26)
o’alog x = (a G,/x)* 2.27)

In other words, variances are additive as such when the operation is addition or
substraction or as squared relative standard deviations when the operation is
multiplication or division. It must be stressed that these equations are correct only
when the variables are independent, i.e. not correlated. This is often not the case in
practical situations.

Systematic errors are propagated with their signs. If Az is the systematic error
affecting z, then for an additive/substractive relationship:

Z:a+bx1 +C.X2——dX3
Az = bAx, + cAxy — dAxs (2.28)

where Ax;, etc. are the systematic errors affecting x;, etc. While random errors do
not compensate but accumulate, systematic errors can compensate.
For a multiplicative relationship:

= aX)X2/X3

Azlz = AX]/X} + A)CQ/Xz — AX}/)Cg (229)
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In eq. (2.29) we observe that for this type of relationship relative systematic
errors are transmitted.

Equations of the type described in this section have assumed a large importance
in metrology, because they allow us to describe individual sources of error and to
combine them to describe what is called in metrology language the uncertainty.
This is defined as a range within which the true value should be found. When the
uncertainty is expressed as a standard deviation, it is then called a standard
uncertainty. When there are several sources of error the combined standard
uncertainty is obtained using the law of propagation of errors (for metrologists: of
uncertainties). Eurachem [15], which aims to introduce this terminology in analyti-
cal chemistry, states that in analytical chemistry in most cases the expanded
uncertainty should be used. This defines an interval within which the value of the
concentration of an analyte (the measurand) is believed to lie with a particular level
of confidence (see Chapter 3). It is obtained by multiplying the combined standard
uncertainty by a coverage factor, k. The choice of the factor k is based on the level
of confidence desired. For an approximate level of confidence of 95%, k is 2. The
uncertainty concept will not be used further in this book.

2.8 Rounding and rounding errors

Because of the existence of error, not all computed figures are significant and,
in principle, they should be rounded. A frequent question is how many figures
should be retained. According to the significant figure convention [16], results
should be stated so that they contain the figures known with certainty and the first
uncertain figure. When carrying out a measurement, such as reading a value on a
pH display graduated in tenths of pH, one would write 7.16, because the needle on
the display is between 7.1 and 7.2 and the best guess at the next figure is 6.

When the number is the result of a computation, the following rules may be
useful [16]:

— After adding or substraction, the results should have the same number of
significant numbers after the decimal point as the number being added or
subtracted which has the fewest significant figures after the decimal point.

— After multiplication or division, the number of significant figures should
equal the smallest number carried by the contributing values.

— When taking a logarithm of a number, we should give as many figures after
the decimal point as there are significant figures in the original number.

These rules should be applied in a sensible way. For instance, if in a set of data
a certain number is correctly rounded to 99.4 and one has to multiply it with 1.01,
yielding 100.394, it should be rounded to 100.4 and not to 100 as one of the above
rules would require.
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These are the rules that should be applied for the numbers as they are reported.

However, during the computations one should not round numbers, because this can
lead to rounding errors. Ellison et al. {17], who studied the effect of calculator or
computer precision and dynamic range concluded that even today finite numerical
precision, aggravated by poor choice of algorithm, can cause significant errors.
This is one of the reasons why, in this book, we sometimes report more significant
figures then we should really do. These numbers are often intermediate results,
which are used for further computations, sometimes in another chapter. Rounding
them correctly would lead to small discrepancies in the result, when the whole
computation is checked with a computer.
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Chapter 3

The Normal Distribution

3.1 Population parameters and their estimators

Before discussing the normal distribution as such, we need to enlarge somewhat
on the discussion in Chapter 2. Suppose we analyze the concentration of Na* in a
certain sample. Due to random error, there will be some dispersion of the results
of replicate determinations. If we were able to carry out a very large number of
such determinations, the results would constitute a population. We would like to
know the mean P and the standard deviation ¢ of that population, the former to
know the true content of Na* (assuming there is no systematic error) and the latter
to know the precision of the determination. However, it is not possible to carry out
so many determinations: let us suppose that n = 4 replicate determinations are
carried out. The four results constitute a sample in the statistical sense. The mean

x=(2x) /n 3.1

and the standard deviation

§= \fz((nx’f_f))z (3.2)

of the four replicates are the sample parameters. Sample parameters are estimators
of the population parameters: x estimates | and s estimates ©.

We distinguish the population parameters from the sample parameters, also
called sample statistics, by writing them as Greek letters (., 6). The latter are then
written as the corresponding Latin letters (m, s). In most statistical texts, there is
one exception, namely the sample mean, which is written as x. The ISO norms [2]
use m instead of L. We will follow the general practice and use |. This convention
is followed as much as possible in all instances where we want to distinguish
between the population parameter and the sample parameters. For instance (see
further Chapter 8), a straight-line regression equation is written as:

n=PBo+Pix
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where 1 is the true response and [, and [, are respectively the true intercept and
slope of the regression line. When we do not know [y and B, but estimate them
from a finite number of points, the estimated parameters are given as

&:bo+b|x

where by and b, the sample parameters, are the estimators of 3y and [3;, the
population parameters; y is the estimator of the true response 1. Notice that y
(y-hat) is used here as the symbol for the estimator of the true response to distin-
guish it from y which in regression represents the observed responses (see further
Chapter 8).

By considering many random samples of size n from a population and comput-
ing a statistic for it, we obtain a distribution of that statistic, called the sample
distribution. If we carry out many series of four replicate measurements, the means
of those sets of four measurements lead to a sample distribution of means for n =
4, characterized by its own mean and standard deviation. In this section we are
concerned with the mean of such distributions. The standard deviation of this and
other sample distributions will be discussed further in Section 3.5.

If the mean of the sampling distribution of a statistical parameter used to
estimate a population parameter is equal to that population parameter, then that
estimator is called an unbiased estimator. The mean x is an unbiased estimator of
. The mean of the sample distribution of the x values for sets of n = 4 replicate
measurements is equal to the population parameter p.. The situation is not so simple
for s and ©. As noted in Chapter 2, we divide here by n — | instead of by n where
n — 1 is called the number of degrees of freedom (df). The population variance ¢*
is in fact the mean of the squared deviations from p. At first sight, we should
therefore divide by » instead of by n — 1 to obtain 5%, the sample variance, and s,
the sample standard deviation. However, it can be shown that in this case s> would
be a biased estimator of 6. In other words, the mean of the sample distribution of
the s values for sets of n = 4 replicate measurements would not be equal to the
population parameter 62 It is to obtain an unbiased estimator of the variance that
the term n — 1 was introduced in eq. (3.2), although (see further) eq. (3.5) would
suggest the use of n. Although s? = (X(x; — X)?) / (n ~ 1) is an unbiased estimator of
o2, s is not an unbiased estimator of G. It has been shown [1] that s from eq. (3.2)
underestimates G and that the underestimation is a function of ». It is serious only
for small sample sizes. The correction factor is 1.253 for n = 2, but only 1.064 for
n =15 and 1.009 for n = 30. Except sometimes when using quality-control charts, it
1s unusual to correct s to obtain the unbiased estimate. In many application fields,
such as in analytical chemistry, it is often stated that n = 5 to 8 is needed for a
sufficiently good (i.e. precise and unbiased) estimation of s.
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3.2 Moments of a distribution: mean, variance, skewness

To summarize the characteristics of a distribution, we can use its moments. The
rth moment of a set of data x;, ...x;, ...x, is equal to

md = (2 x{j/n or, more briefly: m{ = (X x}) /n (3.3)
i=1
The moment about the mean is defined in the same way with x; being replaced
by x; — x. The rth moment about the mean or rth ceptral moment is therefore:

m,= (X (6 —x)") /n G4

It is equal to the average of the deviations of each of the data from the mean to the
power r.
The dimensionless moment (about the mean) is defined as

a,=m,/s’, with s as defined in eq. (3.5)

The first moment of the data, m$, is equal to the mean, while the first central
moment, m,, is zero. The mean is one of the descriptors of central location.

The second moment about the mean of any distribution (and not only of the
normal distribution, as is sometimes thought) is the variance. It describes the
dispersion within the data and its square root is equal to the standard deviation, s.

my=2(x;—x)P? /n=s (3.5

The variance is therefore the mean of the squared deviations of the data from the
mean. [t should be noted here that in this definition the sum of the squared
deviations from the mean is divided by # instead of the more usual n— 1. The reason
for this discrepancy is explained in Section 3.1.

The third moment about the mean is a measure of skewness, i.e. the departure of
the distribution from symmetry. Distributions such as those in Figs. 3.1a and b, are
said to be skewed. The third central moment is used in a dimensionless form by
referring it to the standard deviation.

Expressing s as a moment, and since the standard deviation is equal to the square
root of variance, we can write

m
a,=—> (3.6)
\mij

The (moment) coefficient of skewness is then given by:

az =12 =%2(x"*3]1 (.7)

N
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(a) (bl

(c)

Fig. 3.1. Non-normal distributions: (a) positive skewness, (b) negative skewness, (c) negative kurtosis.

It is also sometimes written as
b] = a%

When the curve is perfectly symmetric, a; = 0.
The fourth central moment is used to measure kurtosis (also called peakedness;
see Fig. 3.1). We often compute

as=by=my/ (m%)

For a normal distribution b, = 3. For this reason kurtosis is often defined as
1 X;— ; 4

b,-3= " Y — 3 so that kurtosis is then O for a normal distribution,

positive for a peaked curve (also called leptokurtic) and negative for a flat peak
(also called platykurtic).

The equations given in this section are those for a sample distribution. It is also
possible to write down the equations for a population distribution.

3.3 The normal distribution: description and notation

The best known probability distribution is the normal distribution. In shorthand
notation:

X~ N(“" 02)
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Fig. 3.2. Normal distribution (a) and cumulative normal distribution (b).

This means that the values of x are distributed normally with a mean |l and a
variance 6. The normal distribution or, rather its probability density function, is
given by:

I 1(x—p
G%exp{—z( S JZ} 3.8)

and is shown in Fig. 3.2. The factor is a normalization factor. It standardizes
oV2n

f(x) =

the area under the curve, so that it is always equal to 1.
The cumulative normal probability distribution is given by

Xo
1 [ (x—U\?
F(m)-f Gmexp{ 2( S ] }dx (3.9)
and is also shown in Fig. 3.2.

The mean and the standard deviation of such a population are values in a certain
scale. For instance, if we were to describe titration results in mi NaOH, the mean
would be equal to a certain number of ml NaOH and the standard deviation, too,
would have to be described in the same units. To avoid this scale effect, the concept
of a standardized normal distribution has been developed. The original distribution
is transformed by computing

z=(x-p)/ o (3.10)

This means that now the original data are described as their deviations from the
mean divided by the standard deviation. In other words, the scale used is now a
scale in standard deviation units. If a certain number has a z = 1.5, this means that
its value is higher than that of the mean because it has a plus sign and that its
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distance from the mean is equal to 1.5 standard deviation units. This process is
often called standardization, scaling or autoscaling. It is also called the z-transfor-
mation and z itself is called the reduced variable of x or the standardized deviate
or standard deviate. It should be noted that the ISO norms [2] use u« instead of z,
but because such a large number of statistical texts use z, we have preferred to
follow this custom. Since z is normally distributed with as its mean 0 and standard
deviation 1, the variance is also | and we can write

z~N(@O,1)

The probability function for the standardized normal distribution is given by

(p(z)z\ﬁLEexp (—%zzj (3.11)

and the corresponding cumulative frequency distribution by
D(z0) =f . exp 4 22 |dz (3.12)
N2rn 2

3.4 Tables for the standardized normal distribution

All statistical handbooks contain tables of the standardized normal distribution.
The principal reason why the z-distribution is used so often is that, because of the
standardization, it is possible to use scale independent tables. The main reason for
using the tables 1s that they allow to calculate what proportion of a population has
a value smaller or larger than a certain value or is comprised between two
boundaries. Since we are interested in areas under parts of the curve and in a
probability at a precise point on the z-axis, the tables do not describe the normal
distribution as such, but are based on the cumulative distribution.

One of the problems confronting the inexperienced user of statistics is that these
tables can be presented in several ways. Let us first note that there are one-sided or
one-tailed and two-sided or two-tailed tables. The latter tables show what part of
the total area falls inside or outside the interval (—z, +z) and usually how much of
it falls outside. Such a table is Table 3.1. The table gives the z-value corresponding
with certain areas of the sum of the two tails of Fig. 3.3.a. For instance, we can ask
what the z-value is such that 5% of all data of a normal distribution will fall outside
the range (—z, +z), i.e. 2.5% on each side. In the table we find that for p = 0.05, z =
1.96. The reason that this is printed in italics is that this value of z will be needed
very frequently.

In the same way, we can ask between what values can we find 90% of all values.
Then p = 0.7 and z = 1.65. Suppose that we know that certain titration results are
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TABLE 3.1

Values of z and the two-tailed probability that its absolute value will be exceeded in a normal population (see also
Fig. 3.3a)

Second decimal in p

P 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

00 o 2.576 2.326 2.170 2.054 1.960 1.881 1.812 1.750 1.695
0.1 [.645 1.598 1.555 1.514 1.476 1.439 1.405 1.372 [.340 1301
02 1231 1.254 1.226 1.200 1.175 1.150 1.126 1.103 1.080 1.058

0.3 1.036 1.015 0.9%4 0.974 0.954 0.935 0915 0.896 0.878 0.860
04 0842 0.824 0.806 0.789 0.772 0.755 0.739 0.722 0.706 0.690
05 0.674 0.659 0.643 0.623 0.613 0.598 0.583 0.568 0.553 0.539
06 0524 0.510 0.496 0.482 0.468 0.454 0.440 0.436 0412 0.399
0.7 0385 0.372 0.358 0.345 0.332 0319 0.305 0.292 0.279 0.266
08 0253 0.240 0.228 0.215 0.202 0.189 0.176 0.164 0.151 0.138
09 0.126 0.113 0.100 0.088 0.075 0.063 0.050 0.038 0.025 0.013

» 0.002 0.001 0.0001  0.00001 0.000001 0.0000001 0.00000001
z 3.090 3.290 3.890 4417 4.891 5.326 5.730
-2 Q +Z -2 0 +Z
a) b)
-2 o] +Z -t o] +t
c) d)

Fig. 3.3. The shaded areas are described by (a) Table 3.1, (b) Table 3.2; (c) Table 3.3; (d) Table 3.4.

normally distributed with L = 5.0 ml and 6 = 0.05 ml and would like to know in what
range 95% of all results will be found. This range is then given by 5.0 + 1.96-0.05. In
view of what will be discussed in Chapter 4, it is of interest to rephrase the question
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TABLE 3.2
Probability p to find a value between 0 and z (see also Fig. 3.3b)

Second decimal of 7

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.000 0004 0008 0012 0016 0.020 0024 0028 0032 0.036
0.1 0.040 0.044 0048 0.052 0056 0060 0.064 0067 0071 0.075
0.2 0.079 0.083 0.087 0091 0095 0.09 0103 0106 0.110 0.114
03 0.118 0.122 © 0.125 0.129 0.133 0.137 0.144 0.141 0.148 0.152
0.4 0.155 0.159 0.163 0.166 0.170 0.t174 0.177 0.181 0.134 0.188
0.5 0.191 0.195 0.198 0202 0205 0209 0212 0216 0219 0222
0.6 0226 0229 0232 0236 0239 0242 0245 0249 0252 0.255
0.7 0258 0261 0264 0267 0270 0273 0276 0279 0282 0285
0.8 0.288 0.291 0294 0297 0299 0302 0305 0308 0311 0313
0.9 0316 0319 0321 0324 0326 0329 0331 0334 0336 0339

1.0 0341 0344 0346 0348 0351 0353 0355 0358 0360 0.362
i1 0364 0366 0369 037t 0373 0375 0377 0379 0381 0383
1.2 0385 0387 0389 0391 0392 0394 039% 0398 0400 0401
1.3 0.403 0405 0407 0408 0410 0411 0413 0415 0416 0418
1.4 0419 0421 0422 0424 0425 0426 0428 0429 0431 0432
1.5 0433 0434 0436 0437 0438 0439 0441 0442 0443 0444
1.6 0.445 0446 0447 0448 0449 0450 0451 0452 0453 0454
1.7 0455 0456 0457 0458 0459 0460 0461 0462 0462 0463
{.8 0464 0465 0466 0466 0467 0468 0469 0469 0470 0471
1.9 0471 0472 0473 0473 0474 0474 0475 0476 0476 0477

z= 20 2.1 22 23 24 25 2.6 2.7 28 29
F(z)= 0477 0482 0486 0489 0492 0494 0495 049 0497 0498
z= 3.0 3.1 32 33 34 35 3.6 3.7 38 39 4.0

F(z) 04987 04990 0.4993 04995 04997 0.4998 04998 0.4998 04999 0.49995 0.49997

as follows: determine decision limits, beyond which results will be rejected, such
that 5% of all values fall outside, half on each side. The answer of course remains
the same.

Two other examples of z tables are given in Table 3.2 and 3.3. Because of the
symmetry of the normal distribution, these two tables give p-values only for
positive z-values. Table 3.2 gives the areas between two boundaries. One boundary
1s z = 0 and the table gives the area between this value of z and the chosen value
(see Fig. 3.3b). Example: a large number of determinations was carried out on the
same sample and the results are known to be normally distributed with 1t =215 and
¢ = 35. What percentage of determinations will fall between the boundaries 200
and 2507 First we compute the corresponding z-values.
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TABLE 3.3

Probability to find a value lower than z (see also Fig. 3.3c)

zZ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0500 0504 0508 0512 0516 0520 0524 0528 0.532 0.536
0.1 0.540 0544 0548 0552 055 0560 0564  0.567 0.571 0.575
0.2 0.579  0.583 0.587 0.591 0.595 0.599  0.603 0.606 0610 0614
0.3 0.618 0622  0.625 0.629 0633 0637 0.641 0.644  0.648 0.652
0.4 0.655 0.659  0.663 0666 0.670 0.674  0.677 0.681 0.684  0.688
0.5 0.691 0.695 0.698 0702 0705 0.709 0712 0716 0719 0722
0.6 0.726 0.729 0732 0.736 0739 0742 0745 0749 0752 0755
0.7 0.758 0.761 0.764  0.767 0770 0.773 0776 0779  0.782 0.785
0.8 0.788 0.791 0.794  0.797 0799 0802 0.805 0.808 0.811 0.813
0.9 0.816 0819 0.821 0824 0826 0.829 0.83I 0834  0.836 0.839

1.0 0.841 0844  0.846  0.848 0.851 0.853 0855 0858 0860  0.862
1.1 0864  0.866 0.869 0871 0.873 0.875 0.877 0879  0.881 0.883
1.2 0.885 0.887 0.889  0.891 0892 0.894 089%  0.898 0900  0.90!

1.3 0.903 0.905 0907 0908 0910 0911 0913 0915 0916 0918
1.4 0919 0.921 0922 0924 0925 0.926 0928 0929 0.931 0.932
I.5 0.933 0.934 0936 0937 0938 0939 0.941 0942 0943 0.944
1.6 0.945 0946 0947 0948 0949 0950  0.951 0952  0.953 0.954
1.7 0.955 0.956 0.957 0.958 0960  0.961 0962 0962 0962 0963
1.8 0.964 0.965 0966 0966  0.967 0.968 0969 0969 0970 0971

1.9 0971 0972 0973 0973 0974 0974 0975 0976 0976 0977

Z; = (200 -215)/35=-0.43
23 =(250-215)/35=1

The area between z = 0 and z = 0.43 is 0.166 or nearly 17% and between z =0
and z = 1 it is 34%. We can conclude that 51% of all data are comprised between
200 and 250.

Table 3.3 is a one-sided table, also called cumulative table. It gives the area
below a certain value of z (see also Fig. 3.3c). Suppose that for the same data as
given above, we want to know how large the probability is of finding a result above
250. Since z for that value is equal to 1, consultation of the table shows that p =
0.84. This is the probability of finding a value lower than z = 1. It follows that the
probability for values above z = 1, (i.e. in this case, values higher than 250) is 1 —-
0.84 =0.16 or 16%.

Tables 3.1, 3.2 and 3.3 contain the same information and therefore we should be
able to use any of them for each of the different examples discussed. For example,
let us consider the titration example, with which we illustrated the use of Table 3.1.
Table 3.2 covers only half of the normal distribution, i.e. 50% of the values that
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occur, so that when all those values are included p = 0.5. In this half distribution,
it gives the area between the apex of the distribution (z = 0) and the decision
boundary that delimits the higher tail. Since the area for both tails together is 5%,
that for the higher one will include 2.5%. The boundary is thus situated so that 50%
—2.5% = 47.5% (p = 0.475) is included between z = 0 and the boundary. For p =
0.475, one finds z = 1.96 as with Table 3.1.

In Table 3.3 we include the whole distribution up to the higher tail. This means
that we should determine the z-value that bounds the higher tail. The area up to the
higher tail includes 97.5%. The z for which Table 3.3 gives p = 0.975 is again 1.96.

3.5 Standard errors

If we take random samples of size n from a population with mean p and standard
deviation o, then the sample distribution of the means, x, will be close to normal
with mean U and standard deviation

o;=oAn (3.13)

O 1s the standard deviation of the means for samples with size n. It is also called
the standard error on the mean or SEM. It follows that we can also write:

where s; estimates oz. The approximation of normality will be better when n
increases, but the approximation is quite good, even for small n. It should be
emphasized that the population from which the samples are taken to obtain the
means need not be normal. In Fig. 3.4, two clearly non-normal distributions are
given. Taking samples of size n from these distributions will lead to the normal
distributions of the means of the » results shown in the figure. The distribution of
means of n individual non-normally distributed data will approach the normal
distribution better when the sample size n increases. When rigorously stated, this
is known as the central limit theorem.

The distribution of the sample means becomes progressively sharper when the
sample size n is increased: the means of samples conform more to the mean (i.e.
estimate better the mean) for larger n. This is shown in Fig. 3.5 where the distribution
of samples of n = 1 (i.e. individual measurements), n = 4 and n = 9 from the same
population N (i, 6°) are compared. The mean of the three distributions is p. The
standard deviation for n =4 and n = 9 is respectively o4 = 0/2 and 6A9 = 6/3.

It should be noted that sz or o5 should not be used as measures of dispersion to
evaluate the precision of a measurement or the capability of a process. We must then
use § or G, since we are interested in the dispersion of individual results; s; gives an
idea, however, about the confidence we can have in the mean result (see Section 3.6).
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Fig. 3.4, Means of samples taken from the non-normal triangular (a) and rectangular (b) distributions

are normally distributed.

f{x)

x (a) or %(b,c)

Fig. 3.5. The sharpness of a distribution of means depends on the sample size. Distribution (a) is the

population distribution; (b) samples of n = 4 from (a); (c) samples of n =9 from (a).

The standard deviation of a sample distribution is often called a standard error.
In this section we have studied the sample distribution of means and the standard
deviation of that distribution is the standard error of the mean. This can be applied
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to other sample distributions. For instance, we could have determined the sample
distribution of the standard deviation of samples with size n. For a normal distri-
bution of the original population, this would then have yielded a standard error of
the standard deviations, 6, = 6/A2n.

3.6 Confidence intervals for the mean

In Section 3.4, it was computed that for a normal distribution, 95% of the data
(or 95% of the area under the curve) fall within the limits z = —1.96 to z = +1.96.
This can be rephrased to state that 95% of the data fall within the limits p £ 1.960.
This is true for all normal distributions and, since sample means are normally
distributed, it is true also for the distribution of means. We can state, therefore, that
95% of all sample means of size n must fall within the limits

u+1.966An

Suppose we take a sample of size n from a population, we carry out the n
measurements and compute x. This x is an estimator of 1, the population mean.
Suppose also that the standard deviation, o, is known (how to proceed when G is
not known is explained in Section 3.7). There is then a probability of 95% that x
will fall in the range L+ 1.96 oAn (see Fig. 3.6). The statement

n-1960/Vn <x<p+1960/Vn (3.14)

is therefore correct in 95% of cases. This type of statement will be written in future
as x = L + 1.96 6/\n. It should be noted that this is considered to mean that x lies
in the interval p — 1.96 6/ Vn topt + 1.96 6/ Vn and not that it is equal to one or
both of these boundaries. It follows from (3.14) that

b f(X)

X
——
1960 & e 1960

vn v

Fig. 3.6. There is 5% probability (the shaded area) that x, the mean of a sample of n results, has a
value more than 1.96- ¢ Aln distant from .

M
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n=x+190/n (3.15)

is also correct in 95% of cases. This means that we can estimate [, which is
unknown, by determining x for n measurements and at the same time describe the
uncertainty of that estimate by writing eq. (3.15). In 95% of all cases the resulting
statement will be correct. In general:

w=x+zo/Nn (3.16)

with 100 — 0% probability or confidence, where ¢ is derived from a z-table. For
instance,

u=x * 1.6456/n with 90% confidence.

The limits in eq. (3.16) are called the confidence limits (for instance, with z =
1.96, the 95% confidence limits). The range between the limits is called the
confidence interval. Confidence limits or intervals can be stated in %, or as
fractions. A confidence of 90% is equivalent to one of 0.90.

Suppose now that a certain material has been analyzed and that a result has been
obtained of 10.10 + 0.10, where the + 0.10 describes the 95% confidence interval.
In other words, 10.10 is an estimate of the unknown L and there is 95% probability
that the interval 10.00 to 10.20 contains L. It is possible that the analyst is not happy
with this result because he wants the 95% confidence interval to be smaller, say
10.05. How can this be achieved? The 0.10 was computed as

o
1.96 ——=0.10
Vn

The standard deviation G is typical of the measurement process. It is the
population standard deviation and therefore a constant for that population. The
only thing which can be changed is n. Let us call the sample size to obtain the
smaller confidence limits, N. Then

)
1.96 - 0.05
It follows that N = 4 n.

By increasing the sample size, we can narrow the confidence limits. Because of
the dependence on Vn, , the n required to obtain certain confidence limits may of
course be impractical in some experimental situations. Nevertheless, this simple
example demonstrates that by choosing a correct sample size, the confidence
interval can, at least in theory, be restricted to what is considered an acceptable
range. This is a very important notion. Indeed, hypothesis tests (see Chapter 4) such
as the t-test and many others can be linked to considerations of confidence limits.
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| o I
“Zay3 *Zal2

Fig. 3.7. A standardized normal distribution curve with the parameter o.

It follows that sample size will also be important in hypothesis tests and, more
precisely, it will be shown that the sample size determines what kind of difference
(for instance between a mean and a given value) a test can detect (see Section 4.8).

The notation used until now can be generalized by writing that the (1-0)100%
confidence interval around the mean is given by

X% 700 (6/Vn) (3.17)

The meaning of parameter o for a standardized normal distribution is illustrated
in Fig. 3.7. The fact that o/2 is used means that the interval is two-sided. If o. = 5%,
then the limits are made such that they exclude 2.5% on each side. There is a
probability of 2.5% that u will be situated outside the limits and lower than x and,
equally, there is a probability of 2.5% of finding a value outside the confidence
limits but higher than x. Using our notation of eq. (3.17), we would write

xt 20005 (G/ \j”_)

3.7 Small samples and the t-distribution

Equation (3.17) contains G, the population standard deviation. This is a problem
because this equation tries to estimate the unknown population parameter [ and its
confidence limits from the sample parameter x using a population (and therefore
also usually unknown) parameter . When n > 30 (some practitioners put the limit
at 25), then s as defined by eq. (3.2) is considered a sufficiently good estimator of
¢ and one may write for the (1 — a)-100% confidence interval

W=X*2z4 (s/Vn) (n230) (3.18)
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For n < 30, s is an uncertain estimate of 6. A correction is required and this is
obtained by replacing z by ¢, so that:

W=X* o, (s/\n) (n < 30) (3.19)

is the (1-01)-100% confidence interval for sample sizes n < 30. The r-values are
derived from tables of the t-distribution.

The notation of eq. (3.19) is found in many statistics books. Again it should be
noted that, although an ISO norm [3] exists, there is no standardization in practice.
ISO, for instance, writes (3.19) as:

X - (f04975/\/;) s<m<x+ (l0_975 /\/;’l‘) S

Often, and we will follow this practice when we consider it useful, we write
down the number of degrees of freedom, for which ¢ is determined

W=XFtann (s/Vn)

As for the z-tables, there are many different r~tables available. One possible
layout is shown in Table 3.4. For the confidence interval for the mean the number
of degrees of freedom (df) is n ~ 1. For instance, to obtain the 95% confidence
interval for a sample size of n = 10, one consults the table at df =9 and #y025 = 2.262,
sothatp=x= 2.262(5/\[;). One notes that for df = oo, 15025 = zo.025 = 1.96. Also, at
n =30, 5025 = 2.04, which is considered close enough to 1.96. The z-distribution is
broader at the base and more peaked around the centre than the z-distribution (see
Fig. 3.8). The higher the number of degrees of freedom, £, is, the closer it comes
to the z distribution. The ¢-distribution is also known as Student’s distribution.
Thus, for small sample sizes the confidence interval is broader than when a large
(n > 30) sample size is used or than when one knows o, for instance, from prior

Af(x)

~

-4 -3

Fig. 3.8. The r-distribution for 3 degrees of freedom compared with the z-distribution.
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TABLE 3.4
One-sided z-table (see also Fig. 3.3d)

Area in upper tail of r-distribution

df 0.10 0.05 0.025 0.0l 0.005 0.0025 0.001
i 3.078 6.314 12.706 31.821 63.657 127.32 318.310
2 1.886 2920 4.303 6.965 9.925 14.089 22.327
3 [.638 2.353 3.182 4.541 5.841 7.453 10.215
4 1.533 2.132 2.776 3.747 4.604 5.598 7.173
5 1.476 2.015 2.571 3.365 4.032 4.773 5.893
6 1.440 1.943 2.447 3.143 3.707 4317 5.208
7 1.415 1.895 2.365 2.998 3.499 4.029 4785
8 1.397 1.860 2306 2.896 3.355 3.832 4.501
9 1.383 1.833 2.262 2.821 3.250 3.690 4.297
10 1.372 1.812 2.228 2.764 3.169 3.581 4.144
11 1.363 1.796 2.201 2718 3.106 3.497 4.025
12 1.356 1.782 2179 2.681 3.055 3.428 3.930
13 1.350 1.771 2.160 2.650 3.012 3.372 3.852
14 1.345 1.761 2.145 2.624 2977 3.326 3.787
15 1.341 1.753 2.131 2.602 2.947 3.286 3.733
16 1.337 1.746 2.120 2.583 2.921 3.252 3.686
17 1.333 1.740 2.110 2.567 2.898 3.222 3.646
18 1.330 1.734 2.101 2.552 2.878 3.197 3610
19 1.328 1.729 2.093 2.539 2.861 3.174 3.579
20 1.325 1.725 2.086 2.528 2.845 3.153 3.552
21 1.323 1.721 2.080 2.518 2.831 3.135 3.527
22 1.321 1.717 2.074 2.508 2.819 3.119 3.505
23 1.319 1.714 2.069 2.500 2.807 3.104 3.485
24 1.318 L711 2.064 2.492 2797 3.090 3.467
25 1.316 1.708 2.060 2.485 2.787 3.078 3.450
26 1.315 1.706 2.056 2.479 2719 3.067 3.435
27 [.314 1.703 2.052 2473 2771 3.056 3.421
28 1.313 1.701 2.048 2.467 2.763 3.047 3.408
29 1.311 1.699 2.045 2.462 2.756 3.038 3.396
30 1.310 1.697 2.042 2.457 2.750 3.030 3.385
40 1.303 1.684 2.021 2.423 2.704 2971 3.307
60 1.296 L.671 2.000 2.390 2.660 2915 3.232
120 1.289 1.658 1.980 2.358 2.617 2.860 3.160
oo 1.282 1.645 1.960 2.326 2.576 2.807 3.090

experimentation. When using smaller sample sizes, we pay a double price: the
confidence in the estimate of the population mean is less precise (the confidence
interval is larger), because we use the broader ¢-distribution and because we divide
by a smaller n in eq. (3.19).
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It 1s also useful to note that confidence intervals for the mean can be obtained
by using the range. The procedure is described, for instance, in the annex to the
ISO-norm [3].

3.8 Normality tests: a graphical procedure

As we will see in later chapters, many statistical tests are based on the assump-
tion that the data follow a normal distribution. It is far from evident that this should
be true. Distributions can be non-normal and procedures or tests are needed to
detect this departure from normality. Also, when we consider that a distribution is
normal, we can make predictions of how many individual results out of a given
number should fall within certain boundaries, but, again, we then need to be sure
that the data are indeed normally distributed. Sometimes one will determine
whether a set of data is normally distributed because this indicates that an effect
occurs that cannot be explained by random measurement errors. This is the case
for instance in Chapters 22 and 23, where the existence of a real effect will be
derived from the non-normality of a set of computed effects. In this section a
graphical procedure is described that permits us to indicate whether a distribution
is normal or not. A second graphical procedure, the box plot, will be described in
Chapter 12. Graphical procedures permit us to visually observe whether the
distribution is normal. If we want to make a formal decision, a hypothesis test is
needed. Such tests are described in Chapter 5.

The graphical procedure applied here is called the rankit procedure. It is
recommended by ISO [2] and we shall consider the numerical examples given in
that international norm to explain how the method works. The example concerns
the measurement of breaking points of threads. Twelve threads are tested and the
following results are obtained:

2.286;2.327; 2.388; 3.172; 3.158; 2.751; 2.222; 2.367; 2.247; 2.512; 2.104; 2.707.

We can reason that a result such as 2.104 must be representative of the lower tail
of the distribution, 3.172 the higher tail, and results such as 2.367 and 2.388 the
central part of the distribution. To have a better look, it seems logical to rank the
data, yielding the following series:

2.104; 2.222; 2247, 2.286; 2.327,; 2.367; 2.388; 2.512; 2.707; 2.751; 3.158; 3.172.

To determine for which part of the distribution each number is representative,
let us first look at a simpler example and suppose that only three numbers were
given, 2.104, 2.367 and 3.172. We would then split up the range in four subranges,
namely <2.104, 2.104-2.367, 2.367-3.172 and >3.172, and would consider that
2.104 1s therefore located such that 25% of all data that could be obtained from the
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distribution would fall below it, that 2.367 is located such that 50% fall below it,
etc. In other words, the cumulative frequency of 2.104 would be equal to 25%, i.e.
100/(n+1)%, for 2.367 it would be (100-2)/(n+1)%, etc.

Let us now turn back to the thread data and discuss this using a more statistical
vocabulary. We can now state that the cumulative frequency of data is equal to or
lower than 2.104, in short the cumulative frequency of 2.104, is equal to | (since there
is one observation £2.104) and that its cumulative relative frequency is given by

cumulative % frequency = (100 X cumulative frequency) / (n + 1) or
(100-1)Y/(12 + 1) =7.7%.

The cumulative frequency of 2.222 is 2 and the cumulative relative frequency is
15.4% and for 3.172 the respective values are 12 and 92.3%.

The following step is to assume that the data indeed come from a normal
distribution. The value with a cumulative relative frequency of 7.7% is equivalent
to the value that delimits a lower tail of a normal distribution with an area of 7.7%.
Expressed in z-values by using one of the Tables 3.1, 3.2 or 3.3, this is equal to
-1.43. By proceeding in this way for all the data, one obtains ranked z-values, also
called ranked normal deviates or rankits. This yields Table 3.5.

It can now be shown that, when the data are indeed normally distributed, a graph
of x against z yields a straight line. The result for the example is shown in Fig. 3.9.
This figure also illustrates the weakness of this graphical method. It is sometimes
(as is the case here) difficult to decide whether the points fall on a straight line or
not. Nevertheless, it is a useful way of looking at the data, and in many cases, as
illustrated further, it leads to clear conclusions.

TABLE 3.5

Computation of normal deviates from a set of ranked data. The measurements are strengths of threads in Newton

[2].

Measurement (x) Cumulative frequency Cumulative % frequency z

2.104 1 7.7 -1.43
2222 2 15.4 -1.02
2.247 3 23.1 -0.74
2.286 4 308 -0.50
2327 5 385 -0.28
2.367 6 46.1 -0.10
2.388 7 53.8 +0.10
2512 8 61.5 +0.28
2.707 9 69.2 +0.50
2.751 10 76.9 +0.74
3.158 11 84.6 +1.02

)
~}
35
[l

923 +1.43
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Fig. 3.9. Rankit method applied to the data of Table 3.5.

To make the procedure outlined above easier to carry out in practice, we can also
use normal probability paper. The z-axis is then replaced by a cumulative prob-
ability axis. Fundamentally, this type of paper uses the straight-line relationship
between z and x for a normal distribution, but it skips a step in the calculations by
giving the axis the values of the percent cumulative frequency corresponding with
the z-values. Applying this to the data we are examining here, leads to Fig. 3.10
and, of course, the interpretation is the same as for Fig. 3.9. When a straight line is
obtained, we conclude that the distribution is normal.

There may be several reasons why an experimentally obtained set of data is
found to be not normally distributed. This is illustrated with two examples de-
scribed by Feinberg and Ducauze [4]. The first concerns a set of Pb measurement
by AAS on the same portion of beef liver. The results are given in Table 3.6 and
the rankit-line is shown in Fig. 3.11a. The line is clearly not straight. Closer
inspection reveals that this may be due to the two highest results. After elimination
of these two points, we obtain Fig. 3.11b. Now a straight line can be drawn
through the points. The effect was due to two outlying points. The underlying
distribution is normal, but outliers distort it. The presence of outliers can be seen

TABLE 3.6

Results of Pb determinations (in mg/kg) in the same portion of beef liver (from Feinberg and Ducauze [4])

0.965 0.975 1.040 1.095 1.105
1.135 1.135 1.165 1.167 1.180
1.200 1.210 1.210 1.232 1.232

1.242 1.300 1.362 1.945 2.185
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Fig. 3.10. Rankit method: use of probability paper for the data of Fig. 3.9 and Table 3.5.
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(a) cumulative %
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Fig. 3.11. (a) Rankit method for the AAS data of Table 3.6; (b) Rankit method for the AAS data after
elimination of the two highest data.

as a source of non-normality. In fact, we will treat these data again in Chapter 5
with outlier tests and a formal test for normality (the Kolmogorov—Smirnov test)
and the evaluation of all these approaches together confirms that the two results
may be considered to be outliers.

The second example concerns bacterial counts on ground meat. The data are
given in Table 3.7 and the rankit-line is shown in Fig. 3.12a. It is known that this
type of data follows a lognormal distribution. This means that the In (x;) or log (x,)
are normally distributed. In Fig. 3.12b the rankit-line for the natural logarithms of
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(a) cumulative %
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Fig. 3.12. (a) Rankit method for the bacteriological data of Table 3.7; (b) Rankit method for the log
of the same data.

the counts is shown and the graph indeed indicates that they can be considered to
be normally distributed.

When larger numbers of data are available, it is convenient to first group them
into classes. This can be demonstrated again with the data on fluoride in the enamel
of teeth of young children of Table 2.1. The cumulative frequencies (on probability
paper) or the equivalent z-values (on the usual linear graph paper) are plotted
against the class marks. The result on probability paper is shown in Fig. 3.13. We
can conclude that the fluoride data are normally distributed.



TABLE 3.7

Bacteriological counts of 50 samples of ground meat (from Feinberg and Ducauze, [4]).

0.035 0.035 0.036 0.069 0.136
0.164 0.171 0.222 0.226 0.258
0.327 0.380 0.560 0.780 0.800
0.840 0.860 1.010 1.050 2.020
2.440 2.600 2.600 3.000 3.230
3.300 3.340 3.500 3.600 3.600
3.760 8.500 9.400 9.500 10.100
12.000 15.000 16.230 23.700 24.100
28.200 57.000 61.000 61.000 62.000
66.000 80.000 105.000 112.000 174.000

All data were divided by 10°.
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Fig. 3.13. Rankit method for the fluoride data of Table 2.1.
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3.9 How to convert a non-normal distribution into a normal one

The bacteriological example already provides a clue to how to make non-normal
distributions normal, namely by transformation. The transformation we carried out
in the previous section is called the log-transformation. Log-normal distributions
are frequently found in nature, particularly when the variable studied has a natural
zero (such as weight, length, etc.). In this case simple normality around the mean
could include negative values. The log-transformation is however not the only
transformation one can think of. Other often used transformations are the square
root transformation (y = Vx), the inverse transformation (y = 1/x), the square
transformation y = x>. A special type of transformation, mainly useful when one
studies proportions, is the arcsine transformation [5].

A procedure to find the transformation that best approaches normality has been
described by Box and Cox [6]. Its approach is very similar to that used for finding
a transformation to straighten a line (see Chapter 8). They propose the following
general equation:

. A_
po itk =k

' A (3.20)
vi=log (x; + k) forA=0

This procedure requires us to find optimal values for the three parameters A, k;
and k, and therefore an optimization procedure such as the Simplex (Chapter 26)
would be needed. For this reason, we usually simplify this to

y,':X,?L fOr}L?’:O
(3.21)
vi=logx forA=0

We then select a criterion that describes similarity to (or distance from) normal-
ity. This can be the Kolmogorov—Smirnov d-value (see Chapter 5), but other
criteria are also possible, such as skewness. The latter is chosen here. We will use
as. As explained in Section 3.2, for a perfectly symmetric distribution as should be
close to 0. The procedure consists in computing y; = x} in function of A (and if
yi = log x; for A = 0). For each A, the skewness of the distribution of the y; is then
obtained. This yields Table 3.8. and Fig. 3.14. The optimal A (i.e. yielding the
lowest a;) = 0, so that we should indeed choose the log transformation.
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TABLE 3.8

Moment coefficient of skewness, a3, in function of A in eq. (3.21) for the data of Table 3.7

A az A a3
-2 0.505 0.1 0.035
-1.9 0.502 0.2 0.083
-1.8 0.498 0.3 0.125
-1.7 0.494 04 0.163
—-1.6 0.489 0.5 0.197
-1.5 0.483 0.6 0.229
-14 0.476 0.7 0.259
-1.3 0.468 0.8 0.288
-1.2 0.457 0.9 0.318
-1.1 0.445 1 0.347
-1 0.429 I.1 0.377
-0.9 0.409 1.2 0.407
-0.8 0.386 1.3 0.437
-0.7 0.357 1.4 0.468
-0.6 0.323 1.5 0.498
-0.5 0.283 1.6 0.527
-0.4 0.237 1.7 0.555
-0.3 0.185 1.8 0.583
-0.2 0.130 2 0.635
0.1 0.073
0 0.017
a5
0.5 ]
A
-2 -1 0 R 22

Fig. 3.14. Selection of transformation equation to normality. Skewness, as measured by a3, against A
in eq. (3.20).
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Chapter 4

An Introduction to Hypothesis Testing

4.1 Comparison of the mean with a given value

Let us consider the following situation which is described in more detail in
Chapter 13 on Method Validation. To investigate possible bias we have prepared
a powder containing all the ingredients of a formulated drug in known amounts.
Suppose that the amount of drug added is 100.0 mg.

Example I: Four determinations are carried out (n = 4). The mean, x = 98.2 and
the standard deviation is known to be 0.80 from prior experience (¢ = 0.80).

Example 2: Six replicate determinations are carried out with the following
results:

98.9-100.3-99.7-99.0-100.6 -98.6 (n =6, x=99.5, s = 0.81)

Note that in this case the standard deviation is not known, but estimated from the
6 replicate results.

We now need to decide whether the mean obtained, x = 98.2 (Example 1) or 99.5
(Example 2), is really different from the amount, p, = 100, we should find. Notice
that x is only an estimate of the true result, |, the population mean, that would be
found if we were to carry out an infinite number of replicate determinations.
Therefore, we conjecture whether it is true that (1, as estimated by x, is equal to L.
This is an example of a hypothesis. To ascertain whether one can accept the
hypothesis to be true, a hypothesis test is carried out.

Hypothesis testing is a very important part of statistics. Here, we will apply it to
test whether the mean of observed results should be considered equal to a given
value. Hypothesis testing can also be used to investigate whether the means or
standard deviations of two or more series of results are equal, whether the slope of
a regression line is really 0 (or 1, according to the context), etc. Many of the
following chapters will be devoted to developing appropriate hypothesis tests. In
this chapter our aim is to introduce the subject of hypothesis testing. We will do
this by considering the following hypothesis:

Hypothesis: the mean, u, of a population of measurement results estimated from
a relatively small set of observed results, x, is equal to a given value L.
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The test needed to test this hypothesis is the easiest to understand and we will
use it to explain how a hypothesis test is carried out in general and to consider some
questions common to all hypothesis tests.

We should make here an important note. Statistical significance means that a
difference between two numbers (here 100 and 98.2 or 100 and 99.5) is considered
real. It does not necessarily mean that the difference is relevant to the problem
under study. For instance, if the test were to conclude that the difference between
100 and 99.5 is significant, this does not necessarily mean that the method studied
is declared incorrect. In fact, the method developer probably will be quite pleased
with the outcome and use the method, because a difference of 0.5% is in this
application of no consequence, even if it is statistically significant. Decision-mak-
ing should therefore be a two-step process. One should first ask whether a differ-
ence is practically relevant and then whether it is also statistically significant. The
concept of relevant difference is introduced from Section 4.7 onwards.

4.2 Null and alternative hypotheses

The hypothesis as formulated above is that there is no difference between p and
Uo. This is called a null hypothesis and the customary short hand notation for it is:

Ho: =1
or, since L, in both examples is equal to 100.0,
Hop: 1 = 100.0

For the case that the null hypothesis is not true, we need to formulate an
alternative. This is referred to as the alternative hypothesis, H,. Here we will
formulate it simply as:

H|: W # 100.0

It must be noted that this choice is not evident. In Section 4.9, we will see that
instead of H,: “is different from”, there are situations where it is preferable to state
H,: “is greater than” or, of course, H;: “is smaller than”.

When carrying out a hypothesis test, it is good practice to state clearly at the
outset what both hypotheses are. In our example,

Ho: 1 = 100.0

H,: p# 100.0
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4.3 Using confidence intervals

Let us first consider Example 1. The 95% confidence interval around x is given
by:

98.2+1.96 (6/Vn) =98.2+ 1.96 - 0.40 = 98.2 + 0.78

When the target value (here 100.0) is inside the confidence interval, then we
consider it as compatible with x. We would then conclude that x = 98.2 is not an
improbable value for u = 100.0 and that therefore

1= Ho = 100.0

and we would accept Hy. Accepting the null hypothesis does not imply that we have
proven that the hypothesis is true. The only thing we can conclude is that the data
are compatible with Hy and that there is not enough evidence to reject Hp.

When the confidence interval around x does not contain L, then we would reject
the null hypothesis because the value of x is improbable for a 1 = 100.0. Indeed,
there is only a 5% probability that | has a value situated outside the confidence
interval.

In the case of Example 1, since [, is outside the confidence interval around X,
we would reject the null hypothesis and our conclusion would be to accept H;:
W # to. In Example 2, ¢ is not known. We therefore have to use a t-value to
construct the confidence interval (see Section 3.7):

995+ t0.025,5 S/\/;

or 99.5+2.57 0—\/881 =99.5+0.85

Uo = 100.0 falls inside this interval and therefore we consider that x = 99.5 is
consistent with i = 100.0 and accept

Ho: jt = o = 100.0

Let us now summarize how we have carried out the hypothesis test. We have
carried out the following steps:

1. We have stated the null and alternative hypothesis. For both examples:
Ho: = o = 100.0
H;:p=100.0

2. We have decided that o. = 5%.
3. We have defined a confidence interval around x at the 100 — ot = 95% level.

X+ 1.96(c/\n (n> 25 or o known) (4.1a)
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or
X * t(s/\n (otherwise) (4.1b)

4. We investigated whether L, falls within the confidence interval.

5. If the answer to our question was “yes” we accepted Hy, if it was “no” then we
rejected Hp (and accepted H,).

6. Presentation of results (see Section 4.5).

It is very important to understand that the same decision scheme can always be
followed: it is valid for all hypothesis tests. In other words, when we have a
confidence interval we can carry out a hypothesis test. Let us consider an example.
In Chapter 8, we will learn how to estimate a regression line. The estimate of the
intercept of such a line is given by b,. This estimates By, the true intercept. In
Chapter 13, we will see circumstances where we would like to know whether we
can accept that By = 0. Let us see how we would carry out the hypothesis test for a
situation where by = 0.10. We would comply with the following reasoning.

I. H()l B():0.0
H]Z B()?‘—'0.0
2.0=5%

3. We have not learned yet how to determine a confidence interval around by, but
suppose it is found to be by + 0.15. The confidence interval is then by — 0.15 to
by + 0.15 or [-0.05, 0.25].

4. Does 0.0 fall within [-0.05, 0.25]?

. The answer is “yes”. Therefore we accept Ho: 8o = 0.0

6. Presentation of results (see Section 4.5).

wh

4.4 Comparing a test value with a critical value

There is a second way in which hypothesis tests can be carried out. Fundamen-
tally, it 1s exactly the same as the method described in the previous section, but it
looks somewhat different. As we saw in Chapter 3.6, we can state that 95% of all
sample means x of size n fall within the limits u = 1.96 oin. If we suppose that
Hy: U = W is true, then this statement is correct for all x falling within the interval
o+ 1.96 6/Vn. In Fig. 4.1 the distribution of the x around i, for the first example
is given, once in the original units (mg) (Fig. 4.1a) and once in z units (Fig. 4.1b).
We know that 95% of all means compatible with Hy: [ = L are situated within z =
~1.96 and z = +1.96 of the standardized normal distribution of means. The 95%
acceptance interval for Hy: 1L = Ly in z-units is therefore given by —-1.96 <z < +1.96
or Izl < 1.96. We can also express the distance of the observed x from p, in z-units.



77

Ho
X
Xinmg g
98.20 99.22 1?0 100.78
| I
]
! ! .
N ] |
. ¢ 1 |
X ! !
! |
{ 1
: |
1 ] Z b )
-4.50 -1.96 Q 196

Fig. 4.1. The distribution of x-values for Example 1 (see text) that would be obtained if [y = W: (a) in
original units, (b) in standard deviate units.

If this experimental z is larger in absolute value than 1.96, the x being tested falls
outside the acceptance interval for Hy and H; will be accepted. Otherwise, if
Ix — pol/(c/\n) < 1.96, we will accept Hy.

This way of presenting a hypothesis test is different because it does not explic-

itly apply confidence limits. It is, however, very important to realize that both ways
of presenting a hypothesis test lead to exactly the same conclusion.

Let us summarize the second way of presenting a hypothesis test for both

examples used in this chapter and, first, for Example 1

1

(O8]

. State the hypotheses

Ho: 1t = o =100.0
H;: p#100.0

. 0=5%
. What is the critical z-value? It is z.; = 1.96
. What is the z-value for the x being tested? It is computed with eq. (4.2)

Lx — Ll
Izl = 4.2
4= A @2
and this is in this case equal to

198.2 — 100.0
lfl=————=4.50
T 08 AL

. If 1zl < lzeqd, then accept Ho. In this case Izl = 4.5 > 1.96, so that Hy is rejected

(and H; accepted). We conclude that gL # 100.0

. Presentation of results (see Section 4.5).
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For the second example, steps 1 and 2 are exactly the same, so that we give only
the following steps.

3. What is the critical t-value? Since in this example, ¢ is not known and n < 25 to
30, one uses s and ¢. For 5 degrees of freedom,

Ve = 2.57

4. What is the t-value corresponding to 99.5?7 The equation used is:

Ix — pol
HE 4.3
A “3)
In this case:
199.5 — 100.01
ltl = ———————=1.51
0.813 N6

5. Since ltl = 1.51 < 2.57, Hy is accepted and one concludes that
n=100.0
6. Presentation of results (see Section 4.5).

We have seen now two ways of testing a hypothesis:

1. Determining the confidence interval around x and observing whether 1, falls in it.
2. Determining a critical z or z-value and observing whether this is exceeded or not.

We have a preference for method 1, because it does not only yield a decision on
accepting Hy or H,, but also gives a compact and informative summary of the
measurement result: it is more data oriented. On the other hand, method 2 allows
us to give p-values (see next section).

Significance testing should not be applied as a “yes” or “no” procedure, except
perhaps in a regulatory context where rules have to be followed. Scientifically,
there is no reason to make entirely opposite conclusions when p = 0.048 and
p =0.052. As noted by Box, Hunter and Hunter [1] “significance testing in general
has been a greatly overworked procedure”.

4.5 Presentation of results of a hypothesis test

The experimental or calculated z-value of Example | (z = -4.5) coincides with
an o. = 0.000005 and the experimental ¢-value of Example 2 (r=-1.51, df = 5) with
an o =0.19. To make a distinction between the a priori ¢-value (usually o = 0.05)
and the one actually obtained, it is customary to write that p = 0.000005 (Example
1) and p = 0.19 (Example 2) instead of o.

If p > «, as is the case for Example 2, then the probability of making an error by
stating that there is an effect (i.e. a difference between L and L) 1s too large and it
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is preferable to state that there is no significant effect (shorthand notation NS). This
also means that we will find that L, is inside the confidence interval or that |z| < ze.
We can now fill in point 6 of Sections 4.3 and 4.4 for Example 2 to read:

6. p=0.19 (NS)

For the first example, p < ¢, which means that [, is outside the 100 (1 — a)%
confidence interval. We write the p value and, to give an idea of the confidence we
have in the result, add p < 0.05, p < 0.01, p < 0.001, etc. as happens to be the case.
Writing p < 0.05 also implies in such a case that p > 0.01. For Example 1, we would
fill in point 6. to read:

6. p ~ 0.000005 (p < 0.00001).

4.6 Level of significance and type I error

Let us return to Section 4.3 where it was decided to use confidence intervals as
decision criteria. For the example introduced in that section it was decided to reject
all values outside the limits 97.42-98.98 as not belonging to the probability
distribution around x and to conclude that all values of 1, outside that interval are
not compatible with |l = ly. The confidence intervals were chosen so as to include
95% of the probability distribution.

We should now focus on the other 5% and to do this we must turn the argument
around. Let us suppose that L = Uy = 100. For any value of x within the range
99.22-100.78, we would conclude that |1 = . Indeed, in all these cases, the
confidence interval around x would include py = 100.0. However, there is 5%
probability that a value of x outside the range 99.22-100.78 would be obtained
when | = Yo = 100.0. Nevertheless, we have decided that we would consider such
values as inconsistent with L = o and would consider x’s with such values as
indicating that L # |4,. In these 5% of cases, we would therefore make an error. The
5% is called the level of significance and is equal to the probability of (incorrectly)
rejecting the null hypothesis when it is true. The error we make in this way is called
a type I error or also the o error.

4.7 Power and type II Errors

There is also a type 11 error. To understand this we should consider Fig. 4.2. Let
us again consider the situation where the null hypothesis is true: | = o = 100.0.
The x-values that would be obtained would be situated with 95% probability in the
range 99.22-100.78. The value of 98.20 is outside this range and the confidence
interval around 98.20 (97.42-98.98) would not include 100.0. Therefore, we would
reject Hy on finding a value of 98.20 and would also do so for any other value below
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98.20 9922 1000 10078

Fig. 4.2. Type I (o) and lI (B) errors for Example 1. Distribution A is the distribution of x-values that
would be obtained if the measurement were biased (i = 98.20). Distribution B is the distribution of
x-values that would be obtained if the measurement were unbiased (L = [ty = 100.0).

99.22. The limits are chosen such that there is a 5% probability that we would make
an o or type I error (o = 0.05 or 5%). This is so because in 5% of all cases a set of
4 determinations with an unbiased method (U = o) for which ¢ = 0.80 will yield a
value outside the limits.

Let us now suppose that the method is indeed biased with a bias —1.80 and that
the population mean [t of the determinations is therefore 98.20. We might wonder
whether that bias could go undetected. If we were to find a value of x higher than
99.22, we would conclude that there is no bias because the confidence interval
around 99.22 would include 100.0. We would accept the Hy hypothesis, i.e.
conclude that W = [y, while in fact this is not true. We have now made a type /]
error or B-error, which consists in (incorrectly) accepting that Hy is true, while in
fact it is not.

There is a relationship between the two types of error. Let us compute how large
the B-error would be for our example. Knowing that there is a bias of —1.80 and
that therefore u = 98.20, what is the probability of finding a value higher than
99.227? The z-value for 99.22 on the distribution centred around 98.20 is given by:

.o 99.22 — 98.20
0.8 N4

Using Table 3.2 we see that the fraction of values with z > 2.55 is 0.006. The
B-error is 0.006 or 0.6%. For this example, we can summarize that when we accept
an o-error of 5%, we incur a risk of f = 0.6% of falsely accepting Ho, when there
is a true bias of —1.8.

Let us now suppose that a = 5% is considered too large, i.e. having a | out of 20
probability to decide that Hy must be rejected when it should not. We would like
to reduce the risk and therefore set o = 1%. The lower decision limit around 100.00
within which x-values would lead to the conclusion i = 15 = 100 would now be

0.8
100.00 - 2.57 |—=|=98.97
)

=2.55
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The probability that an x higher than this decision limit would be obtained out
of the population centred around p = 98.20 has now grown larger. Since

e 98.97 — 98.20
 08A4

the probability of finding a higher value than 98.97 is 2.6%. There is a probability
of 2.6% that one would not detect the bias.

Let us suppose that there is a somewhat smaller bias, 1L = 98.40. As before, we
can compute the z-value for 99.22 for a distribution centred around 98.40. This
would then be 2.04, resulting in a B-error of 2.1% for o= 5%; for .= 1%, z=1.43
and 3 = 7.6%. Clearly, decreasing o increases the B-error. For this reason, we
would not reduce o to very low values. Very often, o = 0.05 and, in fact, this has
become so standard that a good reason is needed to replace it by o = 0.01 in step 2
of the hypothesis testing process as explained in Sections 3 and 4.

Incidentally, we can now define what is called the power of a test. This is the
probability of correctly rejecting Hy when it is false or, in other words, how likely
the test is to detect a statistically significant difference. Since B is the probability
of accepting Hy under those circumstances, the power of a test is given by 1 — 3.
For 0. = 5% and p = 98.4, B = 0.021 and the power of the test = 1 — 0.021 = 0.979
or 97.9%.

The comparison of the B-error for u = 98.2 and p = 98.4 shows that, all
circumstances being equal, B grows as the difference between 100 and p becomes
smaller. This is common sense. We are more likely not to detect a bias when that
bias is small. It is also common sense that  will be larger when ¢ is larger and n
smaller. The two distributions of Fig. 4.2 then overlap to a larger extent. In
summary, for a given q, 3 grows as |Ho — W decreases, G increases or n decreases.

The effect of n will be investigated further in Section 4.8. Let us return to the
difference ty — L. The effect of this difference is often described with a power
curve. This is a plot of 1 — 3 (the power) as a function of the |i — Lo|. When |1t — L]
is small the probability that H, will be rejected is also small or 3 is large and the
power, 1 — B, again small. The larger |l — || becomes the larger the power
becomes. When |u — | is sufficiently large, the power becomes virtually 1. This
is shown in Fig. 4.3 together with the so-called operating characteristic curve (OC
curve). This is the curve relating 3 and |u — | for a given a, ¢ and n. The two
curves, of course, give the same information.

The power of a test is sometimes called its sensitivity. This is for instance the
case when one carries out clinical tests. In this context, & and 3 considerations are
very important; o represents then the probability of obtaining what is called a false
positive and B that of obtaining a false negative conclusion, the conclusion being
that a patient suffers from some disease. This is discussed at greater length in
Section 16.1.3.

=192
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Fig. 4.3. (a) Power curve. (b) Operating characteristic curve.

4.8 Sample size

So far, we have set an a-level and a sample size n, and, for a given |jy — | and
o or s, we were then able to compute . Another question is to determine what
sample size n is large enough to achieve the purpose of our test with sufficient
confidence. To express it in terms of our examples, B is the probability that we will
not detect a certain bias although it exists. Stated in this way f clearly is important
and we should ask the question: how large should the sample size n be to detect a
given difference |l — p, which is considered relevant, with a given G or s, so that
there is only a% probability of deciding that there is a difference when there is
none, and % probability of not detecting the difference when it does exist. Stated
again in terms of our example:

— how many replicates »n should be analyzed to detect a bias of at least jito —
in a procedure with a known precision, ¢, or a precision, s, estimated from
the experiment, so that there is a probability of not more than a% to decide
there is a bias, when there is in fact none and, at the same time a probability
of not more than 3% that a bias larger than |p — p} will go undetected?

If we call 8 the minimum difference that we want to detect, we can verify that

(see Fig. 4.4):

n2[(zan + 25) 0/5]2 (4.4)
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Fig. 4.4. Derivation of equation for minimum sample size.

for known 6 where zq/, and zp are the value of z for the stated o and B, respectively.
Indeed from the example given above, it can be understood that the decision limit
is situated at zo, from Lo and zg from . If a certain difference & = |1 — o] must be
detected at a given o and [3-level, for instance o = 3 = 5%, then, expressed in z units
82 zan + 28 = Zoo2s + Zo.os. In the original units and still assuming ¢ is known

0 2 (zon + 28) oAn

which yields eq. (4.4) by rearrangement.

We can also make use of graphs published by ISO [2]. In Fig. 4.5a the required
sample size n can be derived for a known ¢ and in Fig. 4.5b for an s, estimated by
the experiment. Let us consider first only Fig. 4.5a. The abscissa is A, where

= il 4.5)
c

The parameter A is in fact the effect or bias we want to detect expressed in
standard deviation units. It may be that a smaller effect than A exists, but this is
considered of no practical interest by the experimenter. Let us return to Example 1.
The known amount py = 100 mg. A bias of 1.5 mg is judged to be relevant and
should be detected with a § = 0.05. Since it is known that 6 = 0.8 mg, A = 1.5/0.8
= 1.87 and, from Fig. 4.5a, n > [(1.96 + 1.65)/1.871* = 3.73 is derived, then n = 4
determinations need to be carried out.

Suppose now that ¢ had been 1.6 mg. Then A =0.93 and n should then have been
15. Equally, if the bias to be detected had been 1.0 instead of 1.5, then, for 6 = 0.8,
A =1.25 and n should have been larger than 8.33, i.e. 9.

If we compare Fig. 4.5a with Fig. 4.5b, we observe that the two sets of lines are
about the same for n > 25. This is the limit above which in Chapter 3 it was accepted
that the experimental s may be equated with 6 and where probability calculations
can be performed with z as a parameter. Below n = 25, the divergence increases.
Below that limit, calculations are performed with z-values, which become
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Fig.4.5. Sample size required to detect a certain bias A = 8/ (situation a, ¢ known) or A = &/s (situation
b, s obtained from the experiment) at the o = 5% level of significance. Adapted from Ref. [1].

progressively larger compared with z-values as n decreases. For instance, for s
(instead of 6) =0.8 and Juy — | = 1.5, 1.e. A= 1.87, we derive that n = 6 (instead of 4, i..
1.5 times more). Incidentally, analytical chemists very often work with n = 6 replicates
in studies concerning bias and usually do not know o, which means they determine s.
At the o0 =0.05, B =0.05 level, they are therefore able to detect a bias of 1.87 s.
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A philosophical point should be made here. As already stated above, the practice
of hypothesis testing is biased towards the use of o over (. The reason is that
statisticians applying their methods in biology and the social sciences were conser-
vative and were mainly concerned to avoid jumping wrongly to the conclusion that
there is an effect; they therefore stressed a low probability o of wrongly deciding
there is an effect, when there is none. This is not necessarily always the best
approach. In the example given in this section, it is just as important not to decide
there is no effect (no bias) when in fact the effect exists. Not including considera-
tions about {3 encourages sloppy work. Indeed, the best way of achieving a low a
is a high o (bad precision) and low n (few replicates). 3 then becomes high, i.e. the
probability of missing an effect, although it exists, increases. Considerations about
o and B depend strongly on the consequences of making a wrong decision. In the
toxicological study of a drug, we should be as certain as possible not to conclude
wrongly that there is no toxicological effect, since this would lead to undesirable
side-effects in the drug. In pharmacological studies on the same drug, we would
try to avoid wrongly concluding that there is an effect, since this would lead to the
use of drugs that have no real therapeutic effect. The toxicologist needs a small
B-error, the pharmacologist a small o-error.

If we do not know G and determine s from the experiment in which we are
investigating whether the bias or effect exists, there is of course a problem. If we
do not know before the experiment how large s is, we cannot compute #. In this
case, we can work as follows. If at the given o level an effect is detected, then we
accept H, and reject H. If no effect is detected, eq. (4.1b) is used to determine how
large B is for the n-value used, the s found and the observed &. If this is smaller than
a level set a priori, we accept Hp and reject H,. Otherwise, we note that we cannot
reject Hy and accept H,, but reserve judgement because n was too low and [
therefore too high.

It should be noted, that although this is the correct procedure, it is often not
applied. However, this depends on the field of study. For instance, in clinical trials
B considerations are often included to determine minimal sample size; in analytical
chemistry and in chemistry in general they are usually not.

4.9 One- and two-sided tests

In the preceding sections the hypotheses were
Ho: 1= o and Hy: p# o
or to write H; in another way

Hitp> o or K <Ho
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In the context of the example given in these sections, it 1s just as bad to find that
the analysis method yields too high (1L > ) or too low (L < o) results. This is what
is called a two-sided, two-tail or two-tailed hypothesis. The former term is pre-
ferred by ISO.

There are situations where we are concerned only about “greater than” or
“smaller than”, and not both of them at the same time. For instance, suppose that
ore is bought to produce metal A. The seller guarantees that there is 10 g/kg of A
in the ore. The buyer is interested only in ascertaining that there is enough A in the
product. If there is more, this will be all the better. The hypothesis test will be
formulated by the buyer as follows:

Ho: u =10 g/kg
Hi:u< 10 g/kg

The hypothesis it > 10 g/kg will not be tested as such by the buyer. The buyer
(consumer) tests that the risk of having less metal A than expected does not exceed
a given probability. The producer might decide to test that he does not deliver more
metal A than needed, in other words that he does not run a higher risk than that
acceptable to him of delivering too much A. This leads to the concept of con-
sumer/producer risk and the application of acceptance sampling techniques (see
Chapter 20). Another example is the following. A laboratory is testing whether a
substance remains stable on storage. The initial concentration is known to be 100.0
mg/l. After a certain time, the sample is analyzed six times. The mean x is 94.0
mg/l. It estimates a mean [ and one is concerned whether U is lower than 100.0,
taking into account that it is known that ¢ = 8.0 (i.e. a relative standard deviation
of 8%}). The hypotheses are

Ho: 1 = 100.0
H;: u<100.0

These are examples of a one-sided, one-tail or one-tailed test.
Let us consider the normal distribution of x around p of Fig. 4.6. The hypotheses
are:

Ho: L2 o
Hp:nw<p

At the a = 0.05 level for a two-sided test, the interval in which H, will be accepted
1s between z =-1.96 and z = +1.96. For a one-sided test with Hy: i < po, we would
accept an o = 0.05 probability to incorrectly reject Hy, i.e. conclude that p is lower
than pp, when it is in fact at least equal. Therefore the decision limit must be set so
that 5% of all cases fall below it, 1.e. at z =~1.65.
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Fig. 4.6. One-sided decision limit (at —1.65) compared to two-sided limits (between —1.96 and +1.96).

(a) Interval in which Hy would be accepted for a one-sided test; (b) interval in which Hy would be
accepted for a two-sided test.

Allx below [o— 1.65(0/Nn) will lead to rejection of Hy: |1 2 i and to acceptance
of Hy: 1L < po. Observe that an effect is more easily detected. For instance for a
calculated z = —1.80, the two-sided test would have led to acceptance, while the
one-sided test, thanks to the additional information about the type of H;, would lead
to rejection.

In terms of confidence limits, we can reword the preceding paragraph as
follows. All x such that x + 1.65(c/\n) is smaller than o will lead to rejection of
H,. We have used a one-sided confidence interval. We observe that the upper limit
of the one-sided interval is closer to x than the same limit for the two-sided interval.
The results between z = —1.65 and —1.96 now lead to rejection of Hy, while this
would not have been the case for two-sided tests. We should also observe that the
limit of a 95% one-sided interval is equal to that of the 90% two-sided confidence
interval. The one-sided test detects more easily a difference and therefore it is more
powerful than the two-sided test.

When there is an a priori reason to carry out the one-sided test instead of the
two-sided test, this should be preferred. In this context a warning should be given.
Let us go back to Example 1 of Section 4.1. We might (incorrectly) reason as
follows. Since x =98.2, it is smaller than Li; therefore, the hypothesis pL > Lo should
not be included. The original two-sided hypothesis test thus becomes a one-sided
test and the test becomes more powerful. This reasoning is not acceptable. If there
1S no a priori reason to state a one-sided hypothesis test, then the hypothesis should
be two-sided.

Let us now apply this to the stability on storage example and go through the steps
of Section 4.3,

Step 1:
H(): }lZ Ho
H;: u < pp with g = 100.0
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Step 2:

o=0.05

Step 3: The confidence interval around x is a one-sided confidence limit given by
8.0

940+ 1.65-—==994
V6

Step 4: 1o = 100.0 is higher than the upper confidence limit.

Step 5: Reject Hy, accept H;. The amount found is significantly lower than 100.0
mg/l. The substance is not stable on storage.

Step 6: z = (100.0 — 94.0)/(8.0/V6) = 1.84. p(one-sided) = 0.033.

The report would therefore include the statement p < 0.05 and preferably also:
(p =0.033).

It should be noted that we used z and the one-sided version of eq. (4.1a) because
o is known in our example. As in Section 4.3, ¢ should be used instead of z in cases
where this is appropriate.

We can also include B-considerations for a one-sided test. In this case the
equation for the sample size n becomes

n= [(za +zp) (5/8}Z (4.6)

for known 6. Since zy, (eq. (4.4)) is larger than z, (eq. (4.6)), n for a one-sided test
may be smaller than for a two-sided one to have the same probability of not
detecting the relevant difference 8.

4.10 An alternative approach: interval hypotheses

The hypotheses described so far are also called point hypotheses in contrast to
the interval hypotheses we will shortly introduce in this section. We will do this
with an example about the stability of drugs in biological fluids, which was
described by Timm et al. [3]. The problem is to decide whether a drug in blood
remains stable on storage. A certain amount of degradation (up to 10%) is consid-
ered acceptable. In statistical terminology, we want to exclude a degradation higher
than 10% with 95% probability. Suppose that we add a known amount of 100.0 mg
to the blood, then, following our procedures from Sections 4.1 to 4.9, we could only
carry out a hypothesis test with as hypotheses:

H()I v > 100.0 H,: M< 100.0

This is a one-sided test and therefore, to obtain the one-sided 95% confidence limit,
we will compute the two-sided 90% confidence interval (see 4.9). Since the test is
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Fig. 4.7. Different situations in a stability on storage test. x is the mean result obtained, UCL, the upper
one-sided 95% confidence limit used in the point hypothesis test and LCL the lower one-sided 95%
confidence limit used in the interval hypothesis test. The interval between UCL and LCL is the 90%
two-sided confidence interval.

one-sided, we will automatically accept Hy, when the mean result obtained by
carrying out n replicate tests is higher than 100.0 (situation f) of Fig. 4.7. In
situations a) and e) we would also conclude that there is no significant difference
because 100.0 is situated in the confidence interval, in the one-sided case the
interval (—eo) — UCL (upper confidence limit). In situations b) and ¢) we would find
that the difference is significant, but we would probably add that since our best
estimate, the mean, is higher than 90.0. the difference is acceptable. In d) we would
conclude that there is a significant difference and that it is unacceptably high. This
approach is not satisfying because we observe from Fig. 4.7 that in situations c)
and e) there is a higher than 5% probability (one-sided) that the loss due to
degradation exceeds 10.0, since the lower confidence limit is situated below 90.0.
In other words, the B-error exceeds 5%.

In interval hypothesis testing, one accepts as not different those cases where the
confidence interval around the estimated value is completely inside the acceptance
interval, here 90.0 — +<. This confidence interval is now the interval LCL (lower
confidence limit) — (+e0). In statistical terms the interval hypothesis for the one-
sided example can be written as

H(): MSAL
H;:n>AL

where AL is the acceptance limit 90.0.

Let us again consider Fig. 4.7. Situations a) and f) are completely inside the
acceptance interval. This is also the case for b). In this case, there is a significant
degradation because 100.0 is not in the two-sided 90% confidence interval, but it
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1s not relevant since, with 95% probability, it does not exceed the 10% degradation
limit.

In cases c), d) and e), we would reject the conclusion that there is no relevant
degradation. This was already so for the point interval hypothesis for d) but not for
situations c) and e). The rejection in c) is due to the fact that it is a marginal case.
It is more probable that the degradation is acceptable than that it is not, but the
probability that it is not is too high. In situation e) the uncertainty on the results is
too high. This is connected with the B-error for the point hypothesis test: if we had
computed the B-error for the point hypothesis test, we would have concluded that
the B-error for finding a difference of 10.0 would have been too high. We observe
that the interval hypothesis test is more conservative in accepting Hy, but also that
it must be more useful in certain cases since it takes into account considerations
about which difference is relevant and avoids high B-errors. For a two-sided test,
we would write:

Ho: LALZporUAL <
H;: LAL < p<UAL

where LAL and UAL are the lower acceptance limit and upper acceptance limit,
respectively.

Hy is rejected and therefore H, accepted at the 95% level of confidence when the
90% two-sided confidence interval around x is completely included in the accep-
tance interval. This 95-90 rule may appear strange, but it can be rationalized as
follows. The interval hypothesis test can be described as consisting of two one-
sided point hypothesis tests:

Ho:: n <LAL Hozﬁ v > UAL
H,:u>LAL Hj: u < UAL

each being carried out at the 95% one-sided confidence level. H, will be rejected
when both Hy, and Hg, fail and we should remember that the limit of a 95%
one-sided confidence interval is equal to one of the limits of the 10% two-sided
interval. When x < centre of the acceptance interval, one knows a priori that, when
LAL < u (H;, accepted), H,, will be accepted automatically since UAL must then
be larger than . In practice therefore, in this simple situation a single one-sided
hypothesis test is required. This is, however, not always the case.

This approach is not the more usual one. As explained, it has been proposed by
Timm et al. [3] for stability studies of drugs in blood and also by Hartmann et al.
[4] for method validation purposes, but it is not the standard approach in those two
fields. It has been accepted, however, as the standard approach for bioequivalence
studies [5]. Such studies are carried out to show that the bicavailability of a new
drug formulation is comparable to that of an existing one. To avoid -errors, i.e.
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accepting bioavailability when it does not exist, one has come to apply the interval
hypothesis testing approach. Although this approach is to be preferred in many
cases, we will not apply it systematically in what follows because it is so unusual
in most application fields.
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Chapter 5

Some Important Hypothesis Tests

5.1 Comparison of two means

In the previous chapter we learned how to carry out a hypothesis test. We applied
it to compare a sample mean, x, with a known value, [. Now the comparison of
two independent sample means, x; and x,, will be described.

Depending on the experimental design two different approaches have to be
considered. The first is for the comparison of the means of two independent
samples. In this case we want to compare the means of two populations and to do
this a sample from each population is taken independently. For example to com-
pare the nitrogen content in two different wheat flours replicate determinations in
each flour are performed. Or, in the comparison of two digestion procedures prior
to the determination of nitrogen in wheat flour, the same flour is analyzed inde-
pendently by means of the two procedures.

The latter comparison could also be performed by means of paired samples. In
that case different flours are used. An aliquot of each flour is analyzed by means
of both procedures. The two samples thus obtained are paired, each pair being
composed of the same flour. Consequently there is a one-to-one correspondence
between the members of the samples which implies that there are equal numbers
of observations in both samples. Pairing in this example is interesting since
different flours are included in the comparison of the two digestion procedures.

5.1.1 Comparison of the means of two independent samples
Two different approaches which depend on the sample size can be considered.

5.1.1.1 Large samples

xy and x, are estimates of [; and LL,, based on respectively n; and n; observations.
We have to test the hypothesis that there is no difference between p; and ;.
Therefore the null hypothesis is formulated as:

Ho:wy = Wy (or Ll = =0)

and the alternative hypothesis, for a two-sided test:
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Hiw # (or Wy — 2 # 0)

For a one-sided test the alternative hypothesis is:
Hiw > o (orp — Y, >0)

or

Hpp <y, (or iy — 2 < 0)

depending on the problem that is considered.

For large samples, (n; and n, 2 30), taken from any distribution of x (i.e. even a
distribution that is not normal), the mean x, is normally distributed with a variance
o°/n (see Section 3.5). Consequently x; and x, are normally distributed variables
with variance 6}/n; and 6%/n,, respectively. If the null hypothesis is true, x; — x, is
also normally distributed with a mean zero and variance (G1/n; + 63/n), since the
variance of the sum (or the difference) of two independent random variables is the
sum of their variances.

Therefore the statistic used in the comparison of x; and X, is:

X =X
\’ 2 2
o1 /n1 + 05 /ny

If o, and ©; are not known, s? and s3 calculated from eq. (3.2) are considered as
good estimators of the population variances 67 and 03. In that case one calculates:

S

Z:

st /ny + 53 /ny
For a two-sided test Hy is accepted if Izl, the absolute value of z obtained from eq.
(5.1) oreq. (5.2), is smaller than the critical z-value at the chosen significance level.
For a one-sided test with H; specified as U, > L, Hp is accepted if z < zeq.. If Hy is
specified as [, < Wy, Ho is accepted if 2> —z¢n. At 0= 5%, et = 1.96 for a two-sided
test and z.;, = 1.645 for a one-sided test.

The test can, of course, also be carried out by calculating the (1 — o) 100%
confidence interval for p; — 1,. The 95% confidence interval for a two-sided test is
given by:

(}] —;2) +1.96 ‘JS% /nl +S% /nz (53)

The null hypothesis is accepted if this interval contains the value 0.
For a one-sided test the 95% confidence limit would be calculated as:

() —x2) — 1.645 Ns? /n, + s3 /n, 54
or

(xi —X2) + 1.645 Ns? /ny + 53 /n, (5.5)

= (52)
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depending on whether the alternative hypothesis is Hj:; > p, or Hy:ly < Wy,
respectively. In the former situation the null hypothesis is accepted if the value 0
exceeds the lower confidence limit, in the latter situation if the value O is smaller
than the upper confidence limit.

As an example, suppose that in the comparison of two digestion procedures prior
to the determination of nitrogen in wheat flour, the following results are observed:

Procedure 1: x; =2.05¢/100g s =10.050 (n; =30)
Procedure 2: x, =221 g/100g  s5=0.040 (n,=32)
Procedure 1 was suspected beforehand of resulting in some loss of nitrogen during

the digestion. Consequently the hypothesis to be tested is Ho:\y = L, against the
alternative H;:l; < W,. The calculated z-value (eq. (5.2)) is obtained as:

2.05-221
z= =-2.96
V0.050 /30 + 0.040 /32

Since the test is one-sided, at the 5% level of significance, this value has to be
compared with —1.645. The null hypothesis is rejected and it can be concluded that
procedure 1 indeed yields lower results (p < 0.05).

The calculation of the one-sided upper 95% confidence limit (eq. (5.5)) yields:

—~0.16 + 1.645 v¥0.05/30 + 0.04/32 = - 0.071

This is smaller than 0 and of course would lead to the same conclusion.

5.1.1.2 Small samples

As already mentioned in Chapter 3, if n is small and ¢ is not known, s?isnot a
precise estimator of the population variance. The tests described in the previous
section, which are based on the normal distribution, cannot be applied if n, and/or
ny < 30. The t-distribution (see Section 3.7) should be used instead. The r-test is
now based on the following assumptions:

1. The samples with mean x; and x, are drawn from normally distributed
populations with means Jl; and p; and variances o7 and o3. Tests described in
Chapter 3 can be used to check this assumption. If normality cannot be shown or
assumed (from previous knowledge) a non-parametric test (see Chapter 12) should
be performed.

2. The variances 67 and 63 estimated by s? and s3 are equal. In Section 5.4 it will
be explained how this assumption can be tested. If the latter condition is fulfilled,
a pooled variance s* (see Chapter 2), which is an estimate of the common variance
of the two populations can be obtained:

o m=Dst+m-13

(ny+ny— 2) (56)
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It is necessary before the estimation of the mean and the standard deviation of
both samples to check that the data do not contain outlying observations which may
have a large influence on these parameters. As shown in Section 3.8 the presence
of outliers is a source of non-normality. Tests for the detection of outliers are
described in Section 5.5.

The r-test is then performed by calculating the statistic:
r=— X — X2 5.7)

Ns~(1/ny + 1 /na)

This calculated #-value is compared with the critical z-value at the chosen
significance level, o, and n; + n, — 2 degrees of freedom. For a two-sided test Hy
is accepted if lfl < t.,. For a one-sided test with H; specified as W, > fy, Hg is
accepted if 7 < t.;. If H, is specified as i, < [, Hy is accepted if # > —ti,.

In a similar way as described earlier, the test could also be carried out by
calculating the (1 - o) 100% confidence interval for p; — [s.

The same example as in the previous section but with smaller sample sizes n,
and n, will be considered:

Procedure 1: x;, =2.05g/100g  s1=0.050  (n;=8)
Procedure 2: x, =221 g/100g  s3=0.040 (n;=7)

It will be assumed that both populations from which the samples are drawn are
normally distributed. From the F-test (see Section 5.4) it can be concluded that the
hypothesis 67 = 03 is acceptable. Consequently, at the 5% significance level, the
null hypothesis Ho: 1, = W, can be tested against the alternative H;: u; <y, by
means of a t-test. First the pooled variance s (eq. (5.6)) is calculated:

, 7x0.050 +6 x0.040

- 3 =0.045

The calculated ¢ (eq. 5.7) is obtained as:

-0.16
=
V0.045(1/7 + 1/8)

The critical r-value for a one-sided test and 13 degrees of freedom is 1.771 (see
Table 3.4). Since ¢ > —t.; the null hypothesis can be accepted. Consequently from
these results no difference between the two digestion procedures can be detected.

The calculation of the one-sided upper 95% confidence limit, which is obtained
from

(x) —X2) + to.0s V2 (1 /ny + 1/ny)

=-146
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and yields
~0.16 + 1.771 Y0.045(1/7 + 1/8) = 0.034

would lead to the same conclusion since this limit exceeds 0.

If the condition of a homogeneous variance (67 = G3) is not fulfilled, the test
cannot be applied as described earlier since a pooled variance cannot be obtained.
The Cochran test can then be used. It is based on the comparison of

t:__m (5.8)
Nst /g + 5% /ny

with a critical value given by:

g 11(81 /1) + to(s3 /np)
(st ) + (53 /o)

(5.9

where, for o = 0.03, ¢, represents the critical #-value for r) — 1 degrees of freedom
and ¢, represents the critical #-value for n, — 1 degrees of freedom. With n; = n,,
" =1, = 1. The test statistic in eq. (5.8) is obtained in the same way as in eq. (5.2)
but it is tested differently.

Consider for the previous example the following results:

Procedure 1: x; =2.05 g/100 g s1=0.050 (n =9
Procedure 2: x,=2.21 g/100 g 55 =0.010 (n,=8)

The means have not changed but the variances and sample sizes are different. From
the F-test (see Section 5.4) it is concluded that 67 # 6. Therefore the Cochran test
has to be used for the comparison of both means. The calculated r-value:

]

has to be compared with —’. Since from

, _ 1.860(0.050 /9) + 1.895(0.010 /8)
(0.050 /9) + (0.010 /8)

=1.87

it follows that # < —" it is concluded that procedure 1 yields lower values (p < 0.05).
5.1.2 Comparison of the means of two paired samples

As already mentioned earlier two samples are paired if there is a one-to-one
correspondence between the members of the samples. An example will illustrate
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this. The nitrogen amount is determined in 8 different flour samples. For the
digestion of each of these samples two different procedures are used. The results
are the following:

Flour 1 2 3 4 5 6 7 8
Procedure 1 2.0 1.4 2.3 1.2 2.1 1.5 24 2.0
Procedure 2 1.8 1.5 2.5 1.0 2.0 1.3 23 2.1

These are paired samples since each value obtained for the first procedure has
to be compared with a specific value obtained for the second procedure. This
situation obviously is different from that described in Section 5.1.1 where the
samples are independent since there is no specific connection between the obser-
vations from the samples. This connection exists in the above example since what
is important is the comparison of 2.0 and 1.8 which both are results for the first
flour, 1.4 and 1.5 which are the results for the second flour and so on. That
information is taken into account by considering the differences between the paired
observations:

di=x1;—xy

The mean of these differences is:

24

n

d= (5.10)

where n represents the number of pairs. d is an estimate of the true but unknown
mean difference 0. If there is no difference between the means obtained by both
procedures d = 0. Therefore the null hypothesis can be formulated as:

Hp:0=0
and the alternative hypothesis for a two-sided test:
H;:8%0

For a one-sided test the alternative hypothesis is:
H;:6>0
or
Hi:d<0

In this way the problem has been reduced to the comparison of a mean with a
given value (here 0) and tests similar to those described in Chapter 4 can be
performed. Depending on the sample size they are based on a normal distribution
or on a z-distribution.
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5.1.2.1 Large samples
For large samples (n = 30) the statistic

.30
I Sd/\/I’T

is calculated; sq is the standard deviation of the differences and consequently
saNn is the standard deviation of the mean difference. At the significance level o,
this calculated value has to be compared with the critical z-value which is 1.96 for
a two-sided test and 1.645 for a one-sided test. For a two-sided test Hy is accepted
if 12| < 7., For a one sided test with H,; specified as & > 0, Hy is accepted if z < Zgir.
If H, is specified as 8 < 0, Hy is accepted if z > —zeri.

G510

5.1.2.2 Small samples
For small samples (n < 30) a r-test is performed

_d-0
v Sd /\/;

where ¢ has (n — 1) degrees of freedom. The test is only valid if the differences d;
are normally distributed and have the same variance.

If for our example of paired samples mentioned earlier, we want to know
whether the two digestion procedures yield the same results (two-sided test;
o = 0.05) the calculations proceed as described in Table 5.1. Since

(5.12)

d=—"——"=0.05
n
a2
S 2di-d =0.16
n—1
TABLE 5.1

Comparison of the means of two paired samples

Flour Procedure [ Procedure 2 d;

| 2.0 1.8 0.2
2 1.4 1.5 0.1
3 2.3 2.5 -0.2
4 1.2 1.0 0.2
5 2.1 2.0 0.1
6 1.5 1.3 0.2
7 2.4 23 0.1
8 2.0 2.1 -0.1
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The critical #-value for a two-sided test and 7 degrees of freedom is 2.365 (see
Table 3.4). Since fl < t.; there is no significant difference between both digestion
procedures for the analysis of nitrogen in flour.

=0.88

5.2 Multiple comparisons

If more than two means have to be compared we could reason that 2 by 2
comparisons using a ¢-test will reveal which means are significantly different from
each other. However in these comparisons the same mean is used several times and
consequently the t-tests are not independent of each other. As a result, when all
population means are equal, the probability that at least one comparison will be
found to be significant increases. Even if all population means are equal, the more
comparisons are made the more probable it is that one or more pairs of means are
found to be statistically different. One way to overcome this problem is by
adjusting the o value of the individual comparisons, o’ such that the overall or joint
probability corresponds to the desired value. o is then obtained from:

(X’z 1_(1_a)l/k (513)

with o the significance level for the individual comparisons; o the overall signifi-
cance level; k the number of comparisons.

This adjustment is sometimes referred to as Bonferroni’s adjustment and the
overall significance level, a, is called the experimentwise error rate. If o is small
o can also be approximated by ovk.

For example in the comparison of 5 means, 10 r-tests have to be performed
(k = 10). If, when the null hypothesis is true, we want an overall probability of at
least 95% (o = 0.05) that all the observed means are equal, we have to take
o = 0.005. Therefore the individual comparisons have to be performed at a signifi-
cance level of 0.005. Critical r-values at a significance level of 0.005 have then to
be used in the comparisons to ensure an overall significance level o = 0.05.

It follows that, the more comparisons are made, the larger the differences
between the pairs of means must be in order to decide, from a multiple comparison,
that they are significant. In the following example 5 different digestion procedures
for the determination of N in flour have been applied. The results obtained are:

Procedure 1 2 3 4 5
X 2.21 2.00 1.95 2.15 2.20
57 0.04 0.05 0.05 0.03 0.04

n; 8 8 8 8 8
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TABLE 5.2

Calculated t-values for the comparison of 5 different digestion procedures to determine N in flour.

Comparison sf,mled Ixy = Xyl teal
1-2 0.045 0.21 1.98
1-3 0.045 0.26 2.45
14 0.035 0.06 0.64
1-5 0.040 0.01 0.10
2-3 0.050 0.05 0.45
24 0.040 0.15 1.50
2-5 0.045 0.20 1.89
34 0.040 0.20 2.00
3-5 0.045 0.25 2.36
4-5 0.035 0.05 0.53

Do some of the procedures yield significantly different results?

The calculated #-values (f.;) for the 10 different possible comparisons, as
calculated for two independent samples from eq. (5.7), are summarized in Table 5.2.

In order to ensure an overall significance level o = 0.05, the individual compart-
sons have to be performed at a significance level a’ = 0.005. Since in our example
the means obtained for the different digestion procedures are based on the same
number of observations (n; = 8) all calculated t-values must be compared with the
same (two-sided) critical t-value, fyg0s14 = 3.326. Consequently no differences
between the digestion procedures can be detected since all calculated z-values are
lower than this critical z-value. Note that if the individual comparisons were
incorrectly performed at a significance level o = 0.05, two significant tests would
result since 10.05,14 = 2.145.

The Bonferroni adjustment, as given in eq. (5.13) is also necessary for z-tests
that do not involve computations from the same data. Such independent #-tests are
for example computed in the following situation. To validate a method (see also
Section 13.5.4) the whole range of concentrations for which the method is intended
to be used must be considered. Therefore recovery experiments at different con-
centration levels, covering the range to be determined can be performed. The
validation involves t-tests, at each concentration level, to compare the mean
concentration found with the known concentration added (see Chapter 4). These
t-tests are independent since each of them uses different data. To make a joint
confidence statement that e.g. with 95% probability all found and added concen-
trations are equal, each individual t-test has to be performed at a significance level
o’ as given by eq. (5.13).

Other multiple comparison procedures are described in Section 6.3 where the
analysis of variance (ANOVA) is introduced. An analysis of variance reveals
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whether several means can be considered to be equal. However if they are found
not to be equal ANOVA does not indicate which mean (or means) are different
from the others. If this information is wanted multiple comparison procedures have
also to be used.

5.3 Beta error and sample size

The B error has been defined in Section 4.7 as the probability of incorrectly
accepting the null hypothesis when, in fact, the alternative hypothesis is true. Here
it corresponds to the probability that for given sample sizes (n; and n,) and
variances (62 or s?) and for a specified significance level o, a certain difference
between the two means will not be revealed by the test used although it exists.
Alternatively, it is possible to determine the sample size (n; = n, = 1) necessary to
detect a certain difference between the two means so that there is 100 0%
probability of detecting a difference when in fact there is none and 100 %
probability of not detecting a difference when it does exist.

Both these problems can be solved by using graphs published by ISO [1], which
for the first kind of problem allow us to determine B and for the second kind of
problem allow us to determine the sample size, n. Such a graph has already been
introduced in Section 4.7 with respect to a test of the difference between a mean
and a given value. It is impossible here to explain all the different graphs necessary
to determine the 3 error and the sample size for the different tests previously
described (z and #-tests, one and two-sided tests, o = 0.5 and o0 = 0.1). One example
will illustrate how to use them here. The data are those from Section 5.1.1.2.
Suppose that we wish to know the probability that a real difference between the
means of the two digestion procedures equal to 0.15, will not be detected. Accord-
ing to ISO [ 1], the following value has to be calculated:

A= |H1—H2|
T2
s5(1 /nyp + 1 /ny)

where 57 is the pooled variance which for our example equals 0.045. Consequently
A=0.1570.045(1/8 + 1/7) = 1 4. Figure 5.1 shows the value of B as a function of
A for a one-sided test and o = 0.05. For 13 degrees of freedom one finds (by
interpolation) 3 to be about 0.6. Consequently, using the ¢-test with a significance
level a = 0.05, the probability of not detecting a real difference between the two
means equal to 0.15 (s* being equal to 0.045) is about 60%. This value can be
reduced by increasing the sample size and this can be derived from Fig. 5.2
which shows the value of n (= n; = ny) as a function of A. The latter is now
calculated as:




103

|00/3

9999

99.9

Q1

0.0t NN A
0 2 4 ) 8 A

Fig. 5.1. Operating characteristic curve for the one-sided ¢-test (0. = 0.05). For the meaning of A see
text. Adapted from Ref. {1]
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Fig. 5.2. Sample size required to detect a certain bias with the one-sided r-test (o = 0.05). For the
meaning of A see text. Adapted from Ref. [1].
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If we decide that we do not want a probability of more than 0.10 of accepting the
hypothesis that i, = u, when actually p, — p, = 0.15 it follows from Fig. 5.2 that n
should be at least 36.

5.4 Comparison of variances
5.4.1 Comparison of two variances

The comparison of two variances 07 and 03, estimated by s and s3 is performed
by means of an F-test:

F = si/s3 (5.14)

in which st is the larger of the two variances. By dividing the largest variance by
the smallest variance an F-value equal to or larger than unity is obtained. This
calculated F is compared with the critical F-value at the chosen significance level.
This critical value is derived from tables of the F distribution such as the one shown
in Table 5.3. The critical value, which depends on the two sample sizes, is found
at the intersection of the column df | (= n, — 1 = the degrees of freedom correspond-
ing to s7) and the row df, (= n, — 1 = the degrees of freedom corresponding to s3).
The F-test performed can again be two-sided (Ho: ot =o%H;: G%#G%) or one-
sided (H(): G% = 6%,H| = G% > (5%)

For the first example treated in Section 5.1.1.2 where two procedures for the
determination of nitrogen were compared it was concluded that the two variances
o1, estimated by s1=0.05 (n; = 8), and o3, estimated by s3=0.04 (n,=17), are equal
(a0 = 0.05). This conclusion was reached as follows:

F=0.050.04=125

Since the alternative hypothesis is H,: o} # 0% a two-sided test has to be
performed. Therefore the critical F-value is obtained from Table 5.3.a (the critical
F-value for a one-sided test at o = 0.025 corresponds to the critical F value for a
two-sided test at oo = 0.05). Since df, =7 and df, = 6, Fygs5.76 = 5.70. The calculated
F-value (1.25) being smaller than the critical value (5.70), the null hypothesis that
both variances are equal is accepted.

For the F-test ISO [1] also gives graphs that allow us, for the particular case
where the two samples are of the same size, to determine the [ error or for a given
B to determine the common size n of the samples.



TABLE 5.3a

Critical F-values for a one-tailed test (o = 0.025)

df)
df, 1 2 3 4 5 6 7 8 9 10 12 Is 20 24 30 40 60 120 oo

1 647 779 864 899 922 937 948 956 963 968 976 985 993 997 1001 1005 1010 1014 1018

2 3851 39.00 3947 3925 3930 3933 3936 3937 3939 3940 3941 3943 3945 3946 3946 3947 3948 3949 39.50
3 1744 1604 1544 1510 1488 1473 1462 1454 1447 1442 1434 1425 1417 1412 1408 1404 1399 1395 13.90
4 1222 1065 998 960 936 920 907 898 890 884 875 866 856 85I 846 841 836 831 826
5 1001 843 776 739 715 698 685 676 668 662 652 643 633 628 623 618 612 607 6.02
6 881 726 660 623 599 58 570 560 552 546 537 527 517 512 507 501 49 490 485
7 807 654 589 552 520 512 499 490 482 476 467 457 447 442 436 431 425 420 414
8 757 606 542 505 482 465 453 443 436 430 420 4.10 400 395 380 384 378 373 367
9 721 571 508 472 448 432 420 410 403 396 387 377 367 36!l 356 351 345 339 333

10 694 546 483 447 424 407 395 385 378 372 362 352 342 337 331 326 320 314 3.08
12 655 510 447 412 38 373 361 351 344 337 328 318 307 3.02 296 291 285 279 272
15 620 477 415 380 358 341 329 320 312 306 296 28 276 270 264 259 252 246 240
20 587 446 38 351 329 313 301 291 284 277 268 257 246 24l 235 229 222 216 209
24 572 432 372 338 315 299 287 278 270 264 254 244 233 227 221 215 208 201 1.94
30 557 418 359 325 303 287 275 265 257 251 241 231 220 214 207 201 194 187 179
40 542 405 346 313 290 274 262 253 245 239 229 218 207 201 194 188 180 172 1.64
60 529 393 334 301 279 263 251 241 233 227 217 206 194 188 182 174 167 158 148
120 515 380 323 289 267 252 239 230 222 216 205 194 18 176 1.69 161 153 143 131
oo 502 369 312 279 257 241 229 219 211 205 194 183 171 1.64 1.57 148 139 127 100

S01



TABLE 5.3b

Critical F-values for a one-tailed test (ot = 0.05)

df)

df, 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 o0

1 161 199 215 224 230 234 237 239 240 242 244 246 248 249 250 251 252 253 254
2 1851 1900 1946 1925 1930 1933 1935 1937 1938 1940 1941 1943 1945 1945 1946 1947 1948 1949 19.50
3 1013 955 928 912 9.0l 894 889 885 881 879 874 870 866 864 862 859 857 855 8353
4 771 694 659 639 626 616 609 604 600 59 591 58 58 577 575 572 569 566 563
5 66! 579 541 519 505 495 488 482 477 474 468 462 456 453 450 446 443 440 436
6 599 514 476 453 439 428 421 415 410 406 400 394 387 384 381 377 374 370 3.67
7 559 474 435 412 397 387 379 373 368 364 357 351 344 341 338 334 330 327 323
8 532 446 407 384 369 358 350 344 339 335 328 322 315 312 308 304 301 297 293
9 512 426 386 363 348 337 329 323 318 314 307 300l 294 290 28 283 279 275 271
10 496 410 371 348 333 322 314 307 302 298 291 285 277 274 270 266 262 258 254
12 475 389 349 326 311 300 291 285 280 275 269 262 254 251 247 243 238 234 230
15 454 368 329 306 290 279 271 264 259 254 248 240 233 229 225 220 216 211 207
20 435 349 310 287 271 260 251 245 239 235 228 220 212 208 204 199 195 190 184
24 426 340 301 278 262 251 242 236 230 225 218 211 203 198 19 18 18 179 173
30 417 332 292 269 253 242 233 227 221 216 209 201 193 18 1.8 179 174 168 162
40 408 323 284 261 245 234 225 218 212 208 200 192 18 179 174 169 164 158 151
60 400 315 276 253 237 225 217 210 204 199 192 18 175 170 165 159 153 147 139
120 392 307 268 .245 229 217 209 202 19 191 1.83 175 166 161 1.55 150 143 135 1.25
oo 384 300 260 237 221 210 201 194 188 183 175 167 157 152 146 139 132 122 100

901
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5.4.2 Comparison of a variance with a given value

To compare a variance, s° , with a known value 63 the following test statistic is
generally calculated:

T =(n—1)s%c} (5.15)

Since T is distributed as x> with n-1 degrees of freedom [2] the test consists in
comparing the calculated T with the tabulated * given in Table 5.4. For a
two-sided test at the 5% significance level (Hy: 6°=03; H;: 6% # 05) the null
hypothesis is rejected if T2 Y3 o251 OF if T < %3 975,,-1- For the one-sided test, H:
o’ =038, Hy: 603, Hy is rejected if T > yjos while for the one-sided test, Hy:
o’ = 03; H;: 6°<03, the null hypothesis is rejected if T < %5 os.

TABLE 5.4

Critical values of Chi-square (the o-values represent the area to the right of the critical %2 in one tail of the
distribution)

dn\® 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.001
1 00002 00010 00039 00158 271 3.84 5.02 6.63 10.83
2 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 13.82
3 0.12 0.22 0.35 0.58 6.25 7.81 9.35 11.34 16.27
4 0.30 0.48 0.71 1.06 778 9.49 11.14 13.28 18.47
S 0.55 0.83 1.15 1.6} 9.24 11.07 12.83 15.09 20.52
6 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 22.46
7 1.24 1.69 2.17 233 12.02 14.07 16.01 18.47 2432
8 1.65 2.18 2.73 349 13.36 15.51 17.53 20.09 26.13
9 2.09 270 333 4.17 14.68 16.92 19.02 21.67 27.88

10 2.56 325 3.94 4.87 15.99 18.31 20.48 23.21 29.59

1 3.05 3.82 457 5.58 17.27 19.67 2192 2412 31.26

12 3.57 4.40 523 6.30 18.55 21.03 23.34 26.22 3291

13 4.5t 5.0t 5.89 7.04 19.81 22.36 2474 27.69 3453

14 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 36.12

15 523 6.26 7.26 8.55 2231 25.00 27.49 30.58 37.70

16 5.81 6.91 7.96 9.31 23.54 26.30 28.84 32.00 39.25

17 6.41 7.56 8.67 10.08 2477 21.59 30.19 3341 40.79

18 7.01 8.23 939 10.86 25.99 28.87 31.53 34.80 4231

19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 43.82

20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 4532

21 8.90 10.28 11.59 13.24 29.61 32.67 35.48 38.93 46.80

22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 48.27

23 10.20 11.69 13.09 14.85 3201 35.17 38.08 41.64 49.73

24 10.86 12.40 13.85 15.66 33.20 36.41 39.37 42.98 5118

25 11.52 13.12 14.61 16.47 3438 37.65 40.65 4431 52.62

26 12.20 13.84 15.38 17.29 35.56 38.88 41.92 45.64 54.05

27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 55.48

28 13.57 15.31 1693 18.94 37.92 41.34 44.46 48.28 56.89

29 14.26 16.05 17.71 19.77 39.09 42.56 4572 49.59 58.30

30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 59.70
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For example, we want to test if the variance, s? = 1.24, obtained from 11
observations has a true known value, 63 = 1 (Ho: 6% = 1; H;: 6% # 1). T calculated
from eq. (5.15) equals 12.4. Since X3os.10 = 20.48 and X975.10 = 3.25 the null
hypothesis is accepted that 62, estimated by s, equals 1.

It can be verified from Tables 5.3 and 5.4 that xé-,,,_, ={(n-1) Fyni. and
X3 -cen-1 = (0 = 1)/Fyu 1. Therefore an F-test could also be applied by computing:

F=sYc} if s°>03
or
F=o0¥s" if o§>s’

The former F-value is compared with F,_, .. and the latter with F... ,-; in the usual
way.

The test can also be performed by considering the 95% confidence interval for
o’ which for our example is obtained as:

_1 2 _ 2
n2 s 2 n2 ls (5.16)
X0.025:n-1 X0.975:n-1
or also as:
2

2 2
Y — < 6% < 5" Fymseen
0.025:n—1,00

For our example this yields:

124 _ , _ 124
20.48 3.25

or also:

1.24 )
205 < 0’ < 1.24%x3.08

Therefore:
06!l <o> <38 and 078 <o < 195

The known true variance, 6§ = 1, being contained in this interval, the null hypothe-
sis that 6° = | is accepted. Notice that, since the 7 distribution is not symmetrical
the confidence interval cannot be written in the form s* * e.
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5.5 Outliers

Several of the hypothesis tests described up to now assume that the data are
normally distributed. From what we learned in Chapter 3 we know that the normal
distribution is completely characterized by the mean and the standard deviation.
However the presence of an outlier, a value which is not representative for the rest
of the data, can have a great influence on these parameters. Different outlier tests
have been described but the problem is that they do not always yield the same
result. Rechenberg [3] compared eight different procedures to test 4 suspect values
in a series of 21 observations. Depending on the test used, zero or up to four outliers
were detected. This shows that outlier rejection by statistical tests should not be
carried out as a routine matter. They should rather be performed to identify
problem samples. It is important to carefully examine whether an assignable cause
for the outlier(s) can be found (e.g. a clerical error, a computational error, an error
in the analysis). If this is the case, the outlier can be corrected or removed from the
data. The occurrence of multiple outliers can be an indication that the analysis
method 1s not under control and that corrective actions have to be taken.

As indicated by the Analytical Methods Committee of the Royal Chemical
Society [4], rejection of outliers on a statistical basis from data aimed at defining
the variability of an analytical method, can result in an important underestimation
of the variance. This is also illustrated by Goetsch and coworkers [5] who evalu-
ated some outlier problems in collaborative studies.

If outliers are removed from a data set it should always be reported that outlying
observations were present.

35.5.1 Dixon’s test

Dixon’s test is one of the most popular tests for the detection of an outlier
because it is easy to calculate. It is based on a comparison of the difference between
the suspect value and its direct or a close neighbour with the overall range or a
modified range. Consider a set of n data x(i = 1,2,...n) arranged in order of
increasing magnitude. Depending on the sample size the following test statistics
are calculated:
forn=3to7:

Qo= 2—x1)/ (X0 —x1)

or

Qo= (xn — X)) [ (= x1)

depending on whether'x; or x, is the suspect value
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forn=8to 12:
On=0—x1)/ (Xp1 — x1)
or

Qll = (xn —xn—l) / ()C,, '_x2)

forn=>13
On = —x1) ! (2 —xy)
or

O = (X, — Xp2) 1 (X — X3)

In the literature sometimes another statistic (Q,; = (x3 — x))/(x,-; — x1)) or (Qa1 =
(x, — X4-2)/(x,, — x2)) and other critical values are found for n = 11 to 13.

The calculated Q-value is compared in the usual way with the critical value at
the chosen significance level. An outlier is detected if the calculated O exceeds the
critical Q. Critical Q-values are given in Table 5.5. The one-sided values in the
table apply to test an observation at a predesigned end of the data set while for an
observation that seems suspect after an inspection of the data the two-sided values
have to be used.

As an example consider the following data arranged in increasing order: 22.1,
22.4,22.9,23.0,23.5,23.7, 23.9, 26.5. If, after the inspection of these data, we
suspect the value 26.5 of being too high the following statistic is calculated
(n=8):

Qll = (xn - xn—l) / (-xn - Xg)
=(26.5-239)/(265-22.4)
=0.634

From Table 5.5 the critical Q-value for n = 8 and o = 0.05 is 0.608. The calculated
value is larger and therefore 26.5 is considered to be an outlier at the 0.05 level of
significance.

Problems can arise when the test is repeatedly used for the detection of multiple
outliers since these can mask each other. It can be checked that if in the above
example the value 23.9 is changed to 26.0, yielding a data set with two suspect
values, no outlier is detected since Q;; = (26.5 - 26.0) / (26.5 — 22.4) = 0.122.
Multiple outlier tests such as described further are then more appropriate.

The Dixon test is the outlier test originally recommended by ISO [7] for
inter-laboratory tests. A table of 2-sided critical values is used here since in
collaborative studies outliers at both ends of the data set are equally likely. In its



TABLE 5.5

Critical Q-values for testing outliers (extracted from a more extensive table by Beyer [6])

n One-sided Two-sided

o o

0.05 0.01 0.05 0.01
3 O 0.941 0.988 0.970 0.994

0.765 0.889 0.829 0.926
5 0.642 0.780 0.710 0.821
6 0.560 0.698 0.628 0.740
7 0.507 0.637 0.569 0.680
8 on 0.554 0.683 0.608 0.717
9 0512 0.635 0.564 0.672
10 0477 0.597 0.530 0.635
11 0.450 0.566 0.502 0.605
12 0.428 0.541 0.479 0.579
13 0 0.570 0.670 0611 0.697
14 0.546 0.641 0.586 0.670
15 0.525 0.616 0.565 0.647
16 0.507 0.595 0.546 0.627
17 0.490 0.577 0.529 0.610
18 0475 0.561 0.514 0.594
19 0.462 0.547 0.501 0.580
20 0.450 0.535 0.489 0.567
21 0.440 0.524 0.478 0.555
22 0.430 0.514 0.468 0.544
23 0421 0.505 0.459 0.535
24 0413 0.497 0.451 0.526
25 0.406 0.489 0.443 0.517
26 0.399 0.486 0.436 0.510
27 0.393 0.475 0.429 0.502
28 0.387 0.469 0.423 0.495
29 0.381 0.463 0417 0.489
30 0.376 0.457 0412 0.483

latest draft document however ISO [8] prefers the single and double Grubbs’ test
explained in the next section. ISO also gives a procedure for the treatment of
outliers which is described in Chapter 14. The test is repeatedly performed until no
more extreme values are detected. Outlying observations, which are significant at
the 1% level are called outliers and are always removed. If the outlying observa-
tions are significant at the 5% level they are called stragglers and are only
discarded if they can be explained.
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5.5.2 Grubbs’ test

The maximum normalized deviation test described by Grubbs and Beck [9] is
based on the calculation of:

G=(x-x)/s 5.17

with x; the suspected outlier (either the highest or the lowest result), x the sample
mean and s the sample standard deviation. The absolute value of G is compared
with the critical values for one largest or one smallest value given in Table 5.6.

The Grubbs’ statistic for the detection of two outliers (either the two highest or
the two lowest results) is obtained as:

G=S5S,.,,/SSy or G=S885,,/585, (5.18)

with SS, the sum of squared deviations from the mean for the original sample
(=X(x;—x)* and SS,_;, and SS,, the sum of squared deviations obtained after
removal of the two highest or the two lowest values, respectively. Critical values
for the double-Grubbs’ test (two largest or two smallest values) are also given in
Table 5.6. Notice that here outliers are detected if the test statistic of eq. (5.18) is
smaller than the critical value.

The single-Grubbs’ test can also be performed by calculating the percentage
reduction in the standard deviation when the suspect point is rejected:

R=100(1=s,/5) (5.19)

with s the original sample standard deviation and s, the standard deviation obtained
after removal of the suspect value. This test is equivalent with the one of eq. (5.17)
because their critical values are related [ 10]. The latter (eq. (5.19)) is recommended
for the detection of a single outlier in collaborative studies by the AOGAC [11].

The Grubbs’ pair statistic for the detection of 2 outliers, which 1s also part of the
AOAC procedure is calculated in the same way but in this test s, is the standard
deviation obtained after removal of a pair of suspect values (either situated at the
same or different ends of the data sets). Critical values for two-sided single value
and pair value tests performed in this way can be found in references [10] and [11].

Application of the single outlier test (eq. (5.17)) to our example yields the
following G-value

G =(26.5-23.5)/1.36=2.206

which is larger than the two-sided critical value for n = 8 and 0. = 0.05 (2.126).
For the data set with two suspect values (22.1; 22.4; 22.9; 23.0; 23.5; 23.7; 26.0;
26.5) application of the double-Grubbs’ test yields:
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TABLE 5.6

Two-sided critical values for the Grubbs’ test. (For the single Grubbs’ test outliers give rise to values which are
larger than the critical values while for the double Grubbs’ test they give rise to values which are smaller than the
critical values).

n One largest or One smallest Two largest or Two smallest

o o

0.05 0.01 0.05 0.01
3 1.155 1.155 - -

1.481 1.496 0.0002 0.0000
5 1.715 1.764 0.0090 0.0018
6 1.887 1.973 0.0349 0.0116
7 2.020 2.139 0.0708 0.0308
8 2,126 2.274 0.1101 0.0563
9 2215 2.387 0.1492 0.0851
10 2.290 2.482 0.1864 0.1150
11 2.355 2.564 0.2213 0.1448
12 2412 2.636 0.2537 0.1738
13 2.462 2.699 0.2836 0.2016
14 2.507 2755 0.3112 0.2280
15 2.549 2.806 0.3367 0.2530
16 2.585 2.852 0.3603 0.2767
17 2.620 2.89%4 0.3822 0.2990
18 2.651 2932 0.4025 0.3200
19 2.681 2.968 0.4214 0.3398
20 2.709 3.00t 0.4391 0.3585
21 2733 3.031 0.4556 0.3761
22 2.758 3.060 04711 0.3927
23 2781 3.087 0.4857 0.4085
24 2.802 3112 0.4994 0.4234
25 2.822 3.135 0.5123 0.4376
26 2.841 3.157 0.5245 0.4510
27 2.859 3.178 0.5360 0.4638
28 2.876 3.199 0.5470 0.4759
29 2.893 3.218 0.5574 0.4875
30 2.908 3.236 0.5672 0.4985
31 2924 3.253 0.5766 0.5091
32 2.938 3.270 0.5856 0.5192
33 2952 3.286 0.5941 0.5288
34 2.965 3.301 0.6023 0.5381
35 2979 3316 0.610t 0.5469
36 2.991 3.330 0.6175 0.5554
37 3.003 3.343 0.6247 0.5636
38 3.014 3.356 0.6316 0.5714
39 3.025 3.369 0.6382 0.5789

40 3.036 3.381 0.6445 0.5862
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G =SS,.1,/SSp=1.89/18.52 =0.1021

where

SSut,=(22.1 =229 +(22.4 -22.9)* + ... +(23.7 - 22.9)?
SSo=(22.1 -23.8)* +(22.4 - 23.8)* + ... + (26.5 — 23.8)*

Since the G-value is smaller than the two-sided critical value for the double-
Grubbs’ test (0.1101 for n = 8 and a = 0.05) the two highest values are considered
to be outliers. We come to the same conclusion if we consider the data set
introduced in Section 3.8 (Table 3.6). The non-normality of the data was ascribed
to the two highest values. The double-Grubbs’ test reveals that these values indeed
are outliers since:

G=S885,.1,/S8S,=0.179/1.670 =0.1072

which is smaller than the two-sided critical value for n = 20 and o = 0.05 (0.4391).
As already mentioned ISO [8] now recommends the use of the single and double
Grubbs’ test as just described.

5.6 Distribution tests

Distribution tests or goodness-of-fit tests allow us to test whether our data follow
a particular probability distribution. They are based on the comparison of an
observed distribution with an expected or theoretical distribution. In this section
the Chi-square and the Kolmogorov—Smirnov test are introduced to test normality.
This is an important application since most statistical tests are based on the
assumption that the data follow a normal distribution. Both tests are appropriate for
the following situations:

— when the theoretical distribution is completely specified. For the normal
distribution this means that ¢ and [t are known. The observed distribution is
then compared with a particular normal distribution with known ¢ and L.

— when the theoretical distribution is derived from the data themselves. In that
case ¢ and L are estimated by the sample standard deviation, s, and mean, x,
respectively, and the question is whether the distribution can be considered
to be normal.

Since most often it is required to test whether the data are normally distributed

and not whether they follow a particular normal distribution only the last situation
will be considered.



TABLE 5.7
Chi-squared test for normality applied to the fluoride data of Table 2.1

(D 2 3) ) &) (6) N
Class interval z for upper limit Cumulative relative Relative expected Expected frequencies  Observed frequencies  (O; — EDY/E;
expected frequencies  frequencies (E) 0y

700- 900 -2.02 0.023 0.023 1.45 1

900-1100 -1.68 0.047 0.024 1.51 |5.67 017 0.3120
1100-1300 -1.34 0.090 0.043 27 6
1300-1500 -1.00 0.159 0.069 4.35 10.40 4 9
15001700 -0.66 0.255 0.096 6.05| 5 0.1885
1700-1900 -0.32 0.375 0.120 7.56 6 0.3219
1900-2100 0.01 0.504 0.129 8.13 6 0.5580
2100-2300 0.35 0.637 0.133 8.38 16 6.9289
2300-2500 0.69 0.755 0.118 7.43 7 0.0249
2500-2700 1.03 0.848 0.093 5.86 10.08 2 7
2700-2900 1.37 0915 0.067 422 5 0.9411
2900-3100 1.70 0955 0.040 2.52 2
3100-3300 2.04 0.977 0.022 1.39 2
3300-3500 2.38 0.992 0.015 095 | 531 015 0.0181
3500-3700 272 0.996 0.004 0.25 0
3700-3900 3.06 0.999 0.003 0.20 1

Y =%x2=92934

SIT



116

5.6.1 Chi-square test

The test will be illustrated by means of an example. The Chi-square test applied

to the fluoride data of Table 2.1 is given in Table 5.7. The observed frequencies for
these data (column (6)), grouped into classes, are obtained from Table 2.2. To test
whether these observations are normally distributed we proceed as follows:

1.

The distribution mean and standard deviation are estimated from the 63 meas-
urements yielding x = 2092.3 and s = 591.7.

. The upper class limits are transformed into standardized deviates (column(2))

by applying eq. (3.10).

. From Table 3.3 the cumulative probabilities to find a value smaller than z

(column (3)) are obtained. They represent the cumulative relative expected
frequencies. Notice that for negative z-values the probability 1s: p (< —2) =1 —

p(<2).

. The relative expected frequency for each class (column(4)) is derived from

column (3).

. The expected frequencies (column (5)) are obtained by multiplying the relative

expected frequencies by n = 63.

. The test requires that the expected frequencies are not too small. The accepted

convention is that they should at least be equal to 5. Therefore the data are
regrouped as shown in Table 5.7 in order to have an expected frequency of at
least 5 in each class. Of course the corresponding observed frequencies also
have to be regrouped.

. The following test statistic is calculated (column (7)):

X2 = 2(01 o Ei)z/E“

with O; and E; the observed and expected frequency, respectively, for each class.

. If the null hypothesis that the data are normally distributed holds, X* is approxi-

mately distributed as 2. Therefore X2 is compared with tabulated y>-values at
k — 3 degrees of freedom, k being the number of classes used in the calculation.
In the comparison of an observed frequency distribution with a particular
normal distribution (i.e. i and 6 known) there are k — 1 degrees of freedom. For
our example the tabulated value of x* with 5 degrees of freedom at the 5%
significance level, obtained from Table 5.4, equals 11.07. Since X?(=9.293) is
smaller, the null hypothesis that the fluoride data are drawn from a normal
distribution is accepted. This confirms the indication of normality already
obtained from the graphical rankit method given in Fig. 3.13.
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TABLE 5.8

The Kolmogorov-Smirnov test applied to the measurement of breaking points of threads introduced in Section 3.8

() €] (3) (C)) (&) (6
Z FE: FO,- d,‘ZIFO'_—FE‘.! d,'_=[F0’_] _FE,'

2.104 -1.17 0.121 0.083 0.038 0.121
2222 —0.84 0.201 0.167 0.034 0.118
2.247 -0.77 0.221 0.250 0.029 0.054
2.286 —0.66 0.255 0.333 0.078 0.005
2.327 -0.54 0.295 0417 0.122 0.038
2.367 —0.43 0.334 0.500 0.166 0.083
2.388 -0.37 0.356 0.583 0.227 0.144
2.512 -0.02 0.492 0.667 0.175 0.091
2.707 0.53 0.702 0.750 0.048 0.035
2.751 0.65 0.742 0.833 0.091 0.008
3.158 L.79 0.963 0.917 0.046 0.130
3.172 1.83 0.966 1.000 0.034 0.049

5.6.2 Kolmogorov—Smirnov test

The *test requires the data to be presented as frequencies by grouping them
into classes and is therefore not applicable for small samples. Generally the test is not
used with n < 50. Since, the Kolmogorov—Smirnov test treats all observations sepa-
rately it is suitable for small samples. The test, which is applicable only to continuous
distributions, consists in determining the largest difference between two cumulative
relative frequency distributions: the observed distribution, here denoted Fp, and the
expected distribution, here denoted F. It will be illustrated by means of the example
concerning the measurement of breaking points of threads, introduced in Section 3.8.
The Kolmogorov—Smirnov test applied to these data, with mean x = 2.5201 and s =
0.3554, is summarized in Table 5.8. The second column gives the standardized
deviation for each observation from the mean. The cumulative relative expected
frequencies, Fg, in column (3) are then obtained from these standardized deviates as
in the previous section by consulting Table 3.3. Since there are twelve observations,
the relative observed frequency for each observation is 1/12 = 0.0833, from which the
cumulative relative observed frequencies, F, of column (4) are obtained.

Both the distribution Fr and Fy are represented in Fig. 5.3. The test consists in
determining the largest difference between the two curves. The expected distribution,
Fg, being a continuous distribution, the differences between the two distributions are
computed as shown in columns (5) and (6). The differences d; are obtained as
|Fp, — Fgland the differences d; asiF,_ — Fgl. These are illustrated for the second and
the seventh observation in Fig. 5.3. The reason why d; has to be taken into account
becomes obvious if we consider the difference between both distributions around the
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Cumulative relative
frequency
o
w

2.00 2.40 280 3.20
Breaking points of threads

Fig. 5.3. Expected (smooth curve) and observed (stepped curve) cumulative frequency distribution
of breaking points of threads (data from Table 5.8).

second observation. The largest difference around that point is obtained just below
2.222 and is calculated as d; .

An inspection of all d; and d; values in Table 5.8 reveals that the maximum
difference between the two distributions is d; = 0.227. This value being smaller
than the critical value at n = 12 and o = 0.05 of Table 5.9 (= 0.242) the data can be
considered to be normally distributed.

Critical values for the Kolmogorov-Smirnov test in the case of comparison with
a completely specified expected distribution (it and ¢ known) can be found in
Sokal and Rohlf [2].

The test as previously described can only be applied to continuous distributions
and in the absence of tied values. Therefore it is for example not applicable to the
Pb data of Table 3.6 in which several ties occur. Sokal and Rohlf [2] describe an
approximate test in which, by grouping the data, frequencies instead of the individ-
ual observations are used. The test applied to the Pb data is summarized in Table
5.10. The data were grouped into 7 classes and the cumulative relative expected
frequencies, Fg, are obtained as described in Section 5.6.1 and Table 5.7. The
cumulative relative observed frequencies, Fo, are calculated by dividing the
cumulative observed frequencies in the 5th column of Table 5.10 by n = 20.

The largest difference between both distributions F and Fg is 0.209. From Table
5.9 it follows that the 5% critical value for n = 20 is 0.192. Therefore the conclusion
from Fig. 3.11a that the data are not normally distributed is confirmed. It can be
verified that after elimination of the two highest results, which are suspected of being
outliers, the data fit a normal distribution as is also indicated by Fig. 3.11b.



TABLE 5.9

Critical values for the Kolmogorov-Smirnov test (expected distribution derived from the data)
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n 0.10 0.05 0.01
4 0.346 0.376 0.413
5 0.319 0.343 0.397
6 0.297 0.323 0.371
7 0.280 0.304 0.351
8 0.265 0.288 0.333
9 0.252 0.274 0.317

10 0.241 0.262 0.304

i 0.231 0.251 0.291

12 0.222 0.242 0.281

13 0.215 0.234 0.271

14 0.208 0.226 0.262

15 0.201 0.219 0.254

16 0.195 0.213 0.247

17 0.190 0.207 0.240

18 0.185 0.202 0.234

19 0.181 0.197 0.228

20 0.176 0.192 0.223

25 0.159 0.173 0.201

30 0.146 0.159 0.185

40 0.128 0.139 0.162

100 0.082 0.089 0.104

400 0.041 0.045 0.052

900 0.028 0.030 0.035

>30 0.84/Nn 0.90Nn 1.05Nn

TABLE 5.10

Kolmogorov—Smirnov test applied to the Pb data of Table 3.6 which contain tied values

Class zforupper  F E Observed Cumulative observed  Fo, di=1Fg,—Fg|
interval limit frequencies  frequencies

0.960-1.160 -0.32 0.375 7 7 0.35 0.025
[.160-1.360 0.36 0.641 10 17 0.85 0.209
1.360-1.560 1.03 0.848 l 18 0.90 0.052
1.560-1.760 1.71 0.956 0 18 0.90 0.056
1.760-1.960 238 0.992 1 19 0.95 0.042
1.960-2.160 3.06 0.999 0 19 0.95 0.049
2.160-2.360 373 0.9999 1 20 1.00 0.0001
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Chapter 6

Analysis of Variance

6.1 One-way analysis of variance
6.1.1 Terminology — examples

In Chapter 5 hypothesis tests for the comparison of two means were discussed.
It is sometimes necessary to compare more means as shown in Table 6.1a. The data
of Table 6.1a were taken from a study carried out to determine whether dissolution
methods have an effect on the result obtained for the determination of Fe in a
multivitamin/trace element formulation [1]. Each column gives the results ob-
tained on 6 separate samples pretreated according to a certain procedure. The first
applied dry ashing, a second microwave digestion, another consisted in using a
strong acid, filtration and determination of Fe in the filtrate, etc. The question is
whether there is an effect of the pretreatment on the result obtained. The results of
method SZC are clearly different from the rest, as shown in Fig. 6.1. However, how
can we arrive at this conclusion in a statistical way? The data given are real, but
not all applications are so easy to decide. One way of doing this would be to
compare each column mean with each other using a ¢-test. How to do this correctly
was described in Chapter 5.2 (the Bonferroni correction). We should note in
passing that the computations were carried out on data which were later rounded
to obtain Tables 6.1a and b. For this reason small differences are possible if the
computations are carried out starting with the data in these tables.

Instead of immediately asking the question: which means are different, we can
first ask a more general question: does the factor differing between the columns
have an effect on the means of those columns? In other words, do all the dissolution
methods yield the same result, or do one or more affect the results in a different
way from the others? If the latter were the case this would have an influence on the
total variance of all the data of Table 6.1a. In the case that all the methods really
give the same result, that variance would be determined exclusively by the preci-
sion of the methods. Each separate result x; could then be written as follows

Xj=l+e; (6.1

where x;; is the ith result in the jth column, W the true mean and e; the deviation of
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Dry Micro zzC SZC LTA  ZZF SZF
L] L]
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Fig. 6.1. Visual representation of the data of Tables 6.1a and b.

x; from Y. The e; are assumed to be normally distributed with mean = 0 and
variance O- = 0°.
When there is an effect of the methods, we can write

xj =l +a;+e; Ya;=0 (6.2)

where g; is the effect of the jth pretreatment method relative to the overall mean.
The variance of x;; around p would now no longer be determined solely by e; and
thus not be equal to ¢°. The term a; introduces additional variance in the data, so
that it would be larger than 62. We may thus expect that analyzing the variance will
be a way of finding out whether certain factors have an effect.

Only one single possible effect is studied in Table 6.1a: the pretreatment
procedure. This table is then called a one-way layout and the hypothesis test
applied to test whether the treatment has an effect is called a one-way analysis of
variance or one-way ANOVA.

Before looking at the statistical computations, let us consider some other
examples of situations that could lead to data such as those given in Table 6.1a. The
same type of data could, for instance, also be the result of an interlaboratory study
(see Chapter 14), carried out to investigate a specific analytical procedure. Suppos-
ing that this is carried out on the same formulation described above, and supposing
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TABLE 6.1a

Concentrations of Fe (in mg/100 g) in a vitamin/mineral formulation determined by AAS using different
dissolution methods [1]

Dry Micro Y#/® SZC LTA ZZF SZF
J 1 2 3 4 5 6 7
5.59 5.67 5.75 4.74 5.52 5.52 543
5.59 5.67 5.47 4.45 5.47 5.62 5.52
5.37 5.55 5.43 4.65 5.66 5.47 543
5.54 5.57 5.45 494 5.52 5.18 5.43
5.37 5.43 5.24 4.95 5.62 543 5.52
5.42 5.57 547 5.06 5.76 5.33 5.52
X 5.48 5.57 5.47 4.80 5.59 543 5.48
8 0.4 0.093 0.16 0.23 0.11 0.15 0.05
TABLE 6.1b

Concentrations of Fe (in mg/100 g) in a vitamin/mineral formulation in different samples from the same lot. The
data are synthetic and are the same as in Table 6.1a.

Sample

J 1 2 3 4 5 6 7
5.59 5.67 5.75 474 5.52 5.52 543
5.59 5.67 547 4.45 547 5.62 5.52
5.37 5.55 5.43 4.65 5.66 5.47 5.43
5.54 5.57 5.45 4.94 5.52 5.18 543
5.37 543 5.24 4.95 5.62 5.43 5.52
5.42 5.57 5.47 5.06 5.76 533 5.52

x; 5.48 5.57 5.47 4.80 5.59 5.43 5.48

8 0.11 0.093 0.16 0.23 0.11 0.15 0.05

supposing also that we know that the formulation is homogeneous, we would then
send a sample to each of the participating laboratories and ask them to carry out 6
replicate measurements with the procedure under investigation. Column | would
then give the results of laboratory 1, and so on.

It is not necessarily evident that the formulation is homogeneous and to test this
we could then carry out an experiment that could yield exactly the same type data
as in Table 6.1b. This would consist of taking samples from the lot at different
locations (top, bottom, etc.) and analyzing each of them 6 times. Each column
would then give the replicate determinations for one sample. If the total variance
were significantly larger than the variance in one column, this could be attributed
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to sample inhomogeneity. Thus the factor studied would be the effect of the
sample. In the next section we will use this example to introduce the theory and
some computational details.

In both cases there are 7 columns, i.e., the factor is studied at 7 levels.

6.1.2 Estimating sources of variance and their significance

The data shown in Table 6.1 are presented in a more general fashion in Table
6.2. Since it is our intention to investigate effects on the variance in this data table,
we should first estimate the variance. Let us start by supposing that the lot
investigated is homogeneous, so that the only source of vanation is that due to
measurement uncertainties. In other words, the precision of the analytical determi-
nation is the sole factor that determines the variance in the table. In this case, we
can reason that the variance can, for example, be estimated from the first column

n
S% = z ()C,‘] - :\7,,)2 /(I’l] - 1) (63)

=1
This means that the variance is determined using the replicate analysis of sample
1. This can also be done using the data of the second column (sample 2), etc.
Eventually, this would yield k estimates of the variance of the data. This is not very
satisfying: we would really want to obtain a single estimate and use all the data to
do so. Supposing still that the batch is homogeneous and that therefore the variance
is not affected by analyzing portions from different samples, the columns should
have the same population mean, L, and variance, o%. The column means x; and
variances si are then separate estimates of these population parameters. To obtain
one estimate of the mean, we can use the grand mean x, i.e. the mean of all results,
and pool the variances to obtain one single estimate of 6> (see Section 2.1.4.4).

TABLE 6.2
One-way ANOVA layout

Sample | Sample 2 ... Samplej ... Sample £

X X2 Xij Xk

X321 X22 X2j X2k

it iz Xij Xik

X1 Xny2 xn}-/' Xk
Mean X X x; Xk
Variance 5 5 v,2 st

Grand mean: x.
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This implies the assumption that all variances come from the same population.

oi=0}=0?...0;=0"

This should be noted, because it is far from evident that this assumption is always
true in practical situations (see also Section 6.2).

The pooled variance s can then be used to estimate ¢%; because of the larger
number of data used, it is a better estimate than the separate estimates s7

2_(1’11* 1)s%+...+(nk~ 1)5]%
d nm+...+m—k

k k
=Y (ni-1s/% (n—-1) (6.4)
J=l =1

In this section we will consider that all »; are equal, n; = n, = ... ny. This is done
here for ease of computation and is not a requirement of the technique. From
Section 6.1.3 on, we will no longer include this restriction.

A second possibility to estimate 62 is to obtain it from the variance of the column
means, s2, which is given by:

k
si=2 (—x/k~1) (6.5)
j=1

where x is the grand mean, which here is also the mean of the k column means x;.
As usual, one considers that s2 estimates o2 and since there are n; data in each
column o% = 6%n; or 6* = n; 62 It follows that #; s2 estimates 6°. A second estimate
of 67 is therefore given by:
k
msi=n T (G-xPAk-1) (6.6)
J=1

The two estimates of 62, 52 of eq. (6.4) and n, s of eq. (6.6) are equal only if the
material is homogeneous. If it is heterogeneous then the two will estimate different
quantities.

The pooled variance s is not affected by heterogeneity, since it is determined
exclusively by the precision of the analytical determination. Expressed in a more
general way, it describes variance of the data within each column, i.e. the within-
column variance. Since this is not affected by heterogeneity, we must still consider
that s7 estimates 6°.

The variance of the column means s2 describes the between-column variance. It no
longer estimates only 0‘2/nj, but the additional component o2 must be added, where
o? estimates the additional variance due to heterogeneity. Therefore, n;s2 estimates

o’ +n; 03
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These considerations allow us to write down a hypothesis and test it. Indeed, if
the material is homogeneous, then s? and n;s? both estimate 6°, or

Ho: 0p=n62 or Hyoi=0
If the material is not homogeneous then n; s? estimates 6° + n; 03 while s,
estimates ¢7. In other words, n, s? estimates a larger variance than s; and

H;: 0,2,<an% or H:o2>0

Variances can be compared by using an F-test (see Section 5.4) and, in view of
the way H, is formulated, this F-test must be one-sided.

6.1.3 Breaking up total variance in its components

The way ANOVA was explained above shows some of the basic assumptions
of ANOVA, its philosophy, and the way the eventual hypothesis test (one-sided
F-test) is carried out. The actual computations can be understood and carried out
more easily by considering ANOVA as a splitting-up of the total variance in its
components. The total variance is given by

koo
$=% 3 (- D An-1) ©6.7)
i=1 =l
k
where n =3, n;
j=1
In words, the total variance is the sum of the squared differences between each of
the data x; and the grand mean x, divided by n — 1 degrees of freedom where n is
the total number of data in the table. For reasons of computational convenience, let
us first work with the sums of squares, SS

SST = Z Z (X,‘j - ;)2 (68)

and introduce the degrees of freedom at a later stage of the computations. SSr is
the sum of squared differences of each individual observation from the grand mean.
In some texts SSr is the sum of squares of the data and the SSr, as used here, is then
called the corrected sum of squares (where ‘corrected’ denotes corrected for the
mean) and represented as SS,,;. We will not follow this practice.

Since

xij—}=(x,-j—)-tj)+(J_cj—~})

it follows that
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(5 =2 = (= %) + G =32 + 205~ %) G =) (6.9)

To obtain SSt in eq. (6.8), we sum over rows (i) and columns (j). The last term
of eq. (6.9) becomes zero, since differences from a mean cancel out when they are
summed. The result is therefore

SSr=2% X (xj—x)* + 2 m(x;—x)* (6.10)
or h !

SSt =SSk + SSa (6.11)
where

SSk=2 X (xj—x)° (6.12)
and n

SSa=Xn (oG ~x) (6.13)

SSk 'is called the residual sum of squares. The term “residual” is explained later
in this section. SSy is the sum of squares due to the effect of the factor studied (this
factor, called A, is here the composition heterogeneity among samples). It is also
sometimes called SSyeumen in general (ANOVA was frequently used first in
agronomy, where the effects were agricultural treatments) or it refers in some way
to the reason of the effect. Here we could write SSheterogencity- Finally, SSyimin
(within-column sum of squares) can be written for SSg, because it has to do with
variance within columns and SSieween (Petween-column sum of squares) for SS
because it is linked to variance between columns in the table.

To obtain estimates of variance from the sums of squares we divide by the
number of degrees of freedom. In general this is written as

MS = SS/df

where MS or mean square is a variance estimate and df is the number of degrees
of freedom. Applied to SSg and SSa, this yields

MS, =SSa/k-1) (6.14)
It estimates
o+ o2 n— (X n}/n)

k-1
For equal n, this can be shown to be equal to
62 + n; 63

Furthermore:
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MSg = SSgr/(n - k) (6.15)

This estimates 6°. The number of degrees of freedom n — k can easily be
understood by referring to Section 6.1.2. MSg is equal to s as given by eq. (6.4)
and we can verify that the denominator is indeed equal to kn; — k = n — k. In practice,
we can derive the number of degrees of freedom also by reasoning that the number
of degrees of freedom for SSt is (n — 1), that (k — 1) of these are used up by SS,
and that the rest (n — 1) — (k — 1) = n — k is available for SSg. This helps us to
understand the reason for the term “residual”. The residual sum of squares is the
total sum of squares minus the sum of squares due to a specific factor (SSg = SSt
— SS4) and the residual degrees of freedom are those that are not used up by this
specific factor: dfg = dfy — df .

Since MSg and MS, respectively estimate the 6° and 6% + n; 67 of the preceding
section, this also means that we can carry out the hypothesis test as described in
that section, i.e., by an F test.

_MS,  SSa/Ak-1)

- MSr SSk/An—k)
and this £ ratio must then be compared with the tabulated F fork — 1 and n - k
degrees of freedom (Table 5.3). It should be remembered (see Section 6.1.2) that
this is a one-sided test.

(6.16)

6.1.4 Random and fixed effect models

When explaining ANOVA in Sections 6.1.2 and 6.1.3, we have applied a
so-called random effect model. There is a second type of model called the fixed
effect model. These two different models rarely have an effect on the set-up of the
experiment or on the ANOVA table (see next section) and the first hypothesis test
to be carried out, namely the F-test. The purpose, however, of the ANOVA is
different as are some of the operations or tests carried out after the F-test. This
requires some additional explanation.

In eq. (6.2) an additive model — also called linear model — was defined, in
which each single result can be divided in several components. One of these was
described as the effect of the factor (in eq. (6.2) this was the pretreatment method).
A more precise definition of the additive model is now required. There are, in fact,
two definitions.

The first possibility is to consider the effect of the factor as a fixed deviation of
the mean of group j from the grand mean. This would be the case for the example
given in Table 6.1a in which the effect of different pretreatments is studied. Each
result for pretreatment method j would then consist of [l + g;, the mean and the
effect of the pretreatment method on the one hand and the randomly distributed
error or residual e; on the other. This is called Model I ANOVA or a fixed effect
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model. Strictly speaking, this has an effect on the mathematics because MS, now
estimates

2
2nya

and the hypothesis to be tested can be stated as:
H()I Ay =dr= ... = 0
Hi:a;20 for a least one j

This has no computational consequences for the ANOVA as such as the test is still
performed as an F-test on the ratio MS,/MSk.

In the case of a fixed effect model, it can be concluded that at least one column
mean is different from the others (in the example, at least one pretreatment method is
different from the others). We might then be interested in knowing which means are
significantly different from the others. How this is done is described in Section 6.3.

The model to be applied to the homogeneity problem of Table 6.1b is called a
Model I ANOVA or a random effect model. We are not interested in a specific
effect due to a certain column, but a general effect on all columns and that effect
is considered to be normally distributed. To distinguish between model I and model
1I, we sometimes use different symbols for the effects. For instance, we could use
the lower case letter a for model I and the capital letter A for model II. This yields

Xj=U+A+e; (6.171I)

where a; is the fixed effect of model I and A, is the normally distributed variable
with mean 0 and variance o4 of model II. As already explained in the preceding
section, MS, estimates for model 11

o+ 03 n-Xni/n
k—1

or, for equal n;, 6> + n; G&

Since the effect on the column means is random there is no sense in trying to
determine which column mean is significantly different from another. We should
consider that inhomogeneity of the samples adds variance to the variance due to
the determination and, in this case, we might like to determine how large the added
variance component is. This will be described under Section 6.4.

The difference between the models is not always evident. In the example of the
intercomparison of laboratories, we might focus on differences between the spe-
cific laboratories taking part (proficiency testing), which would then be a fixed
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effect model. On the other hand, we could consider the laboratories as representative
for a population of sufficiently proficient laboratories. The within-column variance
describes repeatability, the overall variance the reproducibility and the between-col-
umn variance the added variance component due to between-laboratory variance (see
also Chapters 13 and 14). This model would be a random effects model.

This may seem complex to the first-time user. Fortunately the distinction is
often important only from a philosophical point of view and may be disregarded at
a first reading. As stated earlier, the ANOVA table and the hypothesis test with the
F-tables is exactly the same in both cases. However, for a deeper understanding,
the philosophy behind the statistics is important and the difference between the two
models should therefore be included in a more thorough study.

6.1.5 The ANOVA table

The computational scheme of Section 6.1.3 can be summarized in an ANOVA
table. These tables, whether they concern a one-way experiment as defined in the
previous section or multi-way layouts (see e.g. Section 6.5) always have similar
formats. They consist of up to five columns: the first column gives the source of
the variation, the second and third the degrees of freedom and sums of squares (not
necessarily in that order), the fourth the mean square and the fifth the F values.
Under the table is often written the critical F-values that have to be compared with
the experimental values in the fifth column and the conclusion (the effect is
significant or not at a certain level). Sometimes p-values are given in a sixth
column. This then yields the general layout of an ANOVA Table (Table 6.3).

For the data of Table 6.1 this yields Table 6.4. The between-group variance is
significant at the level a < 0.001 since 22.97 > 4.92. If, as in Table 6.1b, we
considered these data to be the data of a homogeneity experiment, i.e. a Model 11
ANOVA, then our first conclusion would be that the material is not homogeneous.
We might then continue with the techniques described in Section 6.4 and try to
determine how much of the variance in the data is due to this effect. If we
considered the data to be those of Table 6.1a, i.e. a comparison of pretreatment

TABLE 6.3
One-way ANOVA table

Source Degrees of freedom Sum of squares Mean square F
Between columns (A) k-1 SSa SSA/(k—1) MSA/MSr
Within columns (residual) n-% SSr SSr/(n — k)

Total n-1 SSt

Fu.05:k-1,n—k = ..., conclusion about significance of A: ...
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TABLE 6.4
ANOVA of the data of Table 6.1

Source Degrees of freedom  Sum of squares Mean square F
Between columns 6 2.6765 0.4461 22.9709
Within columns 35 0.6797 0.0194

Total 41 3.3562

Fo.05:6.35) = 2.38, Foooi63s) = 4.92.

methods, we would now decide that at least one method gives results different from
the others and turn to the methods described under Section 6.3 to obtain more
detailed conclusions.

6.2 Assumptions

Because within-column variances are pooled to estimate MSg (Section 6.1.2),
we assume that these variances are equal. In other words, we assume homogeneity
of variance or homoscedasticity. When this assumption is violated and the vari-
ances are not equal, we conclude that there is heteroscedasticity. Wrongly assum-
ing homoscedasticity can lead to serious errors and therefore tests that allow us to
verify this assumption are required.

In some contexts (e.g., method validation, see Chapter 13), the emphasis is on
deciding whether the variance in one of the columns is higher than in the other
columns, rather than on investigating that all variances are equal. In other words,
we suspect the column with highest variance to have a significantly higher variance
than all the others. This is only another way of saying that there is heteroscedastic-
ity, and therefore tests for heteroscedasticity can also be.applied for this type of
application.

In our view, ANOVA should always be preceded by visual inspection of the data
before any test is carried out. Figure 6.1 provides such an analysis. Inspection of
the plot immediately indicates that it is probable that SZC proves to be different
from the other pretreatment methods. A particular powerful aid is the box plot
(Chapter 12). This gives immediate visual indication of whether a violation of the
assumptions is to be feared. At the same time it will permit us to assess the
occurrence of differences between means (Section 6.3), violations of the normality
assumption within columns and, in the case of two-way ANOVA, the occurrence
of interaction (Section 6.6).

Rapid tests can be carried out with the use of ranges [2]. One test is based on the
comparison of the highest within-column range, wmax, with the sum of all ranges.
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Another is based on the comparison of the highest range to the lowest [3],
Wmax/Wmin. The idea of comparing largest to smallest dispersion is also used in
Hartley’s test [4] which compares the highest variance within columns to the
lowest, 52, /Sin.

Cochran’s criterion is based on comparing sZ,, with all the other variances.
Because it is recommended by ISO [5], we will describe it here in somewhat more
detail. It is given by:

2

Smax

C= 6.18
5 (6.18)
i

C is then compared to critical values (see Table 6.5). It should be noted that this
criterion requires that all columns contain the same number of results (#;). If the #;
do not differ too much, the test can still be carried out. ISO [5] then recommends
the most frequent n; value is used. For n; = 2, we can replace s in eq. (6.18) by w,
the range, so that

2
Wnax
C

CIw
i

Applied to the data of Table 6.1, Cochran’s test would yield the following
results:

s1=0.011 s =0.008 s3=0.027 s3=0.052
s2=0.012 s:=0.024 s%=0.002

Thus s, = 0.052 and Y.s? = 0.135 so that C = 0.052/0.135 = 0.382.

The critical value for C for n; = 6 and k = 7 is 0.397. It follows that the data are
considered to be homoscedastic.

A test which is often found in books on applied statistics is Bartlett’s test. It has
been shown [6] that this test is very sensitive to departures from normality within
columns, so that finding a significant result often indicates non-normality rather
than heteroscedasticity. This test will therefore not be discussed here. Other
possibilities are the log-ANOVA or Scheffé-Box test [6].

When differences in variance have been found, several possibilities exist. In
some contexts (e.g. method-performance testing) we can decide that the data from
laboratories with too high a variance should be eliminated (see further Chapter 14).
In many cases, we cannot reject data and must resort to methods that allow us to
restore homoscedasticity. There are two ways of doing this: one is by transforming
the variables (appropriate transformations are discussed in Chapter 8 on regression
where the same problem occurs); the other is to apply weights (weighted ANOVA).

As seen in Section 6.1.1, a second assumption is that the e; within a column are
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TABLE 6.5

Critical values for Cochran’s C at the 5% level of significance

k I’lj=2 nj=3 ﬂj=4 ﬂj=5 'lj‘—‘ﬁ
2 - 0.975 0.939 0.906 0.877
3 0.967 0.871 0.798 0.746 0.707
4 0.906 0.768 0.684 0.629 0.590
5 0.841 0.684 0.598 0.544 0.506
6 0.781 0.616 0.532 0.480 0.445
7 0.727 0.561 0.480 0.431 0.397
8 0.680 0.516 0.438 0.391 0.360
9 0.638 0.478 0.403 0.358 0.329

10 0.602 0.445 0.373 0.331 0.303

11 0.570 0.417 0.348 0.308 0.281

12 0.541 0392 0.326 0.288 0.262

13 0.515 0.371 0.307 0.271 0.243

14 0.492 0.352 0.291 0.255 0.223

15 0.471 0.335 0.276 0.242 0.220

16 0.452 0319 0.262 0.230 0.208

17 0.434 0.305 0.250 0.219 0.198

18 0.418 0.293 0.240 0.209 0.189

19 0.403 0.281 0.230 0.200 0.181

20 0.389 0.270 0.220 0.192 0.174

21 0.377 0.261 0.212 0.185 0.167

22 0.365 0.252 0.204 0.178 0.160

23 0.354 0.243 0.197 0.172 0.155

24 0.343 0.235 0.191 0.166 0.149

25 0.334 0.228 0.185 0.160 0.144

26 0.325 0.221 0.179 0.155 0.140

27 0316 0.215 0.173 0.150 0.135

28 0.308 0.209 0.168 0.146 0.131

29 0.300 0.203 0.164 0.142 0.127

30 0.293 0.198 0.159 0.138 0.124

normally distributed, which means that the data within one column should also be
normally distributed. How to test normality is described in Chapter 3. In many
cases, knowledge about the process investigated will give us a good reason to
accept that the underlying distribution is normal and we will be concerned more
about the occurrence of outliers, which can also be considered as a deviation from
normality. Tests for outliers are discussed in Chapter 5.

To avoid problems with the assumptions of normality and homoscedasticity, it
is possible to carry out robust ANOVA. In Chapter 12 the best known such method
for ANOVA — the ANOVA by ranks — will be described (Section 12.1.4.4) as
well as a randomization method (Section 12.4).
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Al |A2 |A3 |AL |AS |AG

B1|B2 (B3 |B4|BS|B6

Fig. 6.2. Non-randomized layout of plots on a field for a fertilizer test.

There is another assumption about the e;;, namely that they are independent. This
is written in all statistics books, but often not explained. Let us therefore give an
example. ‘Independent’ means that the individual e; are randomly distributed and
not influenced by an external factor. Suppose for instance that we want to compare
two fertilizers, A and B, by treating small plots of a field with the fertilizers in a
layout shown by Fig. 6.2. It may be that, due to some factor such as irrigation or
exposure to the sun, the yield of the crop in series A and/or B changes in a specific
order (for instance in the north—south direction A > B or in the east-west direction
1>2>3>4>5>6). The errors for A and for 1,2 and 3 will then probably be
positive, and those for the others negative. They are not independent (they depend
in this case on location). Usually we will not test for independence, but rather make
sure that independence is achieved by proper randomization (see further).

Conclusions can be biased by uncontrolled factors, i.e. factors that have not
been taken into account. Suppose we need to compare several industrial extraction
methods. At first sight, a logical experimental set-up could be the following.
Extraction procedure A is first carried out six times on day 1, then the same for
procedure B on day 2, etc. However, suppose that temperature is not controlled but
that, unknown to the operator, it does influence the extraction yield. Then, if the
temperature is different on the successive days, the effect of the extraction proce-
dure will be confused or confounded with that of the (uncontrolled) factor tempera-
ture (or days). How to avoid this depends on practical considerations, but in this
instance and supposing there are only three extraction methods, we could carry out
2 extractions with A, 2 with B and 2 with C on day 1, repeat this on days 2 and 3
and analyze all samples in a random order afterwards. Indeed, it is always possible
that some drift would occur during the analysis. If we were analysing first all A,
then all B and finally all C samples, it could be that a difference in the results could
be introduced by the order of analysis. For this reason, the order of the 18
determinations should be randomized.

In doing this we have applied the two main principles to avoid bias due to
uncontrolled variables. We have applied planned grouping or blocking out to the
extraction step and randomization to the measurement step. These are very impor-
tant principles for experimental design and will be discussed again in Section 6.9
and Chapter 22.

An assumption, which is important in the random effect models, is that the effect
of the factor (if any) should indeed be random and normally distributed. This can
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TABLE 6.6
ANOVA of the data of Table 6.1 after deleting the SZC procedure or sample 4

Source Degrees of freedom Sum of squares Mean square F
Between groups 5 0.1284 0.0257 1.8285
Within groups 30 0.4214 0.0140

Total 35 0.5498

Foossan = 2.53.

be checked in the way described in Chapter 3. Applied to the sampling problem
and the data of Table 6.1b, this means we could check whether the x; are normally
distributed or we could apply an outlier test. The data for sample 4 are then found
to be outliers. How to detect outliers is discussed in Chapter 5. If the experimenter
feels justified in eliminating the outlier, he or she can then continue work with the
other 6 samples. The result is described in Table 6.6.

As in other hypothesis tests, the sample size determines whether it will be
possible to demonstrate a certain difference (if it exists), which is considered
important by the investigator. How to compute the sample size for a given one-way
ANOVA problem is described for instance in Ref. [6].

6.3 Fixed effect models: testing differences between means of columns

When the null hypothesis has been rejected, in the fixed effect model it is
considered that at least one column has a mean value different from the others. We
would then like to know which one(s). For instance, for the data of Table 6.1a we
would wonder which pretreatment methods give different (higher, lower) results
compared with the other methods.

As already stated in Section 6.2, ANOVA should always be accompanied by a
visual analysis of the data such as that shown in Fig. 6.1. The box plot (see Chapter
12) can also be recommended for such an analysis. It immediately singles out those
columns for which it is most likely that differences exist and it may well be that
further statistical analysis is no longer needed or can be considered as necessary
only to confirm what one has seen.

The first obvious way is to use the appropriate #-test to compare all means with
each other. It was explained in Chapter 5 that this requires an adjustment of the
probability levels (the Bonferroni procedure). We might try to avoid this by
selecting the groups with the highest and lowest means and carrying out #-tests to
compare them. However, although this involves explicitly only one or a few r-tests,
it really means one has surveyed all means and compared them implicitly to each
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other. Therefore, the same Bonferroni correction should be applied, whether one
actually carries out the tests only for a few pairs or for all of them.

Many different methods have been described in the statistical literature that
were specifically designed for the comparison of several means. Appealing be-
cause of its simplicity is the Least Significant Difference (LSD) method. One tries
to define a difference between two means that, when exceeded, indicates that these
two means are significantly different. Any pair of means for which x; — x, > LSD
is then considered different.

In Chapter 5 it was seen that for the comparison of two means with an
independent z-test and for small sample sizes, we apply

lx; — xl

Vs[(1/m) + (1/m0)]

=

The denominator of this equation contains the pooled variance due to measurement
error. In ANOVA, this is estimated by the MSy and we can therefore write

lx; — xl

- VMSk [(1/m) + (1/n)]

f

For equal sample size #; this simplifies to
be; — xol

VMSg (2/1)

We can then test each x; — x, against

LSD = n"MSg(2/n)) (6.19)

t is obtained from a ¢ table at the appropriate level of confidence ¢ (usually 0.05)
and degrees of freedom (that for MSg).

Consider the example of Table 6.1a for which the ANOVA was carried out in
Table 6.4. Since the number of degrees of freedom for MSg is 35, we can consider
that r = 1.96 at a = 0.05. LSD is then given by

LSD = 1.9670.0194(2/6) = 0.158

The only differences between two means larger than 0.158 are those between
SZC and all the others. The difference between LTA and ZZF is also marginally
larger (0.160), but because we know that the L.SD method tends to select too many
significant differences, this is not considered enough. This is due to the fact that
we implicitly compare all means with each other without correction of ¢, i.e. we
apply a non-simultaneous approach. As explained earlier in this section, this would
really require an adjustment of the probabilities.
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More rigorous, but also more cumbersome tests, have been described in the
literature, e.g., the Scheffé method, the Student~Newman—Keuls method, the
Tukey—Kramer method, the T-method. As the LSD, they are all based in some way
on defining a minimum distance, which consists of a product of a critical value,
based on a statistical distribution (e.g. a r or F distribution) and a standard
deviation, derived from the MSg. Some of the tests are valid only for equal r; and
for some of them a simultaneous approach is used, while for others it is a
non-simultaneous one. Discussions can be found in several books and, more
briefly, in a review article by Stahl [7].

A special purpose test is the Dunnett test, where one compares one mean
(usually the first) with all the other means. It is applied, for instance, in the
following situation. A control value of a certain variable has been determined at
the beginning of the experiment. Some treatment is applied and at different points
in time the values of the variable are measured again. The question is then: from
which moment on is there a significant difference?

Iterative procedures are also possible. We can eliminate the column which is
considered to be the most probably different and carry out the ANOVA on the
remaining data. As an example, SZC is eliminated from Table 6.1. The ANOVA
on the remaining data is given in Table 6.6. No significant effect is obtained.
Therefore, we conclude that the significant difference noted earlier was indeed due
to SZC and only to SZC.

6.4 Random effect models: variance components

As pointed out in Section 6.1.4, when the effect of a factor is random it makes
no sense to try and determine which column mean is responsible for the signifi-
cance of the effect as was done in the preceding section. However, the effect does
add variance and we can determine how much. This is useful in, e.g., the study of
the precision of analytical methods, since it is possible to determine how much of
the total variance is due to each step. In the same way, it can be used in SPC to
determine what could be the effect of better control of a certain step on the total
variance.

Let us consider again the example of Section 6.1.2. We know how to determine
the variance due to the measurement, 6: it is estimated by MSg. For equal n;, MS,
estimates G + n; Ga, where O3 is the variance due to the sample heterogeneity. We
can estimate the variance due to heterogeneity, s3, as

5% = (MSa — MSg) /n; (6.20)

Since we concluded in Section 6.3 that sample 4 is an outlier, it was eliminated
and the ANOVA of Table 6.6 on the remaining samples shows that the effect of
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the samples is not significant. Since the effect of the samples is not significant, we
would decide not to make the calculations of eq. (6.20). In some cases we have no
interest in the test, but merely want the best estimate possible of the effect. This is
provided by s4. Applied to the example of Table 6.6, this means that s3 = (0.0257
— 0.0140)/6 = 0.00195 and s, = 0.044 while sk = 0.0140 and sg = 0.1183. The
standard deviation due to composition heterogeneity explains only a small part of
the total standard deviation.

It should be added here that the determination of variance components is often
carried out in more complex cases by nested ANOVA (see Section 6.11).

6.5 Two-way and multi-way ANOVA

Let us return to the example of Table 6.1. Because matrix effects may occur, we
should ask whether a matrix modifier should be added before the determination
takes place. To investigate this we can set up an experiment with two factors. The
first factor is the pretreatment and, to keep the example simple, 3 instead of 6 types
of pretreatment are considered. In other words, the first factor is studied at three
levels. The second factor is the matrix modifier. This is studied at two levels,
namely with a certain amount of modifier and without modifier. This yields
Table 6.7.

TABLE 6.7

Effect of pretreatment and matrix modification on the determination of Fe by AAS (hypothetical data derived from
Table 6.1)

Matrix modification Pretreatment
Dry Micro 7ZC

Without 5.59 5.67 5.75
5.59 5.67 5.47
5.37 5.55 543
5.54 5.57 5.45
5.37 543 5.24
5.42 5.57 5.47

With 5.90 5.90 5.81
5.75 6.01 5.90
6.07 5.85 5.81
5.90 5.54 5.81
6.01 5.81 5.90

6.06 5.70 5.90
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TABLE 6.8
Two-way ANOVA design (without replication)

Factor B
Factor A 1 2 j k Means factor A
1 X1t X12 Xyj X1k Xy,
2 X21 X2 Xy X2k X2,
h Xp1 Xp2 Xyj Xhk X,
l X1 xn Xy Xik X1,
Means factor B X, X, X,j Xk Grand mean: x

Tables such as Table 6.7 are called rwo-way tables or designs and the data
analysis by ANOVA is a two-way ANOVA because the data are subject to a double
classification. In this example the data are classified once according to the pretreat-
ment of the data and once according to the matrix modification. In general, this
leads to a design such as that in Table 6.8. In the specific example of Table 6.7
factor A would be the pretreatment and factor B the matrix modification. To
simplify the description of the computation, we will first discuss the case where
there is no replication. By ‘replication’ we mean that more than one result is
obtained in each cell of the ANOVA table. For instance, in Table 6.7 there are ¢
replicates in each cell.

The grand mean, the mean of all the data of Table 6.8, is given by:

X=3 3 xy Ik h=ltolj=1tok
hoj

There are [ levels of factor A and the mean at each of those levels is given by
X1., Xa.,... XX, and

Xh.=Z xij 7k
j
Similarly, there are k levels of factor B and the mean at each level is given by

}.j= th/‘/l
h

The total sum of squares, SSy, is obtained in a similar way as described earlier
in eq. (6.8) and it is broken down in a similar way as in Section 6.1.3 into
components due to the different factors and the residual.
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SSr=2% ¥ (x4 —x)* =SSa + SSp + SSk 6.21)
b

The sum of squares due to factor A, SS,, is given below, together with the
number of degrees of freedom df, and the mean square MS, = SSa/df,4.

SSa =k X (x, —x)* (6.22)
h

dfa=1/-1

MSA=SSA/(I-1) (6.23)

The sum of squares due to factor B, SSy, is given by:

SSe =1 ¥(x;—x)° (6.24)
i

de = k - 1

MSg =SSp /(k- 1) (6.25)

The equations for SSg and MSg are less easy to understand and, in practice, they
can always be determined as

SSgr=SS1-SSA-SSp (6.26)
and

dfg =dfr-k-1—-(-1) (6.27)
MSg = SSg /dfr (6.28)

In words, the residual sum of squares is the total sum of squares minus the sum
of squares for each of the factors and the number of degrees of freedom for the
residual term is equal to the total number of degrees of freedom (i.e. the total
number of data, k/, minus 1) minus the number of degrees of freedom used for the
other sources of variance, factor A and factor B.

It can be shown that this is equal to:

SSR:ZZ(.X*};,»—EJ'*'})Z
hj

dfg=(k-D({I-1) (6.29)
and
MSg =SSr/(k-1D(-1) (6.30)

It is useful at this stage to note that by breaking down the sum of squares as
described above, one assumes the linear model:
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xh/=u+ah+bj+ehj (631)

where xy; is the value in cell /j, a, is the effect of the Ath level of factor a and b, the
effect of the jth level of factor b and e, is the random error of the observation in
cell hj. As for the one-way ANOVA, one can make a distinction between fixed
effects and random effects. Our example is a fixed effects model. For two-way
ANOVA it is possible that one factor, say a, is fixed and the other random.
Following the convention of eqs. (6.17) we could then write

th:].l+ah+Bj+€hj

This is then called a mixed effect model.

Table 6.8 is constituted of a grid of data. Each of these data forms a cell. Until
now we have assumed that each cell contains only one numerical result. It is
however possible that there are more. In fact, in our example there are 3x2 cells
each containing 6 replicates. We will see later that replicates are not required when
one computes a two-way ANOVA with only the main effects but that they are
required when one wants to estimate also interaction effects (see Section 6.6).
When replicates are present, we should then write x,; for the ith replicate in cell Aj
(i = 1 to ny). It is, in fact, not necessary that all cells contain the same amount of
replicates; large differences, however, should be avoided. The computations are
summarized in a two-way ANOVA table (Table 6.9) similar in construction to the
one-way Table 6.3. For the example of Table 6.7, this yields Table 6.10. We
conclude that the pretreatment has no significant effect but that the effect of the
modifier is very clear.

It 1s possible to investigate more than two factors by ANOVA. In our AAS
example we could ask if changing the atomization temperature from 2300 to
2400°C has an effect. This could then lead us to carry out experiments at all
combinations of the three types of pretreatment, the two types of modifier and the
two levels of temperature. The table would be a three-way table and the ANOVA
would be a three-way ANOVA. ANOVA applications for more than two factors
are often called multi-way ANOVA.

TABLE 6.9
Two-way ANOVA table

Source Degrees of freedom Sum of squares Mean square F
Main effects dfa + dfg SSA +SSp
Factor | (A) -1 SSa SSA/i-1) MSA/MSg
Factor 2 (B) k-1 SSg SSg/tk— 1) MSgp/MSg
Residual r—[k-1)+(-D]j=r SSg SSp/r

Total nkl—1=1t SSt
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TABLE 6.10
Two-way ANOVA table of the data of Table 6.7

Source Degrees of freedom  Sum of squares Mean square F
Main effects 3 1.183
Pretreatment 2 0.016 0.008 0.49
Modifier I 1.166 1.166 68.85
Residual 32 0.542 0.017
Total 35 1.725 0.049

Significance: pretreatment, p = 0.61 (NS); modifier, p < 0.001.

6.6 Interaction

In many experimental systems, the effect of one factor depends on the level of
the other. This is called interaction. In the example given to explain the two-way
ANOVA the effect of the modifier might depend on the medium in which the Fe
is dissolved and therefore on the other factor we studied, namely the dissolution
procedure. One would conclude that factor A (pretreatment) interacts with factor
B (the modifier).

The interaction influences the variation found in the data table. The way
ANOVA treats this is to consider the interaction as an additional source of
variance, next to the main effects of factor A and factor B. More precisely, in the
linear model of eq. (6.31), one adds an additional term and takes into account
replicates

Xpii= W +ap + bj + (ab)hj + €y (632)

The cross term (ab),; describes the interaction. The number of degrees of
freedom for the interaction, dfg, is equal to the product of the degrees of freedom
for the interacting factors. For the two-way lay out of Table 6.8 one would then
obtain:

dfap = dfa-dfy = (k= D= 1) (6.33)

Equation (6.33) yields exactly the same number of degrees of freedom for the
residual in eq. (6.29) which was obtained without replication. As dfy is always
equal to dfy minus the degrees of freedom used up for the other sources of variance,
dfg would then be given by:

dfg =dfr— (k=)= (=)= (k= 1) (I=1)=0 (6.34)

There are no degrees of freedom for the residual left when there is no replication.
Therefore, to test all effects, including the interaction effect, it is necessary to
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TABLE6.11
Two-way ANOVA table with interaction for the data of Table 6.7

Source Degrees of freedom Sum of squares Mean square F
Main effects 3 1.183
Pretreatment 2 0.016 0.008 0.55
Modifier 1 1.166 1.166 77.74
Interaction 2 0.092 0.046 3.07
Residual 30 0.450 0.015
Total 35 1.725

Significance: pretreatment, p = 0.474 (NS); modifier, p = 0.000; interaction, p = 0.076 (NS).

replicate measurements. As 6 replicates were obtained in Table 6.7, we can esti-
mate and test the interaction effect between pretreatment and modifier.

We will not go further into the details of the computation. The principles,
however, are the same. One computes a total sum of squares and breaks it up in
sums of squares for each source of variance. The same SS-terms as in Tables 6.9
and 6.10 are then included with, additionally, an SS;yeraction- In the ANOVA table
with interaction (Table 6.11), one writes down first the effects due specifically and
solely to a certain factor (the main effects). This is then followed with the interac-
tion term. The SSg is, as always, equal to SSt minus all SS-terms due to the effects,
1.e. the main and the interaction effects.

To obtain the mean square, we again divide SS by df. For the interaction:

MSAB = SSAB/deB

By applying this to the data of Table 6.7, Table 6.11 is obtained. There is a very
significant effect of the modifier, the pretreatment is not significant and neither is
the interaction. One would be tempted to add “of course”, because, since there is
only one significant factor, one could reason that there can be no interaction
between two factors. In fact, it is possible that an interaction exists and that the pure
effects on their own are not significant. However, this is rare and such a result
should be viewed with suspicion. A possible artefact when the significant factor is
very significant is that some of the variance due to it may be partitioned into the
interaction which may then be computed as significant.

It should be stressed that in two-way ANOVA the same assumptions are made
as in one-way ANOVA (normality and homoscedasticity of all cells, etc.). Because
the number of data in each cell is often small and the number of cells to be
investigated relatively large, one often is not able (or willing) to test these assump-
tions. One should, however, be aware that these assumptions are made and that
large deviations can invalidate the data analysis. In particular much attention
should be paid to randomization and blocking issues (see Section 6.2).
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Again, as in the preceding section, the considerations about two-way ANOVA
can be generalized to multi-way ANOVA.

6.7 Incorporation of interaction in the residual

When the interaction is not significant it can be concluded that there was no
reason to include the interaction term in the linear model as is the case in eq. (6.32),
so that one should fall back on the linear model of eq. (6.31). This also means that
the computation of the interaction SS is no longer required, nor the degrees of
freedom reserved for it. Of course, we could then start the ANOVA all over again
using Table 6.9 as a model ANOVA. However, there is a much easier way. The
calculation of SS4, SSg, dfs and df in Table 6.11 is unaffected by whether we take
interaction into account or not. Without interaction, we would write

SSrwithouy = SST — SS4 — SSp (6.35)
With interaction

SSrewith) = SSt— SSA — SSp -~ SSap (6.36)
Therefore

SSrwithoury = SSrwithy + SSan (6.37)

In practice, this means the following. Suppose we have computed an ANOVA
table with interaction and concluded that the interaction is not significant. We
decide therefore to compute the ANOVA table without interaction. Then we can
obtain the SSg by simply summing the SSy of the previous table (i.e. the one in
which interaction was taken into account) with the sum of squares of the interaction
term SS,p. In the same way, it is easy to demonstrate that

dfrewithoury = dfr(witny + dfap (6.38)

In other words, having computed an ANOVA table with interaction and having
found that the interaction was not significant, we can obtain the residual sum of
squares that would have been obtained if interaction had not been considered by
pooling the sums of squares and the degrees of freedom as described above. Having
obtained in this way the results that would have been obtained if no interaction had
been included, we can then proceed to obtain the MS without having to compute
everything again.

Let us apply this to Table 6.11. The sum of squares without interaction is
obtained by adding 0.450 (residual sum of squares when interaction taken into
account) + 0.092 (sum of squares due to interaction) and the degrees of freedom
by adding 30 and 2. The result was already given in Table 6.10. Because the
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conclusions were very clear in this case, this has no real influence on the results.
In some cases, particularly when the number of degrees of freedom is small, this
incorporation is useful. Most computer programs include the possibility of doing
this as a matter of course and will even propose it automatically. It should be noted
that some statisticians disagree on whether pooling is indeed always acceptable.
For more guidance on this matter the reader should refer to Ref. [8].

6.8 Experimental design and modelling

ANOVA is one of the most important statistical techniques in chemometrics.
We will apply it repeatedly in later chapters. In Chapters 20 to 25, for instance,
techniques of experimental design are discussed. One of the main applications is
to decide which factors have an influence on the properties of a process or a
product. In Chapter 22 we will discuss an example in which the effect of four main
factors and the interactions between each pair of main factors is investigated.
Multi-way ANOVA is one of the main tools that is used to decide which factors
and which interactions are significant.

Starting with Chapter 8, we will discuss the very important subject of modelling.
Suppose we have developed a simple model y = by + b, x. To do this we have
applied regression on a set of replicate y-values, i.e. for certain levels of x we have
measured y a few times and obtained the straight-line regression model for these
data. We can then predict for each x the value of y we should have obtained. The
measured y values will not be exactly equal to the predicted y values. We will then
wonder whether we can interpret the variance around the regression line in terms
of the model and the variance due to replicate measurements. If this is not the case,
an additional source of variance must be present. This will then be due to the fact
that the model is not correct (for instance, it is quadratic instead of linear) so that
the variance around the straight-line model is larger than could be expected on
random variation alone. ANOVA is applied to decide whether this is indeed the
case (see Section 8.2.2.2).

6.9 Blocking

Let us go back to the extraction example of Section 6.2. It was decided there that
three extraction procedures A, B and C would be carried out twice each on days 1,
2 and 3. The reason was that an inter-day effect was feared. If the ANOVA is
carried out, one will therefore consider not only an SS(extraction) and an SS(resid-
ual), but also an SS(blocks) (or SS(days) in this case). In general, blocking will
therefore lead to an additional factor or factors in the analysis. The block effect is
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rarely tested, but the variance due to it — for reasons similar to those explained in
the following section — must be filtered away. The construction of the blocks and
designs such as Latin squares, which apply the blocking principle, are discussed
further in Chapter 24,

6.10 Repeated testing by ANOVA

Let us suppose that we test a treatment for high blood pressure on a group of 10
patients. The blood pressure is measured at the start of the treatment, after 3 weeks
and after 6 months. If only two measurements were carried out on each patient (e.g.
start and 6 months), then we would be able to carry out a paired ¢-test (one-sided
because the alternative hypothesis H; would be that the blood pressure at the start
is higher than after 6 months). Since there are more than two measurements we
must carry out an ANOVA in the case that we want to carry out a single hypothesis
test. This is sometimes called repeated testing by ANOVA. Repeated testing is the
ANOVA equivalent of a paired r-test. In the same way that a paired #-test would be
applied if we had obtained two measurements (at different times or with different
techniques) for a set of individuals, samples, etc., we apply repeated testing by
ANOVA when there are three or more such measurements for each individual.
Conceptually, the experiment is one-way (we want to test one factor, the times,
techniques, etc.), but statistically it is a two-way ANOVA.

At first sight, it may appear strange that this should be a two-way ANOVA since
we are really interested in only one factor — the effects of time of treatment.
However, the total variance in the data is made up by the following components:
the measurement error, the effect of time, and also the difference between persons
since the persons in the study will not have the same blood pressure. The measure-
ment error is estimated by MSg and the other two by MSm. and MS;erion. The test
1s an F-test, comparing MS;,,. to MSg. We could carry out a test on the effect of
persons by looking at MS,eron/MSg but that would not be useful, since we know
that this effect must exist. However, it is necessary to isolate SSperon, S0 that SSg =
SSt — SStme — SSperson- Not doing this would be equivalent to writing

SSR = SST - Sstime

and would result in a gross overestimation of the SSg.

This type of ANOVA is often applied without replication. In this case the effect
of interaction cannot be measured. Let us again suppose that we are interested in
comparing k pretreatment methods; to do this we now select six homogeneous
samples with different (but unknown) concentration (instead of six replicates of the
same sample as in Table 6.1) and analyze a portion of it once with each of the
methods. As we will see in Chapter 13 such a set-up could be applied when the
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expected concentration range of the analyte is larger than a few percent. The six
samples are analyzed only once according to each pretreatment procedure. Since
they have different concentrations, we will need a two-way ANOVA, with pre-
treatment and sample as factors. Only the pretreatment will be tested, since we
know that the concentration adds to the variance. We might ask here the following
additional question: is the effect of the pretreatment the same for all samples (at all
levels of concentration)? This can be restated as: is there an interaction between
samples and pretreatment? Because there was no replication, it is not possible to
carry out the test on the interaction. One necessarily assumes there is no interaction.

6.11 Nested ANOVA

Let us suppose we want to analyze the effect of using different instruments and
different analysts on the variance of the data obtained. We could make a design,
where each analyst performs a few replicate determinations on each of the instru-
ments. In the simplest case (only two instruments and two analysts), we could make
the following combinations:

Instrument A — Analyst |

Instrument A — Analyst 2

Instrument B — Analyst |

Instrument B — Analyst 2
By carrying out replicated experiments of each combination, we could estimate the
effect of the analysts, of the instruments and of the interaction analyst X instrument
using two-way ANOVA. This would be a simple example of the ANOV A methods
described in Section 6.6.

Now let us suppose that we would like to do something similar with laboratories
and analysts as factors. It would not be practical to move analysts from laboratory
1 to laboratory 2: we need another design. This could be the following:

Analyst 1
Laboratory A
Analyst 2

Analyst 3
Laboratory B
Analyst 4

This design is constructed in a hierarchical way. The first effect to be considered
i1s the laboratory and, within each laboratory, the analysts. One of the consequences
is that we now cannot determine an interaction between analysts and laboratories.
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ANALYST | ANALYST2 ANALYST! ANALYST2 ANALYST 1 ANALYST2

T

DAY 1 DAY2 DAY3

=

REPLICATE | REPLICATE 2

Fig. 6.3. Nested design to trace sources of variability in an interlaboratory study of an analytical

method.

TABLE6.12
ANOVA table for a nested design

Source of variation df SS MS F
Laboratories (A) 7 5.4248 0.7750 42.82
Analysts within laboratories (B) 8 0.1450 0.0181 1.31
Days within analysts (C) 32 0.4426 0.0138 3.00
Replicates within days (D) 48 0.2227 0.0046

Total 95 6.2351

Indeed, the analysts in laboratory A are not the same as in laboratory B. This type
of ANOVA is called hierarchical or nested in contrast with the usual design as

described above for instruments—analysts, which is called crossed.

A typical example of a hierarchical plan is given by Wernimont [9]. In eight
laboratories (a = 8) two different analysts (b = 2) determined on three days (¢ = 3)
the acetyl content of cellulose acetate in two replicates (n = 2). This yields the

nested design of Fig. 6.3 and the ANOVA Table 6.12.

The sum of squares and the corresponding degrees of freedom in the latter table

are obtained as:

o

SSA:bCf’IZ(E,'—})Z df=a—l

=1

a b
SSg=cn Y ¥ (x;—x)* df=a(b-1)

i=1 j=1

¢« b ¢
SSC:I’IZ z ZGW‘—},’/)Z df=ab(C— 1)

=1 j=1 k=1

(6.39)

(6.40)

(6.41)
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a b ¢ n

SSD = z 2 Z 2 (xijkl - },‘jk)z df = abc(n - 1) (642)
i=1 j=1 k=t =1

where:

X 1 the value obtained in the ith laboratory by the jth analyst on the kth day for

the /th replicate;

x;x is the mean value for the ith laboratory by the jth analyst on the kth day;

x; 1s the mean value for the ith laboratory by the jth analyst;

x; is the mean value for the ith laboratory;

x is the grand mean.

It should be noted that in this case the F-value is obtained by dividing the MS
of a factor with the one exactly below. Thus F for laboratories = 0.7750/0.0181 =
42.82 with 7 and 8 degrees of freedom.

The factor laboratories and the factor days are significant. However, this is not
the main interest: we would like to know the extent to which each of the factors
contributes to the total precision. With 63 the variance due to the replicates, 6 that
due to the days, 63 the contribution of the analysts and o7 that of the laboratories,
the mean squares MS4, MSg, MS¢ and MSp, may be shown to estimate:

MSp = SSp/(abc(n — 1)) estimates 63

MS¢ = SSc/(ab(c — 1)) estimates 6 + n G&

MS; = SSp/(a(b - 1))  estimates 63 + n 6=+ cn 03

MS, =SSal(a-1) estimates Gp + n G& + cn 64 + ben o4
Therefore

0.0046 = s}

0.0138 = s + 2s%

0.0181 = s3 + 25& + 653

0.7750 = s} + 252 + 655 + 125%

This can be solved to yield

sp = 0.068 sc = 0.068 sg =0.027 sa=0.251

The contribution of the laboratories is by far the largest and that of the analysts
the smallest. If we want to obtain better overall reproducibility, the reason for the
large variance due to the laboratories must be investigated.
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Chapter 7

Control Charts

7.1 Quality control

The control chart for industrial product control was developed by Shewhart in
1931 [1] and is the basis of quality control (QC) in statistical process control (SPC)
(Chapter 2). The main objective of SPC is to investigate whether a process is in a state
of statistical control. This requires that characteristics such as central location and
dispersion (or in other words, systematic and random errors) do not change percepti-
bly. Sometimes this requirement is relaxed in order to make sure that tolerance limits
are respected. To achieve this purpose, one selects sets of n individual objects or
samples from the product line and measures them. Statistics describing the set of n
measurements such as the mean for central location and the range for dispersion are
plotted as a function of time. One can then observe changes or trends in those statistics.

In analytical chemical QC the purpose is to monitor the performance of a
measurement method. The practical question is then whether the method still
yields the same result for some (reference) sample (often called check or QC
sample). “The same” can then be translated as estimating the same mean value with
the same precision. Essentially, this also means that one verifies that the method is
in a state of statistical control. It should be noted that the term quality control in
analytical chemistry is sometimes used in a wider sense as “all activities under-
taken to ensure the required freedom from error of analytical results” [2]. In this
chapter, we will take the more restricted view of verifying that the method is in a
state of statistical control. The QC is then carried out to ascertain that the method
is still sufficiently precise and free of bias.

7.2 Mean and range charts
7.2.1 Mean charts
7.2.1.1 Setting up a mean chart

The principle of the mean chart is shown in Fig. 7.1. The solid line depicts the
mean value, xr, which is often called the centre line, CL and the broken lines are



Fig. 7.1. Mean chart. UCL: upper control (or action) limit, UWL: upper warning limit, LWL: lower
warning limit, LCL: lower control (or action) limit.

limits at 1.96 S and 3.09 S around the mean. S is a standard deviation. As explained
later, there are different ways to define it and therefore we have preferred not to
use s as a symbol. The lines at £1.96 S are called warning lines or also the lower
warning limit (LWL) and upper warning limit (UWL) and those at £3.09 S action
lines or the lower control limit (LCL) and upper control limit (UCL). If the process
is under control then the warning lines include 95% of all values and the action
lines 99.8%. Finding values outside the warning lines is interpreted as a warning
that the process may be getting out of control and outside the action lines as a sign
for immediate action to bring the process back under control. This is only a rough
indication of how QC charts are interpreted. We will consider this interpretation in
more detail later, but let us first study how a QC chart is set up. The first step is the
determination of xr and S. They are determined on N sets of » individuals (Table 7.1)
before the control procedure starts. Such a set is sometimes called a training set.

xt is the estimate of the mean value of the process (or measurement) and is
computed as follows

;TZZE,‘/N (71)

where x; is the mean of the ith set of n individual measurements (i = 1,N).

There is much more variation in the computation of S. The simplest situation,
which often occurs in analytical QC, is the one where n = 1. This means that one
obtains N individual results for a QC material, with N at least equal to 10, but
preferably more (20 is usually considered the acceptable number). S is then simply
the standard deviation, s, on individual results of eq. (2.2).
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TABLE 7.1

Composition of training set for QC

Measurement j within set Number of set i

1 2 3 I N
l X1 X12 X13 X1i XIN
2
J Xj1 Xp X3 Xji XN
n Xnl Xn2 An3 Xni nN
Mean of set X X2 x; X; Xy
Standard deviation of set 5%, 5%, 5% 83, Sty

T.\2
2 (x; — xr)
§= ) &= (7.2)
N-1

When n > 1, one obtains S by averaging in some way the standard deviations of
the N groups of n data. The most evident procedure (see for instance Ref. [3]) is to
obtain first the standard error on the mean in each group

Z(xljf_;i)z
s},:‘/ B et/ VA
! (n—-1n

and to average the variances (since variances are additive).

Y sit
S:,/ ~ (1.3)

Another procedure simply averages the sz and then divides the average by a
factor, which is often called Cj, and can be found in tables [4] (see Table 7.2).
253

N C4’ (7.4)

S=

Another variant uses ranges instead of standard deviations to compute the lines,
using eq. (2.9):
S=R/d,

where d, is Hartley’s constant (Section 2.1.4.5). Taking into account that
sz = sAln this yields the following limits:
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TABLE 7.2

Constants for the determination of S in function of » (for the meaning of the constants, see text). Adapted from
Ref. [4]

n Cy

2 0.798

3 0.886

4 0.921

5 0.940

6 0.951

7 0.959

8 0.965

9 0.969

10 0.973

.. - 1.96 —
warning lines at xr ‘R
di\n
(1.5
.. - .30 =
action linesat xy+t—=-R
Nn
This is often rewritten as
warning lines at xp £ A’g 025 R
(7.6)

action lines at xt + A’ 001 R

where A’ 25 and A'g0 are the constants (see Table 7.3) needed to compute the
warning lines and action lines, respectively, from R. The 0.001 and 0.025 refer to
the probabilities that a point of a process under control would be higher than the
upper lines. They can be understood as follows. If the process is under control and
the process errors are normally distributed, then the £1.96 S lines include 95% of
all values that can be expected, 5% should fall outside, i.e. 2.5% should exceed the
upper warning limit and 2.5% should be lower than the lower warning limit. In the
same way, there is a probability of 0.2% to find a point outside the action limits,
i.e. 0.1% to find it higher than the upper action limit and 0.1% lower than the lower
action limit. The occurrence of such a point is sufficiently rare to stop the process
and reset it.

There are different variants of these mean charts. For instance, instead of
drawing lines at 1.96 S and 3.09 S, one often draws them at 2 S and 3 S, so that
95.5% and 99.7% are then included within the warning and action lines respectively.
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TABLE 7.3

Constants for the determination of warning and action limits in the mean chart in function of » (for the meaning
of the constants, see text). Adapted from Ref. [4]

n Alyozs Alpoor
2 1.229 1.937
3 0.668 1.054
4 0.476 0.750
5 0.377 0.594
6 0.316 0.498
7 0.274 0.432
8 0.244 0.384

10 0.202 0.317

One should note that these charts are based on the assumption of normality.
Since we work with means of sets of data, it is probable that the means are normally
distributed. Still, it is to be preferred to check this hypothesis. The most frequently
occurring problem is that of outliers in the training set. One can verify whether
certain of the N groups have an outlying variance using the Cochran test, explained
in Section 6.2, and outlying x; can be detected, using for instance the Grubbs test
(Section 5.5.2). The reader should remember that, as stated in Section 5.5, when
outliers are detected they should not simply be removed, but one should investigate
why they occur. In a QC context, this is certainly needed, since they can indicate
an instability of the process.

In all cases the estimates xy and S should be representative for the source of error
monitored. For instance, when the measurement will be monitored in the routine
phase with one measurement/day, then the n = 20 training values should be
obtained over 20 days, so that the random error includes the between-day component.

Control charts can be updated by incorporating new results in the estimation of
xr and S. A typical procedure is as follows. Each time after having plotted e.g. 30
new points on the QC chart, test whether the Sy, i.€. the S value for the set of 30
new points is consistent with the S value used until then. One often considers S as
a given value, so that one applies the x? test of Section 5.4.2.

7.2.1.2 Application of the mean chart

The occurrence of a point outside the warning limits is by itself not enough to
declare the process out of control. However, since the probability of finding a point
outside one of two warning limits is only 2.5%, that of two successive points
outside the same warning limit is 1/1600, so that when this occurs it is an indication
that the process should be inspected and brought under control (reset).
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Fig. 7.2. Effects that can be detected with a mean chart: (a) shift or bias; (b) drift; (c) cyclical change.

Mean charts can help to detect the following effects (see Fig. 7.2):

— occurrence of a bias: when consecutive values distribute themselves on one
side of the mean value, but remain at a constant level, the trend 1s called a
shift (of the mean) (Fig. 7.2a);

— occurrence of a progressively decreasing or increasing trend (drift — see also
Section 2.6) (Fig. 7.2b);

— cyclical or periodical changes (Fig. 7.2¢).

So far, we have seen two rules for taking action based on a mean chart. They

are:

1. One point is outside the action limits

2. Two consecutive points are outside the warning limits.
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Used in this way the mean charts are very good at detecting either large biases
or strongly increased random fluctuations. They are not very good at finding small
shifts or slow drifts. For this reason one sometimes adds additional rules such as
the following:

3. Seven consecutive points are situated on the same side of the CL or 10 out of
11 consecutive points are found on the same side.

4. Seven consecutive points show an increase (or a decrease).

Rules such as 3 and 4 are based on probability considerations. If the process is
under control the probability that a point is situated above or below the line is 0.5
for each of the two possibilities. The probability that 2 consecutive points are on
the same side (say, above the line) is p = (0.5)> = 0.25. Seven consecutive points
above the line has a probability p = (0.5)" = 0.007.

To have exactly 10 points out of 11 above the line, p = 11(0.5)'°-0.5 = 0.0054
and for 11 points out of 11, p = (0.5)"" = 0.00049. For at least 10 points out of 11
on either side of the line p is given by 2(0.0054 + 0.00049) = 0.0118 or 1/85.

A well known set of rules is known as the Western Electric rules [5]. These
divide the chart in zones with 7 lines, the LCL and UCL at £3 S, the warning lines
at £2 §, additional lines at 1 S which we will call the 1 § lines and the CL. The
process is considered out of control or the process has changed when there are:

1. One point outside UCL or LCL.

2. Nine points in a row on one side of the CL.

3. Six decreasing (or six increasing) points in a row.

4. Fourteen points in a row, alternating down and up.

. Two out of three points outside UWL or LWL.

. Four out of five points outside the 1 S line on the same side of the CL.
. Fifteen points in a row within the two 1 § lines.

. Eight points in a row beyond either of the two 1 S lines.

Let us investigate how good a control chart is at detecting a certain shift. This is
determined by the average run length, ARL. This is the average number of sets of
measurements to be carried out before one detects a given shift (L;) or the average
number of sets of measurements to be carried out before a false alarm is given, i.e. a
warning or an action alarm when in fact the process is still under control (Ly). Clearly
L, is connected to the B-error (Chapter 4) and should be as small as possible, L is
related to the a-error and should be large. The probability that a set of » data will fall
outside the action limits when the true mean of the process is unchanged is 0.002. It
can be shown [6] that if the probability that any sample will fall outside any limits
considered is p, that the average number of such samples that will be measured
before this happens once, is equal to 1/p. Therefore, for the above situation
Lo =500. On average, it takes a run of 500 samples before a false alarm will occur.

It is slightly more complex to compute L;. It must be computed for a change that
is considered significant. Again, we can refer to the B-error. In Section 4.8 we

0~ N
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defined B-errors for a given & (a bias that was considered sufficiently important to
necessitate its detection). The same applies here: we must specify what change we
want to detect. Let us start by taking a simple example. We suppose that the mean
has changed by 36/n. Instead of M, it has become | + 30An. What is the
probability that we will find a value above the action limit when such a shift
occurs? It is now equally probable that values below and above the action limit will
be obtained. For this situation p = 0.5 and L; = 2. It will take us on average 2
samples to detect that the mean has increased by 30/An. Let us now carry out the
same calculations for a shift of +6Vn. The mean has become [ + o\n, meaning
that the upper action limit is 26//n away, i.e. 2 standard deviate units. The tail area
above z =2 contains 2.28% of all cases or p = 0.0228 and L, = 1/p = 44. This means
that we will have to wait on average for 44 time units before the shift is detected.
This illustrates that the mean chart is not very sensitive to small shifts.

The situation can be improved by combining rules. Let us consider the “two
consecutive points outside warning limits” rule for the same shift (of +oVn ). This
limit is z =1 away from the new mean corresponding to p = 0.159. Two consecutive
points have a p = (0.159)? = 0.0253. For a shift of 6\n the L, for the “two consecutive
points outside warning limits” is therefore 1/0.0253 = 40. The combination of the two
rules (i.e. “one point outside action limits” and “two consecutive points outside
warning limits”) yields L; = 24 [6]. One should not forget that, at the same time, Ly
decreases. As is usual with o and 3 errors, one has to look for a good compromise.

Small biases or drifts can be detected more easily with methods such as the
CUSUM chart (see Section 7.4.2) and periodical changes with autocorrelation
charts (see Section 7.5 and Chapter 20).

7.2.2 Range charts

Although some information about the spread of the process can be obtained
from the mean chart, it is preferable to control a direct measure of it, such as the
range. The range is plotted in function of time in the same way as the mean in the
mean chart and, in SPC, one often combines the two plots on the same page using
the same time axis. The range chart is shown in Fig. 7.3 for the data of Table 2.6.
As for the mean chart, one determines warning and action limits. The distribution
of R is skewed [4], so that one needs different constants for the upper and lower
lines. Since a decreasing spread is no problem for the process, one often uses only
the upper limits. When all lines are drawn, this then requires four constants:

Upper action line at Dggo; R
Upper warning line at Dy g5 R
Lower warning line at Dy g75s R
Lower action line at Dgggo R
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Fig. 7.3. Range chart for the data from Table 2.6. It is assumed that one knows from the training period
that R = 0.5.

As for the constant A" of eq. (7.6), D depends on the sample size n. Some values
are given in Table 7.4. For n = 4 and supposing that in the training period a value
of R = 0.5 was obtained, one derives UCL = 1.28, UWL = 0.96.

TABLE 7.4

Constants for the determination of warning and action limits in the range chart in function of n (meaning of
symbols, see text). Adapted from Ref. {4]

i Do oo Dyns Do yrs Do.gvy
2 4.12 2.81 0.04 0.00
3 2.98 2.17 0.18 0.04
4 2.57 1.93 0.29 0.10
S 2.34 1.81 0.37 0.16
6 2.21 1.72 0.42 0.21
7 2.1t 1.66 0.46 0.26
8 2.04 1.62 0.50 0.29

0 1.93 1.56 0.54 0.35
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7.2.3 Other charts for central location and spread

The mean chart is by far the most often used one. A variant is the mean chart for
unequal sample sizes (i.e. n varies). An alternative that is sometimes used is the
median chart. It is obtained by plotting all data for each time point and ringing the
middle one. Tables for warning and action lines can be found in the specialized
literature (e.g., Ref. [4]). In Chapter 12 it is shown that the median is a robust
measure of central location and that this is sometimes an advantage. Here it is
rather a disadvantage, because it means that the median is not sensitive towards
extreme values. For instance the following two sets of data have the same median

2,3,4,5, 6
2,3,4,5, 16

The occurrence of the value 16 would indicate a problem in the process. It would
be detected by the mean, but not with the median.

An alternative for the range chart is the standard deviation chart. If a large
enough training set is used for that purpose, we can consider that the standard
deviation o of the process is known. During control, sets of # measurements will
be obtained and for each of these sets, the sample standard deviations, can be
obtained. The question will then be to determine whether s is still compatible with
©. The upper warning line will then be drawn at a value of

F = §’/c?

such that if the process is still under control it will be exceeded only in 2.5% of
all cases. Therefore the upper warning line must be drawn at F = Fog5:1-1.
(see Chapter 5). In the same way the upper action line will be at F = Fy o011 -
For instance, for n = 5, Fypss. = 2.79. If 6 were 0.1, then any s > 0.167
(=v2.79 x 0.01) would be outside the warning lines. Again, it is unusual to draw
lower warning and action lines.

7.2.4 Charts for the analytical laboratory

In the analytical laboratory, one often uses quality control only to detect biases.
These biases are due to changes in the way in which the laboratory performs the
method, or to changes in instruments or reagents. In other words, one tries to detect
changes in lab bias (see Chapter 13). When a change in bias is detected the first
step is often to check the calibration step. In those cases, for instance where one
does not calibrate frequently, the first action will be to re-calibrate and investigate
whether this corrects the problem. Charts for precision (and more specifically,
repeatability — see Chapter 13) are often restricted to duplicates.
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Different types of quality-control samples can be analyzed, such as standard
solutions, synthetic materials obtained for instance by spiking the matrix with
known amounts of analyte, reference materials and certified reference materials.
Reference materials are real analytical test materials, that are homogeneous and
stable and certified reference materials (CRMs) are reference materials that are
accompanied by a certificate usually giving an estimate of the concentration of the
analyte and the confidence in that estimate [7].

Mean and range charts have been described in Sections 7.2.1 and 7.2.2. The data
are expressed as concentrations which means that for methods that require calibra-
tton, the errors due to the calibration step have been incorporated. However, there
are some special applications:

— The blank chart. This is a special case of the mean chart. The data are now
measurements of blanks and the mean is often the mean of one blank, measured at
the beginning of a run, and a second blank, measured at the end of the run.

— The recovery chart. This is used when matrix effects are considered possible.
The reference material is then usually a spiked matrix material and results are
expressed as percentage recoveries.

7.3 Charts for attributes

So far, we have made charts for continuous variables. It is possible to do this
also for discrete variables, usually for the number of defects. Discrete variables are
described by other probability distributions than the normal distribution and, since
the charts we have applied so far are based on the latter distribution, we cannot use
these charts for discrete variables. The distributions needed will be described in
Chapter 15 as will the related control charts. For now, we will only note that we
will make a distinction between two types of situations:

(a) A certain number of objects, e.g. one hundred stoppers, are sampled to
determine how many are defective towards a given response (e.g. do not fit on a
certain bottle). The result is a ratio: number defectives/number sampled. This is
described by the binomial distribution (see Section 15.2).

(b) A certain domain (e.g. 1 m? of paint sprayed on a car) is investigated and the
number of defects over that area are counted. This is not a ratio and is described by
the Poisson distribution (see Section 15.4).

7.4 Moving average and related charts
7.4.1 Moving average and range charts

When observations are made at regular time intervals, the resulting series of
observations is called a time series. The analysis of time series is discussed further



162

in Chapter 20 in the context of the characterization of processes, and in Chapter 40
where its use for signal processing is described. Time series are applied in general
to separate long-term effects (in signal processing, the signal) from random effects
(in signal processing, the noise). In quality control, too, we want to separate
systematic effects, such as a shift of the mean, from random effects due to the
imprecision of the production and/or measurement. One of the simplest techniques
applied in the analysis of time series is the use of moving averages. For a series of
control measurements xi, x,, ..., we define the moving averages as

Xp+x2+...x, X2+Xx3+...X XztXst ...t X2

1) ’

n n n

In signal processing it is usual to select an odd value for n and replace the central
point in the window of n values by the moving average (see Chapter 40). In QC we
plot the moving average at the ends of the window, i.e. at point n, n+l1, n+2,
successively. We can then easily use even values of n if we want to do so. Consider
for example Table 7.5: the moving average for n = 4 is computed. The first value
is plotted at time ¢ = 4. As can be seen from Fig. 7.4, moving averages have the
effect of reducing random variations, so that systematic effects can be more easily
observed. The action and warning lines are determined in the conventional way,
described by eqs. (7.2) and (7.3), i.e. mean and standard deviation or range are
determined from historical data or from a training set.

Some of the rules for detecting the out-of-control situations of Section 7.2.1
cannot be applied. For instance, one cannot apply rules such as “two consecutive
points outside the warning limits”. Indeed, when one point has been found outside
the warning limits, it is quite probable that the next one will also be, because the
points are not independent: they use in part the same values.

TABLE7.5

Moving averages of order n = 4

t Measured value Moving average

1 12

2 6

3 18

4 11 11.75
5 4 9.75
6 16 12.25
7 22 13.25
8 17 14.75
9 28 20.75
0 18 21.25
1

30 23.25
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Fig. 7.4. Moving average. Chart displaying the results of Table 7.5.

The principle for the moving average of the observations has been explained,
and the same principle can be applied to the ranges.

7.4.2 The cumulative sum (CUSUM) chart

For a series of measurements x,....x, we determine the cumulative sum of
differences (CUSUM) between the observed value and the target value xr

C] =X1 —EC-T
C,= (x2~}T)+(xl _;T): C, +(x2"'}’]‘)

Cv = Z (x,- - }T) = CV-) + ()CV - }T) (77)
i=1
These values are displayed on a chart such as that in Fig. 7.5 for the data of Table
7.6. The data describe a process for which, during the training phase, values of xr
= 100, S = 4 were derived with n = 1. If the deviations from xy are random, then the
C values oscillate around the zero line. If a trend occurs, the distance from zero will
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Cusum

Fig. 7.5. CUSUM chart for the data of Table 7.6.

TABLE 7.6
Example of a CUSUM and an EWMA

0

Data point Xi Xj— XT G x
! 91 -9 -9 95.5
2 104 +4 -5 99.75
3 96 -4 -9 97.87
4 106 +6 -3 101.94
5 100 0 -3 100.97
6 108 +8 +5 104.48
7 99 -1 +4 101.74
8 103 +3 +7 102.37
9 98 -2 +5 100.19
10 99 -1 +4 99.59
i1 9 -1 +3 99.30
12 105 +5 +8 102.15
13 105 45 +13 103.57
14 99 -1 +12 101.29
15 106 +6 +18 103.64
16 108 +8 +26 105.82
17 105 +5 +31 105.41
18 11 +11 +42 108.21
19 110 +10 +52 109.10
20 105 +5 +57 107.05
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Fig. 7.6. The V-mask method applied to the data of Table 7.6.

gradually increase. Using simple visual observation we would reach this conclu-
sion at around point 15. With the classical mean chart we would detect the shift at
time 19 (two points in a row outside warning limits) or with rule 6 of Western
Electric (see Section 7.2.1.2) at time 18.

To be able to use the so-called V-mask method (see Fig. 7.6) for the interpreta-
tion of the CUSUM chart, it is necessary to decide on the scaling of the axes and
in particular of the C-axis. The recommended scaling factor is 2 SAn. This means
that | unit on the x-axis is equal to 2 SNn units on the C-axis. When we wish to
evaluate a possible trend at time ¢, we place the mask so that C, coincides with the
point 0. This point is placed at a distance d of the apex A of the V. This is called
the lead distance. When the CUSUM line cuts one of the limits of the mask, then
the trend is considered significant and it starts where the mask cuts the line
connecting the C values. This is considered equivalent to crossing an action line.

Of course, the detection of the trend depends on the selection of d and of 6, the
angle of the V. For the selection of these parameters, we refer to the specialized
literature [4,8]. We can base this selection on the average run length ARL (see
Section 7.2.1.2), i.e. we can require an L;-value smaller than a given number (e.g.
5) for a specified shift (e.g. £ SAn) and an Ly-value larger than another number
(e.g. 300). Typical values are d = 2, 6 = 30°, d = 8, 6 = 15°. The former is used in
Fig. 7.6 for time 20. This means that the apex of the mask is at time 22. The line of
points crosses the V-mask, so that point 20 is considered to be out of control. In
fact, the earliest indication would be received at point 18. In that case point 14 is
just outside the mask as the reader can verify by putting the mask at the height of
point 18 with its apex at 20.

The V-mask is useful for rapid visual decision making. However, we can also
base decisions on a confidence interval. Let us define a gradient or slope in the
CUSUM plot. From time Vv to time Vv + m the average gradient G is given by
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G = (Coum — C,) Im= [ Y oy — }T)} /m (7.8)

J=1

= [[ > ijJ/mjl —xr (where j is the number of points starting from v) (7.9)

=1
= mean value in time interval — mean value to be controlled.

Reformulated in this way, we can see that the CUSUM chart is really a variant
of the moving average method. The CUSUM chart detects no drift when the
gradient is equal to zero or, in statistical terminology, when it is not significantly
different from zero. We now see that this is equivalent to stating that the mean
value in the interval should not differ significantly from the mean value to be
controlled. The confidence interval

( Eijj/miZo.osz/Vm (7.10)

j=1

is constructed and we verify if xy is inside it. If the result at each time point is itself
the average of n measurements, then the square root term becomes Vm n. Let us
apply this to the data of Table 7.6. The confidence interval from point 10 (v =10)
to point 20 (j = 10) is given by

1053/10 £ 1.96 x 4N10 = 1053 £2.5

The value of xr is not inside the confidence interval. This confirms that there was
a meaningful gradient and that, in this interval, the process was out of control.

7.4.3 Exponentially weighted moving average charts

In signal processing (see Chapter 40), we will see weighted moving averages,
where less weight is given to the extreme values in the window moving over the
data (i.e. the values closest to the boundaries of the window) than to the central
point, with the philosophy that the extreme points are less important to the value
of the average of the window. In QC weighted moving averages are also used, but
the philosophy is different: it is the last point in the window which is the most
important as this describes best the actual state of the process. Weights must
therefore be given such that they diminish as they are more distant from the last
point. This is what is done with the exponentially weighted average charts [9].

Suppose a certain process has xy = 100 and the observed successive values are
forz=1, ..., 5 respectively 102, 97, 103, 98, 101, then one computes the exponen-
tially weighted moving average (EWMA) as follows
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EWMA = X:H :X: + Xe,
=x +Mx,—x}) (7.1D)

This estimate can be re-written as a weighted mean of the last observed x-value and
the previous estimate

X =g+ (1= A) Xt (7.12)

In eq. (7.11) x, is the value observed at time ¢ and x;,; the value at time 7 + |
predicted from x,. To make the prediction one needs A, a constant (0 < A < 1) and
e, the difference of the observed value x, and x;, the value predicted from x,_,.

Suppose A = 0.5. To initiate the EWMA we put x; (¢ = 1) = xr, so that

x; =100+ 0.5 (102 - 100) = 101
x3= 101 +0.5(97 - 101) =99
x3=99+0.5 (103 - 99) = 101
x5=101+05(98-101)=99.5
x6=99.5+0.5 (101 - 99.5) =100.25

The value of A is chosen by the experimenter. Its value is often chosen to be 0.1
or 0.2 and is sometimes optimized experimentally. Least squares procedures have
been described. It has been shown (see Chapter 40) that the eq. (7.11) can be
re-written as

!

Xip) = 2 Wi X (7.13)

=0
where w; are weights (Xw; = 1) given by
wy =M1 =2 (7.14)

We can see that the nearest point has the highest weight. For instance, for A =
0.1 w,=0.1 and w,_;o = 0.035. The most recent x, x,, has a weight of 0.1, while x_jo
has a weight of 0.035, i.e. 3 times less than x,. For A = 0.3 it would be about 35
times less. In practice, the value of A should be optimized and experience shows
that it is often situated between 0.1 and 0.3. For ease of calculation, we will
compute the EWMA for the data of Table 7.6 with A = 0.5.

The procedure consists of plotting on the same chart x; and x;. If there is no trend
or random variation, then x},; can be forecast perfectly from x; and x,. Since random
variation occurs, usually x;;; # x,,; and e, # 0. There is an error in the forecast of
x7,1 from x,, so that e is called the forecast error. When there is no trend, e will
oscillate around zero, so that x; and x, do not differ much and the difference will
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Fig. 7.7. Comparison of weights given to historical data in the control process for the Shewhart,
CUSUM, Moving Average and EWMA charts (adapted from Ref. [9]).

not be systematic. When a trend occurs, this will no longer be the case. Suppose
the trend is positive, then e, will also usually be positive and the EWMA wili
increase. The control limits are given by Hunter [9] as

X E3AA2-NPSS (7.15)

For our example, this becomes xr £ 1.73 S, so that UCL = 106.92. Point 18 crosses
the UCL line (see Table 7.6) so that a trend is detected in this point with the (not
optimized) A =0.5.

In Fig. 7.7 the difference between the approaches of different charts are shown.
In the Shewhart chart a decision is based on the past point: if that point exceeds an
action limit, the process is considered out of control whatever happened before. In
the CUSUM methods all the points up to the last one are taken into account, since
they all influence the CUSUM and have equal weight. As Hunter puts it, the
CUSUM has an elephant-like memory. In the moving average, an intermediate
solution is adopted: the last k points are used with equal weights, k being the
number of points that are used to obtain the moving average. The EWMA is
another intermediate solution: the last point is most important, but use is also made
of the points before that.

The EWMA is the basis of what is called the proportional, integral, differential
(PID) control equation. It is given by

Xa=x+Me+th e, +A3Ae (7.16)

The two first terms are the EWMA of eq. (7.11). The third term takes into account
the sum of e-values and will detect steady drifts away from the target value. The
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fourth one is given by the difference between the two last obtained values, e, and
[T

Ae;=¢,—e,,

The three terms are weighted to obtain optimal prediction. The name PID is due
to the fact that term two is proportional to e,, term three is related to the sum of e,’s
(integral) and term four to a difference. This development of EWMA is more than
a quality control equation: it can be considered as a tool for dynamic control and
i1s a member of a class of time series called ARIMA models (Autoregressive,
integrated, moving average models) [10] (see also Chapter 20).

7.5 Further developments

In Section 7.2.3 we introduced the median chart. We stated that the median is
robust towards extreme signal values and that it will be introduced further in
Chapter 12 on robust methods. Other methods of this type have been described for
QC purposes and the runs test is given in Chapter 12 as an example.

In this chapter, we have discussed situations where only one characteristic is
controlled. Suppose that we carry out a quality control of a chromatographic
measurement and the quantities of two substances are monitored. With what we
have seen so far, we would need two charts, one for each substance. However, the
results of the two charts may be related. If something goes wrong with the
injection, e.g. a smaller amount is injected, then the results for both substances will
be affected in the same way. In other words, the observations in the two charts can
be (cor)related. To take this into account we would like a chart which monitors the
results as a whole, i.e. in a single chart. How to do this with multivariate control
charts is explained in Chapter 20.

Another special situation is when cyclical variations occur. In such a case, when
point ¢ is for instance high, it is more probable that points  — 1 and 7 + [ are also
high than that they are low. Points close to each other have (cor)related values, i.e.
they are autocorrelated. This can be taken into account with the use of autocorre-
lation charts (see Chapter 20).
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Chapter 8

Straight Line Regression and Calibration

8.1 Introduction

In many situations information about two or more associated variables is
obtained in order to study their relationship. Depending on the nature of the
variables, the investigation is carried out either by regression analysis or by
correlation analysis.

Regression analysis is used to study the relationship between two or more
variables. This relationship is expressed as a mathematical function which can also
be used for predicting one variable from knowledge of the other(s). To study the
dependence of a random variable (the dependent variable or the response variable)
on a variable which is controlled by the experimenter, either because its values are
exactly known or can be preselected (the independent or the prediction variable),
Model I regression techniques are appropriate. They assume that the independent
variable is not subject to error. An important application of Model I regression
analysis is calibration where an instrumental response is related to the known concen-
tration of the analyte in calibration standards. The final aim of the regression analysis
is then to use the mathematical expression, relating the response and the concentration,
to predict the concentration of unknown samples. If both variables are subject to error,
Model II regression techniques, which take into account the error associated with
both variables, must be applied. This is the case, for example, in method-compari-
son studies where there are measurement errors in both methods.

In other applications regression analysis provides a means of simplifying experi-
mental data in order to facilitate their interpretation. The data are represented by
an appropriate mathematical model. In the process of model building, emphasis is
then placed on discovering those independent variables that best explain the
variation in the random variable. As an example, consider a chromatographic
system. To understand the retention behaviour of the system the retention time (the
random variable) can be studied as a function of different system variables (e.g.
pH, methanol content of the eluent).

A good theoretical knowledge of the system under study is necessary to con-
struct a model in which the regression parameters have a physical meaning.
Empirical models, which do not have a clearly interpretable scientific meaning, are
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most often used. Nevertheless such models are very useful, e.g. for prediction
purposes, if they provide an adequate description of the data.

The process under study might be understood so well that information about the
form of the relationship is available beforehand. The primary goal of regression
analysis is then to estimate the regression coefficients which have a well-defined
meaning.

In the following sections we will deal only with straight line regression between
two variables. Different applications from measurement science are used to intro-
duce and illustrate the method. Multiple and polynomial regression in which
several independent variables are involved are discussed in Chapter 10 and non-
linear regression in Chapter 1 1. Robust regression is explained in Chapter 12 and
fuzzy regression in Chapter 19. In Chapter 35 multivariate regression, which
studies the association of several response variables with several independent
variables, is described.

Correlation analysis is appropriate for studying the degree of association be-
tween two random variables: for example, the concentrations of As and Sb in
rainwater samples collected at different locations near a copper smelter. The
problem here is to find a quantitative measure for the relationship between both
concentrations. Correlation analysis is discussed in Section 8.3 of this chapter.

8.2 Straight line regression
8.2.1 Estimation of the regression parameters

The use of a calibration line for determining the concentration of an analyte in
a sample is an important application of straight line regression. The variable y then
represents the response measurements and the x variable the concentration of the
standard solutions. The errors made in preparing the standards are most often
negligible in comparison with the measuring errors. Therefore, the assumption that
the x variable is exactly known and consequently has no error is justified in
calibration. The x variable is then the independent and y the dependent variable.
The calibration function can be obtained by fitting an adequate mathematical
mode] through the experimental data. '

If we assume that the true relationship between the response and the concentra-
tion 1s a straight line, the model which describes this relationship is:

n=B+pix (8.1

7 represents the true response; By and B, are the model parameters, they are the
intercept and the slope of the true but unknown regression line, respectively (see
Fig. 8.1a).
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1= Po+Pyx
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X

Fig. 8.1. Straight line regression. (a) The true regression line; (b) the estimated regression line.

For any given concentration the true response value is unknown but we have
measurement values, y;, which, due to the fact that these measurements are subject
to error, will differ from the true response. Each measurement can therefore be
represented as:

yi=mi+ &
or
yi=Bo+ Pix; + &

This means that each observation is composed of a component which is determined
by the model and a component € which represents the difference between the
observed response y; and the true response 1;.

The model parameters, By and B, are unknown. However, one can use the
information provided by the measurements to obtain estimates, by and b,, of 3o and
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Bi, respectively. These estimates, by and by, are calculated in such a way that the
estimated line (Fig. 8.1b)

y=bo+byx (8.2)

fits the n experimental points as well as possible. The estimated line, which is an
estimate of the true but unknown line, is also called the least-squares line when the
estimation is performed by the least-squares method. The line fitted by least
squares is the one that minimizes the sum of squares of the residuals. The residual
e; is the deviation of the measurement y; from its value predicted by the regression
line y; :

eiz)’i—j’i (8.3)
Therefore the least-squares method minimizes R, the sum of the squared residuals:
R=3%¢e= 20—y = Z(i— bo - bix;)’

n

where ¥ in this and all subsequent expressions is the reduced notation of 3., unless

i=l
otherwise stated and n is the total number of observation pairs. Differentiating this
expression with respect to by and b; and setting the results equal to zero provides
two simultaneous equations which can be soived for intercept b, and slope b;:

OR
gb—o=22()’i—bo—b1 x) (-1)=0

%}’% = 320~ bo— b1 x) (=x) =0

This is equivalent to:
2yi-nbo~b X x=0
Sxyi—boXxi—b Zxi=0

which are the normal equations from which the following expressions for the
least-squares estimates, by and b, can be obtained:

_ 2= x) (i~ y)
i e oy
by=y—b1 ¥ (8.5)

with y = (X y;)/n the mean of all y;, and x = (X x;)/n the mean of all x;.
An important statistic in regression analysis is the residual variance s
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2= Z(ei)2 - 2y —5’i)2
‘ n=2 n—-2

(8.6)

For the calculation of this variance we divide by n — 2 and not as usual by n — 1,
because the residuals result from a fitted straight line for which two parameters, b,
and b;, need to be estimated. This is a measure of the spread of the measurements
around the fitted regression line. Consequently it represents the variance in the
response which cannot be accounted for by the regression line. Since it is the
variance which remains unexplained after x has been taken into account, it is also
called the variance of y given x and the symbol (s;.)* is sometimes used. If the
model is correct, s is an estimate of the variance of the measurements o2, also
called pure experimental error.
For hand calculations the sum of the squared residuals, >(y; — y:)?, in eq. (8.6)
can be obtained from:
T 2
S0i- 5P =% -y - B0
2 (xi—Xx)

8.7

Example 1:

As an example consider the following calibration data (see also Fig. 8.2) for the
determination of quinine, according due to Miller and Miller [1]. The response y;
represents the fluorescence intensity (/) in arbitrary units.

i 1 2 3 4 5 6
x; (ng/ml) 0 10 20 30 40 50
yi(D) 4.0 212 44.6 61.8 78.0 105.2
n=6

Yxi =150 x=25

Yyi=314.8 y =52.4667

S —x)?=(0-25%+(10=25%+ ..+ (50 -25)*>= 1750

S5 = X) (7= y) = (0 —25) (4.0 — 52.4667) + (10 - 25) (21.2 — 52.4667)
+ ...+ (50-25) ( 105.2 - 52.4667)
= 3468
p o 2= x) (i) _ 3468
Y X-x? 1750
bo=y — by x = 52.4667 — (1.9817 x 25) = 2.9242

=1.9817

Therefore:

$=2.924 + 1.982x
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Fig. 8.2. Calibration line for the fluorimetric determination of quinine.

From this fitted line the residual variance s2 can be calculated as follows:

X Vi Vi ei=i—y) el
0 4.0 2.92 1.08 1.1664
10 212 22.74 -1.54 2.3716
20 44.6 42.56 2.04 4.1616
30 61.8 62.38 -0.58 0.3364
40 78.0 82.19 —4.19 17.5561
50 105.2 102.01 3.19 10.1761
Ye=0 Se? =35.7682
E,' = 0

s 2y =)t _ 357682
n—2 4

5= =8.94

In the least-squares method the following assumptions concerning the residuals
are made:

(i) for each x; the residuals e; are from a population that is normally distributed
with mean zero;

(11) the ¢; are independent (see Section 6.2);

(iii) they all have the same variance 6°. Consequently it is assumed that for each
specific x; the responses y; are normally distributed with a mean n; = B + B1x; and
a constant variance ¢?. This is shown in Fig. 8.3. For a calibration experiment, the



Fig. 8.3. Assumptions concerning the residuals.

latter condition means that the precision of the measurements is independent of the
concentration. This condition of uniform variance is called the condition of homo-
scedasticity (see also Chapter 6).

In many situations it is reasonable to assume that the distribution of measure-
ment errors is normal. Very often, the overall error is a sum of several smaller
independently distributed errors. For example the error in flame atomic absorption
spectrometry is caused by noise from several sources: the photomultiplier detector,
fluctuations in the light source, the instrument electronics, the flame, etc. Whatever
the probability distribution of these component errors is, their sum tends to be
approximately normal. This is an illustration of the central limit theorem.

On the other hand, the condition of homoscedasticity is certainly not always
fulfilled. It is frequently observed that the standard deviation of y, s,, depends on
the value of y or x. In calibration, for example, heteroscedasticity (non-constant
variance) may occur with lines that cover a large concentration range. Land et al.
(2] illustrate this with several examples from HPLC. In a plasma assay of a
haemoglobin-O; affinity modifier the variance changed by a factor of 700 over the
0.2-80.0 pg/ml range. Often s, is proportional to y or x resulting in a constant
relative standard deviation (RSD). An example from inductively coupled plasma
(ICP) calibration is given in Table 8.1.

To check homoscedasticity, replicate measurements are necessary. Past experi-
ence of similar measurements can however be used. In the example given in Table
8.1 the information necessary to check homoscedasticity was obtained from single
calibration experiments performed once a week for 14 consecutive weeks. This
explains the relatively high RSD value but it indicates that the ICP-Pb measure-
ments are heteroscedastic and that they show a constant relative standard deviation.
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TABLE 8.1

ICP-Pb calibration data [3]. Heteroscedasticity with constant relative standard deviation (RSD)

n x y Sy RSD
(g -ml™) 0] (%)
14 0.5 0.75 0.164 22
14 1.0 1.49 0.263 18
14 5.0 7.24 1.533 21
14 10.0 14.39 3.096 22
14 50.0 7217 17.350 24

Knowledge of the variance function — the way the variance varies with y or x —
is useful to find solutions for the heteroscedasticity problem (see Section 8.2.3).

It is important to note that these assumptions are especially important for
prediction purposes to establish confidence intervals for, or tests of hypothesis
about, estimated parameters (see Section 8.2.4 and 8.2.5). These intervals, being
based on ¢- and F-distributions, assume that the condition of normality is fulfilled.
Moreover, the way they are constructed also assumes the condition of homoscedas-
ticity to be fulfilled.

The regression procedure involves several steps:

1. Selection of a model. Here we have selected the straight line model 1 = 3o + Pix.

2. Establishment of the experimental design which means the choice of the
experimental domain (in Example 1, this ranges from 0 to 50 ng/ml), the repartition
of the x variable over that domain, the number of measurements, etc. The influence
of the design of the experiments on the precision of the estimated regression
parameters is discussed in Section 8.2.4, and is also treated in Chapter 24 on
experimental design.

3. Estimation of the parameters of the model. Here this means estimation of 3
and B, by computing by and b, by means of the least-squares method. Other
regression methods, which may be useful if departures from the assumption of
normality or homoscedasticity occur, are described in Chapter 12.

More complex regression methods for estimating regression parameters when
both variables y and x are subject to error are illustrated in Section 8.2.11.

4. Validation of the model. Validation of the model is important to verify that
the model selected is the correct one (for instance, is the model really a straight line
or are the data better described by a curved line) and to check the assumptions. In
the next section it is shown that analysis of the residuals and analysis of variance
(ANOVA) are useful for validation purposes.

5. Computation of confidence intervals. In Sections 8.2.4 and 8.2.5 confidence
intervals for the regression parameters 3y and 3, and for the true line as well as
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confidence intervals for the true values of y and x predicted from the regression
equation are calculated.

8.2.2 Validation of the model

As already mentioned, validation is necessary (i) to verify that the chosen model
adequately describes the relationship between the two variables x and y, or in other
words that there is no lack of fit, and (ii) to check the assumptions of normality and
constant variance of the residuals. The assumption of independence is generally
not tested since this can most often be controlled by a proper experimental set-up.
It will be shown how an examination of the residuals and the analysis of variance
can be used for validation purposes.

8.2.2.1 Analysis of the residuals

The residuals (e;=y; - y;) can provide valuable information concerning the
assumptions made as well as concerning the goodness (or lack) of fit of the model.

To check the normality of the distribution of the residuals (or also the distribu-
tion of the responses y for each specific x;, see Fig. 8.3) one could apply the
techniques to check the normality of data described in Section 3.8. Usually,
however, one does not have enough replicate measurements to do this. However,
as explained earlier, it can generally be assumed that measurement errors are
approximately normally distributed.

Section 6.2 describes how to investigate homoscedasticity. These tests require
replicate measurements (to estimate the variance of the response at the different x;
values) which are not always available. As mentioned in the previous section, past
experience of similar experiments can then be useful.

Useful information can also be obtained from a residuals plot where the residu-
als e; are plotted against y; or against x;. It is recommended that such a plot is
obtained whenever one needs to validate the model. Since no tests are involved,
some experience may be necessary for the interpretation of these plots. Some
examples are given in Fig. 8.4. Figure 8.4a indicates no abnormality: the residuals
are randomly scattered within a horizontal band with a number of positive residuals
which is approximately equal to the number of negative residuals. Moreover, a
random sequence of positive and negative residuals is obtained. Figure 8.4b
indicates that the condition of homoscedasticity is not fulfilled: the scatter of the
residuals increases with y. This indicates that the precision of the measurements
over the concentration range considered is not constant. The U-shaped residuals
plot in Fig. 8.4c is the result of fitting a straight line to data which are better
represented by a curve. There is a lack of fit with the straight line model.

As an example, consider the Ca calibration line obtained from flame atomic
absorption spectrometry shown in Fig. 8.5a. An unusual pattern of positive and
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Fig. 8.4. Examples of residual plots.

negative residuals is observed from the residuals plot in Fig. 8.5b: the 19 residuals
are arranged in 5 groups (called runs) of respectively 6 negative, 9 positive, |
negative, | positive and 2 negative residuals. The probability that such an arrange-
ment of 19 residuals in 5 runs of positive and negative residuals is random can be
shown to be less than 5% (see Section 12.1.4.6). Therefore a non-random arrange-
ment has been detected which has to be attributed here to a (small) deviation of
linearity of the Ca calibration line in the low concentration range.

8.2.2.2 Analysis of variance

Analysis of variance (ANOVA) can be used to detect lack of fit in a regression,
in order to verify whether the model chosen is the correct one. Therefore replicate

measurements are needed.
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{a)

0.02 7

0.014
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{b)

-0.011

-0.024

Fig. 8.5. (a) A Ca calibration line obtained from flame atomic absorption spectrometry; (b) The
corresponding residual plot.

The total variation of the y values about the mean value, y, as described by the
total sum of squares, SSr, is then given by:

k
SSr=% X (yi—y) (8.8)

=1 j=1

with:
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v one of the n; replicate measurements at x;,

n;, the number of replicate measurements made at x;,
k

> n; = n, the total number of observations, including all replicate measurements,
=1
k, the number of levels, 1.e. different x values,
y, the mean of all the observations (grand mean).

By an analysis of variance this total sum of squares is split into different sources
of variation. Consider first the deviation of the jth response value at x;, y;, from the
grand mean, y. This can also be written as:

===+ 0=+ Gi—y)

(8.9)
residual

with: y; the mean value of the replicates y; at x;,
y: the value of y at x; estimated by the regression function. All replicates at x; have
the same estimated value y; .

In this way the deviation has been decomposed into three parts which are
represented graphically in Fig. 8.6 and which can be interpreted as follows:

(y: — y): the deviation of the estimated response at x; from the grand mean. This
quantity depends on the existence of a regression between x and y. It becomes zero
if y does not change with x. It is therefore useful to test the significance of the
regression (see further).

(vj — y): the residual which can be written as (y; — y;) + (y; — y;) with

(y; — y:): the deviation of an individual observation at x; from the mean of the
observations at x;. This quantity is independent of the mathematical model chosen;

yM

yzbo vb,x

________ y - y
o ; F residual
T Yj

i 1 n

x
x x; X,

Fig. 8.6. Decomposition of the deviation of y; from the grand mean y into different components.
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it only depends on the measurement error. It is important for the estimation of the
pure experimental error.

(y: — y:): the deviation of the mean response at x; from the estimated response at
x;. This quantity depends on the mathematical model chosen. If the model chosen
is not the correct one this deviation contains the bias (lack of fit). On the other hand,
if the model is adequate, this deviation can be explained in terms of the experimen-
tal error. It can then also be used for the estimation of the measurement error (see
further).

Squaring both sides of eq. (8.9) and summation over { and j, to include all
measurements, yields the total sum of squares SSt of eq. (8.8):

ko
SSr=2% X (yj—y)
i

ko & k
ZZ T iy m iy X (i -y (8.10)
ij- i i

SSr SSREG

SSee SSior

The sums of cross products cancelled out by summation over j and i.

. SS
estimates o2 MSpg = PE

—_— df

S8
TP

* estimates 5~ if the
model is correct

* estimates o + (bias)?
if a wrong model is
used

L p - MSior |
MSpg

Fig. 8.7. Analysis of variance. Breakdown of sum of squares.
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In this way the total variation of the y values about y has been separated into two
main components (see also Fig. 8.7) namely:

SSgreg: the variation which can be ascribed to the regression line i.e. to the fact
that y changes with x. It is called the sum of squares due to regression. The term
sum of squares due to slope is also used.

SSk: the residual variation which measures the variation which cannot be
explained by the regression line. This is called the residual sum of squares or the
about line sum of squares. When replicate measurements are available SSg can be
separated into:

— a component which measures the variation due to pure experimental uncer-

tainty. This is the pure error sum of squares, SSp.

— a component which measures the variation of the group means, y;, about the

regression line. This is called SS; oF, the sum of squares due to lack-of-fit.

All this can be arranged in an ANOVA table (Table 8.2) in which the mean
squares, MS, are as always obtained by dividing the sums of squares, SS, by their
corresponding degrees of freedom (df). MSgg is an estimate of 67, the pure error
and MS, ok is an estimate of ¢? if the model chosen is the correct one. It estimates
o + (the bias)? if the model is inadequate.

The lack-of-fit test is a one-sided test that is performed by comparing the ratio
F = MS os/MSge with the F-distribution at (k — 2) and (n — k) degrees of freedom.
If this ratio is significant at the chosen significance level (MSyor significantly
larger than MSpg) one concludes that the model is inadequate since the variation of
the group means about the line cannot be explained in terms of the pure experimen-
tal uncertainty. In this case an examination of the residuals plot can be helpful to
adapt the model. If MS; or and MSpg are comparable, the model is justified and both
mean squares are independent estimates of 6. Consequently the pooled estimate
of 6%, MSg = 52, is used in all subsequent calculations.

The ANOVA table as represented here also allows us to check the significance
of the regression, in other words to check whether a significant amount of the
variation of y can be explained by the variation in the independent variable x. For

TABLE 8.2

Analysis of variance of simple regression model with replicate observations

Source of variation SS df MS F
Regression SSrEG { MSgreG MSgec/MSg
Residual SSg n-2 MSg
Lack of fit SSLoF k-2 MS; oF MSLoe/MSpg
Pure error SSpe n-k MSpg

Total SSt n-1
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example, is there a significant effect of the amount of fertilizer (= x) on the yield
of wheat (= y)? This is tested by comparing the mean square due to regression,
MSggc, with the residual mean square MSg by means of an F-test. This yields the
same conclusion as testing the hypothesis Hy: B; = 0 by means of the confidence
interval for the slope or by means of a r-test which will be discussed in Section
8.2.4.1. In a calibration experiment, testing the significance of regression is not
relevant because calibration is, by definition, based on the fact that the response of
the instrument changes with the concentration of the standard solutions, and thus
that there is regression between response and concentration.

Example 2:

As an example of testing lack of fit, consider the data of Table 8.3 which could
be the result of a calibration experiment. They are also represented in Fig. 8.8. The
different sums of squares necessary to construct the ANOVA table are:

TABLE 8.3

Calibration data for testing lack of fit

i 0 1 2 3 4 5

Vi 0.00 0.98 2.10 3.16 3.68 4.15
0.90 2.20 3.22 372 427

Ty 0.00 1.88 4.30 6.38 7.40 8.42

i 0.00 0.94 2.15 3.19 370 421

i 0.265 1114 1.963 2812 3.661 4.509

k=6 n=Sn=11 $=0.265 + 0.849x y=258

" L 1 I 1 >

1 2 3 4 5 x

Fig. 8.8. Calibration data of Table 8.3.
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TABLE 8.4

ANOVA table

Source of variation SS df MS F
Due to regression 20.31 1 2031

Residual 0.680 9

Means about line = lack of fit 0.662 4 0.166 46.11
Within group = pure error 0.018 5 0.0036

Total 20.99 10

SSr=X X (y;—y)
=(0- 2.58)2 +(0.98 - 2.58)2 +..+(4.27 - 2.58)?
=20.99

SSee = X X (v — y:)
=(0.98 - 0.94)2 +(0.90 - 0.94)2 +(2.10 - 2.15)2 + ...+ (427 - 4.21)2
=0.018

SSgrec = 2 n; (5’1 - §)2
=(0.265-2.58)% + 2(1.114 —2.58)> + ... + 2 (4.509 — 2.58)*
=20.31

SSLor=20.99-0.018 - 20.31 = 0.662

This yields the ANOVA Table 8.4. Since F = MSoe/MSpg = 46.11 is much larger
than Fygs.45 = 5.19, the lack of fit term is highly significant and consequently the
straight line model is not adequate to describe the relationship between y and x. If
it were necessary to test the significance of the regression, this would not be done
until an improved regression model had been found. Note that a residuals plot can
be useful to adapt the model. For our example the plot of Fig. 8.8 suggests that the
addition of a quadratic term in x might improve the model.

8.2.3 Heteroscedasticity

If the condition of homoscedasticity is violated, the simple least-squares proce-
dure cannot be used without reducing the reliability of the estimations. The
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problem of non-constant variance (heteroscedasticity) can be solved either by a
transformation of the variables or by using a weighted least-squares procedure.

8.2.3.1 Transformation

The transformation to be used depends on the variance function, i.e. the way the
variance of the y values, s3, changes as a function of the response. If the variance
is proportional to y, a square root transformation will give a constant variance.

\[)7=b0+b1\j.;

If the variance is proportional to y?, which means that s, is proportional to y, i.e. the
relative standard deviation (RSD) is constant, a log transformation can be used:

logy=by+ by logx

In our ICP example from Table 8.1 the RSD was found to be constant and indeed
the standard deviation of the log transformed responses becomes constant:

X; 05 1.0 5.0 10.0 50.0
Y 0.75 1.49 7.24 14.39 72.17
5y, 0.164 0.263 1.533 3.096 17.350
Stogy, 0.098 0.078 0.092 0.093 0.103

Both the y and x variables are transformed to avoid straight line graphs becom-
ing curved after square root or logarithmic transformation. It should be realized
that the transformation carried out to stabilize the variance does not necessarily
preserve the straight line relationship. Log—log transformation leads to a straight
line only when the intercept is zero or near to zero, which is usually true in
calibration. A log transformation has also been recommended for bioanalytical
methods using chromatographic procedures [4].

8.2.3.2 Weighted least squares
In weighted least-squares regression the problem of heteroscedasticity is over-
come by introducing weighting factors inversely proportional to the variance:

w; = 1/s;

In this way the most importance is given to the most precise observations. This
means that we want the calculated line to pass more closely to these points than to
the less precise points. The slope and the intercept are then given by:

_ 2 wilxi = X)) i = yw)
S e

bo=yw— by x, (8.12)



188

o 2 Wi
with x,, =
by w;
T 2 Wiy
" 2w

The use of weighted least squares requires information on the errors occurring
at different concentration levels. This information must be gained experimentally
from a large number of replicate measurements or can be obtained from the
variance function relating the variance of the measurements, s;, to y. If the latter is
known, the variances s? can be estimated from this functional relationship. All this
is cumbersome and probably explains why the weighted least-squares procedure is
less used than it should be.

Example 3:

The data are the same as in Example 1 but here information concerning the
precision of the measurements is available, since for each concentration 5 re-
sponses have been obtained.

xi 0 10 20 30 40 50
yi 4 22 44 60 75 104

3 20 46 63 81 109

4 21 45 60 79 107

5 22 44 63 78 101

4 21 44 63 77 105
Vi 4.0 21.2 44.6 61.8 78.0 105.2
5 0.71 0.84 0.89 1.64 2.24 3.03
s? 0.50 0.70 0.80 2.69 5.02 9.18

Application of the Cochran test (see Section 6.2.1) to compare the different vari-
ances, s7, confirms the presumption of non-constant variance. The computations
needed to obtain the weighted regression line are summarized in Table 8.5.

The weighted regression equation is y = 3.481 + 1.964x. This is very similar to
the unweighted regression equation from Example 1, indicating that both lines will
yield similar results when used to predict a concentration. However, as will be
shown in Section 8.2.5.2 the differences become evident in the prediction errors.

Davidian and Haaland [5] describe an approach to dealing with heteroscedastic
data when the variance function is not exactly known. The generalized least
squares and variance function estimation (GLS-VFE) method allows the user to
postulate a variance model, to estimate the unknown parameters and to use this
information to provide more efficient estimates of the regression parameters.
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TABLE 8.5

Computations for the weighted regression line of Example 3

Xi yi Si wi=1sF =% 0= wilri— %)’ Wilx; = Xw) (Vi — Yw)
0 4.0 0.71 1.984 -11.97 -22.99 284.269 545978

10 21.2 0.84 1.417 ~1.97 -5.79 5.499 16.163

20 44.6 0.89 1.262 8.03 17.61 81.375 178.457

30 61.8 1.64 0.372 18.03 3481 120.930 233.476

40 78.0 224 0.199 28.03 51.01 156.350 284.532

50 105.2 3.03 0.109 38.03 78.21 157.645 324.202

Y = 806.069 Y =1582.808

_ _Xwixi 63980 — _ Xwdi 144240
Xy = T =533 =11.97 yw——f———26.99

- 2 wi (X = xw) (Vi = yw)

by — by = yw — b1 X, = 3.481
2w (= Xw)
1582.808
~ 806.069 1.964

8.2.4 Confidence intervals and hypothesis tests

Once it has been established that the estimated straight line, y = by + byx,
adequately describes the experimental points, it is important to know how precise
the estimated parameters (est. par.) by, by and y are. This is necessary to compute
confidence intervals (CI) for the true slope, B, intercept, Bo, and response, 1. These
100 (1 — a)% confidence intervals take the following general form:

100 (1 — 0)% CI for the true parameter = est. par. % fo.n-2 Sest par.

with Sey par. the standard deviation of the estimated parameter.

The difference with the confidence interval around the mean calculated in
Chapter 3 is in the -value used. In straight line regression analysis a value of # with
n -2, instead of n — 1, degrees of freedom is used because the fitted line is based
on the estimation of two parameters. As explained in Section 4.3 these confidence
intervals can be used to carry out hypothesis tests.

8.2.4.1 Confidence interval for the intercept and the slope

To determine the confidence intervals for the slope and the intercept we need
the standard deviations of by and b,. It can be shown [6] that these can be estimated
by:
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3 / 2 xi
Sp, = Se m (813)

Se

" VZ(x,- - )_C)z

The 95% two-sided confidence intervals for intercept and slope respectively are
then calculated as follows:

95% Cl for BQZ bo 10.025:n-2 Sh,
95% CI for B]l b 102502 Sh,

(8.14)

with #5005, the value of ¢ with n ~ 2 degrees of freedom (see Section 3.7 and Table
3.4). This means that there is 95% probability that the true intercept and slope fall
within the limits specified by the confidence interval for B, and B, respectively.

As an alternative to answer tests of significance concerning Bo and B, r-tests can
be applied. To test the hypothesis that the intercept is equal to a specified value,
B e.g. zero, (Ho: Bo = Bo versus H;: By # B), the following ¢ is calculated:

g o=Bd k-0 515
. \/ > ) Y 2
NuXx-x* “ViX-x?

The latter expression is used to test whether the true line might pass through the
origin. The calculated r-value is compared with the value of the distribution with
n-2 degrees of freedom at the chosen significance level. If Ifl exceeds the tabulated
t we conclude that the intercept is significantly different from zero.

In a similar way the hypothesis that the slope is equal to a specified value, {31, is
tested by calculating:

If] = —lbl___ml_
SeNY (x; = x)*
Testing the hypothesis that the slope is zero (Hg: B = Bi = 0 versus H;: B, #0)

is an alternative to testing the significance of the regression by an F-test in the
analysis of variance (see end of Section 8.2.2.2).

(8.16)

Example 4:

The following results were obtained for a Tl calibration line by means of
graphite furnace AAS. The evaluation of the absorbance signals was in peak area
(As). Each measurement was blank-corrected which means that the absorbance
measured for the blank has been substracted from each absorbance measurement.



191

(a) Calculate the confidence limits for the slope and the intercept.

(b) Was the blank correction performed correctly?

x;(ng/ml)y 20 40 60 80 100
vi (As) 0.038 0.089 0.136 0.186 0.232

The least squares line is:

y =-0.0093 + 0.002425x

Further:
x=60 ZX,Z = 22000 n=>5 t0.025:3 = 3.18
¥(x; — x)* = 4000 s. =0.00145

(a) The confidence interval for the intercept By is given by:

—0.0093 £3.18 x 0.00145 \f 522;)(?(;)0

X

—-0.0093 £0.0048

Thus CI = [-0.0141; -0.0045]. We can state with 95% confidence that the true
intercept, Bo, lies in the interval —0.0141 to —0.0045.
The confidence interval for the slope B; is given by:

0.002425 £ 3.18 x 0.00145 / V4000
0.002425 £ 0.000073

Thus CI = [0.002352; 0.002498]. We can state with 95% confidence that the true
slope, B, lies in the interval 0.002352 to 0.002498.

(b) Since the measurements were blank-corrected the intercept should be zero.
Therefore the hypothesis to be tested is:

Ho:Bo = 0 versus H;:Bo #0

This hypothesis can be tested by means of the confidence interval for the
intercept or by means of a -test. Since the confidence interval for B, calculated in
(a) does not include zero, the null hypothesis has to be rejected and consequently
one concludes that the intercept is significantly different from zero. This means
that the blank value used to correct the absorbances is not representative for the
standard solutions and/or the measurement process. Since the blank correction
results in a negative intercept the blank absorbance was overestimated.
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Of course we come to the same conclusion when the null hypothesis that B, = 0
1s tested by means of a r-test (eq. (8.15)):

o 100003
0.00145 |-22900
5x4000

Since at the 5% level of significance the calculated absolute value of ¢ (6.11) is
larger than the tabulated r with 3 degrees of freedom (3.18) we again conclude that
the intercept is not equal to zero.

An important application of these confidence intervals is as follows: when an
analytical chemist develops a new method for the determination of a particular
analyte he can validate his method by analyzing spiked blank samples (see Section
13.5.4). If the validation has to be performed at different analyte concentrations,
regression analysis can be used. By considering the measured concentration as the
y variable and the added concentration as the x variable, the slope and the intercept
of the regression line can be calculated. In an ideal situation where exactly the same
results are obtained, the slope of the regression line should be 1 and the intercept
should be 0. This will never occur in practice: even if systematic errors are absent, the
presence of random error leads to a scatter of the points around the least-squares line
and to small deviations of the estimated slope and intercept from 1 and 0, respectively.
A calculated slope that is significantly different from [ indicates that a proportional
systematic error (for instance a matrix effect) is present. A calculated intercept that is
significantly different from O reveals the presence of a constant systematic error
(for instance an incorrect blank correction). The confidence intervals for slope and
intercept can serve to carry out these tests of significance.

Example 5:

Consider the data from Table 8.6 which have been adapted from Mannino [7].
In the original article x represents the concentration of Pb in fruit juices measured
by flameless AAS and y represents the concentration of Pb measured by a poten-
tiometric method. This situation in which both the x and y variable are subject to
error will be treated in Section 8.2.11. In this example we use the same data but
consider x as being the concentration of an analyte added and y the concentration
of the analyte measured. Consequently x is supposed to be known without error.

From y = 3.87 + 0.963x, s, = 10.56, s, = 6.64, 55, =0.0357 and 150253 = 2.31, the
95% confidence intervals for the slope and the intercept can be calculated:

95% CI for Bo: 3.87 + 15.34 (-11.47, 19.21)

Since 0 is included in that interval we have no reason to reject the null hypothesis
that the intercept is 0; this means that there is no evidence for a constant systematic
error.
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TABLE 8.6

Concentration of an analyte added to a sample versus the concentrations measured (adapted from Manino [7])

Sample Added Found
X y

I 35 35
2 75 70
3 75 80
4 80 80
5 125 120
6 205 200
7 205 220
8 215 200
9 240 250

10 350 330

95% CI for 3;: 0.963 = 0.083 (0.880, 1.046)

Since 1 is included in that interval we have no reason to reject the null hypothesis
that the slope is 1; this means that there is no evidence for a proportional systematic
error.

8.2.4.2 Joint confidence region for slope and intercept

In the above example the confidence intervals are computed separately for By
and B;. They specify ranges for the individual parameters irrespective of the value
of the other parameter. However, the estimated slope and intercept, b; and by, are
related: if for example in Fig. 8.1 another set of measurement points taken from the
same population gives rise to an increased value of by, it is likely that this will lead
to a decreased value of by. The estimates of slope and intercept are not independent
and a value for one of the parameters automatically influences that for the other.
Therefore, from the individual 100(1 — a)% intervals, we cannot say with the same
degree of confidence that the null hypotheses o = 0 and 8, = 1 are simultaneously
acceptable. This is comparable with the multiple comparison problem discussed in
Section 5.2.

If we wish to test the joint hypothesis that o = 0 and B; = 1, the use of a joint
hypothesis test or a joint confidence region for slope and intercept is required.
These take into account the correlation between the estimates (bg, by).

The joint confidence region takes the form of an ellipse with as centre (by, b;).
All sets of (bg, b;) that fall within the ellipse are considered to be included in the
joint confidence interval. The equation for this 95% joint ellipse is given by:

(Bo = bo)* + 2x(Bo — bo) (B1 — b1) + (X x2 /n) (B1 — b1)* = 2F 20 52 /n (8.17)
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11,47 0 3.87 8.2 fBy

Fig. 8.9. Joint confidence region for By and B, from Example 5. The individual confidence limits for
Bo and B are also displayed.

with Fy.5 . the tabulated F with 2 and n — 2 degrees of freedom and o = 0.05.

This is shown in Fig. 8.9 for Example 5 of Section 8.2.4.1. The tilt of the ellipse
with respect to the axes is a result of the negative correlation between by and b;.
Since the point (0,1) lies within the joint 95% confidence region for o and B; we
can accept simultaneously the slope to be 1 and the intercept to be 0. The individual
confidence limits for B, and B, are also displayed. From this figure it is obvious
that individual and joint tests can differ in their results. For instance, the joint
values o = -1 and B; = 0.89 would be accepted as within the confidence interval
if they are tested separately, but not if the joint interval is used.

The simultaneous hypothesis concerning slope and intercept can also be tested
by an F-test which is a rearrangement of eq. (8.17):

~ (Bo—bo)* + 2x(Bo— bo) (B1 — b)) + E x2 /n) (Bi — b))’
B 252 /n

F (8.18)
This F value is compared with the F-distribution with 2 and n — 2 degrees of
freedom at the chosen significance level. For example, to test the hypothesis that
simultaneously the intercept is zero and the slope is one (Ho: Bo =0 and B, = 1
versus H;: B # 0 or B; #1) in our previous example, Bo and f3; are replaced in eq.
(8.18) by 0 and 1, respectively. Since for our example by = 3.87, b; = 0.963, 5, =
10.57, n = 10, x = 160.5 and Y.x7 = 344875:

_ (=3.87)*+2 x 160.5(=3.87) (1 — 0.963) + (344875/10) (1 — 0.963)*
B 2(111.72/10)

F

=0.73

Since F is much smaller than the tabulated Fys.2.8 (= 4.46) the null hypothesis that
Bo=0and B, = 1 is accepted.
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8.2.4.3 Confidence interval for the true response at a given value of x

To know within what limits the true response My, at a particular value x, of x,
may be expected to lie we need the confidence interval of a point on the true
regression line. If x = xo

Yo = bo + b1xo
Using eq. (8.5) this can also be written as
Yo=Y + bi(xo ~x)

and it can be shown [6] that the standard deviation of y, is given by:

1 (xo—x)7

1, Lm0 (8.19)
noY(x—x)

where 7 again represents the total number of experimental points used to calculate
the regression line.

The 95% confidence interval for a point on the true regression line is then given by:

S_VA'() =S

o £ to.2s. 1, o=
Yo X to.025-2 Se p + 3 =3 (8.20)

This expression should not be used repeatedly to calculate confidence intervals
at several different x values in order to find confidence limits that apply to the
whole regression line. The latter are obtained by replacing fy.025.-2 by V2Fo.05:2.0-2
in eq. (8.20). Thus, one takes into account the fact that the true line may have all
combinations of values of By and B, that lie within the joint confidence region
described above. The confidence curves that apply to the whole regression line are
two branches of a hyperbola, as represented in Fig. 8.10. The area between these
two branches is called the Working-Hotelling confidence band.

From eq. (8.20) it can be seen that important terms affecting the width of the
confidence band are (x — x)> and X(x; — x)°. The first term reduces to zero when
xo = x and increases as xo moves away from x. Therefore, as can be seen in Fig.
8.10, the confidence intervals are smallest at the mean of the x values and increase
away from x. This means that the best predictions are made in the middle of the
regression line. Consequently, extrapolation outside the experimental x-range
should certainly be avoided. The term Y(x;— x)* depends on the design of the
experiment, i.e. the repartition of the x; with respect to x. Theoretically, in a
calibration experiment the smallest confidence intervals are therefore obtained if
all standards are situated at both extremes of the calibration range. Then
Y(x; —x)? is a maximum and the confidence interval becomes smaller. Unfortu-
nately with such a repartition of the standards, checking linearity is impossible.
Unless a straight line relationship between response and concentration has been
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Fig. 8.10. A regression line with confidence limits.

shown the calibration points are therefore usually distributed over more than two
x values. The fact that confidence intervals are smaller when the measurement
points are situated at the extremes is also used in experimental design (see Chapter
22). The number of experimental points of course also has an effect because ¢, 1/n
and 2 (x; — x)* all depend on n.

8.2.5 Predictions made on the basis of the fitted line

The confidence intervals described in the previous section are based on meas-
urements recorded to calculate the fitted line. However, estimation of the parame-
ters and calculation of the confidence intervals for the true regression parameters
is generally not the ultimate object of a regression analysis. Often the estimated
line will be used in further experiments to predict the value of the y variable (and
its associated error) corresponding to a particular value of the x variable or to
predict the value of the x variable (and its associated error) from the value
measured for the y variable. The corresponding confidence intervals are often
called prediction intervals.

8.2.5.1 Prediction of new responses

A new individual observation yy at x, is distributed about 1o with a variance 62
Therefore the uncertainty in yy, predicted at x,, is not only composed of the uncertainty
of the regression line at x, (measured fromeq. (8.19) by st (n+ (xo—x)42(x; —x)%)
but also of 67, the variability of the observation (estimated by s52); these variances
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being independent they may be added. Consequently the standard deviation of yo
predicted at xg is:

=2
- X
s 1y 0D
' no X (x—x)
More generally for the prediction of y, = yg, the mean of m observations performed
at xp, the standard deviation is:

(8.21)

I 1 (o—x)7?
= — o 8.22
55, Se\/m+n+2(xi—§)2 (8.22)
and the 95% confidence interval:
. 1 1 (xo = x)*
+ , 20t .23
Yo X fo025:n-2 Se J P Y (- 1) (8.23)

where m = 1 the confidence interval for a single observation predicted at x, is
obtained since eq. (8.22) reduces to eq. (8.21). If m = oo, the true mean and
consequently a point on the true regression line is obtained: eq. (8.22) reduces to
eq. (8.19).

Example 6:

Consider the calibration line calculated in example 1. The 95% confidence
limits within which the intensity for a single blank sample (m = 1 and xy = 0) may
be expected to lie are:

2924 +278 x2.99 1+l+ 25° =
T 6 1750

2.924 £ 10.261

This yields a confidence interval of ~7.34 to 13.18.
The upper confidence limit at xo = O will play a role in the discussion of the
detection limit in Section 13.2.5.

8.2.5.2 Prediction of x from y

In analytical chemistry this is the most important application of the calibration
experiment. Indeed the calibration line is used to predict the concentration of an
analyte in a sample, x,, from measurements performed on the sample, y;:

ys_bO

b (8.24)

io=

with x, the predicted concentration and y, the mean of m determinations performed
on the sample.
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The precision of the estimate depends on the reliability of the fitted line (b, and
b,) but also on the precision of y,. The determination of the error in the predicted
concentration is complex and generally [1,8] the following approximation is used:

Se l 1 ()_)S—'y)z
Si=— ) =ttt e 8.25
Y \/ m n b}y (x—x)? (8.25)

A different precision for the measurement of the sample and standard solutions
can be taken into account in the following way:

S I Y B k)
5= J s [n e Z(x,-—az] (8.26)

with s? an estimate of the variance of the sample measurement.
The 95% confidence interval for the true concentration is then:

Xy 1000502 S, (8.27)

which means that there is 95% probability that the true concentration in the sample
falls within the limits specified by the confidence interval.

The same calibration line is generally used to predict the concentration in
several samples (repeated use of the calibration line). If eq. (8.27) is used to
construct confidence intervals about different predicted x-values the probability
that all intervals cover the true concentration would be smaller than 95%. This is
due to the fact that the individual confidence statements are not independent since
they are based on the same regression line. The problem is similar to the multiple
comparison problem discussed in Section 5.3. If it is important to control the
probability that all confidence intervals include the true concentration, the Bonfer-
roni adjustment described in Section 5.3 can be used.

The factors that have an influence on the confidence limits and thus on the
quality of the prediction are the same as those mentioned in Section 8.2.4.3. In
addition the confidence limits can be narrowed by increasing the number of
measurements, m, performed on the sample.

Example 7:
From the data in Example 1, calculate the confidence limits for the concentration
of:

(a) a sample giving a response of 15 units in a single determination;
(b) a sample giving a response of 90 units in a single determination;

(c) a sample giving a mean response of 90 units from 5 separate determinations.
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With the following data:

y=2.924 +1982x; y =525
=15 yields x, = 6.1

and (y, — y)* = (15 = 52.5)* = 1406.25;
=90 yields x, = 43.9

and (ys — y)* = (90 — 52.5)* = 1406.25.

Furthermore: s, = 2.99, X.(x; — x)* = 1750, ty0s4 = 2.78, m =1 and n = 6.
The confidence limits can be calculated as follows:

(a) 95% confidence limits for the concentration of a sample giving a response
of 15 units in a single determination:

=6.1249

614278 299\/ 1 140625

+
1.982 6 1.982°x 1750

(b) 95% confidence limits for the concentration of a sample giving a response
of 90 units in a single determination:

2.99 1 1406.25
43.9+2.78 4o ——— = 439+49
1 982\/ 6 1.9822x 1750

(c) 95% confidence limits for the concentration of a sample giving a mean
response of 90 units from 5 separate analyses:

439427822 |1 1 130625 _ 149,44,
870821576 " 10822 x 1750

2.99 \/ 1 1. 140625
Comparison of (a) and (b) confirms, as follows also from Fig. 8.10, that the
uncertainty in the prediction of concentrations which are at a comparable distance
from the mean concentration is similar. Comparison of (b) and (c) shows how
increasing the number of measurements increases the precision of the prediction.
All confidence limits constructed up to now apply to homoscedastic data. As
discussed in Section 8.2.3.2, a solution to the problem of heteroscedasticity is to
introduce weighting factors which are inversely proportional to the corresponding
variance. From Example 3 it was concluded that the weighting process does not
have a large influence on the estimated regression equation. In fact, both with
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weighted and unweighted regression, unbiased estimates of the regression coeffi-
cients are obtained but the variance of these estimates is smaller for the weighted
regression procedure [6]. Consequently, in a calibration experiment the sample
concentrations predicted by the weighted and unweighted regression line will be
very similar. Let us now look at the effect of weighting on the uncertainty in the
predicted concentration. The standard error of the predicted concentration is:

_— 2 .
g Ly L, Gy aw (8.28)

by Ywon T w, b (X wi X wid — (T wixi))
with

5 = ’ zwi(Yi_j’i)2
‘ n-2

w, the weighting factor applied for the sample measurement; y,, the weighted mean
as defined for egs. (8.11) and (8.12).

For the homoscedastic situation s2 is an estimate of the common variance ¢°.
This of course 1s not the case here.

Example 8:

From the weighted regression problem in Example 3 calculate the 95% confi-
dence limits for a concentration of:

(a) a sample giving a response of 15 units in a single determination;

(b) a sample giving a response of 90 units in a single determination.

The weighting factors to be applied for both measurements can be obtained from
a plot that relates y; to s? for the standard solutions. From this plot, shown in Fig.
8.11, appropriate values for the variances at y; = 15 and 90 seem to be 0.6 and 6.9
from which weighting factors respectively equal to 1.67 and 0.145 can be calcu-
lated. With the following data (see Table 8.5):

y=3.481+1964x; y,=26.99

yo= 15 yields x,=5.9

and (y, — yw)? = (15 - 26.99)* = 143.76

w, = 1.67,;

v, =90 yields x, = 44.1

and (y, — yw)” = (90 - 26.99)* = 3970.26

w,=0.145

Furthermore, s = 1.921, m = 1, 3w; = 5.343, Xwa? = 1572.2 and (Zwix)” = 63.98%,
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Fig. 8.11. Relation between y; and s? for the data of Example 3. From this plot appropriate values for
the variances at y; = 15 and y; = 90 are found to be 0.6 and 6.9, respectively.

The confidence limits can be calculated as follows:
(a) 95% confidence limits for the concentration of a sample giving a response
of 15 units in a single determination:

59+278 1.921 \/ 1 1 143.76 x 5.343

+ + =
1.964 \ 1.67 5343 © 1.964%(5.343 x 1572.2 — 63.98?%)
59+25

(b) 95% confidence limits for the concentration of a sample giving a response
of 90 units in a single determination:

a4 075 1921 \/ 1 3970.26 x 5.343

+ + =
1.964 ¥0.145 5343 © 1.964%(5.343 x 1572.2 — 63.98%)
44179

We should compare these results with those obtained in Example 7 in which the
same data were treated by means of unweighted regression. Similar predicted
concentrations are obtained but the difference between the unweighted and
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weighted regression analysis becomes evident if the uncertainty of these predic-
tions are compared. In the weighted regression situation the confidence interval
increases with the concentration and this reflects the heteroscedasticity shown by
the data. The fact that the confidence interval for the lowest concentration is
smaller than with the unweighted regression procedure is a result of the higher
weights given to the smallest concentration. The opposite holds for the highest
concentration.

8.2.6 Outliers

Since least squares regression consists of minimizing the sum of the squared
residuals, the presence of outliers (i.e. observations which are atypical for the rest
of the data) can have a large influence on the least squares estimates.

Figures 8.12a—c illustrate different regression data sets with an outlier. Two
regression outliers are present in Fig. 8.12d. In both Figs. 8.12a and 8.12b the
outlying point is not representative for the linear model fitted by the rest of the data,
while in Fig. 8.12c¢ it is atypical because it is remote from the other observations.

According to Rousseeuw {9] the former are called regression outliers or influ-
ential points since they have a large influence on the regression parameters while
the latter is a leverage point. This is a point for which the x-value is outlying with
respect to the other x-values in the data set. Although leverage points can have a
substantial impact on the regression coefficients, Fig. 8.12c shows that this is not
necessarily always the case. In fact, in our example the outlying observation can
be considered as a good leverage point since it fits the model described by the other
data quite well. Moreover, it will have a beneficial effect on the confidence
intervals of the different estimated parameters described in Sections 8.2.4 and
8.2.5. A bad leverage point is an outlier in the x-direction that has an influence on
the regression parameters.

Several diagnostics have been proposed for the identification of regression
outliers [9]. Some of these diagnostics will be discussed here. How to apply them
in the multiple regression situation is shown in Section 10.9. The simplest one
consists in a comparison of the absolute value of the standardized residual (lei/s,t)
with a cut-off value which is generally equal to 2 or 3. It is based on the fact that
the probability for a residual to have a value as large as 2 or 3 times the residual
standard deviation is very small (actually for a normal distribution this probability
is 2.3 or 0.13%, respectively). For the different data sets illustrated in Fig. 8.12,
Table 8.7 gives the standardized residuals for all data points. It is obvious that,
based on the least-squares residuals, this diagnostic fails since for none of the
outliers does le/s.| exceed the value 2 used as cut-off value. The regression outliers
are not detected because in order to minimize X.e7, they attract the regression line
and inflate the residual standard deviation.
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TABLE 8.7

IHustration of different outlier diagnostics

e leils, | CD}) MD? B
(2)* (H* (3.84)* 0.67)*

Data set | (Fig. 8.12a)

X y

0 0.0 0.90 0.51 0.30 1.79 0.52
i 1.1 0.30 0.17 0.01 0.64 0.30
2 2.0 -0.49 0.28 0.01 0.07 0.18
3 3.1 —-1.08 0.61 0.05 0.07 0.18
4 38 ~2.07 1.17 0.41 0.64 0.30
5 10.0 2.44 1.38 219 1.79 0.52
Data set 2 (Fig. 8.12b)

x y

0 0.0 -0.70 0.22 0.06 1.79 0.52
1 1.1 -0.78 0.25 0.02 0.64 0.30
2 2.0 -1.07 0.34 0.02 0.07 0.18
3 10.0 5.74 1.81 0.44 0.07 0.18
4 38 -1.65 0.52 0.08 0.64 0.30
5 5.1 -1.54 0.48 0.27 1.79 0.52
Data set 3 (Fig. 8.12¢)

X y

0 0.0 —0.03 0.25 0.03 1.12 0.39
1 1.1 0.08 0.68 0.11 0.50 027
2 2.0 —0.01 0.08 0.00 0.12 0.19
3 3.1 0.10 0.84 0.09 0.00 0.17
4 38 —0.19 1.61 0.38 0.12 0.19
8 8.0 0.05 0.42 1.63 3.12 0.79
Data set 4 (Fig. 8.12d)

X y

0 0.0 1.19 0.64 0.47 1.79 0.52
1 1.1 0.07 0.04 0.00 0.64 0.30
2 2.0 -1.26 0.67 0.06 0.07 0.18
3 3.1 -2.38 1.27 0.22 0.07 0.18
4 10.0 2.30 1.23 0.45 0.64 0.30
5 10.0 0.08 0.04 0.00 1.79 0.52

*Cut-off value.

Cook’s squared distance, CD{, , measures the change in the regression coeffi-
cients that occurs if the ith observation is omitted from the data. It can be obtained
as:

2=
CDZ, :F] 8.29
) p sz ( )

e
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Fig. 8.12. Outliers in regression: a regression outlier (a) and (b); a leverage point (c); two regression
outliers (d). The full line represents the regression line based on all data points, the broken line is the
regression line obtained without the outlier(s) or leverage point. Data from Table 8.7.

with p the number of regression coefficients to be estimated (for a straight line with
an intercept p =2); y; the predicted y-values from the regression equation obtained
with all data points; s2 the residual variance for the regression equation based on
all data points; and y{ the predicted y-values from the regression equation ob-
tained with observation i excluded from the data set.
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Fig. 8.12 continued.

A large value of CD{, indicates that the ith observation has a large influence on
the least squares estimators. Most authors indicate thata CD{;, = | can be considered
large. CDg; values for all observations of the different data sets of Fig. 8.12 are
also listed in Table 8.7. Cook’s squared distance seems to be very sensitive for
outliers at the extreme of the data range, but is insensitive to outliers situated in the
middle of the range. Indeed, the outlier in data set 1 is detected whereas the one in
data set 2 is not. As will be shown later in this section, this is due to the fact that
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CD{, also measures how far an x;-value is from the rest of the x-values. Moreover,
as illustrated with data set 4, it is much more difficult to diagnose more than one
outlying observation because the influence of one point can be masked by another.
Detection of one of the outliers hardly affects the regression line since there is
another outlier with a similar effect.

Two related diagnostics for leverage points are the squared Mahalanobis dis-
tance, MD?, and the leverage, h;;, which are given by

MD? = (x; — x)* /52 (8.30)
%) 2

po=ty im® L MD; (8.31)
n (n-s; n n-1

with s7 the variance of the x-values. Both these diagnostics are most often applied
for multivariate regression situations (see Section 10.9). The MD?-values, which
here are the square of the standardized value of x;, are generally compared with
tabulated chi-squared values with p — 1 degrees of freedom at the 5% significance
level (see Table 5.4) while for the leverage a cut-off value equal to 2 p/n (p
representing the number of regression coefficients to be estimated and » the num-
ber of observations) is often used [9]. The leverage point in data set 3 has a high
MD; -value (without reaching significance) and because of eq. (8.31) also a high
hi-value (exceeding the cut-off value 0.67). Since the squared Mahalanobis dis-
tance and the leverage are only based on the x-values (y-values are not taken into
account) the same MD? and h;; are obtained for the other data sets. Consequently
the regression outliers are not detected by these diagnostics.

Let us now come back to the Cook’s squared distance which is also equal to [9]:

2 | eiz hii

o= P 53(1 - hii)2 (832
From this expression it follows that CD{, not only reflects how well the model fits
v;, as indicated by e;, but also how far x; 1s from the rest of the x-values, as indicated
by h;;. The outlier in data set 2 has a relatively small CD{, , despite its considerable
influence on the regression line, because with x = 3 it is near the mean of the
x-values (x = 2.5). On the other hand, the large CD{, for the leverage point in data
set 3, which fits the model described by the other data quite well, can be ascribed
to the fact that with x = 8 it is far away from the mean x-value (x = 3.16).

From the above discussion it follows that different diagnostics must be consid-
ered to identify outlying observations. However, their interpretation is not straight-
forward. Another approach is to use robust regression methods which are less
easily affected by outliers. These methods are introduced in Chapter 12.
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8.2.7 Inverse regression

The main purpose of a calibration experiment is to predict the concentration, x,
of a sample from some measurement, y, performed on that sample. Since x has to
be inferred from y it is sometimes proposed to regress x directly on y since this is
the way the regression equation will be used. Thus:

)‘\C:b()'i'b]y

This inverse regression is included in some commercial analytical instruments
because it facilitates the calculation of the concentration, especially from polyno-
mial models. There has been considerable controversy about this method since the
error-free x variable is fitted to the y variable which is subject to error. However, in
multivariate calibration (see Chapter 36) inverse least squares is generally preferred to
the classical approach.

8.2.8 Standard addition method

In analytical chemistry a calibration line cannot be used to determine an analyte
in a sample when the sample matrix is known to interfere with the determination
and matrix-matched standards (i.e., standards which have a composition similar to
that of the sample) cannot be prepared. A possible solution to this problem is to
apply the method of standard additions in which the sample is used for performing
the calibration.

In the standard addition method small known concentrations of the analyte to be
determined are added to aliquots of the unknown sample. These spiked samples as
well as the unknown are measured. A typical plot of the added concentration as a
function of the measured response is shown in Fig. 8.13. The least-squares regres-
sion line is obtained in the usual way and the amount of the analyte present in the
sample, x,, is estimated by extrapolating the line to the abscissa (y = 0). In the
absence of absolute systematic errors the negative intercept on the concentration
axis corresponds to —x, . Consequently x, = by/b;.

For the homoscedastic situation the standard error of the predicted concentra-
tion, which depends on the reliability of by/b,, can be approximated by [1]:

se |1 y?
Se i Y 8.33
b \/H+b% D(x; —x)? (8.33)

Sy =

from which the confidence interval for the concentration is obtained as in eq. (8.27).
For the weighted case the approximation of the standard error is as follows:

S, 1 )?V
= 8.34
ST, \/Zwi+b12(2wix,2—2wiﬁ) (839
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-XS X1 X2 X3 ;(L
added concentration
Fig. 8.13. Standard addition line.

in which s2 = (Zwi(yi — y)?)/(n - 2), yw = Zwiyd 2w, Xy = 2wix/2w; and b, is given
by eq. (8.11).

Since in the standard addition method calibration is performed in the sample
matrix the technique can be applied in the presence of matrix interferences that
introduce relative systematic errors. A major drawback of the method, however, is
that it is based on an extrapolation and, as explained in Section 8.2.4.3, this
adversely affects the precision. However, a useful application of the method is in
the detection of matrix interferences that result in a relative systematic error. These
can be revealed by a comparison of the slopes of the standard addition line and an
aqueous calibration line. If the matrix does not interfere, we expect both lines to
have the same slope. How to check this is explained in Section 8.2.9.

8.2.9 Comparison of the slopes of two regression lines

The comparison of the slopes of two regression lines (represented as by, and b, ,,
respectively) can be performed by means of a ¢-test:

_ by —bp
S’%H +s}27|2

It follows from eq. (8.14) that:

t (8.35)

2
Sei

2 _
Shin =5

2 (xi “}1)2

=1
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2
Se2
5%12 =4 -

2 (- }2)2
=1
with n; and n, the total number of data points in each regression line.
If the residual variances, 67 and o3, estimated by s, and s2,, are equal (compari-
son can be performed by means of an F-test), the pooled estimated variance is
calculated as:

» _(m=2) S+ (n—2) sh

o= 8.36
! nm+n—4 ( )
The test is then performed by calculating

‘= b1 — by (8.37)

\/sz 1 — 4 1
T a-x)P X a-x)

which should be compared with the tabulated ¢-value with n; + n, — 4 degrees of
freedom at the chosen significance level.

If the residual variances are not equal, an approach similar to the Cochran test
for the comparison of two means with unequal variances as described in Section
5.1.1.2 can be used. If 6 # G} , the theoretical ¢ values, #; and 1, at the chosen level
of significance and n, — 2 and n, — 2 degrees of freedom, respectively, are obtained
from a t-table. The following ¢ is then calculated:

, LSk +hSh,

(8.38)

2 2
Sh!l + shll

and the calculated 7 as obtained from eq. (8.35) is then compared with ¢’ in the usual
way. It is not necessary to calculate ¢’ if both regression lines are based on the same
number of data points (n) = n,). Then ' =, = t,.

The comparison of the slopes of two regression lines is a useful tool in the
validation of some analytical methods (see Chapter 13).

Example 9:

As an example, consider the analysis of Al in serum by means of graphite
furnace atomic absorption spectrometry. To validate a new method an aqueous
calibration line and a standard addition line from a serum sample are compared.
Signal evaluation was by means of the integrated absorbances (A.s). The following
results are obtained:
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Calibration line (1) Standard addition (2)
x; (ng/) yit (A.s) xp (ug/l added) yi2 (A.s)
0 0 0 0.050
41 0.039 41 0.083
81 0.073 81 0.122
162 0.149 122 0.161
244 0.215 162 0.179
325 0.280 203 0.215
325 0.313
ny = 6 ny) = 7
v = 8.629 10~*x + 0.0033 y2 =8.026 107%x + 0.0533
Z(X,‘l - }1)2 = 78379 Z(Xiz — ;2)2 = 71582
s =1532107 s =3.039 107

As judged from an F-test, the residual variances can be considered to be similar
since F =3.039 107%/1.532 107° = 1.98 which is smaller than Fy gs 5 = 4.95.
Consequently the pooled estimated variance is calculated:

2 4x1.532 107% + 5%x3.039 10°°
ep 9

=2.369 107
Therefore:

6.03 107

(1 1
\/ 2.369 10 (78379+71582)

=240

As the calculated ¢ (= 2.40) is larger than the tabulated 05,9 (= 2.26), it should be
concluded that the slopes of the aqueous calibration line and the standard addition
line are significantly different and that this indicates the presence of matrix effects.

t=

8.2.10 The intersection of two regression lines

In some titrations (e.g., conductometric and photometric) the end point is
obtained as the intersection of two straight lines. If
vi=bo+ bix with n; data points

and
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na=bo+ b x, with n, data points
are the two lines, their estimated point of intersection is

. (bp—b"y) Ab
= b= b0 _ 4k (8.39)
(&1 —b)  Ab
The limits of the 95% confidence interval for the true value of this estimate,
X1, can be obtained as the roots of the following equation [8,10]:

X3 ((Ab1)2 -7 sz,,,)— 2%; (Abg Aby — 2 Sappn) + ((Abo)z -7 sgbo)= 0 (8.40)
with t = 50250 +n,-4, the tabulated ¢ value at n; + n, — 4 degrees of freedom

San, = 5% (172 Gy = 50)2 + 1 /% G — E2)2) (8.41)
Sab, = Sep (1 /1 + 1 /g + X3 /2 (xiy — 01)* + 33 /2 (x2 = 22)2) (8.42)
Sanab = S (}1 /3 (e = X0)? + %0 /3, (xip — 22)2) (8.43)

Notice that it is assumed here that the error variances s2 and s2, are comparable
since they are pooled into 52, (eq. (8.36)).

Example 10:

The following results are obtained for the conductometric titration of 0.1 M HCI
with 0.1 M NaOH. They are also represented in Fig. 8.14. The end point of the
titration is the point of intersection of the two lines.

Line 1 Line 2

X y X y

ml NaOH arbitrary units ml NaOH arbitrary units
3.0 430 25.5 129
6.0 388 27.0 147
9.0 343 30.0 181

12.0 302 33.0 215

15.0 259 36.0 251

18.0 214

21.0 170

y1 =474.00-14.43 x y2 =-16545+11.55x

sh=1314 sfz =0.4146

sy, = 0.07222 s, =0.07496

sp, = 0.96890 sy, =2.28934

ny = 7 ‘l’lz =5

X =122 =144 ¥ =30.3*=918.09

Y(xan —x)* =252.0 Yxn—x)*=73.8
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Fig. 8.14. Conductometric titration of 0.1 M HCI with 0.1 M NaOH. Data from Example 10.

This information is necessary to calculate x; = 24.61 ml from eq. (8.39), si,,l =
0.0171 fromeq. (8.41), sibo =13.043 from eq. (8.42), sapas, = 0.4475 fromeq. (8.43)
and the pooled variance s2, = 0.9767 from eq. (8.36).

With #5058 = 2.306 the 95% confidence interval for the true end point, xy, is
obtained from eq. (8.40) which becomes

674.8695 xi - 2x1(16610.5313) + 408826.9445 =0

Therefore the 95% confidence limits for the true end point, estimated by x1 =24.61
ml, are [24.51 ml, 24.72 ml].
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8.2.11 Regression when both the predictor and the response variable are
subject to error

Up to now it has been assumed that only the response variable, y, is subject to
error and that the predictor variable, x, is known without error (Model I regression).
However, there are situations for which the assumption that x is error free is not
justified. An example of the Model II regression case is the comparison of results
obtained under different experimental conditions (e.g. different measurement or
pretreatment techniques) where both the x and y variables are measured quantities
which are subject to experimental error. In general, the study of the relationship
between two variables that are measured quantities or that show natural variability
(examples from the biological science are weights and lengths) require regression
methods that take the error in both variables into account. They are called errors-
in-variables regression methods.

If 1; represents the true value of y; and &, the true value of x; then:

yi=nit+ g (8.44)
Xi = g; + 8,‘ (845)

with g; and 9, the experimental errors.
The model which describes the straight line relationship between 1; and &; is

Ni=Bo+Pi & (8.46)
Consequently the combination of eq. (8.46) with eq. (8.44) and eq. (8.45) yields:

yi=Bo+Bi(xi—6) +&
or
yi=Bo+ Pixi+ (& —P1 &) (8.47)

where (g; — B, ;) represents the error term.
If the error in x is neglected and the regression coefficients are estimated as
described in Section 8.2.1, by minimizing

Yei= 20— 5’1)2

it can be shown [6] that the least-squares slope b; is a biased estimator of f3;. The
error term and x; in eq. (8.47) are correlated since both depend on 9,. This invali-
dates the use of ordinary least squares, in which the error term is assumed to be
independent of x;.

Since both variables are affected by random measurement errors (here we
assume O; = 03) an unbiased estimation of the regression coefficients can be
obtained by minimizing Y47, i.e. the sum of the squares of the perpendicular
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{a) (b}

X X

Fig. 8.15. (a) In the least squares method (LS) the residual, e;, is obtained parallel to the y-axis. (b) In
the orthogonal distance regression method (ODR) the residual, d;, is obtained perpendicular to the
estimated line.

distances from the data points to the regression line. The meaning of both e; and d;
is compared in Fig. 8.15: while ¢; in the classical least-squares method is obtained
parallel to the y-axis, d; is determined perpendicular to the estimated line.

The fitted line is then the one for which the least sum of squared d;s is obtained
and the method has been called orthogonal distance regression [11}. This is
equivalent to finding the first principal component of a data set consisting of 2
variables (p = 2) and n samples (see Chapters 17 and 31).

The expressions for b, and by are [12,13]:

b 53 = 53+ V(53 = 53 + 4(cov(y,x))° (8.48)

2cov(y,x)

b[):y—b];

with s_,?: and s? the variance of the y variable and the x variable, respectively; cov(y,x)
= (X(y; — y)(x; — x))/(n - 1) the covariance of y and x (see Section 8.3.1).

Mandel [13] gives expressions for the standard deviation of the slope and the
intercept. An approximate relationship between the least squares slope, b,(LS), and
the orthogonal distance slope, b;(ODR), has been formulated [13]:

2
b)(ODR) = by(LS) /[1 - i—zj
with s, the variance of a single x value (involves replicate observations of the same
x); and s? the variance of the x variable = Y(x; — x)*/(n — 1). The latter depends on
the range of the x; and their distribution.

The ratio s../s, has been proposed by Cornbleet [14] as an estimate of the effect
of errors in the x variable. Significant errors in the least squares estimate of b, can
be expected if this ratio is large (for example >0.2). If this ratio is small, which
means that the spread of the x values is large compared to the measurement error
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of these x values, the latter can be ignored and the classical least squares analysis
used.

This is also the case if the x;s are subject to error but are set at fixed values by
the experimenter (= Berkson Model). For example, consider regressions in which
different doses of a drug or different concentrations of an analyte preassigned by
the experimenter are involved. Although the actual doses or concentrations added
may differ from their target values, the ordinary least squares method may be
applied. It can be shown [13] that in this situation the error term is independent of
x; and consequently the assumptions of ordinary least squares are fulfilled.

Example 11:

Let us consider the results of Example 5 (Table 8.6) in their original context,
namely the comparison of a new potentiometric method (= y variable) with a
reference flameless AAS method (= x variable) for the determination of Pb in fruit
Jjuices.

n=10 x=160.5 y=158.5
s, =98.4731 s, = 95.3954
cov(x,y) =9342.5
52 =9697.0 52=9100.3

Therefore, from eq. (8.48),

, _ 91003 -9697.0+ V(9697.0 — 9100.3) + 4(9342.5)
b 2% 9342.5

=0.9686
and
bo=158.5 — 160.5 x 0.9686 = 3.04

It can be verified that the ODR line is very similar to the LS line calculated in
Example 5:

ODR line: y =3.04 +0.969 x
LS line: y=3.87+0.963x

This is due to the fact that for the comparison a large range of x values has been
considered. Therefore s? is large compared with the spread of errors likely to occur
in the x’s (s2,)

Different comparisons of the least-squares regression and the orthogonal dis-
tance regression for method comparison [ 14,15] have shown that, depending on the
experimental design, least squares can lead to wrong estimates of the regression
coefficients and consequently invalidates the conclusion concerning the usefulness
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of the method tested. Other methods that take errors in both the x and y variables
into account have also been described. Some of these are critically examined by
MacTaggart [16].

8.2.12 Straight line regression through a fixed point
In some situations the fitted line may be constrained to pass through a fixed point
(x0.y0). Since this point must lie on the straight line we have:
Yo=bo+ b1 xo
and consequently y = by + b; x can be rewritten as:
Y=o+ bilx ~xo) (8.49)
A model involving only one parameter b, is obtained. Minimization of
Yel =30~ y)’ = ZOi = yo— bi(xi — %))’

with respect to b, now leads to the following expression for b;:

2 (x; — xo0) (i = Yo)
= 8.50
z (i — X0)2 ( )

The residual variance s? which, as stated earlier, is an estimate of the pure
experimental error ¢° if the model is correct, is now given by:

el X)) T@i-y) (8.51)

‘T n-1 n-1

b

Notice that we divide here by n — 1 since the residuals are obtained from a fitted
line for which only one parameter, b;, has to be estimated. If xo = 0 and y, = 0, which
means that the regression line must pass through the origin, eq. (8.49) and eq.
(8.50), respectively, simplify to:

5): b.x
and

The standard deviations to be used in the calculation of confidence intervals are
then as follows [8]:
— the standard deviation of the estimated slope:

Sh, = Se s ﬁ (8.52)
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— the standard deviation of an estimated point of the true regression line at
given value of x,xp:

85, = Se Xo N2 X7 (8.53)

— the standard deviation of a new mean response predicted from the regression
line at a given value of x,x;:

s;, = S N1 /m+ x5 /% x? (8.54)
— the standard deviation of x, predicted from y,, the mean of m values of y.
si, = (se /DN /m+yi /bt Z 57 (8.55)

To calculate the confidence limits the appropriate ¢-value at n — 1 (and not n — 2)
degrees of freedom should of course be used. Moreover as opposed to the uncon-
strained model (see Section 8.2.4.3) these confidence limits will be valid over the
whole range of x values since only one parameter b, is estimated here.

It is necessary to use this model only if there are good a priori reasons to do so.
For example it is not because the intercept is found not to be significantly different
from zero in the unconstrained model that the model 1y = $,x should be used.

8.2.13 Linearization of a curved line

When the relationship between two variables cannot be represented by a straight
line, polynomial (see Chapter 10) or non-linear (see Chapter 11) regression meth-
ods should be applied. However, by transformation of one or both variables, some
of these models can be converted into a simpler straight line relationship.

Well known linearizations are, for example:

— the transformation of the exponential relation between radioactivity and time

A, :AO 6—0.693r/r,a
into

log A, = long——Q'}ﬂt
Lin

— the transformation of the Michaelis—-Menten equation which defines the
quantitative relationship between the initial rate of an enzyme reaction, v, and
the substrate concentration {S]

p = VS
K +[S]

into
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1_
~=

1, Ka[l
Vwx Vo [SJ
where 1/V. represents the intercept and Kp/ Vi the slope of the straight line that
gives the relationship between 1/v and 1/[S].

When the functional relationship between the variables is not known lineariza-
tion becomes much more difficult. Mosteller and Tukey [17] have proposed a

general rule to find an appropriate re-expression to straighten hollow upward
(concave) or hollow downward (convex) curved lines by using a transformation of

the form:
yy (a)
10}
8 -
6 5
“r /‘/
o/
2|
L 4
0 1 2 3 4 5
Y b
6
st
L1
3t /
2 -
1 -
0 1 2 3 4 5

Fig. 8.16. (a) An example of a hollow downward curve linearized by the transformation y* = y” with
p = 1.61. (b) An example of a hollow upward curve linearized by the transformation y* = y” with

p=0.67.
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yE=y
where y represents the original variable and y” the transformed variable.

The value of p depends on the direction of the hollowness: for hollow downward
curves that are either monotonically increasing or decreasing, p should be larger
than 1 while with values <1 hollow upward curves can be linearized. Examples are
shown in Fig. 8.16. The linearization procedure has been used by Wang [18] to
linearize curved atomic absorption calibration lines. The p value is determined itera-
tively and the quality of each transformation is measured in terms of the residuals.

It is important to realize that the transformation is carried out to obtain a straight
line relationship but that the condition of homoscedasticity might not be fulfilled
for the transformed data. Kalantar [19] showed, with simulated data containing
different error structures, the extent to which weighting can improve the precision
of the estimated parameters of log linearized data.

8.3 Correlation

As pointed out in the introduction, correlation analysis is applied to study how
strong the association between two random variables is. One variable is not
expressed as a function of the other since both are equivalent. There is neither a
dependent nor an independent variable.

Consider, for example, the data from biomedical analysis in Table 8.8. They
represent Cu, Mn and Zn concentrations determined in 12 different structures of

TABLE 8.8

Concentration of Cu, Zn and Mn in different brain structures

Brain structure ug g”! dry weight
Cu Mn Zn
| 25.8 1.03 78.0
2 24.2 0.96 81.8
3 273 1.05 69.4
4 328 1.49 76.1
5 273 1.84 62.5
6 17.9 1.23 60.1
7 14.0 1.09 342
8 133 0.96 355
9 10.0 0.80 333
10 10.9 0.77 38.9
11 10.7 0.80 40.8
12 16.0 1.10 46.4
you=19.18 scu=17.89
Yun = 1.09 sMn =031

Yza = 54.75 szn = 18.59
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Fig. 8.17. Scatter diagrams of random variables with different degrees of association. Data from
Table 8.8.

the human brain. The data for Cu and Zn, displayed graphically in a correlation or
scatter diagram in Fig. 8.17a, indicate that high values of Cu are associated with
high Zn concentrations, while low values of Cu are associated with low Zn
concentrations. Knowledge of the concentration of Cu or Zn gives a priori infor-
mation concerning the concentration of the other element. Both variables are
related in a positive sense. They are positively correlated. Relationships can of
course also be negative: the higher the fluoride intake (within certain limits) the
lower the incidence of tooth caries in children. Much less association is found
between the Zn and Mn concentrations in the brain structures of our example. As
a result of the large scatter shown in Fig. 8.17b, knowledge of the concentration of

one of these elements does not give a priori information concerning the concentra-
tion of the other element.
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The strength of the linear relationship between a pair of variables is quantified
by the covariance and the correlation coefficient. They are both measures of the
joint variation between two random variables. Correlation also plays an important
role in clustering (see Chapter 30) where it can be used as a measure of similarity.

8.3.1 The correlation coefficient

Consider y11, ¥12, 13, ---» Y1n and ya1, Y22, Y23, .., Y2u Which are two sets of n
corresponding measurements with respective means y; and y,. The covariance of
the variables y, and y, is given by:

cov(yi,y2) :;{_1 20— Y1) — ) (8.56)

It is a measure of the degree to which the two variables vary together. Cov(y;,y»)
is an estimate of the population covariance Y(y;,y>):

YO'1,y2) =‘1{7 21— M) (2 — M2) (8.57)

obtained with all possible observation pairs and the true population means |, and
L, of the two sets.

For our examples in Fig. 8.17 the covariance of the Cu and Zn concentrations
is:

Cu; — 19.18) (Zn; - 54. .
cov(Zn,Cu) = Z( u ?)1( n; - 54.75) _ 141? 17

=131.65

and the covariance of the Mn and Zn concentrations is

2(Mn; - 1.09) (Zn; - 54.75) _ 27.361
11 T

cov(Mn,Zn) =

=249

It should be noted that a covariance can take any value between —oo and +eo. The
covariance will be negative if the variables are negatively associated. In that case
high values of y, are accompanied by low values of y, and vice versa. Conse-
quently, when one of the deviations (y; — y;) or (y2: — y2) in eq. (8.56) is positive,
the other is negative and the sum of their products is negative. The main disadvan-
tage of the use of the covariance as a measure of association between pairs of
measurements is that it depends on the scale chosen. In our example the covari-
ances are increased by a factor of 10° if concentrations are given in ng g’ instead

of pg g'!
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A parameter which is independent of the measurement units used is obtained if
the covariance is divided by the standard deviation of both sets of measurements.
This quantity is the product-moment correlation coefficient or the Pearson corre-
lation coefficient, r:

cov (1ya) _ E Q=) 02i—y))/n—1
5 J 2 0= X 0u-y)

n—1 n—1

r(ny2) =

_ 2 = y1) (i = y2) (8.58)
VE 31 = 31)? E (2 — y2)?

This is an estimate of the population correlation coefficient p(y;,y;). The correla-
tion coefficient is a dimensionless number between —1 and +1. Values of -1 or +1
indicate a perfect linear relationship between the two variables. A correlation
coefficient which is not significantly different from zero indicates that the variables
are uncorrelated. This does not imply that there is no relationship between the
variables but only indicates that there is no linear relationship.

For our example the correlation coefficients between Cu and Zn and between
Mn and Zn are respectively:

r(Cu,Zn) = 131.65/(7.89 x 18.59) = 0.898
r(ZnMn) = 2.49/(0.31 x 18.59) = 0.432

It follows from a comparison of the correlation coefficients that Cu and Zn are
indeed more correlated than Zn and Mn.

The scatter plots in Fig. 8.18 illustrate how r behaves for data with a different
degree of association. Compare Figs. 8.18d and 8.18e both with r=0. In Fig. 8.18¢
there is an obvious relationship between the two variables but in this case, because
the relationship is not linear, the correlation coefficient is zero.

The linear relationship between two random variables can be described by two
regression lines. The regression of y, on y, is given by:

Yi=bo+b1y:
and the regression of y; on y, by:
Y2 = b,() + b’1 Vi

Both lines go through the point (y;,y,) which is their point of intersection. If there
is a perfect correlation between the two variables (r = +1 or r = 1) the two
regression lines coincide. In the case of no correlation, which means r = 0, the two
regression coefficients, B; and B, are also zero (see Section 8.3.3) and the two lines
are perpendicular.
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Fig. 8.18. Scatter plots of random variables with various degrees of correlation: (a) r = 0.75; (b) r =
032, (c)r=-095 ) r=0;)r=0; () r=1.

8.3.2 Hypothesis tests and confidence limits

Before discussing significance tests and confidence limits for the population
regression coefficient, p, it is useful to have a closer look at the bivariate population
from which the sample of observation pairs is drawn. A bivariate population
provides the probability that the two variables jointly take particular values.

We assume this population to have a bivariate normal distribution for which the
probability function is given by:

f(y1y2) =% exp
21662Vl —p

1 )’I—le yz—uzz_ Yi—HiY(y2—
R e e e e |

where |t; and o? are the mean and variance of vi ({ = 1,2) and p is the correlation
coefficient. This function can be represented as a bell-shaped probability surface
(Fig. 8.19) with the following properties:

(1) both variables y, and y, taken separately are normally distributed (one says
that the marginal distributions are normal);

(i1) for a given y; the distribution of y, is normal and similarly for given y, the
distribution of y; is normal (one says that the conditional distributions of y; and y,
are normal). The latter is shown in Fig. 8.19: cross sections of the bell-shaped
surface at any value of y; or y, yield Gauss curves;
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Fig. 8.19. Bivariate normal distribution surface.
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Fig. 8.20. Isoprobability ellipses for a bivariate normal distribution with 6, = 03, p = 0.6.

(111) cross-sections with planes parallel to the (y),y2) plane yield ellipses repre-
senting all y,,y, combinations with the same probability density. They are called
isoprobability ellipses. The bivariate normal distribution can be represented as a
set of isoprobability ellipses (Fig. 8.20) with equations:

- {[yl - ]2 . [yz - uz]z P [y_;—_u]] [y_z—_uz]} (8.60)
1 - o) (o) (e} (871 ()

a 1s a positive constant; the smaller the constant the higher up the hill the cross
section is performed. For a = 5.99 an ellipse is obtained containing 95% of the data
points. The centre of the ellipses is the point with coordinates (i,,1t2); the major
axis of the ellipse (<) and the minor axis perpendicular to it, are common to all
isoprobability ellipses. These axes correspond with principal components to be
discussed in Chapters 17 and 31. The shape of the ellipses and their position in the
(1,y2) plane are determined by the values of 6,,0, and p. If the variables are not
associated, p is zero and the axes of the ellipses are parallel to the co-ordinate axes.
If, in addition, G, = &, the isoprobability contour is a circle. For p = 1, the ellipse
as computed with eq. (8.60) is undefined and in fact it is found that all data points
lie on a straight line.
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Together with W, i, and 6, and 6,, the correlation coefficient p is an important
parameter of the bivariate normal distribution. The scatter plot of the data (as in
Fig. 8.18) is a graphical representation of this distribution. The sample correlation
coefficient r being an estimate of the population correlation coefficient p, infer-
ences about p can be made from r. The most common null hypothesis to be tested
is whether p =0 (Ho: p = 0; H: p # 0). Accepting Hp means that the two variables
are uncorrelated or more precisely that a non-zero correlation has not been de-
tected. One calculates z:

t=rn-2/N1-r (8.61)

and compares it with the tabulated value of ¢ with n — 2 degrees of freedom.
For the correlation coefficients calculated in Section 8.3.1, this test yields the
following results:

H(Cu,Zn) = 0.898 1=0.898V10 A1 — (0.898)
=645> fo025,10 = 2.23

Therefore at the 5% significance level the correlation between Cu and Zn is
significant. Also:

+(Mn,Zn) = 0.432 t=0.432V10 A1 - (0.432)?
=151< %.025,10 = 2.23

indicating that Mn and Zn are not significantly correlated.

Table 8.9 tabulates significance levels of r that allow direct inspection of the
correlation coefficient. The 5% level of r for 10 degrees of freedom, which inserted
in eq. (8.61) would yield significance, is 0.576. This means that to be significant at
the 5% confidence level the correlation coefficient between twelve pairs of meas-
urements should at least be 0.576.

The r-test of eq. (8.61) can be applied only to test Ho: p = 0, since for p # 0 the
frequency distribution of r is not normal but is asymmetrical. Therefore to calculate
the 100(1 — a)% confidence interval of p the correlation coefficient is transformed
to a new variable.

z=0.5In[(1 + /(1 - n)] (8.62)

This new variable is distributed almost normally with an expected standard devia-
tion of approximately 6, =V1/n - 3).

The calculation of the 95% confidence interval of the correlation coefficient
between Cu and Zn is performed as follows:

z=0.5In[(1 +0.898)/(1 — 0.898)] = 1.462
o,= 1A9 =0.333
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TABLE 8.9
Critical levels of r (for p = 0). p is the two-sided significance level.

df p=0.1 p =005 p=00l
1 0.988 0.997 1.000
2 0.900 0.950 0.990
3 0.805 0.878 0.959
4 0.729 0.811 0917
5 0.669 0.754 0.875
6 0.621 0.707 0.834
7 0.582 0.666 0.798
8 0.549 0.632 0.765
9 0.521 0.602 0.735
10 0.497 0.576 0.708
1 0.476 0.553 0.684
12 0.457 0.532 0.661
13 0.441 0.514 0.641
14 0.426 0.497 0.623
15 0.412 0.482 0.606
16 0.400 0.468 0.590
17 0.389 0.456 0.575
18 0.378 0.444 0.561
19 0.369 0.433 0.549
20 0.360 0.423 0.537
21 0.352 0413 0.526
2 0.344 0.404 0.515
23 0.337 0.396 0.505
24 0.330 0.388 0.496
25 0323 0.381 0.487
26 0317 0.374 0478
27 0.311 0.367 0.470
28 0.306 0.361 0.463
29 0.301 0.355 0.456
30 0.296 0.349 0.449
40 0.257 0.304 0.393
50 0.231 0.273 0.354
60 0211 0.250 0.325
80 0.183 0.217 0.283
100 0.164 0.195 0.254

The 95% confidence interval for z is therefore:
2+1.96x 1 A9 =1.462 +1.96%0.333 = 1.462 + 0.653
0.809<z<2.115
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Retransforming these z-values to the corresponding r-values gives the 95% confi-
dence limits for p:

0.669 < p(Cu, Zn) <0.971

Notice that due to the skewed distribution of r this confidence interval is not
symmetrical around r = 0.898. Tables that allow the transformation of r to z and
the back transformation of z to r are available in most books on statistics.

In a similar way, the 95% confidence interval of the correlation coefficient
between Mn and Zn is found to be:

—0.189 < p(Mn, Zn) £ 0.806

This also leads to the conclusion that the correlation coefficient is not significantly
different from zero since zero is included in this very large interval. Notice that the
confidence interval is much more informative.

A two-sided test based on the z statistic defined above is used for the comparison
of two correlation coefficients (Ho; pi = p2, Hy: p1 # p2). Both are converted to z
(eq. (8.62)) and the significance of the difference between the two z’s is tested as
follows:

21— 2 21— 22
t= = 8.63
Vo7 + 07, 1 1 (869
m-3 n-3

with n; and n, the sample size on which r; and r,, respectively, are based. At the
5% significance level this quantity can be compared to 1.96 (z-value from the
standardized normal distribution) since it has been obtained from a population
standard deviation.

As an example, suppose that in our biomedical application another sample of 15
brain structures was analyzed for Cu and Zn. The correlation coefficient was found
to be 0.703. We want to know whether both correlation coefficients r, = 0.898
(n = 12) and r, = 0.703 (n, = 15) estimate the same parametric value of p. Since

z; = 1.462 and z, = 0.873 it follows that

,_ 14620873

T,
9 12

= 1.34<1.96

Therefore, there is not enough evidence to conclude that both samples come from
differently correlated populations.
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8.3.3 Correlation and regression

Although correlation and regression analysis are used for different purposes
there are obvious mathematical relationships between the correlation coefficient
and the regression coefficients.

In Section 8.2.1 (eq. (8.4)) the expression for the slope of the least-squares line
through n data points, b, was derived. From eq. (8.58) the correlation coefficient
between x and y, r(x,y), can be obtained. If b, is divided by r(x,y) we obtain:

by VX i-xP VY -y VEi-yP

ry) Y (x;i—x)? VY (x; — x)?
Dividing both the numerator and the denominator by Va — 1 yields the following
relationship between the estimated slope and the estimated correlation coefficient:

bl _ \/Z(yi—§)2/n—l _ _s)_

rxy) VY (i —x)?/m—-1 5«

This expression which can be rewritten as
bi = r(xy) (8.64)

which indicates that if either b, or r is zero the other is also zero (since neither s,

nor s, are zero): if there is no correlation between x and y, a significant linear

regression between these variables cannot exist. Therefore, the test for the signifi-

cance of r (Hy: p = 0), described in Section 8.3.2, could also be answered by the

test for the significance of b, (Hy: B; = 0), described in Section 8.2.4.1. Both are

mathematically equivalent and the acceptance of B; = 0 implies acceptance of p = 0.
Since by =y — b; x (eq. (8.5)), substituting b, by eq. (8.64) yields:

bo=y—r(xy) fl x

Combining this with y = by + b, x gives:

_ 5y — 5,
y=y— r(x,y);lx+ r(x,y):glx
X X

and
(vy—y)=x-x rxy) % (8.65)

This relationship will be applied in the discussion of autocorrelation and autore-
gression in Chapter 20.

Finally, let us consider the square of the correlation coefficient between x and y,
. In eq. (8.7) (X(x; — x) (y; —y))* can be substituted by the equivalent expression
Y (x; — x)? 2(yi — y)* (see eq. (8.58)) which yields:
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Z(Yi - 5’1‘)2 = 2()’:’ - ;)2 - ”220’; - 5)2

=(1-r) Z0i-y)
From this the following expression for #* is obtained:
—y)P - —v)? v — v)?
r2 = 2 (yl )’) 24_(3’1 )’l) — Z (yl Z)z — SSREG (866)
Z0i-y) Y i=y)* SSror

The latter equality in eq. (8.66) follows from eq. (8.10). Therefore in regression
analysis the square of the correlation coefficient between x and y, * which is called
the coefficient of determination, expresses the proportion of the total variation that
is explained by the regression. If r = 1 or r = -1 all observations perfectly fit a
straight line and consequently the total variation in y can be explained in terms of
the regression line (¥ = 1). If, on the other hand, r = 0 (+* = 0) there is no regression
at all between x and y. The regression line which parallels the x axis (b, = 0) cannot
explain any variation of y.

References

1. J.C. Miller and J.N. Miller, Statistics for Analytical Chemistry. Ellis Horwood, Chichester, 3rd
ed., 1993, pp. 140 and 211.

2. G.S. Land, W.J. Leavens and B.C. Weatherley, Comparison of two Methods of Calibrating

Linear HPLC Assays. E. Reid and 1.D. Wilson (Editors), Bioanalytical Approaches for Drugs,

including Anti-asthmatics and Metabolites — Methodological Surveys in Biochemistry and

Analysis, Volume 22. Royal Society of Chemistry, Cambridge, 1992, pp. 103-110.

G. Kornblum and L. de Galan, Personal communication.

4. H.M. Hill, A.G. Causery, D. Lessard, K. Selinger and J. Herman, Choice and Optimization of
Calibration Functions. E. Reid and 1.D. Wilson (Editors), Bioanalytical Approaches for Drugs,
including Anti-asthmatics and Metabolites — Methodological Surveys in Biochemistry and
Analysis, Volume 22. Royal Society of Chemistry, Cambridge, 1992, pp. 111-118.

5. M. Davidian and P.D. Haaland, Regression and calibration with nonconstant error variance.
Chemometr. Intell. Lab. Systems, 9 (1990) 231-248.

6. N.R. Draper and H. Smith, Applied Regression Analysis. Wiley, New York, 1981.

7. S. Mannino, Determination of lead in fruit juices and soft drinks by potentiometric stripping
analysis. Analyst, 107 (1982) 1466-1470.

8. P.D. Lark, B.R. Crowen and R.L.L. Bosworth, The Handling of Chemical Data. Pergamon
Press, Oxford, 1968.

9. P.J.Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection. Wiley, New York,
1987.

10.  C. Liteanu and L. Rica, Statistical Theory and Methodology of Trace Analysis. Elilis Horwood,
Chichester, 1980.

11.  P.T. Boggs, C.H. Spiegelman, J.R. Donaldson and R.B. Schnabel, A computational examina-
tion of orthogonal distance regression. J. Econometrics, 38 (1988) 169-201.

12.  W.E. Deming, Statistical Adjustment of Data. Wiley, New York, 1943.

hed



230

13. J. Mandel, The Statistical Analysis of Experimental Data. Dover Publications, New York, 1964.

14.  PJ. Cornbleet and N. Gochman, Incorrect least-squares regression in method-comparison
analysis. Clin. Chem., 25 (1979) 432-438.

15.  C. Hartmann, J. Smeyers-Verbeke and D.L. Massart, Problems in method-comparison studies.
Analusis, 21 (1993) 125-132.

16. D.L. MacTaggart and S.0. Farwell, Analytical use of linear regression. Part II: Statistical error
in both variables. J. AOAC Int., 75 (1992) 608-614.

17. F. Mosteller and J.W. Tukey, Data Analysis and Regression. Addison-Wesley, 1977, pp.
84-87.

18. X. Wang, J. Smeyers-Verbeke and D.L. Massart, Linearization of atomic absorption calibration
curves. Analusis, 20 (1992) 209-215.

19.  A.H. Kalantar, Large inefficiencies of unweighted least-squares treatment of logarithmically
transformed A exp(—kt) data. Int. J. Chem. Kinetics, 19 (1987) 923-927.

Additional recommended reading

Book

R.R. Sokal and J. Rohif, Biometry — The Principles and Practice of Statistics in Biological Research.
W.H. Freeman, New York, 1981.

Articles

Analytical Methods Committee, Uses (proper and improper) of correlation coefficients. Analyst, 113
(1988) 1469-1471.

F.J. Anscombe, Graphs in statistical analysis. Am. Statistician, 27 (1973) 17-22.

R.J. Carroll and C.H. Spiegelman, The effect of ignoring small measurement errors in precision
instrument calibration. J. Qual. Technol., 18 (1986) 170-173.

D.L. MacTaggart and S.O. Farwell, Analytical use of linear regression. Part I: Regression procedures
for calibration and quantification. J. AOAC Int., 75 (1992) 594-608.

J. Riu and F.X. Rius, Univariate regression models with errors in both axes. J. Chemometr., 9 (1995)
343-362.



231

Chapter 9

Vectors And Matrices

9.1 The data table as data matrix

Table 9.1 gives the results of the determination of Al, Si, Mn and Fe in five
minerals. This collection of data can be considered as a matrix (see further Section
9.3). It consists of sub-sets of data for the different metals (column-wise) and for
the objects (row-wise). These sub-sets are called vectors (see further Section 9.2).
The data matrix X is then given by:

200 300 100 360
380 580 420 840
X =1200 320 400 380 9.D
500 760 250 1060
50 70 25 100

The use of matrices is particularly useful in multivariate analysis to simplify the
notations that can otherwise become quite complex. Here we introduce only some
elementary concepts which are essential to understand Chapters 10 and 11 on
multivariate and non-linear regression and Chapter 17 on principal components.
Some definitions and the rules relative to some simple vector and matrix operations
will be given. A more systematic introduction is given in Part B (Chapter 29),
because a deeper understanding of linear algebra is needed for many chapters of
that volume.

TABLE 9.1

Concentration of Al, Si, Mn and Fe in 5 minerals (arbitrary measurement units)

Object Al Si Mn Fe

| 200 300 100 360
2 380 580 420 840
3 200 320 400 380
4 500 760 250 1060
5 50 70 25 100
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9.2 Vectors

9.2.1 Definitions

The matrix shown in eq. (9.1) can be considered as a collection of 5 rows,
representing the results for the 5 objects. These rows are called row vectors. For
instance ry (the vector for object 1) is given by:

r =[200 300 100 360]

Similarly, we can view the data matrix as a collection of 4 columns, each
representing the results for one of the variables. This is called a column vector. The
column vector for the Al results, ¢y, is given by:

200

380

¢; =200
500

50

When we use the word vecror without specifying that it is a column or row
vector, then, by convention, it is a column vector. This is written as:

X1
X

|
The results x; to x,, are called the elements of the vector. If there are p vectors, the
Jjth one is written as:

X1
X2j

| Xnj
In this convention the row vector is considered to be the transpose of a column
vector. Consider the following vector:

10
x=120
30
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then its transpose, X', is written as:

x' =

(10 20 30]

In Section 9.2 there is no need to follow this convention yet and therefore we will not.

A vector also has a geometrical meaning. It can be defined as a directed line
segment. Consider first the results for Mn and Fe only: there are 5 row vectors each
consisting of two elements and each representing one of the 5 objects. We can plot
the results of Mn against those of Fe. In Fig. 9.1a this is done for object 1 and in

1 cMn
1004--—==---------5 , a
!
R
360 Cgg
cMn
500- \ 2
b
4
T 1
500 1000 Cg,
Object 3
5001
Mn
Si Fe
Al c
500 1000 Object 4
cMn
500
3 .2
[ ]
d
.’
5 1
[ ]
T Ll
500 1000 Cp,

Fig. 9.1. Geometrical meaning of vectors. (a) Vector describing object 1 of Table 9.1 by its
concentrations for Mn and Fe; (b) all five objects in the column space defined by variables Mn and
Fe; (c) the variables in the row space defined by objects 3 and 4; (d) an alternative representation of (b).
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Fig. 9.1b for the 5 objects. The arrow representation illustrates the fact that a vector
should be viewed as a directed line segment. It is however more usual not to draw
the arrow, but only the point in which the arrow ends. This then leads to the more
usual scatterplot of Fig. 9.1d which contains the same information as Fig. 9.1b.
Clearly, we can view the 5 objects of Fig. 9.1b as 5 row vectors in two-dimensional
space. The axes are defined by the variables (here the concentrations of Fe and
Mn). Since there is a column for each variable, we could say that the axes are
associated with the columns and therefore the objects or rows are said to be
represented in column space or variable space. In the same way, it would have been
possible to represent the variables or columns in row space or object space. For
two rows, this can be represented visually as in Fig. 9.1c. where the four variables
are plotted in function of their values for objects 3 and 4.

The column and row spaces represented in Fig. 9.1 are two-dimensional. The
vectors consist of two elements. We can therefore state that the dimension of a
vector is equal to the number of elements it contains. The row space for the
complete set of vectors of Section 9.1 is therefore five-dimensional. This is
symbolised as an S° space.

Vectors and matrices, since they are collections of vectors, allow us to represent
data sets or tables in multivariate space (objects in p-variate column space and
variables in n-variate row space). This duality of representing the same data in two
different spaces is less important in Part A, but will become very important when
studying subjects such as multivariate modelling and calibration.

9.2.2 Operations on vectors

9.2.2.1 Addition of vectors
Vector addition is possible for vectors of the same dimension. The elements of the
resulting vector are the sums of the corresponding elements of the summed vectors.

X yi X+

Xn Yn Xnt Yn

Applying this for a two-dimensional example

- f] o

When representing this graphically, we observe that vector addition is equivalent
to placing the added vectors head to tail (Fig. 9.2a).



235

/ a)

b)
3x

Fig. 9.2. (a) Vector addition. (b) Scalar multiplication.

Vector addition is commutative:
X+y=y+Xx
and associative:
X+(y+z2)=(X+y)+z
9.2.2.2 Multiplication by a scalar
A scalar is a single number and a vector can therefore also be defined as an
ordered array of scalars. Multiplication of a vector X by a scalar ¢ (scalar multipli-

cation) yields a new vector, the elements of which are obtained by multiplication
of the elements of x by ¢

Cxn

With a two-dimensional example

oo

we observe (Fig. 9.2b) that scalar multiplication consists of stretching x by a factor
C.
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Scalar multiplication is distributive with respect to addition:

c(xX+y)=cx+cy

9.2.2.3 Vector multiplication

There are two types of vector multiplication. The one which is of interest to us
yields what is called the inner product, dot product, or scalar product.

The inner product is obtained from vectors that have the same dimensions and
consists of the sum of products of the corresponding elements. Thus, if one
multiplies two row vectors consisting of the results for objects 1 and 2, one writes

x=[200 300 100 360]
y =[380 580 420 840]
x-y = 200.380 + 300.580 + 100.420 + 360.840 = 594400

This way of writing the product explains why it is called the dot product. There
is a second way which is consistent with the view that a vector is a 1-column or
I-row matrix. Matrix multiplication will be explained in Section 9.3. It will be seen
there that elements of the matrix are obtained by summing the products of the ith
element of a row with the ith element of a column. The product is then written as

380
580
420
840

The name scalar product is due to the fact that the result is a single value, and
therefore a scalar. Later, when we have learned how to norm vectors, we will see
that the scalar product is related to the angle between the vectors.

xy" =[200 300 100 360]

9.2.3 Length and distance

Consider a point x; in two dimensions (see Fig. 9.3a). We can represent it as a
vector.
X1 =[x x12]

where x;, and x,, are the values for object 1 on variables x, and x,.
The square distance from the origin to the point xy, |Ix4|?, can be derived using
the properties of the triangle to be:

”"(l”2 = xti + 12

This result would also be obtained as the scalar product of x; with itself.
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al

[93 MU

bl

X

Fig. 9.3. (a) Distance of x; from the origin. (b) The distance between x; and X; is given by d(x;,x2).
The value of d(x;,X2) is obtained by considering that it is the hypothenusa of triangle OQP.

X1X1 = XiX1' = X{1 + X%,

The non-negative square root, symbolized as [|x4] is called the length or the norm
of the vector and is equal to:

lixqll = Va?; + 1% (9.2)

Note that we introduced the length of a vector as a distance and, in fact, the distance
between the origin and the point of the arrow is called the Euclidean distance from
the origin. Generalizing to n dimensions the length of a vector X is:

Ixgl = Va? +x3 + .. .x2 (9.3)
and
gl = VX - %3 =Vxpxq T (9.4)

Let us calculate as an example the length of the vectors for objects 1 and 2 of
Table 9.1. They are equal to

lixyll = V200% + 3002 + 100% + 360* = 519
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lixall = V3802 + 5807 + 4207 + 840% = 1167

Let us now go back to two dimensions and ask the question what the distance is
between (points or vectors) X; and X, (Fig. 9.3b). From the properties of the triangle
OPQ, it is easy to derive the distance d(x;,X,) as being given by

d(x1, X2) = V(11 — x21)2 + (12 = Xp)° (9.5)

This can be interpreted as the length of the vector starting in x; and going to x,, or,
in other words, the length of the new vector obtained by shifting the origin to x;.
This distance is also called the Euclidean distance between x; and x; and eq. (9.5)
can also be generalized to n dimensions.

d(Xi, Xz) = ‘/(Xn — X0+ (2 = x2)* + .+ (i — Xon)

- \] E (x1i— Xzi)2 9.6)

L

The distance between x; and x; in the example is equal to

d(x1, X2) = V(380 — 200)? + (580 — 300)% + (420 — 100)* + (840 — 360)* = 666

There is an interesting parallel between the length of a vector and the standard
deviation. To understand this let us consider a 3-dimensional vector:

5
y=|1
3
We centre or mean-centre this column vector by subtracting the mean of the three
numbers.

3
Callingy =3
3

2

~[5] [3
y=y-y=|1|-13|=|-2
31 13 | o

The length of the new vector y” is given by:

Ny =V(5 =32+ (1 =32+ (3 — 3)* =2.83

If we had divided the sum of squares under the root by n — 1 = 2, y* would have
been the standard deviation of y. Therefore, we can conclude that the length of a
centred vector is proportional to the standard deviation of its elements.
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9.2.4 Normed vectors

A normed or normalised vector is equal to the vector divided by its norm. Since
the norm is a scalar, the elements of a normed vector are the original values each
divided by the norm. Because the norm is related to the standard deviation, we can
view the normed variables as related to standardized variables. Let us apply this
again to the first two row vectors for the objects of Table 9.1.

u=x/|x
v=y/llyl
u=[200 300 100 360]/519
=[0.3854 0.5780 0.1927 0.6936]
v=[03256 04970 0.3599 0.7198]
An inherent property is that a normed vector has length 1. One can verify that
0.3854% + 0.5780% + 0.1927% + 0.6936° = 1

The sum of squared elements for such a vector is equal to 1. This is not the case for
a vector consisting of standardised data where the sum of elements equals n — 1.

All the absolute values of the elements of the normed vector are < [11. In fact, we
can show that the elements are the cosines of the angle with the coordinate axes.
This can be demonstrated with a simple example

x=[1 1]
Ix|=V1IZ+ 12=2
u=x/|x|| =[1/N2 1N2]=[cos45° cos45°]

For this reason the elements of a normed vector are also called direction cosines.
9.2.5 Angle between vectors

The angle 6 between column vectors x and y is given by
T

__ Xy __Xy
€08 O = Tyl = Tl Iy ©9.7)
If u and v are the normed vectors of x and y, this is equivalent to writing
cosf=u'v=uv (9.8)

In other words, the cosine of the angle of two vectors is equal to the scalar
product between the normed vectors. Since cos 90° =0, it follows that vectors are
orthogonal if
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uv=90 (9.9)

When the angle between two vectors is zero, then cos 6 = 1. The angle between
two vectors is zero when the corresponding elements are equal, except for a
proportionality constant. We would say that two such series of numbers show a
correlation coefficient = 1. This leads us to suspect that there must be a relationship
between the angle between two vectors and the correlation coefficient of the two
arrays of numbers, treated as vectors.

Rewriting eq. (8.58) for the correlation coefficient in terms of r(y, X), we obtain:

_-Y) x-%) ©.10)

ny,X)= — —
% = 3 I — =

If y’ =y -y and x” = x — X are the mean centred vectors of y and x, then

7 ’

Yy X

_/—"’_ = CO0S 9’
ly’Il 11

r(y.X) =
where 0’ is the angle between the mean centred vectors. It follows that the correla-
tion coefficient of two sets of numbers is equal to the scalar product of the normed
mean-centred vectors or to the cosine of the angle between the mean-centred
vectors. One can also show that the covariance of two variables is equal to the
scalar product of the two mean-centred vectors divided by n — 1. In Section 9.2.4
we have already seen that standard deviation and therefore variance are related to
the length of a vector. Since this relationship between statistical and vector con-
cepts is very important for our further understanding of the methods of multivariate
data analysis, we will describe it in more detail later (Chapter 29).

9.2.6 Orthogonal projection

The orthogonal projection u of a vector x on another vector y is shown in Fig.
9.4. It 1s a vector with the same direction as y multiplied by cos 6 and a scalar. It
can be shown that this scalar is ||x{| / ||y]|, so that:

y
iyl cos 6 9.11)

or by replacing cos 0 by its value in eq. (9.7)

u = proj x = x|

proj x = (xy) y/llyll’ (9.12)
The length of the projection is given by:

llproj x|l = (x-y) / llyll (9.13)
Consider the row vectors x = [2, -1, 3] and y = [4, -1, 2]. Then:
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|

]

!
-4 —
u y

Fig. 9.4. Orthogonalization. Vector x is decomposed in two orthogonal vectors u and v; u is the
orthogonal projection of X on y and v is the vector orthogonal to y.

xy=24+(-1)(-1)+32=15
llyl?=4%+ (-1)*>+22=21

15 (60 _15 30
projx =774 12]‘[21 21 21}

9.2.7 Orthogonalization

In the preceding section, we saw how to project x ony. In Fig. 9.4 we have called
this projection u. We would now also like to obtain v, the projection of x
orthogonal to y. Since

u+v=x
it follows from eq. (9.12) that:
v=x-(xy)y/ |yl (9.14)

u and v are orthogonal, which means that u-v = 0.
For the vectors x and y given in the preceding section

(60 _15 30
‘{21 21 21]
and

60 15 30
v=z -1 3]_{21 T2l 21}
_[_18 6 33
‘{ 21 " 21 21}

We can verify that
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60 —18 15 —6 30 33 _

V=o1"21 T2 it 20

The procedure described can be generalized to more than two vectors. Suppose
that one has a set of vectors (X;,Xa, ..., Xk). How can we obtain from this set a set of
k orthogonal vectors (vy,Vz, ..., Vi) describing the same space? It can be shown that
this can be done by the so-called Gram—Schmidt orthogonalization.

Vi=X

V2 =Xy — (X V) Vy /vy

vy = X3 = (X3 V)1 /vall* = (32 )vof || vl

Vi = Xg — XV Ve Vil — (e va)va 1Vl = .. — (i Vi) Vier /Al Vieall? 9.15)

In other words, v; is the difference between x; and the sum of the projections of
x; on the vectors vy,v,...vi_;. Decomposing a set of vectors in a set of orthogonal
vectors is an important operation in data handling. The Gram-Schmidt ortho-
gonalization is the simplest. Further orthogonalizations under additional con-
straints such as principal components are described in Chapter 17 and are used to
a large extent in many of the chapters in Part B.

The computation of v is useful, for instance in the detection of minor substances
below a chromatographic peak in HPLC with a diode array detector. This instru-
ment is used to measure UV spectra in the eluate. At each time #; we obtain a set of
absorbances at different wavelengths. This set is the spectrum and can be viewed
as a row vector (see Fig. 9.5). To detect the impurity we compare each spectrum
or vector to the same row vector, called base vector. Let us consider as base vector
the spectrum obtained at the top of the chromatographic peak. We call this row
vector X; = [Xu,...Xm], Where m is the number of wavelengths at which measure-
ments are made. At each other time #; a vector X; = [Xi,...Xi] 1S obtained and we

A A2 A3 . Am
b ixr xq2
t2
ti ———— row vector —
th

Fig. 9.5. Data table obtained in HPLC-DAD. The spectra can be represented by row vectors.
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want to compare vector X; to X;. There are many ways in which we could do that.
We could, for instance, centre and normalize both x; and x; and obtain their product.
This would yield the correlation coefficient r; between x; and each x;. We could
then observe r; in function of #. In regions where the pure product is present this
would yield a higher r; than in regions where the impurity influences the spectrum.
It is also possible to determine the length of the orthogonal projection of x; on x;,
as was shown by Cuesta et al. [1]. These authors proposed several variants of
methods where this length is measured. We will consider one of them (not
necessarily the best one, but the easiest to explain).

In Fig. 9.6 the different steps are illustrated forthe simplest possible example,
namely two wavelengths (e.g. A; = 244 nm and A, = 280 nm). The concentration
of the impurity is about half that of the main compound (Fig. 9.6a) and the
substances are rather well separated. It should be understood that for such a good
separation, a method like this one makes no practical sense: the intention is
didactical. In practice, this method is used to detect poorly resolved minor peaks,
often with spectra that do not differ much from that of the major compound.
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Fig. 9.6. (a) Chromatogram obtained by HPLC-DAD.
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Fig. 9.6. (b) Plot of absorbance at A = 244 nm against absorbance at A = 280 nm. The meaning of A,
B, C, D, E and M is given in the text.

In Fig. 9.6b we observe points such as M, the point representing the base vector
x( and A and B situated on a line with other points representing measurements of
the pure main compound. Indeed the ratio of Ajz44/Ajzg is constant so that all these
points must fall on a line. Points C and D are on another line, and due to the pure
“impurity”. Point E is a mixture point. We then apply eq. (9.14) for each time ¢,.

Vi=Xj— (Xi'Xt)xt/||Xt||2

and measure the length of v;,|jvil|.

In Fig. 9.6¢ the plot of ||vi]| in function of time is given. Points such as A and B
will yield orthogonal vectors with length close to zero, since the angle with respect
to the base vector is close to zero. Points such as C and D have the same angle with
respect to the base vector, but the length of v; is larger for C than for D, because x;
is longer for C than for D. Therefore, the length of the v; obtained from the
projection of the points due to the impurity, follows the same evolution as the
chromatographic profile of the impurity.

Gram-Schmidt orthogonalization is applied for instance in high resolution gas
chromatography—Fourier transform IR to extract information from interferograms [2}].
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Fig. 9.6. (c) Plot of ||vy|} in function of #.

9.2.8 Linear combinations, linear dependence and collinearity

When two vectors x; and x, have the same direction, they are called collinear.
This means that there is a scalar ¢, such that

X1 =CXp (9]6)

From Section 9.2.2.2, we know that eq. (9.16) describes an operation whereby
X, is shrunk or expanded by a factor ¢. The scalar ¢ may also be negative, in which
case X; and X, point in exactly opposite directions. The term collinear is sometimes
used in an approximate sense. When two variables, are strongly correlated this
means that there is a very small angle between the vectors that represent them (see
Section 9.2.5). It follows that they have nearly, although not exactly, the same
direction in space. Nevertheless, in regression this situation is described as highly
collinear. A corollary to definition eq. (9.16) is that two vectors are non-collinear
when no c satisfying eq. (9.16) is found.
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Collinearity is a special case of linear dependence. If one vector of a set of &
vectors can be written as a linear combination of the other vectors in the set, then
the vectors are called linearly dependent. If not, they are linearly independent.

One calls linear combination of a set of vectors X;,Xz,...Xx a new vector of the
form

C1 X1+ CXo + ... Cp Xk

where ¢,c3, ..., ¢ are scalars called the coefficients or weights of the linear combi-
nation,

Another definition of linear dependence is that there exists at least one ¢ # 0 for
which their linear combination yields a @ vector, i.e. a vector containing only 0
values

C) X1+C2X2+...Ckxk=0 (917)

Definition (9.17) follows from the earlier definition. Let us take an example

HatgH

are linearly dependent because

E} +2 [ﬂ = E] (first definition)
or [g} +2 [ﬂ + (-1 {‘5‘} = l:g} (definition from (eq. 9.17))

The example can be generalized. Any vector from S? space can be written as a
combination of two non-collinear vectors from that same space. For instance, in
Fig. 9.2a x and y are linearly independent. Any other vector in that space can be
represented as a linear combination of x and y. A set of only two non-collinear
vectors in S? is necessarily linearly independent. Such a set of two linearly
independent vectors for S? is said to constitute a basis for the vector space. From
that set all other vectors in that space, here in the plane, can be obtained by linear
combination. It is usual to use as basis the set of orthogonal vectors

o) [

However, this is not necessary. It is not even necessary that the vectors should be
orthogonal. This can be generalized to S" space.
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9.2.9 Dimensionality

In Section 9.2.1 we defined the dimension of a vector (row or column) space as
the number of elements in the vector. There are situations where the full number
of dimensions is not needed.

The simplest such situation, where this occurs, is when there are fewer points
than dimensions. Suppose we measure a spectrum of 19 NIR wavelengths for 10
objects. We can represent the data as 10 row vectors each with 19 elements and
therefore we would define a 19-dimensional space. However, we really need only
10 dimensions. To understand this, consider the simpler situation of two row
vectors (objects) of three elements (wavelengths). This situation is shown in Fig.
9.7a x; and x, together define a plane in the three-dimensional space. Thus only
two dimensions are needed. The reduction of three to two dimensions means that
we do not need the whole space, but only a subspace.

A vector subspace is defined as the set of vectors containing all linear combina-
tions of Xy,...,Xx. This is also called the span of a set of vectors. Geometrically it is
the smallest space (line, plane or hyperplane) that contains all these vectors. The
vectors are represented in that subspace without error, i.e. lengths and angles are
preserved.

A special case occurs with closed data, such as data that describe mixtures. The
components of a mixture always add up to 100% or, expressed as fractions, to 1.
For instance, in two dimensions all mixtures must be situated on the line connect-
ing pure components (fraction = 1) and in three dimensions on a plane (see Fig.
9.7b and ¢).

In general, reduction of dimensionality occurs when vectors are linearly depend-
ent. Consider the following example:

3 2 1

4 5 -1

Xi= 2 Xy = 3 x3=|{—1
1 0 1

5 -2 7

Then Ix; + (-=1)x; + (—1)x3 = 0. We can plot the 5 objects described by x4, X, and
X3, but observe that in fact all objects fall into a two-dimensional plane or
subspace. It sometimes happens that all vectors fall near but not quite in a
subspace. They are approximately linearly dependent. In that case the subspace
can be used to represent with a small error the original vectors. This is the basis
of dimensionality reduction in methods based on principal components (see
Chapter 17).
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Fig. 9.7. Dimensionality reduction (a) due to fewer points than dimensions, (b) closure in two
dimensions, and (¢) closure in 3 dimensions.
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9.3 Matrices
9.3.1 Definitions

A matrix is a rectangular arrangement of numbers and is represented by a capital
letter in bold face:

X Xz ... Xip
X1 X2 ... Xp
X=X= (9.18)
n)(p . . 'XU .
Xnl Xp2 - Xnp

The matrix X has n rows and p columns and is called a nxp matrix. It is often

represented as X . This matrix (see Section 9.1) can be viewed as a collection of p
nxp

column vectors or n row vectors. The individual values of the vectors and the

matrix are the elements of the matrix. They are denoted by the corresponding lower

case letter: x; represents the element in the ith row and the jth column of the matrix

X. Thus the matrix X of eq. (9.1) can be represented as X and, e.g., xs3 = 25.
5x4

A matrix for which the number of rows is equal to the number of columns (n = p)
is a square matrix:

2 -1
X=
2x2 |:5 0:|

A square matrix can also be:

symmetric (x; = x; for all i and j)

2 -5 8
X=|-5 6 0
3x3 8 0 3

diagonal (x; = 0 for all i # j)

w
X
W

e
Il
cc -
oo
~AOO
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triangular (x; = 0 for all i > j or for all i <)

4 00
X=| 8 -1 0
% |5 2 7

A square matrix for which the elements of the principal diagonal (from top-left
to bottom-right) are all equal to 1 with all other elements being zero is an identity
matrix (x; = 1 for all i = j and x; = O for all i #j). An identity matrix is represented
by the symbol I:

100
I=i0 1 0
3x3 0 01

A matrix with all elements equal to zero is a null matrix represented by the
symbol 0:

0= 00O
» |0 00

By the trace of a square matrix is meant the sum of the diagonal elements of the
matrix. For example the trace of the triangular matrix X given higher is:

tr(X) =4-1+7=10
3x3

The transpose X" of a matrix X is obtained by interchanging the rows and
columns of X. The elements x; of matrix X therefore become the elements x;; of

matrix X". If for example:

2053 2.
X={1 38 2 thenXT=580
3x4 43
7604 39 4
It should be evident that a symmetric matrix and its transpose are identical.

9.3.2 Matrix operations

9.3.2.1 Addition and subtraction

The addition and subtraction of matrices is only possible if they have the same
number of rows and columns. To add or subtract matrices the corresponding
elements in the matrices are added or subtracted. The new matrix obtained has the
same dimension as the original matrices. For example if:



251

739 -1 2 6 39 -7
X= B= C=
2x3 [4 8 6:! 2x3 l: 3 5 O} 2x3 I:S 3 IJ
then:

_ |11 10 -4
D—X—B+C—[6 6 7}
As for vector addition matrix addition is commutative and associative (see Section

9.2.2.1)

9.3.2.2 Multiplication by a scalar
To multiply a matrix by a number k, each of the elements of the matrix is
multiplied by that number:

B=kA = Ak
Therefore if

12 58 _ {6 15 24
A—[3 4 7], then B—3»A—[9 _12 21]

9.3.2.3 Matrix multiplication
The product of two matrices only exists if the number of columns of the first
matrix is equal to the number of rows of the second matrix. A new matrix is
obtained with a number of rows equal to the number of rows of the first matrix and
with a number of columns equal to the number of columns of the second matrix.
For example the two matrices X and B can be multiplied to obtain:

C=X B (9.19)
nxm nxp  pXm
The product B X will therefore only be possible if n = m. The order in which the

multiplication is performed is clearly important. One sometimes uses terms such
as postmultiplication or premultiplication. For instance, when one states that X is
postmultiplied by B, this means that one performs the operation X B and not B X.
The elements of the matrix C are obtained as:

P
cij= 2 Xi by (i=1.,mj=1,.,m

k=1

If, for example,

2 3 4 13
X=|0 17 and =|-2 1
3x3 1 2 5 3x2 4 5
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12 29
C=X B =26 36
3x2 3x3 3x2 17 30

since
cir = (xy X b)) + (a2 X byy) + (x13 X bsy)

=(2x1)+(3x(—2))+(4><4)=

C12= (X1 X big) + (12 X byg) + (x13 X b3z)

=2x3)+@3x1)+(4x5)=29

¢21 = (x21 X biy) + (x22 X byy) + (x23 X b31)

= (0% 1)+(1 x(—2))+(7x4)=26

€32 = (x31 X b12) + (x32 X byy) + (x33 X b3;)

=(IX3HD+2xDH+(5%x5=30

Matrix multiplication is distributive and associative. Therefore:
B+ C)X BX+ CX
nxp nxp pXr nxp pxr nxp pxr

X (D + E XD+ XE
nxp | pxr pxr nxp pxr nxp  pxr

X(FG)=(XF)\G
nxp \ pxm mxr nxp pxm | mxr

However in general it is not commutatlve It is easily verified that the result of
the multiplication of two square matrices depends, in general, on the order in
which the multiplication is carried out. Therefore generally:

X B#B X

PXpopxp pxp pxp

Useful properties are:
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I X=X I=X (9.20)
nxn nxp nxp pXp  nxp

X X' isasymmetric nxn matrix 9.21)
nxp o pxn

X" X isasymmetric pXp matrix (9.22)
pXn. AxXp

X X=X (9.23)
nxn nxn nxn

0 X=0ad X 0=20 (9.24)
nxXp  pXg  nxg nxp pxq — nxq

9.3.2.4 Examples of matrix multiplication

9.3.2.4.1 Linear mixture models

Let us consider some examples of matrix multiplication which are of special
interest and will be required in later chapters.

In many cases, the response of a mixture can be modelled as a weighted sum of
responses of the individual components, the weights being proportional to the
concentrations. For example, consider the absorbance at three wavelengths of a
two-component mixture. This can be written as
Al =gnx + €21
Ar=Enx) + €12 (9.25)
Az = 31X + €300

where A; is the absorbance at A, €;; is the absorptivity at A; for x; and x; is the
concentration of component 1. Calling a the column vector of absorbances

A,
a= A2
As

x the column vector of concentrations

ol

and E the matrix of g-coefficients
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€1 &€n
E=(g; €
€3 €xn

we can write:
a=Ex

This yields the equations (9.25) (see Chapter 10).

9.3.2.4.2 Weighting by multiplication with a diagonal matrix

In some cases, it will be necessary to weight certain variables or objects, for
instance for standardization or in weighted regression. This can be done with a
weight matrix. This is a diagonal matrix. Suppose we have a matrix X and want to
weight the first column by multiplying it by wy, the second column by w,, etc. We
can then write

Xv=XW
where Xy, is the weighted matrix and W the weight matrix
Xwil  Xwi2 X1 X1z
X Xw22 | = jX21 X2 | - wi 0
w21 W 0 Wy
Xw3l  Xw32 X31 X323

We can verify that, for instance
Xwt1 = X1 w1 +x12 0 =x11 wy and x5 = x3, W

To weight rows, one pre-multiplies X with a diagonal weight matrix W, i.e. X,,
=WX

Xwil Xwi2 wi 0 0 X1 X2
Xw21 Xw22 | =10 wy O X211 X22
Xw3l Xw32 0 0 wsfxsy xn

For instance, now:

Xwit = wy X1y + 0 x99 + 023 = wy x3; and X3 = wa X3z

9.3.2.4.3 Regression models
In multiple regression (Chapter 10), one needs equations of the type

y=Xb
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where y is the column vector of responses, b the column vector of b-parameters
and X the matrix of x; and x, values.

Y1 X11 le_l b]
Y={» X=|x3 xn b=[ :|
¥ X313 X32
We can verify that
i=bixin+byxi
If we want to include a constant term, by
y=b0+b]x1 +b2X2

then this can be achieved by writing

1 xu xi2 by
X =1 X221 X2 b= b]
1 x3 x32 b,

9.3.2.4.4 Variance—covariance matrix

Looking back at Table 9.1, we would like to determine the standard deviations
(or variances) of the four variables and the correlations (or covariances) between
them. This information can be summarized in a 4x4 table which takes the following
form:

var (1) cov(1,2) cov(1,3) cov(1,4)
cov(2,1) var(2) cov (2,3) cov(2,4)
cov(3,1y cov(32) var(3) cov(34)
cov(4,1) cov(@4,2) cov(4,3) var(4)

If we consider this table to be a matrix, then this is a variance—covariance matrix.
Let us consider this more generally for X.

Matrix X has column means Xi,x,,...x,. We subtract the column means from the
elements of the corresponding column (column-centring, see Section 9.2.3). This
yields:

Xij1— X1 Xi2—X2 ... X1p — Xp Uiy UWip ... Uy
X2 =X X2 X2 ... Xop— Xp Uy U ... Uy - U

Xnl =Xy X2 —X2 oo Xpgp—Xp Up1 Uy Upp
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We now premultiply U with UT and divide by (n — 1)

U Uy ... Up Hyy U ... Uy
| Up Uy ... U Uy Uxp ... U
l (UT U) — 2 22 n2 21 22 2p /(n _ l)
Wy Uy ... Uy Uny Up2 ... Upp
e -
X uj 2w up 2 u; Uip
2
Zugup Tup X up Uip
= An—-1)

2

> U Uip z Up Up ... > Uiy

where ¥, stands for 3, . The (U"U) matrix is called the dispersion matrix for U.
i=l,n
By dividing each element by n — 1, we obtain the variance—covariance matrix of
X:

st cov(l,2) ... cov(lp)
cov (2,1) 3 ... cov(2,p)
cov (X)= (9.260)
cov (p,1) cov(p2) - 5 |

where s? is the variance of the x-values in column 1 and cov(1,2) = cov(2,1) is the
covariance between the x-values in columns 1 and 2. Often the shorter term covari-
ance matrix is used. This matrix and the derived correlation matrix will be used in
several later chapters in this book, starting with Chapter 10.

9.3.2.5 Inverse of a square matrix

In analogy with the inverse of a non-zero number which multiplied by the initial
number equals unity, the inverse X' of a non-singular or regular square matrix X
is such that

XX =X'X =1 (9.27)

where I is an identity matrix. If X is singular, X! does not exist (see also Section
9.3.5). Since muitiplying with the inverse of a number s equivalent to dividing by
that number, matrix inversion can be seen as the equivalent of division. The
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computation of an inverse is tedious especially with large matrices and will not be
discussed further here. Moreover, it is best to use available computer subroutines
which ensure accurate calculations. This is important to avoid round-off errors.
The following characteristics of the inverse matrix are useful for some of the
following chapters:

XNH'=X (9.28)
(X—I)T - (XT)—I = X—T (929)
(XB)y'=B'X" 9.30)
X1l 0 0 1/)(11 0 0
fX=|0 x» O then X'=| 0 1Ay O (9.31)
0 0 X33 0 0 I/X33

9.3.3 Regression modelling and projection

Suppose we have measured the UV absorbance, y, of a substance with concen-
tration x at one wavelength. The following results are obtained:
y=011 x=10;y=0.19 x=20;y=030 x=230.

We can also consider that the y results are elements of a column vector y and that
the corresponding x values constitute a column vector Xx.

0.11 10
y={0.19 | x=|20
0.30 30

As can be seen, the two vectors diverge slightly. To simplify, we suppose that the
relation between y and x is y = ax, i.e. there is no intercept. In vector notation,

y =ax

If there were no random error, y and x would therefore have exactly the same
direction in space (Fig. 9.8a). Because there is random error this is not true. To fit
the model, one selects a vector that has the same direction as x and is as close as
possible toy. This vector is given by the projection of y on x, proj y. The difference
between y and proj y is e, the vector of model errors or residuals. One wants this
as small as possible, i.e. one wants it to have the smallest length. The length is given
by llell = VI e7. Since this needs to be as small as possible, this means one must
minimize the sum of squared residuals, which is exactly what was done in Chapter 8.
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Fig. 9.8 Regression of y on x (a) and on the plane defined by x; and x; (b).

Let us now take a first look at multiple regression, the subject of the next chapter
(Chapter 10). Instead of measuring at only one wavelength, we measure now at two
wavelengths. We still measure only one substance. The results now can be written
as a matrix with two columns

10 0.11 021
y=|20 X=[0.19 040
30 0.30 0.55

In row space the two columns of X are column vectors X; (the measurement results
at A;) and x; (at A,). These two column vectors together define a plane (see Fig.
9.8b). If there were no random errors, we could write

Y=aXi+ar Xe

In other words, y 1s a linear combination of x; and X, and y is therefore situated in
the plane x,,X,. When there is random error, y will not fit exactly into the plane. To
estimate y we would then select a vector in the plane that is closest to y, in other
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words we would project y on the plane. Again the difference is e, the length of
which is given by the root of the sum of the squared residuals.

It can be shown that the projection of any vector on the subspace spanned by
linearly independent vectors (Xy, ..., Xn), forming together matrix X, i1s obtained
with the orthogonal projection operator X(X"X)™'X". This result will be applied
in Chapter 10 and 29 to obtain the coefficients in multiple regression.

9.3.4 Determinant of a square matrix

A square matrix X can be characterized by a number, called the determinant 1X\.
For a 2x2 matrix

X1 X12
X =
e | X210 X22

the determinant 1s:

1Xi = X1 X2 — X2 X291 (932)
e.g. for
x| |39 24

24 21

‘=39x21—24x24:243

Equation (9.32) is called the expanded form of the determinant. For a 3x3 matrix

X1 X12 Xi3
X=|x3y X3 xn3
3x3
X3 X3 X33

the determinant can be obtained via the so-called minors, Mj;, and cofactors, A;;.
The minor Mj; is the determinant of X after deletion of the ith row and jth

column. Suppose one deletes row 1 and column 1, then:

X22 X23

Mu =
X32 X33

The cofactor is given by
Ay=(=1D"Y My

so that:

Ay =DMy =My,

The determinant of X is then obtained by selecting any column- or row-vector.
The scalar products of the elements of this vector and the corresponding cofactors
are then formed and summed
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X=X a;A; for any i and j

iorj
In our example, we can for instance decide to delete the first row vector. The scalar
product for the first element of the deleted vector and its cofactor is x;; M, and X
is obtained as:

X21
X3}

X2 X3
X32 X33

IXI:X”

which is equal to:
X1 X3 X33 — X1 X23 X32 + X12 X23 X31 — X12 X21 X33 + X13 X21 X32 — X13 X31 X22

Instead of passing through the minors, we can apply the following equation:

X1t X2 ... Xin
X21 X2 ... X
X =
nxn )
Xnl Xn2 o Xan

Xt = 2 (—1)’x,kl Xok, + v« Xnk,

The symbol . indicates the sum of all terms for the n! (n-factorial) possible
permutations (ki, ky, ... k,) of the numbers 1, 2, ... n. The integer r represents the
number of inversions in the permutation (ky, ko, ... k,). In the permutation (ky, k, ...
k,) the numbers k; and & (j < k) form an inversion if k; > k;. For example in the
permutation (3,1,5,4,2) of the numbers 1,2,3,4,5 each of the pairs (3,1), (3,2), (5.4),
(5,2) and (4,2) is an inversion. Consequently this permutation possesses 5 inver-
sions. The number n is the order of the determinant.

For a 3xX3 matrix the determinant is:

_ 0 |
Xt = (=1)" x11 x22 X33 + (1) X1y X3 X320 +
2 I
(=1 x12x03 x31 + (=1) X12 X21 X33 +
-1)? +(=1)
( X13 X21 X32 )Y X13 X2 X3
= X1 X2 X33 = X1 X23 X32 + X12 X723 X31 —
Xj2 X21 X33 + X13 X21 X32 — X13 X202 X31

If for example

2 34
X=|0 -1 7
1 25
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then [XI = (2x(-1)X5) — (2x7x2) + (3xTx1) -
(3x0x5) + (4x0x2) — (dx(-1)x1)
=-10-284+21-0+0+4=-13

Determinants are used among others to solve sets of simultaneous equations, for
which we refer the reader to introductory books on algebra. The geometrical
interpretation of determinants will be discussed in Chapter 29.

9.3.5 Rank of a square matrix

A square matrix 1s said to be singular if there is at least one linear dependency
among the rows or columns of the matrix. As a result the determinant will be zero.
In the following matrix:

1 0 =2
X=/48 0
3037 1
the elements of the second column are equal to twice the elements of the first
column added to the elements of the third column. It can be verified that IXI = 0.
Matrices that have a very small determinant are close to being singular. They are
called ill conditioned and are known to be difficult to invert correctly. In spectros-
copy, matrices are often ill conditioned because the vectors that constitute it are
highly collinear in the sense described in Section 9.2.8.

The rank, n(X), of a matrix X is the maximum number of linearly independent
columns or, equivalently, rows. When two rows are linearly dependent or collinear
the determinant is zero. It follows that the rank can also be defined as the order of
the non-zero determinant of the largest order that it contains.

The last mentioned square matrix X is only of rank 2 (r = 2)
since IXI| = 0, but for instance ‘él‘ g =8#0.
Therefore a square X matrix is regular or non-singular if its rank #(X) = n, which
means that IXI| # 0. The concept of rank for a non-square matrix will be discussed
in Chapter 29.
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Chapter 10

Multiple and Polynomial Regression

10.1 Introduction

In Chapter 8 the simple straight line model
n=Po+pPix

that relates the dependent variable m} to a single x variable has been described.
However if we suspect that 1} is dependent on different variables x,,x,,...x, multi-
variate functional relationships should be considered.

In this chapter we only describe multivariate models that are linear or first-order
in the regression parameters, which means models that can be written in the
following general form

N=Bo+Bix1+ ...+ Brxm=Po+ 2 Bixi (10.1)

=1

The following relationship

n= B()+-E—21+B2 lOgXQ
1
is also a linear model since by taking x; = 1/xf and x’, = log x; a relationship as
described in eq. (10.1) is obtained.
Non-linear relationships such as the following function
N = Po +log(x — B1)
are discussed in Chapter 11. Some non-linear models are intrinsically linear since
they can be transformed into a linear relationship. The exponential function
n =By &
for example, can be transformed to a linear function by taking the natural logarithm
which results in the following linear form
In n= B,() + B] X

A special class of linear models consists of polynomials. If in eq. (10.1) x; = x,

X2 = X%, ..., Xy = X™ an mth degree polynomial relationship
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T]=[30+|3,x+[32x2+...+[3,,,x’"=§,[3,»x" (10.2)
=0

between the dependent variable and a single independent variable is obtained. It is
obvious that, except for m = 1, the linear models represented by eq. (10.2) do not
describe straight lines. Therefore to avoid confusion with “non-linear” used in the
sense described earlier, the term curvilinear is sometimes preferred to indicate
linear models that describe curved lines or surfaces.

10.2 Estimation of the regression parameters

The least squares procedure as described in Section 8.2.1 can be extended to
estimate the regression coefficients, Bo,B),..., Bm» in the multiple linear regression
situation. Consider n observations y,,ys,...y,, €ach with variance o2, obtained at n
different combinations of the independent variables, x1.x,...xm (B > m). If a
multivariate model as given in eq. (10.1) is assumed between the response and the
m x-variables, each observation can be represented as

vi= Bo + B]X,‘[ + Bzx,'z'i' Gt Bmxi,,, + & (10.3)

with y;: the ith observation (i = 1,2, ... n)

xi: the value of the kth independent variable for observation i (k= 1, ... m)

g; the ith residual. It is again assumed that the €’s are independent, normally
distributed random variables with mean O and constant variance o> (see also
Section 8.2.1).

As described in Chapter 8 for the straight line regression, the least squares
estimates (bo,b, ... b, of the p(p = m + 1) unknown regression coefficients (o,

.. B are obtained by minimizing the sum of the squared residuals. This requires
the solution of a system of p normal equations with p unknowns.

By expressing the regression problem in matrix notation a solution is obtained
that is applicable to any linear regression situation, including the simple straight
line. We consider the following vectors and matrices

— the vector of observations y

_yl_
Y2

y:

nxli

Lyn
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— the vector of the parameters to be estimated 3

[ Bo
Bi

pxi

B

— the independent variable matrix X

X X2 Xim
I X xp L. Xom

nxp
L X X2 Xnm

The 1’s in the first column allow for the estimation of the intercept, Bo. They
correspond to the value of the x variable in the first term of eq. (10.1).

— the error vector €
o]
€7

nxl

3
The model represented by eq. (10.3) then becomes:
y=XB+¢€ (10.4)

It can be shown [1] that minimizing the sum of the squared residuals provides
the normal equations

X'Xb = X"y (10.5)

in matrix notation. When the matrix X"X is non-singular the least squares estimate,
b, of B is therefore obtained as
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b= |=X™X)"XTy (10.6)

b
This is the least squares solution applicable to all models that are linear in the
parameters.

With these regression coefficients the estimated response values y can be
calculated

rg;
Y2
=Xb=XX"X)"'X"y (10.7)

Q'<)
Il

Yn

In this expression X(XT X)™' X7 is known as the hat matrix, H.
From the estimated and the measured y values the residual variance which is an
estimate of the experimental error, 67, if the model is correct, is obtained as

Sz _ > 6’12 _ 20’1 —5’i)2

n—p n—p
where ¢; = (y; — y;) represents the residual for the ith measurement. In matrix
notation this becomes

(10.8)

2= e'e
n—p
Equation (10.8) is a generalization of eq. (8.6) for the regression situation with p
regression coefficients,
It is easily checked that for the straight line regression, eq. (10.5) indeed yields

the normal equations given in Section 8.2.1. Since withm =1

—1 X|— _ylw
1 x, Y2
b
X = y= bzlib?]
1x, Vn
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and
( 1 x]
I x
o=l s B
L ! n |

Therefore eq. (10.5) can be written as
N
Y2

noXx bl _[1 1 ... 1 | i
xS bl ixi x ... x, | Sxy

Yn

L~ d

which yields the normal equations as derived in Section 8.2.1.
nby+ by L x;i= X y;

bozxi'*'blle'Z:in)’i

Example:

Table 10.1 lists part of the stack loss data set given by Brownlee [2]. The data
have been rearranged. They are obtained from a plant for the oxidation of ammonia
to nitric acid. The dependent variable, y, is an inverse measure of the overall
efficiency of the plant since it is 10 times the percentage of the ingoing ammonia
that is lost. It has been studied during 17 days as a function of three predictor
variables: x, is the rate of operation of the plant, x; is the temperature of the cooling
water circulated through the coils in the adsorption tower for the nitric acid, and x;
is the concentration of acid circulating (in arbitrary units).

The model relating y and the three x variables is

y=Bo+ Bix; + Poxz+ Paxs + €
The least squares estimates of By, B1, B> and 5 are obtained from eq. (10.6)
b=X"X)"'X"y

where
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TABLE 10.1

The adapted stack loss data set [2]

i Xi x2 X3 y
Rate Temperature Acid concentration  Stack loss
1 80 27 88 37
2 62 22 87 18
3 62 23 87 18
4 62 24 93 19
S 62 24 93 20
6 58 23 87 15
7 58 18 80 14
8 58 18 89 14
9 58 17 88 13
10 58 18 82 11
11 58 19 93 12
12 50 18 89 8
13 50 18 86 7
14 50 19 72 8
15 50 19 79 8
16 50 20 80 9
17 56 20 82 15
[1 80 27 88
1 62 22 87
X=
I 50 20 80
156 20 82]
[1 80 27 88]
R 1 62 22 87
T~ 180 62 .. .50 56
XX=l27 22...2020
88 87 ... 80 82 1 50 20 80
156 20 82
17 982 347 1455
| 982 57596 20300 84354
347 20300 7215 29796
1455 84354 29796 125053
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The inverse of this matrix is

14.269046605  0.000999288 —0.041431100 —0.156823712
0.000999288  0.002898139 _ 0.005047759 —0.000763841

T -1 _
X X)" =1 _0.041431100 —0.005047759  0.017552937 — 0.000295286
—0.156823712 —0.000763841 — 0000295286  0.002418253
and
-
L1 ..o 1|8 246
Xiy_|80 62 ... 50 56| | ‘| _|1s032
Y=127 22 ... 20 20| ‘|7 5295
88 87 ... 80 82] | 5| |21320
5

Consequently eq. (10.6) becomes

bo —37.65245229
B etent oTen | 0.79767627
b=, | = XXXy =1 57731001
by — 006707647

and the regression equation is
y=-737.652 +0.798x; + 0.577x, - 0.067x3

In this last expression the number of digits has been reduced but for all calculations
all reported digits are used. Small differences will nevertheless be noticed when
doing the calculations with a computer regression routine since these carry even
more digits to reduce the round-off errors.

For the different combinations of the predictor variables of Table 10.1 the
estimated response (see eq. (10.7)) and the residuals are summarized in Table 10.2.
The residual variance (eq. (10.8)) calculated from these data is

2
o= Yei 20401 4o
n—p 13
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TABLE 10.2

Estimated stack loss and residuals

i y ¥y e
1 37 35.8471 1.1529
2 18 18.6693 -0.6693
3 18 19.2466 —1.2466
4 19 19.4215 -0.4215
5 20 19.4215 0.5785
6 15 16.0559 —-1.0559
7 14 13.6388 0.3612
8 14 13.0351 0.9649
9 13 12.5248 0.4752
10 H 13.5046 ~2.5046
it 12 13.3441 ~1.3441
12 8 6.6537 1.3463
I3 7 6.8549 0.1451
14 8 8.3713 -0.3713
N 8 7.9018 0.0982
16 9 8.4120 0.5880
17 1) 13.0639 1.9361

10.3 Validation of the model
10.3.1 Examination of the overall regression equation

10.3.1.1 Analysis of variance

In Chapter 8 ANOVA was proposed as a useful tool for the validation of the
straight line model. ANOVA allows us to verify whether the predictor variables
can explain a significant amount of the variance in the response variable. More-
over, if replicate measurements have been performed or if an estimate of the pure
experimental error is available, the adequacy of the model chosen can also be
checked.

In Table 10.3 the ANOVA table constructed in Section 8.2.2.2 is generalized for
multiple regression with p regression coefficients. In this table p is the number of
regression coefficients, n the number of observations and k the number of different
settings (combinations) of the x variables (m < k < n).

The total sum of squares (SSt) can be partitioned into the sum of squares due to
regression (SSge;) and the residual error sum of squares (SSge,). If replicate
measurements are available the latter can be further decomposed in the sum of
squares due to lack-of-fit (SS; or) and the sum of squares due to pure experimental
error (SSpg).
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TABLE 10.3

Analysis of variance table for multiple regression

Source of variation SS Degrees of freedom MS F
Regression SSReg p—1 MSge, MSRgeg/MSges
Residual SSRes n-p MSRes
Lack-of-fit SSLor k-p MS; oF MSpor/MSpg
Pure error SSpg n—k MSpg
Total SSt n—1

For the computation of these different sums of squares the expressions given in
Chapter 8 can be used. They can also be expressed in matrix notation [1]

SST=_§] %Uy—yjz=yTy—ﬂ§2 (df=n-1)

SSkeg ;Zj‘ni Gi=y)?=b" X"y —ny’ (df=p-1)

SSkes =2 X (yy—y)' =e'e=y y-b' X'y (df=n-p)
i

SSpe =2 ’2051—55)2 df=n-k)

SSLOF=Z.mGz—i)i)2=yTy—bTXTy—~SSPE (df =k-p)

The symbols used have the same meaning as in Chapter 8:

y: the grand mean
n;: the number of replicate measurements performed at a specific combination of

the x variables
k

2. n; = n: the total number of observations

=}

yii: one of the n; measurements at a specific combination of the x variables

yi: the mean of the replicate measurements y; at a specific setting of the x variables
i : the value of y at a specific combination of the x variables, estimated by the
regression parameters.

Example:
For the stack loss data from Table 10.1 the following sums of squares can be
calculated
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TABLE 10.4

Analysis of variance table for the stack loss data

Source of variation SS Degrees of freedom MS F
Regression 795.834 3 265.278 169
Residual 20.401 13 1.569

Total 816.235 16

SSr=y'y-ny®  =4376 - 17(14.47059)
= 4376 — 3559.765 = 816.235
SSre, =€’ e =20.401

SSgeg = SSt — SSges = 816.235 - 20.401 = 795.834

Since only 2 replicates (measurements 4 and 5) are available the residual sum of
squares (SSg.s) has not been further partitioned into SS;or and SSpe. An estimate
of the pure error would only be based on 1 degree of freedom and consequently a
possible lack-of-fit would be difficult to detect. Therefore lack-of-fit from the
model y = -37.652 + 0.798x, + 0.577x, — 0.067x; is not verified. The ANOVA
results are summarized in Table 10.4. The calculated F being much larger than the
tabulated Fy gs.3 13 = 3.41 it can be concluded that the regression model accounts for
a significant part of the variance of y.

To illustrate the validation of the model Table 10.1 has been adapted to contain
several replicate measurements. These synthetic data are shown in Table 10.5
where the experimental conditions are identical for measurements 2 and 3; 4 and
5; 8 and 9; 12, 13 and 14; 15 and 16. Consequently there are 11 different settings
of the x variables (k = 11). For these data the regression equation is y = 33.771 +
0.800x; + 0.535x, — 0.102x; and the following sums of squares are obtained:

SSt=816.235
SSres = 23.400
SSgeg = 816.235 - 23.400 = 792.835

SSpe =22 (i — y)?=2.167
i

SS1or = SSges — SSpe = 23.400 - 2.167 = 21.233

Table 10.6 summarizes these ANOVA results. Since F = MS; o/MSpg = 8.40 1s
larger than Fogs76 = 4.21 the lack-of-fit term is significant. This lack-of-fit can be
due to a wrong model or to the presence of outlying observations. The latter should
be evaluated (see Section 10.9) before one starts adapting the model.
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Synthetic data adapted from Table 10.1 to illustrate the validation of the model
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i X X3 X3 y
Rate Temperature Acid concentration  Stack loss

1 80 27 88 37
2 62 23 87 8
3 62 23 87 18
4 62 24 93 19
5 62 24 93 20
6 58 23 87 15
7 58 18 80 14
8 58 17 88 14
9 58 17 88 13

[0 58 18 82 Il

11 58 19 93 12

12 50 8 86 8

13 50 18 86 7

14 50 18 86 8

15 50 19 80 8

16 50 19 80 9

17 56 20 82 15

TABLE 10.6

ANOVA table for the synthetic data from Table 10.5

Source of variation df MS F

Due to regression 3 264.278

Residual 13

Lack-of-fit 7 3.033 MSLOF/MSPE =8.40

Pure error 6 0.361

Total 16

10.3.1.2 The coefficient of multiple determination

In Chapter 8, it was shown that for straight line regression between x and y the
square of the correlation coefficient, (r,,)?, represents the proportion of the vari-

ation of y that is explained by the x variable

2 = SSkeg _ 2 i)’
voSSt X E(y-y
i
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In multiple regression R?, the coefficient of multiple determination is defined in the
same way

_ SSReg _ SST - SSRes =1- SSRes

~ SSy SSt SSt
It is used to estimate the proportion of the variation of y that is explained by the
regression. R, which is called the coefficient of multiple correlation, is the correla-
tion between y and y. For our example R* = 795.834/816.235, indicating that 97.5%
of the variation in stack loss can be explained by the equation y = — 37.652 +
0.798x, + 0.577x; — 0.067x3.

If there is no linear relationship between the dependent and the independent
variables R? = 0; if there is a perfect fit R? = 1. The value of R? can generally be
increased by adding additional x variables to the model. It can even reach unity if
the number of coefficients in the model equals the number of observations (p = n):
indeed a straight line (p = 2) perfectly fits two data points (n = 2). It follows that
R? should be used with caution.

R (10.9)

10.3.1.3 Analysis of the residuals

The analysis of the residuals can be performed as described in Section 8.2.2.1
for simple straight line regression. Statistical and graphical methods can be useful
to detect deviations from normality. To detect shortcomings of the model residual
plots, in which ¢; is plotted against y; , should be examined. For the stack loss
example the residual plot shown in Fig. 10.1 indicates that the model is adequate
since no particular trend in the pattern of residuals is observed.

2 Y .
15 ¢

-2.5 + ]

y predicted

Fig. 10.1. Residual plot (e as a function of y) for the stack loss data. Model: y = —=37.652 + 0.798x, +
0.577x; — 0.067 x3.
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Additional information can also be obtained from other types of plots [1]: a time
effect can be detected if the residuals can be plotted against the order in which the
observations are made; the influence of a variable which has been recorded, but has
not been included in the model, could be revealed from a plot of the residuals
against that variable.

10.3.2 Importance of the predictor variables

From the previous results obtained for the stack loss data we can conclude that
the model

y=—37.652 + 0.798x; + 0.577x, — 0.067x3

including three x variables (rate of operation, temperature and acid concentration)
gives a good description of stack loss. However we might be interested to know
whether all these variables are really necessary and what the importance of each
variable is.

One way of answering these questions is to include the different terms sequen-
tially in the model and to monitor the changes in the regression sum of squares. If
the inclusion of a particular variable results in a significant increase of SSgeg, this
indicates that it explains a significant amount of the variation of y which is not
accounted for by the other variables that are already in the equation.

Consider, for example, the following models for the same data:

Model 1: y=by+ b x, SSkeg(1)
Model 2: 57 = b'o + bll x) + blz X2 SSReg(Z)

If SSgeg(1) and SSg..(2) are the regression sum of squares for these models then
SSkes(2) — SSreg(1) represents the increase of the regression sum of squares due to
the inclusion of x; in the model. It is called SS(x,lx;), the sum of squares due to x;
given x; is already in the model. Since SSgeg(1) and SSge.(2) have 1 and 2 degrees
of freedom, respectively, there is 1 degree of freedom associated with SSgeg(xalx)).
The corresponding mean square, MS(x,lx;) = SS(xlx;)/1, is compared with MSg.«(2),
the residual mean square for the more complex model, by means of an F test
Fe MS(xlx;)
MSRes(z)
This F test is called a partial F-test and is important for the selection of predictor
variables in the stepwise regression procedures described in Section 10.3.3. What
is tested here is the significance of the regression coefficient B, when B, is already
in the model. Therefore SS(x,lx,) is also represented as SS(b,lb,). The significance
of a regression coefficient (Hy: 8; = 0; H;: B; # 0) can also be obtained from a z-test
(see Sections 8.2.4 and 10.4):

(10.10)
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ﬁ:bﬂ@h

with b;: the estimate of the ith regression coefficient, f3;
sp: the standard deviation of the estimated regression coefficient b;, which can be
obtained from eq. (10.18).

It can be shown that the square of this #-value with n - p degrees of freedom is
equal to the partial F value which has 1 and n — p degrees of freedom.

As an example consider Table 10.7 in which the results of the sequential fitting
of x;, x; and x3 are given for the stack loss data. From this it is evident that the
addition of x; if x; is already present is useful since it results in a significant
increase of the regression sum of squares. Since the total sum of squares remains
constant this also means that a significant reduction of the residual sum of squares
is observed. On the other hand, the addition of xs if x; and x, are already present
does not significantly improve the model.

Notice that the addition of a new x variable changes the estimates of all the other
regression coefficients. This is due to the correlations among the independent

TABLE 10.7

Stack loss data. Results of the sequential fitting of x;, x2 and x3

1. Fitting x, y =—40.033 + 0.944 x;
ANOVA
Source df SS MS F
Regression (x) 1 775.482 775.482 285.43
Residual 15 40.753 2717
Total 816.235
2. Addition of x, y=—-42.001 +0.777 x; + 0.569 x,
ANOVA
Source df SS MS F
Regression (x|,x3) 2 793.975 396.987 249.68
Residual 14 22.260 1.590
Total 816.235
. SS(xolx)/1  793.975 - 775482
partial F = MSees 1590 =11.63
> Fps;1.14(= 4.60)
3. Addition of x3 y =—37.652 +0.798 x; + 0.577 x7 — 0.067 x3
ANOVA
Source df SS MS F
Regression (x,x3,.x3) 3 795.834 265.278 169.04
Residual 13 20.401 1.569
Total 816.235
SS(x3lx 1 .834 — 793,
partial F = (3l )1 795,834 —793.975 118

MSRes - 1.569
<Fops;1,13 (= 4.67)




277

variables (see Table 10.9). Without these correlations the addition of a variable
would not influence the coefficients of the variables already in the model.

The information of Table 10.7 can be used to partition the regression sum of
squares of the model, including the three variables, into the individual contribu-
tions of the different variables: the contribution of x;, x, and x3 1s 775.482, 18.493
(=793.975 — 775.482) and 1.859 (= 795.834 — 793.975), respectively, when they
are entered in that order. This is summarized in Table 10.8 together with the results

TABLE 10.8
Stack loss ANOVA data. Effect of the order in which the x variables are entered into the model.

Source df SS MS F
Regression x1,x2,x3
due to x; 1 775.482 775.482 285.42
residual 15 40.753 2717
due to xalxy | [8.493 18.493 11.63
residual 14 22,260 1.590
due to xalxy,x 1 1.859 1.859 [.18*
residual 13 20.401 1.569
Total 16 816.235

Regression x2,x1,x3

due to x» 1 567.032 567.032 34,13
residual 15 249.203 16.614

due to xjlx 1 226.943 226.943 142.73
residual 14 22.260 1.590

due to x3laz,xy 1 1.859 1.859 1.18%*
residual 13 20.401 1.569

Total 16 816.235

Regression x3,xz,x1

due to x3 I 134.799 134.799 2.97*
residual 15 681.436 45.429

due to xzlx3 1 441.480 441.480 25.76
residual 14 239.956 17.140

due to xilx3,x 1 219.555 219.555 139.93
residual 13 20.401 1.569

Total 16 816.235

*Not significant at 5% significance level.
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TABLE 10.9

Correlation matrix for the stack loss data

Xy X2 X3 Yy
Xi 1.000 0.754 0.454 0.975
X2 1.000 0.369 0.833
X3 1.000 0.406
v 1.000

obtained for the regression in which x; is first entered followed by x, and then x;
and also for the regression in which the order of entering is x3, x, and x;. From this
table it follows that the contribution of the different x variables in increasing the
regression sum of squares depends on the order in which the variables are intro-
duced into the model. For example the contribution of x; is much larger when it is
introduced first (567.032) than when it is added after x; (18.493). This is due to the
relatively high correlation between x, and x; as follows from the correlation matrix
given in Table 10.9. Therefore, if x; is already in the regression it explains part of
the variation in y that could also be accounted for by x,. Consequently, the
contribution of x; in the SSge, drops when it is added in second place. Nevertheless,
x, and x, are important variables since, whatever the order of introduction, they
have a significant contribution in increasing the regression sum of squares. On the
other hand, x; is not important since it does not significantly contribute to the
variation in y.

10.3.3 Selection of predictor variables

The discussion of the previous section brings us to the problem of the selection
of the predictor variables: which variables should be used in the regression
equation? The most complete approach is to compare all possible regressions
performed on the m variables. This means that all regression equations with only
one variable, with two variables, up to the regression equation including all m
variables are fitted.

Several related criteria for the comparison of the 2" — 1 different regression
equations that are obtained in this way have been proposed such as the value of R
(eq. (10.9)) or of the residual mean square (MSg.s). In the comparison of models
with a different number of x variables R? should of course be used with caution (see
Section 10.3.1.2). Therefore to compare different regression equations the adjusted
R? which takes into account the degrees of freedom associated with the sums of
squares (SSges and SSt) in the expression for R? is generally preferred:
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_ SSgesAn—p) _

RZ=1 =
SSt/An—1)

1-(1-RY (”"1) (10.11)

A statistic which is related to R is the Mallows C, statistic:
SShes
Cp =" _ (n — 2p) (10.12)
S

with SSgesp): the residual sum of squares for the model with p parameters
(= MSges(p) (n — p))
s*: an estimate of the experimental error 67, e.g. obtained from the residual mean
square of the model containing all parameters

The form of the fitted model is adequate if C, = p.

Example:

The comparison of all possible regressions for the stack loss data by means of
MSges, R? and C, is summarized in Table 10.10. It follows that the best equation
(lowest residual variance and highest coefficient of multiple determination) is the
one in which all three variables are included:

=—37.652 + 0.798x; + 0.577x; — 0.067x3

However in that equation the contribution of x3 is not significant. The elimination
of that variable results in a simpler equation with a very similar MSge (1.59 vs. 1.57)
and R? (96.88 vs. 96.92) and a C, value, 3.19, close to 3. Therefore the equation

=-42.001 + 0.777x; + 0.569x,
is to be preferred.
Of course with a large number of x variables the comparison of all possible

regression equations requires a lot of computation and therefore other procedures

TABLE {0.10

Comparison of the quality of all possible regressions for the stack loss data

P Variables in =~ MSge 100 R? 100 R2 C, Variables with a significant
the equation contribution to the regression

2 Xy 2717 95.01 94.67 12,98 X

2 X 16.614 69.47 67.43 145.83 X2

2 X3 45.429 16.51 10.95 421.31 /

3 X1,%7 1.590 97.27 96.88 3.19 X1.X7

3 X2.X3 17.140 70.60 66.40 141.94 X2

3 X1,X3 2.814 95.17 94.48 14.11 Xy

4 X1,X2,X3 1.569 97.50 96.92 4.00 X1,
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are generally preferred over this brute force approach. These are the forward, the
backward and the stepwise procedure. It is important to realize that these methods
will identify an acceptable model which is not necessarily the best one.

In the forward selection procedure the predictor variables are entered one at a
time. At each step that variable is added that produces the largest significant
increase in the regression sum of squares. The selection starts with the variable that
has the largest (positive or negative) correlation with the dependent variable. If this
variable results in a significant regression, as judged from the overall F-test, the
variable is retained and the selection continues. This means that for all variables,
not yet in the equation, the partial F-test of eq. (10.10) is performed. In the forward
selection procedure this F-test is called F-to-enter and is defined as the partial
F-test performed on a variable which is not yet in the regression equation. The
variable that results in the largest significant increase of the SSge, (largest signifi-
cant F-to-enter value) is then added. This procedure continues until none of the
variables left significantly contribute to the regression sum of squares.

The backward elimination procedure starts with all the predictor variables in the
equation and removes the least important variables one at a time. The criterion for
removal is again based on the partial F-test of eq. (10.10). In the backward
elimination procedure this F-test is called F-fo-remove and is defined as the partial
F-test performed on a variable already in the equation as though it was added last
to the model. In other words, at each step it is checked for each variable of the
model whether it significantly contributes to the regression sum of squares, if it were
the last variable added to the model. The variable that results in the smallest
non-significant increase of the SSge, (the smallest non-significant F-to-remove value)
is dropped. This procedure continues until all the variables not yet dropped signifi-
cantly contribute to the regression sum of squares as judged from their F-to-remove
value being significant.

The forward and the backward procedure do not necessarily lead to the same
regression equation when the predictor variables are correlated. This is because a
variable that is entered in the forward selection remains in the model, even if after
the addition of other correlated variables its contribution may have dropped
significantly. Similarly, a variable deleted in the backward elimination is lost even
if after the elimination of other variables it might become an important variable.

Therefore the stepwise regression procedure, which combines the forward and
backward approach, is generally preferred. At each step the F-to-enter values for
all variables not yet in the equation are checked and the variable with the highest
significant F value is entered. After each step the F-to-remove values for all
variables already in the equation are tested. If a variable is detected that does no
longer significantly contribute to the regression it is rejected. The procedure is
continued until no more variables fulfil the criterion to be entered or to be
removed.



281

TABLE 10.11

Stack loss data. Regression sum of squares, residual sum of squares and % variation explained for different
regression equations.

Variables in the Regression Residual 100 R?
equation

SS df SS df
x| 775.482 1 40.753 5 95.01
X2 567.032 1 249.203 15 69.47
X3 134.799 1 681.436 15 16.51
xi and x2 793.975 2 22.260 (4 97.27
xpand x3 776.845 2 39.390 14 95.17
xpand x3 576.279 2 239.956 14 70.60
X1, x2 and x3 795.834 3 20.401 13 97.50
Example:

The results of the stepwise regression performed on the stack loss data are given
as an example. The information necessary for the calculations is summarized in
Table 10.11.

Step 1:

Since from the correlation matrix (Table 10.9) it follows that the response
variable y is most correlated with x,, that variable is the first to enter the regression
equation. For the variables not in the regression the following F-to-enter values are
calculated:

Xx2:  F-to-enter = (793.975 - 775.482) / (22.260/14)
=11.63> F0.05;|'|4 (—': 460)

X3 F-to-enter = (776.845 — 775.482) / (39.390/14)
=048< F0_05;|’]4 (: 460)

It follows that x;, has the highest F-to-enter value. Since it contributes significantly
to the regression x; is added to the equation.

Step 2.
For the variables in the regression equation (x; and x,) the following F-to-re-
move values are calculated:

x: F-to-remove = (793.975 — 567.032)/(22.260/14)
=142.73 > F0_05;1,14 (: 460)

Xxy: F-to-remove = (793.975 — 775.482)/(22.260/14)
=11.63> F()405;1,14 (= 460)
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The smallest F-to-remove value is observed for x;. Since it is significant, x; is
retained in the equation. Of course at this stage of the analysis, with only two
variables entered, no other result could be expected. The F-to-remove for x, for
example cannot be smaller than the F-to-remove for x, because that would mean
that in the first step, x, was the first variable entered. For the variables not in the
equation the following F-to-enter values are calculated:

x3: F-to-enter = (795.834 — 793.975)/(20.401/13)
=1.18< F0A05;],|3 (= 467)

x3 which is the only variable left does not significantly improve the regression.
Consequently it is not included. Since in a further step no variables can be added
or deleted the procedure stops and the final regression equation is:

y=-42.001 + 0.777x; + 0.569x;,

In this simple example the stepwise regression procedure happens to yield the
same model as the evaluation of all possible regressions. Dagnelie [3] describes an
example that shows that this is not always the case.

Variable or feature selection can also be performed by means of genetic algo-
rithms described in Chapter 27.

10.3.4 Validation of the prediction performance of the model

It is important to realize that during the modelling as described up to now, the
validation has been performed with the data used to construct the model. However
if the model has been built for prediction purposes it is of paramount importance
to extend the validation to new, independent data. This means that new experi-
ments are performed and that the actual observations are compared with the
predictions from the model. If new data can not be obtained an alternative approach
known as cross-validation can be used. The data set at hand is split into subsets,
one subset, the estimation set or training set, being used to build the model and the
other, the prediction set or test set, to validate the model i.e. to measure the
prediction accuracy of the model.

There are different possibilities of splitting the data. In the leave-one-out, the
first observation is deleted from the data set and is predicted from the model fitted
to the remaining n — 1 data points. The residual (y, — y-; ), which will be called the
deleted residual, is calculated (the index —1 refers to the fact that the prediction is
from a model built without the first observation). This is repeated for all data points
and the predicted residual error sum of squares (PRESS) or the root mean squared
prediction error (RMSPE) is calculated:

PRESS = X(y; -y )* (10.13)
RMSPE = (PRESS/n)'2 (10.14)
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TABLE 10.12
PRESS values for all different models applied to the stack loss data

Variables in the equation PRESS
Xt 62

X2 424

X3 804
X1.X2 43
X2,X3 458
X,X3 66
X1,X2,X3 43
TABLE 10.13

The deleted residuals from the model y = by + b1x1 + bax; for the stack loss data

Observation predicted* Deleted residual
1 4.1
2 -0.7
3 -1.4
4 -1.0
5 0.2
6 -14
7 0.9
8 0.9
9 0.4

10 =27

11 -2.0

12 Il

13 0.1

14 04

15 0.4

16 1.0

17 23

*The observation is predicted from the model developed with the other 16 data.

PRESS or RMSPE are especially useful in comparing the prediction errors of
different regression models. Table 10.12 summarizes the PRESS values for all
different models applied to the stack loss data. The model including x; and x»,
which was the model selected from the evaluation made in the previous section, is
the best model for prediction purposes. An identical PRESS value is obtained with
the model including all three variables but the simpler model is to be preferred.
For the different observations the deleted residuals from the best predictive
model are listed in Table 10.13. It is interesting to note that the first data point
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possesses the largest residual (= 4.1) and consequently contributes most to the
prediction error sum of squares. Inspection of the first observation reveals that,
with x; = 80 and x, = 87, it is a leverage point (see Section 8.2.6 and 10.9) since it
is remote from the rest of the data. Being alone outside the domain of the model
built with the other observations, it is the worst predicted. This certainly does
not mean that it is a bad point, on the contrary it provides useful information
concerning the model fitted. For example, it would certainly be useful to
include more observations spanning the whole region in which predictions are
to be performed. However, with unplanned data such as the stack loss data
which are obtained from successive days of operation of a plant, this may be
difficult to achieve. When possible, experimental design procedures (see e.g.
Chapter 21), which define predetermined settings of the predictor variables,
should be used since they allow us among others to obtain balanced data
describing the whole domain of interest.

10.4 Confidence intervals

The 95% confidence intervals for the true regression parameters, 3, are obtained
from

b,' + 10.025.n—p Sb, (l =0.. m) (10 15)

These confidence intervals can also be used to check the significance of the
corresponding regression coefficient. If the confidence interval includes the value
zero, ; can be zero and consequently the regression coefficient is not significant
at the 5% significance level. This can of course also be checked by means of a t-test
in the usual way by calculating

t=b,‘/Sh' (1016)

A joint 100 (1 — a)% confidence region for all the regression parameters f3; that
takes into account the correlation between these parameters, can be obtained from

(B-b)" X" X(B - b) <ps? Fapnp (10.17)

It is a generalization of eq. (8.17) to multiple regression with p regression coeffi-
cients and represents the equation of an ellipsoid in p dimensions. Since with
increasing p, the interpretation is not straightforward, the joint confidence region
is less used in multiple regression.

The variances of the different parameters, (s,)> necessary to determine the
confidence intervals are obtained from the variance—covariance matrix (see Chap-
ter 9) of the regression coefficients, V(b)
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(55)"  cov(boby) ... cov(bobm)
cov(by,by) (sp,) ... cov(b,b.,)

V(b) = . . .
covlbmb) . o ()

This is a symmetric matrix in which the diagonal elements are the variances of the
regression parameters in the same order as they appear in the regression equation.
The off-diagonal elements are the covariances between the regression parameters.

It can be shown [1] that V(b) is given by
V() = siXTX)™ (10.18)
with s2 an estimate of the pure experimental error (eq. (10.8)).

This is an important expression, indicating the influence of the (X"X)™' matrix
on the variance of the regression parameters. It means that the confidence intervals
will largely depend on the experimental design used, thus among others on the
range considered for the different x variables (i.e. the experimental domain), the
distribution of the x values over the experimental domain and the number of
measurements. In Chapter 24 different criteria, based on this matrix, are discussed
for the evaluation of experimental designs.

If the model is adequate the 95% confidence interval for 1, the true mean value
of y given a specific combination of the controlled variables, Xo, is obtained from

5)0 t t0.0ZS,n—p Se VXg (XT X)—l Xo (1019)

with x{ =1 xo; ... Xom]-

If the objective is to predict the mean of g replicate observations at a given
combination of the controlled variables xo, the following expression for the 95%
confidence interval should be used

Yo £ 10,025 p-p Se \/‘;‘ +x5 (X™X)™" %o (10.20)

Example:
From Section 10.3.3 the following regression equation y = —42.001 + 0.777 x,
+0.569 x, was obtained for the stack loss data. The variance—covariance matrix of

the parameters is
4.099030468 —0.048535765 —0.060580395

V(b) = s2(X™X)™" = 1.590 | — 0.048535765  0.002656869 —0.005141029
—0.060580395 —0.005141029  0.017516880

6.51746 —0.07717 - 0.09632
=(—0.07717  0.00422 -0.00817
-0.09632 -0.00817 0.02785
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The 95% confidence interval for 3 is therefore (205,14 = 2.145)
~42.001 £2.145V6.51746 =—-42.001 £ 5.476

The 95% confidence interval for 3, and B, are found to be respectively 0.777 *
0.139 and 0.569 + 0.358.

To obtain, from eq. (10.19), the 95% confidence interval for 1, the true mean of
y, at for example

1
Xg = 62
24

the following information is necessary

Yo =—42.001 +0.777 (62) + 0.569 (24) = 19.829
5.=V1.590

4.099030468 —(0.048535765 —0.060580395|] 1
[1 62 24] | —0.048535765  0.002656869 —(0.005141029 || 62|=0.419
- 0.060580395 —0.005141029 0.017516880 || 24

The 95% confidence interval therefore is 19.8 £ 1.1.

10.5 Multicollinearity

To obtain the regression parameters from eq. (10.6) we need to invert the matrix
X"X. This inverse only exists if the matrix is non-singular, that is if the determinant
of (X"X) is not zero (see Chapter 9). Singularity (det(X"X) = 0) occurs if any of
the independent variables is a perfect linear combination of other independent
variables. This means that some of the normal equations given by eq. (10.5) can be
exactly expressed as linear combinations of others. Therefore fewer equations are
available than there are unknowns and no unique solution can be obtained.

Consider for example the following X matrix in which x; and x, are perfectly
correlated since x; = 2x;:

2
4
6
8
10

»
Il
O S



287

The X™X matrix is given by

5 15 30
X'X=[15 55 110
30 110 220

Since the determinant of X"X is zero the calculation of the inverse of this matrix
is not possible.

The effect of the correlation between x; and x, can also be evaluated from the
normal equations. With the following response vector:

10
20
y=|30
40
50

to fit the equation y = by + byx; + byx,, which is represented by a plane, eq. (10.5)
becomes:

5bo+ 15b1+ 30b2= 150
15by+ 55b;+110b,= 550
30 by + 110 by +220 b, = 1100

There are 3 equations with 3 unknowns but since the last equation is simply twice
the second, it does not give us independent information. Consequently no unique
solution can be generated from these equations. This is also shown in Fig. 10.2
from which it becomes evident that due to the perfect correlation between x; and
X, an infinite number of planes fit these data equally well. This problem of multi-
collinearity can be solved by reducing the number of x variables.

Situations in which the determinant is not zero but is very small (because some
variables are almost linear combinations of other independent variables) are more
common and result in an ill-conditioned X"X matrix. This leads to unstable
estimates of the regression coefficients which may be unreasonably large (in
absolute value) or have the wrong sign. This is also reflected in their large
variances (see eq. (10.18)). Highly correlated x variables therefore easily lead to
unreliable predictions. Obviously in regression the X'X matrix is an important
matrix (see also Section 10.4) and, as already mentioned, in experimental design
(see Chapter 24) it will play an important role in the evaluation of the design of the
experiments.

A useful indicator of the interdependency among the x variables is the tolerance
which for each x; variable can be calculated as



288

y¢ 7

e -

»— — 1
o— — — |-
o — — ]

X4

Fig. 10.2. Nlustration of the problem of multicollinearity due to the perfect correlation between x; and
X2 (.X‘g = 2X|).

Tolerance (x;) = | - R*(x,) (10.21)

where R*(x)) is the coefficient of multiple determination (see Section 10.3.1.2) for
the regression between x; (considered here as the dependent variable) and the other
independent variables. Since R*(x;) then represents the variation in x; that can be
explained by the other x variables, a small tolerance (large R*(x;)) means that x; is
almost a linear combination of the other x variables.

A related indicator of multicollinearity is the variance inflation factor (VIF)
which is the reciprocal of the tolerance:

1
VIF(x)=7"—5— 10.22
0= (10.22)
The larger the variance inflation factor, the larger the variance of the regression
coefficient. The latter can also be obtained from the following expression [4]:

2
Se

TU-R) (- s
2

with s? and (1 — R*(x;)) as defined by eqs. (10.8) and (10.21), respectively, and s7
the variance of the ith x variable. A VIF larger than 5 or 10 is generally
considered large [5] and is an indication that the corresponding coefficient is
poorly estimated.

Sh,
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10.6 Ridge regression

Various alternative regression procedures have been described for the analysis
of data in which the predictor variables are highly correlated such as principal
component regression, partial least squares regression (see Chapter 36) and ridge
regression. The regression coefficients in the ridge regression procedure are
obtained from:

(X™X + kDb = X"y (10.23)

where X is the nxp matrix of the standardized x variables (see Section 31.3), kis a
positive number (usually O < k < 1) and I is the pxp identity matrix. Comparison
of this expression with eq. (10.5) reveals that a constant is added to the diagonal
elements of the X"X matrix of the normal equations. With & = 0 the least squares
solution is obtained since eq. (10.23) then reduces to eq. (10.5). As a result of the
addition of the constant k, biased estimates of the regression coefficients are
obtained in ridge regression. The estimates of the regression coefficients, b, are not
biased if the mean of the sampling distribution of b (obtained by estimating
repeatedly at the same values of the x variables) is equal to the true regression
coefficients, B. (Notice that it can be shown [1] that classical least squares multiple
regression also results in biased regression coefficients if, by eliminating x vari-
ables, the fitted model differs from the true model). The constant & is therefore
known as the bias parameter or the ridge coefficient. In ridge regression some bias
is introduced in order to increase the stability of the regression coefficients. With
increasing k values the bias in the estimates increases but their variance largely
decreases. The residual sum of squares, SSge,, also increases with increasing k;
consequently R? decreases. Hoerl and Kennard [6] suggest selecting a value of &
by an examination of a ridge trace, which is a plot of the regression coefficients
for different values of the bias parameter. At the value of k chosen the regression
coefficients should have started to stabilize, they should have the proper sign, and
the reduction in R? should not be too large. The latter can be evaluated from a plot
of R? against different & values.

Example:
Consider as an example the simulated data in Table 10.14 which have been
adapted from Hoerl [7] and for which the true relationship is

n= 100 + 2x, +3x, + 5x3

The least squares regression results and the variance inflation factors for the dif-
ferent x variables are summarized in Table 10.15. The least squares regression
gquation 1is
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TABLE 10.14
Hoerl data [7]

X X2 X3 y

11 11 12 223
14 15 it 223
17 18 20 292
17 17 18 270
18 19 18 285
18 18 19 304
19 18 20 311
20 21 21 314
23 24 25 328
25 25 24 340
TABLE 10.15

Least squares results for the Hoerl data

Variable b; Shy VIF
Xy 8.266 5.322 41.92
X -5.516 4732 34.24
X3 6.386 2.019 7.53
Constant 121.117 15.388

y=121.12 + 8.27x; — 5.52x, + 6.39x;

The VIFs, and especially those for x; and x, are large due to the high correlation
between the x variables. Consequently the associated coefficients are poorly esti-
mated, their variance is large and b, has the wrong sign. The application of ridge
regression with different & values results in the ridge trace as given in Fig. 10.3. A
plot of R” as a function of k is shown in Fig. 10.4. At a value of k = 0.15 the
regression coefficients stabilize and the reduction in R? is not very large. The ridge
regression equation with £k =0.15 is

y=126.29 +2.95x; + 1.46x; + 4.36x3

which agrees much better with the true model than the least squares solution.
Moreover, the estimated regression coefficients are more stable (s, = 0.77; 5, =
0.85; 55, = 1.01).
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Fig. 10.4. Coefficient of multiple correlation, R?, as a function of the bias parameter .
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10.7 Multicomponent analysis by multiple linear regression

The term multicomponent analysis is used for procedures in which several
components in a sample are determined simultaneously. For the analysis of an
m-component mixture at least n = m measurements are required. Linearity in the
sense of straight line relationships and additivity of the signals is assumed. When
n =m, a so-called exactly determined system is obtained; when n > m which means
that the number of measurements made is larger than the number of components,
the system is over-determined. In general, it can be expected that the precision of
the procedure increases with an increasing number of measurements. To some
extent, the effect of using an over-determined system is the same as the effect of
repeated measurements on the precision.

The contribution to the signal of each analyte at a given sensor (e.g. a wave-
length in UV-visible spectrometry) is weighted by the sensitivity coefficients, k; (j
=1, 2, ... m), of each analyte (in spectrometry, k; is the absorptivity of component
J at wavelength §). For the spectrometric analysis of an m-component mixture, for
example, for which measurements at n (n > m) wavelengths are performed the
absorbances are:

A] :k“ C) +k12 Ccy + ...+k|m Cm

Az = k21 Cc) + kzz Cr+ ...+ kzm Cm

Ap=kncr+kopcr+ ...+ kym Cmy
This set of equations can be written in matrix notation as:
a=Kc (10.24)

with a the vector of the absorbances measured at n wavelengths, ¢ the concentra-
tion vector for the m components and K the (n X m) absorptivity matrix.

If the K matrix is known, the concentrations of the components in the mixture
can be obtained from:

¢=(K'K)"' K a (10.25)

Notice the similarity between this equation and eq. (10.6). It corresponds to the
least-squares solution in which the elements of the K matrix are treated as the
independent variables.

The elements of the K matrix, which are the absorptivities of the m components
at the n wavelengths, can be obtained from the spectra of the pure components.
Alternatively, as explained in Chapter 36, they can be estimated by multivariate
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calibration methods that relate the known concentration of calibration mixtures to
the measured calibration spectra. In Section 36.2.1 the limitations of multicompo-
nent analysis by multiple linear regression are discussed.

Example:

The absorptivities of Cl, and Br; in chloroform at six wavenumbers are given in
Table 10.16 [8]. For an optical path length of 1 cm, and concentrations ¢, and c; of
Cl, and Br,, respectively, the measurements A;, A,, As, ..., Ag are obtained at the
wavenumbers (22, 24, 26, 28, 30, 32x10° cm™)

A =45c¢+168 ¢, =34.10
Ay=84c¢+211¢,=4295
A3=20c¢; + 158 ¢;=33.55
As=56¢+30¢,=11.70
As=100c¢,+4.7 ¢, =11.00
A¢=Tlci +53¢,=798

The concentrations ¢, ¢; are given by eq. (10.25), which becomes

=\

[4.5 168
84 211
al_ |45 84 20 56 100 71 20 158
| {168 211 158 30 4.7 5.3j| 56 30
100 4.7
| 71 5.3
34.10]
42.95
45 84 20 56 100 71| {33.55
168 211 158 30 4.7 53| [11.70
11.00
| 7.98]
This gives
[34.10]
42.95

] _[18667.81 82147 T' [45 84 20 56 100 71][33.55
¢ T | 82147 98659.18| | 168 211 158 30 4.7 5.3||11.70
11.00
| 7.98
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TABLE 10.16
Absorptivities of Cl; and Br; in chloroform (from Ref. {8])

Wavenumber Absorptivities Absorbance of mixture
(em™ x 10%) (simulated)
Cl, Br,
22 4.5 168 34.10
24 8.4 211 42.95
26 20 158 33.55
28 56 30 1170
30 100 4.7 11.00
32 71 53 7.98
34.10]
4 42.95
a] | 5.56x107° —4.63x10° 45 84 20 56 100 71]|33.55
| | =4.63x10°  1.05%107° {168 211 158 30 4.7 53|{11.70
11.00
| 7.98]
34.10]
42.95
¢i]_|-0.00053 —0.00051 0.00038 0.00298 0.00554 0.00392| | 33.55
¢l | 0.00174 0.00218 0.00157 0.00006 -0.00041 -0.00027||11.70
11.00
| 7.98]
¢; =0.099241
¢, =0.199843

By analogy with eq. (10.18) the variance of the concentrations is
V(c) = s: (K'K)™!

In fact, the term (K'K)™ in this equation gives the error amplification of the
measurement error into the analytical result, V(c). The most important conclusion
is that the error propagation depends on the choice of the wavelengths in multicom-
ponent analysis (the K matrix i.e. the design of the calibration). )

The absorbances predicted by the model, A,» , and the residuals (e; = A; — A; are
tabulated in Table 10.17. Consequently
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TABLE 10.17
Predicted absorbances and residuals for the data of Table 10.16

Wavenumber A A-A (A - f{)z
(em™! x 10%)
2 34.02 0.08 6.4x 107
24 43.01 —0.06 ~36x107
26 33.57 -0.02 0.4x 107
28 11.59 0.11 12x107
30 10.93 0.07 49x% 107
32 8.15 -0.17 29 x 107
sum = 0.0563
(A - A
=200 T —0.0563/(6-2)=1.41x 107
n—m

where n is the number of measurements (wavelengths) and m the number of
analytes. Moreover

(S(.-,)2 = 11153
(Scz)2 =1y Sg

where 1,; and 1, are the corresponding diagonal elements of the (K'K)™ matrix.
Therefore

(s(,])2 =(5.56 x107%) (141 x 1073 =7.84 x 1077
(scz)2 =(1.05x10% (141 x 103 =1.48 x 1077
The 95% confidence limits of the true concentrations are

c1 % togsa V(5.2 = 0.099241 +2.776 V7.84 x 10~
=0.099 + 0.0025

2% tooosa V(so)? =0.199843 +2.776 V1.48 x 107
=0.200 £ 0.0011
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10.8 Polynomial regression

As already mentioned in the introduction, multiple regression can also be used
to solve polynomial regression problems. By setting x; = x, x, = x%, ..., X, = x" in
eq. (10.1) an mth degree polynomial relationship

N=PRo+PBix+Pax’+ ... + o™ (10.26)

is obtained which can be estimated as described in Section 10.2.

A first degree polynomial is the straight line model. Expanding the model with
a quadratic term introduces curvature and a maximum or a minimum in the
function values. A second degree (or quadratic) model is the general equation for
a parabola and is symmetrical around its extremum. In Fig. 10.5 three second-order
polynomials are shown.

y=15+0.20x - 0.40x* (10.27)

y=5-025x+0.10x* (10.28)

y=5-150x-0.05x (10.29)
20r

10

>-10

-

..40 L i i ne
-10 -8 -6 -4 -2

o
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Fig. 10.5. Second order polynomials. (a) y = 5 + 0.20x — 0.40x% (b) y = 5 — 0.25x + 0.10x% (c)
¥=5-1.50x — 0.05x°.
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The position of the extremum is determined by the coefficients b, and b;.
dy/dx=b, + 2bx =0
giving
X = —b1/2b2
When the quadratic coefficient, b,, is negative the function has a maximum (eq.
(10.27); Fig. 10.5a). When b, is positive the function has a minimum (eq. (10.28);
Fig. 10.5.b). For the function represented by eq. (10.29) (Fig. 10.5c) the maximum
i1s situated outside the plotted range. The larger the absolute value of the quadratic
coefficient, the higher the curvature and the more sharply the extremum is defined.

More complicated response relationships can be modelled by means of third or
even higher order polynomials. Three examples are shown in Fig. 10.6.

y=5-15x-0.5x*+0.6x> (10.30)
5=2+2.5c+0.602 0.6 (10.31)
y=5-0.5x—3.5¢ +3.6x + 0.8x* (10.32)

As can be seen from Fig. 10.5 and 10.6 the higher the order of the polynomial, the
more complicated relationships can be modelled.

When more descriptor variables are available the number of terms in the
polynomial increases rapidly

v =bg + bix) + byxy + bixs (linear terms)
+ b1 X2+ byx3 + by (quadratic terms)
+ bipxixy + bysxixs + bayxoxs  (cross-product terms)

This is called a fully quadratic model as it contains all possible terms up to
second order. Cross-product terms such as x;x, represent interaction terms (see
Section 6.6). It means that the response cannot be described with a purely additive
model, i.e. as a sum of independent terms, one for each separate descriptor. Some
second order polynomials in two independent variables are shown in Fig. 10.7.

y=15—"7.5x + 1.0x, + 0.5x¢ (10.33)
y=15-"7.5% +5.0x, + 0.5x¢ — 0.5x3 (10.34)
57: 15+ 10X1 + 10x; ~ x1x2 (1035)

The graphs in Fig. 10.7 are called response surfaces. This term is used in a wider
context to denote the form of the response as a function of the predictor variables.
When there is one predictor variable the response surface reduces to a curve (e.g. Figs.
10.5 and 10.6). When there are more than two predictor variables the response surface
becomes a higher-dimensional hypersurface, which can no longer be visualized.
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(a)

Fig. 10.7. Response surfaces. (a) y = 15 = 7.5x; + 1.0x; + 0.5x%; (b) y = 15 — 7.5x; + 5.0x; + 0.5x% -
0.5x3; (¢) y = 15+ 10x; + 10x, — x1x3.
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In general, the inclusion of additional terms requires additional experimental
data. Moreover, unnecessary terms decrease the quality of the prediction. For the
selection of the degree of the polynomial the same methods as described in Section
10.3.3 for the selection of variables in multiple regression can be used. However
generally terms are entered from low order to high order. The significance of the
term added is then evaluated from the confidence interval (eq. (10.15)), a t-test (eq.
(10.16)) or an F-test (eq. (10.10)). Experience tells us that many response relation-
ships can be described by polynomials of degree two or three.

The only possible interpretation of the resulting equation is in terms of the
relative contributions of the independent variables to the response. When the term
x1x; 1s significant it can be concluded that there is an important interaction effect
between the variables x; and x,. Similarly when the term xi is significant the
variable x; contributes in a quadratic way to the response. Terms such as xix$ are,
however, not easily interpretable. For this reason too one restricts the polynomial
to the second degree in most practical situations.

It must be noted that in polynomial regression the terms are necessarily corre-
lated, at least when the variables are not scaled (see Chapters 22 and 24). This, too,
complicates the interpretation of the regression coefficients. The inclusion of
higher order terms changes the role of the lower order terms, already in the model.

The combination of modelling response data by low-order polynomial models
in conjunction with an appropriate experimental design (e.g. central composite
design, see Chapter 24) is known as Response Surface Methodology.

10.9 Outliers

As indicated in Section 8.2.6 the identification of outlying observations is not
straightforward. In the multiple regression situation, where visualization of the
data is no longer possible, this is even less evident. The diagnostics introduced in
Section 8.2.6 for the straight line regression also apply in multiple regression.
Cook’s squared distance, CD(Zi) , can then also be obtained from:

CD% = (b-b_)" X" X(b- b_)) /ps? (10.36)

where b is the vector of estimated regression coefficients obtained with all data

points included, b_; is the vector of estimated regression coefficients obtained with

observation i excluded from the data set and X, p and s? are as defined before.
Since y = Xb (eq. (10.7)), eq. (10.36) can also be written as:

CD{y = (¥ —¥-)" (¥ - ¥-0) /ps: (10.37)

where y is the vector of estimated response values obtained with all data points
included and y_; the vector obtained with observation i excluded from the data set.
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The leverage, h;;, for a point i is obtained from the ith diagonal element of the
hat matrix, H, which is defined by:

H=XX"X)'X"
Therefore h; is equal to:
hi=X; (XTX)_l XiT (10.38)

with x; the vector of x variables for observation i ([1 x; ... x;,]). It can be shown
that for the simple straight line regression this expression is equivalent to eq. (8.31).

For regression with a constant term b,, another measure for leverage is the
squared Mahalanobis distance which here takes the following form:

MD,Z — (Xi _ i) C—l (Xi _ i)T (1039)
with x; = [xi1 ... Xim]
i = (ZX,')/I’I.

C = the m X m variance—covariance matrix (see Chapter 9) of X, the n X m matrix
of independent variables.

It is a measure of the distance of x; from X that takes correlation into account.
For the simple straight line regression expression (10.39) reduces to the square of
the standardized value of x; (see eq. (8.30)).

As already mentioned in Section 8.2.6 the following relationship exists between
I’l,’,‘ and MI),2

2
hi= 1 + MD
n n-1

For all data points of the stack loss example these diagnostics, together with the
standardized residuals, le/s.|, (see Section 8.2.6) are listed in Table 10.18. In
Section 10.3.4 it was noticed that the first observation is a leverage point since with
x; = 80 and x, = 87 it is remote from the rest of the data. This is reflected in 4; and
MD? being large. As discussed in Section 8.2.6, the large CDj, value can be due
to the fact that the observation has a considerable influence on the regression
estimates but also to the fact that it is a leverage point as indicated by A;;. The former
can be evaluated from a comparison of the regression equation obtained without
the first data point:

y=-736.248 + 0.674x; + 0.565x, s =1.240
(3.432) (0.074) (0.147)

with the equation for all data points:

y=-42.001+0.777x; + 0.569x,  s2=1.590
(2.553) (0.065) (0.167)
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TABLE 10.18
OQutlier diagnostics for the stack loss data associated with the LS model y = — 42.001 + 0.777x; + 0.569x2

Observation leilsl CD(zi) hii MD?
(2.00) (1.000) (0.353)* (5.991)*
1 120 2158 0626 9.083
2 0.53 0.009 0.082 0.363
3 0.98 0.045 0.111 0.837
4 0.64 0.035 0.176 1.871
5 0.16 0.002 0.176 1.871
6 0.89 0.066 0.170 1.780
7 0.57 0.026 0.167 1.726
8 0.57 0.026 0.167 1.726
9 0.23 0.009 0.271 3.397
10 1.81 0.262 0.167 1.726
11 1.47 0.086 0.097 0.616
12 0.74 0.031 0.128 1112
13 0.05 0.000 0.128 1.112
14 0.29 0.005 0.141 1.318
15 029 0.005 0.141 1.318
16 0.63 0.038 0.189 2.084
17 1.69 0.068 0.063 0.060

*Cut-off value (see Section 8.2.6).

(the standard deviations of the regression parameters, s,, are given between brack-
ets). From this it follows that the observation has some influence on the regression
estimates. On the other hand it has a beneficial effect on the standard deviation of
most of the parameters, b;. Therefore the conclusion concerning the first data point
is not straightforward. The original stack loss data set {2], which contains several
outliers, has been studied by different investigators. Some of them identified the
first observation (= observation 2 in the original set) as an outlier while others did
not so [9]. A better balanced design, with more observations that cover the whole
region, would probably be necessary to come to a decisive answer.

For a more extensive discussion of different outlier diagnostics the reader is
referred to the excellent book by Rousseeuw and Leroy [9].
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Chapter 11

Non-linear Regression

11.1 Introduction

In Chapter 8 linear relationships were studied with regression analysis by fitting
the straight line model

y=Bo+Bix+e (11.1)

In Chapter 10 this linear relationship was extended to the case of two or more
predictors giving the linear multiple regression model

y:B0+B1xl+62x2+~~-+Bpxp+8 (112)

Geometrically this model represents a flat (hyper)plane in high (p+1)-dimensional
space. In many applications a model such as eq. (11.1) or (11.2) is theoretically
correct. In other instances it is at least a valid approximation in the restricted
working range of the application. Therefore, the linear approach covers a major
part of regression applications in chemistry. In analytical method validation the
linear range is even one of the figures of merit of a method.

In many other fields of application, however, the straight line model is not
appropriate and non-linear functional relationships should be used. Figure 11.1
represents some of these non-linear relationships, e.g. exponential functions (Fig.
11.1b), trigonometric functions (f), hyperbolas (c), Gaussian functions (e), logistic
functions (d), splines (h), rational functions and combinations of these. Notice that
some of these curves can be well approximated by a polynomial function. For
example, the curve in Fig. 11.1a represents a parabola, which is defined by

y=Bo+Bix+Pax’+e (11.3)

It represents y as a quadratic, i.e. a non-linear function of x, given the parameters
Bo, Bi and B,. At the same time eq. (11.3) represents y as a linear function of the
parameters [y, B; and [B,, given the associated predictor variables 1(=x°), x(=x"),
and x*. The latter viewpoint is relevant to regression analysis. One generally has
available measurements on a set of response and predictor variables and the aim is
to fit a model, i.e. to estimate its parameters. Fitting the parabolic model (eq. 11.3)
1s a linear parameter estimation problem that can be handled by the linear multiple
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a b c d
] f g h
Fig. 11.1. Various non-linear relationships: (a) parabola; (b) exponential; (c) hyperbole; (d) logistic;

(e) Gaussian; (f) sine; (g) rational function; (h) linear segments.

regression method discussed in Chapter 10. Non-linear regression analysis then
refers to the estimation of a model involving parameters which enter the model in
a non-linear way. In practice, such models are also non-linear (curved) when seen
as a function of the predictor variable(s).

When studying curved relationships such as those displayed in Fig. 11.1 there
are basically two approaches: the empirical approach and the non-empirical or
mechanistic approach. In the empirical approach one tries to model as well as
possible the form of the response by means of a simple function. The choice of the
functional form is suggested by the data and also determined by considerations of
computational ease. The resulting fitted model is used mainly for summarizing the
relation in the form of a smooth function or for future prediction purposes.
Interpretation of the individual model coefficients is only a secondary issue. When
the mechanistic approach is used, the process under study must be so well under-
stood that an appropriate functional form can be selected beforehand or can be
derived from the underlying physico-chemical phenomena or from theoretical
considerations. The experimental data are then modelled with this function. Esti-
mation of the coefficients by fitting the model is in this approach the primary goal.
Since the coefficients already have a well-defined meaning, the interpretation
becomes straightforward.

11.2 Mechanistic modelling

The term non-empirical or mechanistic modelling is used when the data are
modelled with a specific function that is available from theoretical considerations.
Examples can be found in (pharmaco)-kinetics (Chapter 39), analytical chemistry
(e.g. titration curves), physical chemistry, etc.
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Example from kinetics
Suppose the reaction of interest is of the form:

A+B—>P

The simplest possible equation describing the decreasing concentration of A as a
function of time (¢) complies with first-order reaction kinetics:

[A]; = [A]o exp(—kt) (11.4)

Here, [A]o is the concentration at start (¢ = 0) and k is the reaction rate constant.
When the above function and the data do not match, the reaction apparently does
not follow a first-order law and a different mechanism must be considered. This
brings us immediately an important advantage of mechanistic models over empiri-
cal models. Mechanistic models, when applied appropriately, can increase the
scientific understanding of the system under study. An additional advantage is that
they provide a better basis for extrapolation. A number of questions arise however:
how should the experiments be designed to test the proposed model and how can
an inappropriate model be detected?

Example from chromatography

In chemometrics the term “curve fitting” is frequently used in the restricted
sense of fitting spectroscopic or chromatographic data. Theoretical considerations
may indicate the shape of a peak (e.g. Gaussian for chromatographic peaks,
Lorentzian for NMR peaks). As an example, the simplest mathematical function
for a chromatographic peak, including noise, reads

y =B exp[—{(x—B)/Bs}*] + ¢ (11.5)

Estimations of the parameters of the model yield information on peak charac-
teristics such as the position of the top (B,), the width (f,), and the peak height (B,).
The Gaussian function is but one of many alternative mathematical functions
suggested for the description of chromatographic peak profiles [1]. When overlap-
ping peaks are studied the simplest model becomes the sum of n Gaussian func-
tions, one for each peak:

y=2 Buexpl-(x—PBa)’/ B+ (11.6)
i=l,n

These parameters in turn yield information on the system or process under study.
In chromatography the peak position is the retention time of the compound under
study and yields information on the identity of the compound. The peak height can
be related to the concentration. Peak width can be an indicator of the interaction
between the compound studied and the medium. Fitting appropriately selected
mathematical functions thus yields in an indirect way information on the under-
lying phenomena.
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In many cases idealized functions such as the Gaussian function are not suffi-
ciently precise. In that case empirical modifications are introduced that enhance the
fit. For example, a term may be added to make the peak shape asymmetric in order
to account for “tailing” peaks. The status of curve fitting is then lying somewhere
between empirical modelling and mechanistic modelling.

11.2.1 Linearization

In the previous section some examples of functions to model non-linear rela-
tions were given. The parameters in such functions can be estimated from experi-
mental data using least-squares regression. To explain how the least-squares
technique can be applied in the non-linear case, three types of curvilinear functions
must be distinguished. Examples of each type are:

y=Bo+Bix+Bx*+Bix’ +¢ (11.7)
y=exp(Bo+Bix) +€ (11.8)
¥ =Biexp(-B2x) + Bz exp(-Psx) + € (11.9)

The term € denotes the error term, just as in the linear case. The first equation is
a polynomial; it is linear in the parameters and can be treated as a (multiple) linear
regression model as explained in Chapter 10. The other equations are non-linear in
the parameters. There is, however, an important difference between the second and
the third equation. Equation (11.8) can be transformed into a linear equation:

Iny=Bg+Bix+¢ (11.10)

This form is linear in the parameters By and ;. Equation (11.8) may therefore be
viewed as intrinsically linear. Notice that the error term has changed (€ —> € as a
result of the transformation. The parameters By and B, can be obtained from a
simple linear regression of log-transformed y, i.e. In y, on x. For this reason it is
said that the model (11.8) is linearizable. This does not imply that solving eq. (11.8)
via a least-squares fit of eq. (11.10) is always adequate. Transforming the response
affects the distribution of errors. If the error € in eq. (11.8) has a homoscedastic
normal distribution, then the error €" in eq. (11.10) will have a different, hetero-
scedastic non-normal distribution. In that case (non-linear) least-squares regression
of model (11.8) is appropriate, and (unweighted) linear least-squares regression of
model (11.10) is not. This topic has already been discussed in Section 8.2.3.

It is impossible to transform the third equation (eq. 11.9) into a form that is linear
in the parameters. This equation is therefore said to be intrinsically non-linear.
Whatever the transformation is, it will always yield a model that is non-linear in
the parameters. However, when the non-linear parameters 3, and B4 are not too
close, one may — to a good approximation — solve the equation in parts, each of
which can be linearized (c¢f Chapter 39, ‘curve peeling’).
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11.2.2 Least-squares parameter estimation

The least-squares principle as explained in Chapter 8 can also be applied in the
non-linear case. The solution is, however, more complicated as will become clear.
As in the linear case, the sum of the squares of the residual differences between the
experimental value and the value predicted by the model is minimized:

yi=yi(b) + ¢ (11.11)
and
ei=y;—yib) (11.12)

y(b) is the estimated value of the response using the non-linear equation with
estimated values b for the parameters B, the vector containing the values of the
unknown model parameters. As for the linear case we assume independence,
homoscedasticity and normality of the errors: € ~ N(0,6%).

The sum of squares of the residual errors is

SS(b) = X {y: - yi(b)} (11.13)

where the sum runs over all n experimental data points. The least squares estimate
b of B are those values of the parameters that minimize SS(b). To find the least
squares solution we need to differentiate the SS(b) with respect to the parameters,
b. Doing this for all p model parameters yields the normal equations. There are as
many normal equations as there are model parameters. These normal equations
must be solved for b:

9SS/ob; =23 {yi - (b))} (09:(b) /db;} =0  forj=1,..p (11.14)

Recall that for linear regression the normal equations are also linear in the
parameters (cf Section 8.2.1). For example, y; = by + bix; + ¢; (eq. 11.1) yields
dy; / dby=1and dy; /db, = x;, leading to the normal equations:

BSS/ab():—ZZ {y,—j’,(b)} -1 =—22(y;—‘b()—b1 X[)=O (1115&)
BSS/abl =—22 {y,—j’,(b)} 'X,'=—22(y,'—b0—b; x,-)x,:O (1115b)

The normal equations (eqs. 11.15a and b) are linear in the parameters by and b, and
can be solved as explained in Chapter 8. In the non-linear case the normal equations
are no longer linear in the parameters and this makes the solution more difficult.
Consider, for example, the following simple non-linear function:

y = exp(~bx) (11.16)

and suppose there are n observations (y;, x;) available. The derivative of the model
predictions with respect to the parameter b are:

0y; / 0b = —x; exp(=bx;) (11.17)
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The (single) normal equation then is:

Y {yi—exp(=bx)} {=x; exp(=bx,)} =~ 2. y; x; exp(=bx;) + X x; exp(-2bx;) =0
(11.18)

Notwithstanding the simplicity of the non-linear model (eq. 11.16), the normal
equation (eq. 11.18) is already quite complicated. It has no analytical solution.
When the model contains multiple parameters, it is generally not feasible to solve
these equations in an analytical way. Therefore, iterative numerical methods are
used to estimate the parameters in the non-linear case. The fact that there are often
multiple solutions (local minima) complicates the situation even more. The best
known methods are linearization, steepest descent and the Marquardt compro-
mise. It is also possible to use sequential optimization methods, such as Simplex
(see Chapter 26) to solve non-linear equations.

11.2.3 Gauss—Newton linearization

We will explain the linearization or Gauss—Newton method by trying to fit a
curve to a chromatographic peak. Figure 11.2 illustrates such a peak. The data
points will be modelled by the Gaussian function

y = by expl~{(x - b)) / b3}?] (11.19)

0.8 R

0.6+ .

0.4 ‘e

0.24 ' d

004 = ¢ °* e

Fig. 11.2. Raw data sampled from a Gaussian peak.
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where y is the fitted height of the signal at retention time x. The parameter estimate
b gives the peak height, b, the position (retention time) of the peak maximum, and
bs is related to the peak width.

The linearization method starts the iteration process with some initial values of
the parameters, say b, with the superscript indicating the iteration number. In
general these initial values may be intelligent guesses or they can be estimated from
other procedures. In this example a first estimation of the initial values can be
obtained from a visual inspection of the chromatogram. These initial values will be
used as a starting point of the iterative process and will, hopefully, be improved
during the process.

According to Taylor’s theorem all continuous functions f(z) can be expanded
around some fixed point z° as follows:

f(z) = {(°) + {910z} 2 (z — 2°) + higher-order terms. (11.20)

When z s close to z° we may disregard the terms of higher order. First-order Taylor
expansion acts as a local linear approximation of the function f(z) in the neighbour-
hood of z°. When there are more variables this may be generalized to:

f(z) = f(z°) + X [{0f 19z} (3 — 2] (11.21)

retaining only the linear terms.
We now apply this to the model estimate y which is a non-linear function of the
parameter estimate b:

yi(b) = y; (b%) + Z[{0y; (b) /0b;} oy (b; ~ B)] (11.22)

where we have again omitted the higher-order terms in the Taylor expansion. For
the example this becomes:

yi(b1, by, by) = yi(bY, b3, BY) +
+ (3yi(b)/0by )by’ AR + (99i(b) /0Bt ABS + (9yi(b) /0b3)pry AbS (11.23)

or, in a simpler notation,
yi =Y +J0 AbY + J% A3 + J5 AbS (11.24)

Here, y;=y; (b1, by, b3) is the response predicted for a new set of parameter values
different from 3? = yi(bY, b3, b3), the prediction using the current parameter esti-
mates. Further, Ab{ = b; — b{ is the difference between the new parameter values
and the ‘old’ values and J% = {dy«(b) /0b;}pr is the derivative of the predicted
response with respect to the jth parameter evaluated at x = x; and b = b°. The terms
JY can be calculated from analytical expressions for the partial derivatives of the
model with respect to the parameters. Alternatively it can be computed numerically
from finite differences, e.g. J% = {y«b%, b3 + 8, b3) — y,(b?, b3, b3)}/8 for some small
value 8. Equation (11.24) can be further simplified to
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yi— =3 J%AD? (11.252)

=1.p
or, since y; = y; + e,

A =X ) AV + e (11.25b)

=Lp

where Ay? =y, — y? is the deviation of the observed data from the predictions using
the parameters b®. Note that eq. (11.25b) looks like a linear regression equation,
the independent variables now being the J;-terms (cf. the x; terms in multiple
regression). The parameters can now be estimated by applying the classical least
squares procedure.

As in multiple linear regression, the terms JJ can be collected in an nXp matrix
J? (the so-called Jacobian):

—J(I)l J(l)2 J(l)j J(l)p~
‘I(2)l ng J(2)] - J(2)p
.r) — . . e . .. . l 1.26
F N N ) (11.26)
_ng J22 e nj n/)‘
Likewise, the parameter corrections Ab? can be placed in a vector Ab°
_Ab?_
ABS
ABC =/ - 11.27
AR ( )
AW
and so can the current residuals Ay’=y; — y?
_yl ~ &?_
Y2 y(z)
Ay’ = "o (11.28)
Yi—yi
._yn - ’92_4
Therefore, eq. (11.25b) can be written compactly in matrix notation as:
Ay’=J°Ab° + e (11.29)

The least squares solution is given by:
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Ab® = (JUT IO JOT Ay? (11.30)

assuming that the Jacobian J° is non-singular (Section 9.3.5). Notice that eq.
(11.30) has exactly the same form as the solution for regression coefficient vector
in multiple linear regression (eq. 10.6). However, in the present non-linear case the
solution is not b itself, but a correction Ab to the current guess b’, giving b', the
next better approximation of the true parameter vector B:

b' = b° + Ab° (11.31)

The revised estimate b' of the non-linear model can now be used in exactly the
same way as the initial estimate b°. Since the Jacobian J depends on the parameters
it has to be computed for every update of the parameter vector (J° — J' — J* —
etc.). Here lies the essential difference with linear regression where the design
matrix X plays the same role as the Jacobian J in non-linear regression. The
difference is that in linear regression X is a given fixed matrix that does not depend
on the parameters and does not need to be updated.

At each stage during the iterations the error sum of squares is given by:

SS(b) = Z{yi—y: (b)}? (11.32)

and at each iteration it can be verified whether the sum of squares actually has been
reduced. The procedure can be repeated several times until convergence, e.g. until
the relative difference between two successive estimates of B is smaller than a
predefined small value, 9.

b5 — B /B4 < 8, for all j (11.33)

When a parameter value happens to be nearly zero, one should use the absolute
difference Ib} — bf*'l rather than the relative difference as a criterion for conver-
gence. Upon convergence b = b™ represents the least-squares estimate of f.

Upon convergence the error sum of squares SS(b™!) = ¥ &} can be used to
estimate the error variance

si=Y e} (n—p) (11.34)

The standard errors of the parameters can be obtained from the appropriate diago-
nal elements of the matrix (J™TJ%)~! "in analogy to the linear regression case
(eq. 10.16):

S(bj) : se{ [(meul,T Jﬁnal)—l]jj}l/Z (1 135)

Standard errors computed in this way are approximate, even with homoscedastic
normally distributed errors. For large number of observations they become correct.
Given the standard errors one can obtain confidence intervals as b; t £ .05.0., 5(b;),
again completely analogous to the case of linear regression (cf eq. 10.13).
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The linearization procedure has some drawbacks. The convergence is highly
dependent on the quality of the initial estimates and can be quite slow. Sometimes
the solutions may oscillate and, consequently, no convergence is reached at all.

11.2.4 Steepest descent and Marquardt procedure

In the steepest descent or gradient approach one determines the sensitivity of
the error sum of squares SS(b) with respect to each parameter in the neighbourhood
of the current estimate b°. It can be shown that this is given by

f°= {dSS/db}° = -2(J"e)° (11.36)

The parameter estimates are then updated in proportion to these sensitivities. This
corresponds to the steepest descent direction of the sum of squares as a function of
the parameters. Thus the update of b® becomes Ab° = af, where o. is a proportion-
ality constant, and the next best estimate b' is

b' = b° + Ab° ‘ (11.37)

The choice of the factor o is somewhat arbitrary. The steepest descent method
can be particularly effective to improve the parameter estimates when they are far
away from their final best-fit values. When the estimates approach their final
values convergence can become quite slow.

For this reason the Marquardt method provides a useful compromise between the
linearization method and the steepest descent procedure. Here the update is written as

Ab°=(J°TJ°+AD) ! J°T e (11.38)

where the matrix D is a diagonal matrix with the same diagonal elements as (J°'J°)
and A is a tuning parameter that affects a relative increase of the diagonal elements
of (J°TJ°). When A — O we essentially approach the linearization method of
Section 11.2.3. As A — oo, the J'J%term in eq. (11.38) becomes relatively unim-
portant and Ab® becomes proportional to f° as in the steepest descent method. A
good implementation of the Marquardt method starts with a relatively large value
of X (e.g. A=107%) and gradually decreases A as the solution converges and the error
sum of squares continues to decrease.

Notice that eq. (11.38) has a similar appearance as the solution of a ridge
regression problem (Section 10.6). Indeed, the Marquardt method was originally
devised to cope with the situation of highly correlated parameter estimates giving
rise to a near-singular Jacobian matrix. There is always a danger in non-linear
regression that the solution found does not correspond to the global least squares
solution, but rather to a local minimum. One way to decrease the likelihood of such
solutions is by redoing the calculations and starting from different initial parameter
settings. When the same solution is repeatedly found one can be confident that the
global minimum has been found.
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11.2.5 An example

Table 11.1 gives the activity of the enzyme Savinase as a function of time. The
data are plotted in Fig. 11.3. We try and model these data with a simple exponential
decay corresponding to a first-order reaction. Our interest is in the half-life, #,,, and
we rewrite eq. (11.4) as:

A(r) = B exp{—(In 2) t/t,,,) (11.39)

The linearization method to find the coefficients B and t,, for eq. (11.39) will be
worked out step by step.

TABLE 1.1

Activity (A) of Savinase as a function of time (¢, in hours)

i t A
1 0 20.2
2 | 17.2
3 2 14.1
4 3 10.7
5 7 49
6 10 29
7 15 2.2
8 18 1.2
25

_Z\

2

T

<C

Fig. 11.3. Enzyme activity (A) as a function of storage time (¢). Three fits to the data are shown: (—)
non-linear regression, first-order kinetics; (- - -) non-linear regression, second-order Kinetics; (- - -)
back-transformed linear regression of In{(A) on 1.
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(1) Initial estimates of the coefficients

Fromeq. (11.39) it can be derived that the activity, A, at time zero equals B. The
parameter ¢, is defined as the time in which the activity has decreased to half of
the original value. In this way, rough estimates can be made by inspecting the data
of Table 11.1: B° =20 and £, = 4.

(2) The linearization procedure
Iteration 0

Step 0.1: Using eq. (11.39) and initial estimates B® and £}, compute the predicted
responses, A :

i t A(=y) A° A=A - A°

1 0 20.2 20.0000 0.2000

2 1 17.2 16.8179 0.3821

3 2 14.1 14.1421 -0.0421

4 3 10.7 11.8921 -1.1921

5 7 4.9 5.9460 ~1.0460

6 10 2.9 3.5355 -0.6355

7 15 2.2 1.4865 0.7135

8 18 1.2 0.8839 0.3161
SS°=  3.7159

Step 0.2: Calculate the partial derivatives of the expected response with respect to
the two parameters in order to derive the Jacobian matrix J° (eq. 11.26)

(dA/dB)° = exp{(-In2) t/ £}
(dA/dz1)° = {(B® In2 £)/(£,)°} exp{(-In2)t/£35)}

(dA/dB)° (dA/dt)°
1.0 00
0.8409 0.7286
0.7071  1.2253
P 0.5946  1.5456
0.2973  1.8031
0.1768  1.5317
0.0743  0.9660
0.0442  0.6892
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Step 0.3: Minimize the term SS (eq. 11.32) to obtain the least squares solution for
the correction Ab° (eq. 11.30)

0.2653:'

O _ (g0TYON-1 70T 0 _
Ab"= (Y Ay {—0.3891

Step 0.4: Use these corrections to update the parameters by means of eq. (11.31)
B' = B° + Ab} = 20 + 0.2653 = 20.2653
tn=1+AbS =4 - 0.3891 = 3.6109

Iteration 1

Step 1.1: Using the updated parameter estimates, compute new predictions, A,
and new residuals:

i t A A! Ay'=A-A'

1 0 20.2 20.2653 ~0.06531

2 1 17.2 16.7258 0.4742

3 2 14.1 13.8045 0.2955

4 3 10.7 11.3934 —0.6934

5 7 49 5.2868 -0.3868

6 10 2.9 2.9723 -0.0723

7 15 2.2 1.1383 1.0617

8 18 1.2 0.6400 0.5600
SS'= 23929

Step 1.2: Recalculate the Jacobian matrix J' using the new estimates B' and ¢,

(dA/dB)!  (dA/dtp)!
[1.0000  0.0000]
0.8253  0.8891
0.6812 1.4677
05622 1.8170
0.2609 1.9673
0.1467 1.5801
0.0562  0.9077
0.0316 0.6124

L -

Step 1.3: Obtain the least-squares solution for Ab'
0.0591J

J=

|- I TYI\-1791T I _
Ab = ()T Ay ‘[—0.0133
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Step 1.4: Update the parameter estimates
B? = B' + Ab} =20.2653 + 0.0591 = 20.3244
fin=tlp+ Abs=13.6109 — 0.0133 = 3.5976

Iteration 2

Step 2.1: Calculate the predicted responses, A? , with the new estimates:

i t A A? Ay*=A - A

1 0 20.2 20.3244 —0.1244

2 1 17.2 16.7626 0.4374

3 2 14.1 13.8251 -0.2749

4 3 10.7 11.4023 -0.7023

5 7 4.9 5.2759 -0.3759

6 10 2.9 2.9598 -0.0598

7 15 22 1.1295 1.0705

8 18 12 0.6337 0.5663
SS2= 23871

Step 2.2: Calculate the matrix J* with the new estimates B? and £,

(dA/dB)* (dA/dnp)
[1.0000  0.0000]
0.8248 0.8977
0.6802  1.4808
P 0.5610 1.8319
0.2596 1.9778
0.1456  1.5851
0.0556 0.9074
100312 0.6109

Step 2.3: Obtain the least squares solution for Ab*:

0.0014}

2 _ (y2Ty2 1727 2 _

Step 2.4: Use the correction to update the parameters
B’ =20.3244 + 0.0014 = 20.3257
fin =3.5976 — 0.0009 = 3.5967



319

Iteration 3

Step 3.1: Calculate the predicted responses, A® with the new estimates

i t A A3 Ay =A-A®

| 0 20.2 20.3257 -0.1257

2 1 17.2 16.7629 0.4371

3 2 14.1 13.8247 0.2753

4 3 10.7 11.4014 ~0.7014

5 7 4.9 5.2744 -0.3744

6 10 2.9 2.9586 -0.0586

7 15 22 1.1288 1.0712

8 18 1.2 0.6332 0.5668
SS*= 23871

Remark: SS* equals SS% no improvement is made. This means that the method
has converged. We will anyway calculate the Ab’s for this step too.

Step 3.2 Calculate the matrix J* with the new estimates B* and 13,

(dA/dB)3 (dA/dtl/z)3
[1.0000  0.0000]
0.8247 0.8982
0.6802 14815
0.5609 1.8327
02595 1.9783
0.1456  1.5853
0.0555 0.9072
0.0312 0.6107

Step 3.3: Obtain the least squares solution for Ab* :

0.00009302}

3_(PTIYIPT Av3 =
A’ =) T Ay ‘[—0,00006585

Step 3.4: Update the parameters
B* =20.3257 + 0.0001 = 20.3258
tn = 3.5967 - 0.0001 = 3.5966

These values will be used as final estimates for the parameters in eq. (11.39). The
final results then read:
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~N W = O

10
15
18

00~ B LN —

[1.0000
0.8247
0.6802
| 0.5609
F™'=| 02505
0.1456
0.0555
0.0311

0.0000 |
0.8982
1.4816
1.8328
1.9783
1.5853
0.9072

A
20.2
17.2
14.1
10.7

49

29

22

1.2

0.6107

For the residual error variance we find:

s2=2.3871/6 = 0.40

Since

(JﬁnulT Jﬁnal)—-l :|:

0.6141 -0.1577
-0.1577  0.1120

Aﬁnal
20.3258
16.7630
13.8246
11.4013

5.2743

2.9585

1.1287

0.6331

e
-0.1258
0.4370
0.2754
-0.7013
—0.3743
—0.0585
1.0713
0.5669

Ssfiral = 2.3871

we find for the standard errors of the regression parameters:

s(B) = (0.6141 - 0.3978)'2= 0.49
s(tin) = (0.1120 - 0.3978)"2 = 0.21

With these estimates for the standard errors and a critical Student’s z-value of 2.45
(df = 6), the 95% confidence interval estimates of the parameters are: 19.3 < B <
21.3 and 3.2 < t;, < 4.0. Tables 11.2 and 11.3 summarize the analysis in the form

of a typical output of a non-linear regression computer program.

Figure 11.3 also shows the fit obtained via linear regression of log(A), back-
transformed to the original scale. This alternative fit definitely is inferior to the fit
just derived: it shows larger and more systematic deviations. We may also consider
a different model (second-order kinetics). The fit obtained with this alternative
model has a larger residual error sum of squares which can also be read from Fig.
11.3. Hence, the conclusion is that the experimental data are consistent with

first-order kinetics.
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TABLE 1.2

Evolution of parameter estimates and sum of squares during iterations

Iteration Parameter estimates Sum of squares
B fin

0 20.0 4.0 3.7159

I 20.2653 3.6109 2.3929

2 20.3244 3.5976 2.3871

3 20.3257 3.5967 2.3871

4 20.3258 3.5966 2.3871
TABLE 1.3

(a) ANOVA table of non-linear regression example

Source df Sum of squares Mean square F
Regression 2 10557.5 5278.8 13,268
Residual 6 2.3871 0.3978

(b) Parameter estimates and asymptotic confidence intervals

Parameter Estimate Standard error 95% Confidence interval

Lower Upper
B 20.3258 0.4943 19.3372 21.3144
hn 3.5966 0.2111 3.1744 4.0188
11.2.5 Advanced topics

The statistical theory of non-linear regression modelling is considerably more
complicated than for the linear case. Even when ideal assumptions are met, e.g.
independence, normality and constant variance of the error, the estimators no
longer have such desirable features as unbiasedness and normality. For that reason
the standard deviations found in the previous section are only approximate.

Lacking exact theory, it is expedient to apply the same methods that are valid in
linear regression theory. For example, one may use (approximate) ¢-tests to test for
the significance of a parameter (compare Section 10.3.2). Replicate observations
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can be used to provide a model-free estimate of the pure error and an approximate
F-test can be used for testing model adequacy (compare Section 8.2). When the
predictor variables are also subject to error one may try and apply orthogonal
regression (compare Section 8.2.11), although this becomes much more com-
plex. Also, methods for robust estimation (c¢f Chapter 12) can be applied in the
non-linear case. The issue of experimental design in the case of a non-linear
relation is another example where there is a large gap between the elegant
theory and designs for the linear model and the complexity of the non-linear
case [2]. In Section 11.2 we saw that the Jacobian matrix J depends on the
parameters to be estimated. This is in contrast with linear regression where the
Jacobian matrix, X, is fixed. This has a direct bearing on experimental design.
In a linear model situation we can design X (and hence X"'X) without knowing
the corresponding parameters . In non-linear regression the role of X is taken
by J, which is not known at the start of the experiment. The conclusion then is
that in order to design our experiments so as to measure the unknown parameters
most precisely, we need to know their values! The practical way out is to cover the
experimental region in a uniform way, with perhaps some additional experiments
in those regions where ‘things happen’, i.e. where the response is expected to
change rapidly.

Many of these advanced topics are still in an early stage of research and typical
chemometric examples are scarce. For advanced and up-to-date textbooks on
non-linear regression and design, see Refs. [3-5].

11.3 Empirical modelling
11.3.1 Polynomial regression

When the functional form is not known beforehand, the simplest approach to
modelling curved functions is by fitting a polynomial function of a certain
degree. The basis of this approach is the fact that any well-behaved mathemati-
cal function can be approximated by means of a higher-degree polynomial.
Model estimation is relatively easy since the model is linear in the parameters
and the regression analysis can be seen as a problem of multiple linear regres-
sion. For that reason the subject of polynomial regression or response surface
modelling was already treated in Chapter 10. It will not be further discussed
here, except to notice that polynomials can suffer from a serious drawback. At
extreme values of the predictor variable x, polynomial functions tend to +oo or —co.
This makes them unsuitable for fitting curves having horizontal asymptotes (or
plateaus) at extreme values of x. An example of such acurve is shown in Fig. 11.1d.
The use of splines 1s most appropriate in these cases.
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11.3.2 Splines

Spline functions are constructed from joining pieces of local polynomials. The
function values agree at the knots, i.e. the points at which the polynomial pieces are
joined. Through a judicious choice of the knots and of the order of the piecewise
polynomials one can fit functions of any shape. Thus, when the relationship
between the independent variables and the response becomes complex, splines,
because of their flexibility, can be used to advantage.

One distinguishes regression splines and smoothing splines. Regression splines
(Section 11.3.2.1) are used to develop flexible yet parsimonious non-linear models
that best fit observational data using a least-squares criterion. They are an alterna-
tive to the other regression methods described in this Chapter. Smoothing splines
are used to regularize a set of data {x;,y;}. The objective is not so much to derive a
model as to filter the noise from the data and to derive a smooth continuous curve
through the data summarizing the main trend (Chapter 40 also discusses methods
for smoothing data). We will briefly discuss the application of cubic smoothing
splines in Section 11.3.2.2.

On a historical note it is interesting to observe that the very first scientific paper
mentioning ‘chemometrics’ was a paper on the use of spline functions [6].

11.3.2.1 Regression splines

In spline regression the range of predictor values is subdivided in a number of
intervals and in each interval a low-order polynomial is fitted. Usually one requires
that the function is continuous at the junctions. In its simplest form a number of
straight line segments is used to fit the data (see Fig. 11.4). By increasing the
number of line segments it is clear that in this way complex curves can be
approximated. When the line segments are replaced by quadratic or cubic functions
a smooth curve can be obtained. One can then also ensure that not only the fitted
function itself is continuous but also the first derivative or the second derivative
(see Fig. 11.5 which gives an example of the data of Fig. 11.4 fitted with a spline
of 1st, 2nd and 3rd degree). The piecewise nature of spline functions and the
location of the knots is hardly visible with cubic splines and continuous second
derivatives at the knots.

Let us consider the simple case of fitting a response curve by a number of piecewise
linear functions. First one must decide on the number and the width of the intervals.
This is done by selecting the knots or joint points. In Fig. 11.5 these are indicated by
the points #, £, and #;. The best positions of these knots can be identified after visual
inspection of a scatter plot of the data. For some rules of thumb see Ref. [7]. Another
approach is to spread the knots evenly over the range of the variables.

In spline regression the parameters of each polynomial segment must be estimated.
We describe a simple procedure which consists in associating each knot (k = 1,2,3)



324

T T T T T T T T T T

-0 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 11.4. Example of non-linear data fitted by pieces of straight lines (linear spline with 3 knots).

504

40

30 4

201

Fig. 11.5. Non-linear data fitted with spline functions of first (i111), second (- - -) and third degree (—).
At the two knot positions the spline functions are continuous in the zeroth, first and second degree,

respectively.
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with an additional predictor variable, v,. The value of this variable is 0 for all data
points (x;) situated on the x-axis before the knot, and is (x; — #,) for all other data
points.

v =0 forx <y (11.40a)

vi=x—1t, forx>t
or in an implicit short-hand notation
Ve = (X — 1)+ (11.40b)

Table 11.4 and Fig. 11.6 represent a fictitious example through which a jagged
spline can be fitted. The equation of the spline curve is:

_)A)=b()+b1X+C|V| +C2V2+C3V3=0+2)C—4V| + 3V2—2V3 (1141)

The coefficients ¢, represent the change of slope of the line at the kth knot. This
can be easily verified. Consider the first four points. Since only the x-variable is
nonzero, the equation of the first line segment is:

y=2x

From point 4 onwards the variable v, takes the value (x — 4), while v, and v; still
remain zero. The equation of the second line segment is:

y=2x-4v;=2x—4(x—4) =16 - 2x
The equation of the third segment becomes:
V=2x—-4v;+ 30, =16 -2x+3(x-7) =5+ Ix

In our example the spline consists of four line segments with slopes 2, -2, 1, and
—1. The slope changes are —4, +3 and —2. These values correspond to ¢, ¢2, and ¢,
the coefficients of the additional variables that were included. This example is
artificial since all data fit exactly the line. In practice a classical least squares
procedure can be applied to fit the experimental data points using multiple regres-
sion of y on the four predictors x, v,, v,, and v;. Just as in ordinary multiple
regression all variables can be tested for significance. This implies that the coeffi-
cients, ¢y, of all additional variables, v, can be tested. If one of the variables is not
significant it means that the slope change at that specific joint is not significant, so
that the knot can be deleted and the two neighbouring line segments combined into
one. It must be noted that each additional knot or segment generates an additional
variable and takes one degree of freedom away. This implies that the number of
experiments required for spline regression is higher than for usual regression. As
we have seen, estimation of the parameters in spline regression can be done easily
using least squares regression provided the knot positions are known. In a certain
sense spline regression is then a subset of multiple linear regression. However, this



326

TABLE 11.4
Data for the spline fit of Fig. 11.6

{ y x vi=(x-4), va=(x-T); v3=(x-10),
I 2 I 0 0 0
2 4 2 0 0 0
3 6 3 0 0 0
4 8 4 @) 0 0 0
5 6 5 1 0 0
6 4 6 2 0 0
7 2 7 (1) 3 0 0
8 3 8 4 1 0
9 4 9 5 2 0
10 5 10 6 3 0
i 6 1 (1) 7 4 0
12 5 12 8 5 1
13 4 (3 9 6 2
14 3 14 10 7 3
15 2 15 11 8 4
101
81 4
6 ¢ @ .
y s .
44 ° . ‘o
. '
24 ‘»
0.
5 10 15

Fig. 11.6. Artificial data fitting exactly to a linear spline with three knots.



327

only holds true when the knot positions are fixed to known positions. If these
positions have to be estimated as well then the addition of these unknown parame-
ters renders the model estimation into a non-linear regression problem. This can be
appreciated by realizing that one cannot construct a fixed design matrix as in Table
11.4 when the knot positions are not known beforehand.

The use of straight line segments is not so useful in practice since only jagged
lines can be fitted. When instead of simple line segments higher-degree polyno-
mials are fitted in each segment a smooth curve can be obtained. When fitting a
quadratic polynomial for each segment, two additional parameters have to be
estimated for each additional segment, one for each term in the polynomial. Just as
in the case of fitting line segments, the value of these quadratic variables is zero
for data points, positioned before the specific knot position. For data points after
the knot the value equals

Vi = (X - tk)+
Vi = (x ~ 1 )}

The first index refers to the segment while the second index refers to the order of
the polynomial term. Each segment requires two additional degrees of freedom. It
is clear that with this method arbitrarily complex curves can be fitted by increasing
the number of segments or the degree of the polynomial or both. It must be
remembered, however, that each additional term in the polynomial requires an
additional degree of freedom per segment. If one employs the added variables of
highest order only, the function becomes continuous in all derivatives except the
highest derivative. For example, a superposition of an overall quadratic function
and ‘local’ cubic terms v yields a spline function with a continuously varying
slope and a continuously varying curvature. This results from the behaviour of the
individual terms (x — )] whose first derivative, 3(x — #,)2, and second derivative,
6(x — )., are continuous at the knot position #. Only the third derivative changes
suddenly from O (for x < ;) to 6 (for x > #,) at the knot position.

The above description of developing a regression spline model was given
because of its intuitive simplicity. Essentially the same model can be derived
through the use of so-called B-splines [8]. This alternative method, which is
beyond the scope of this book, has better numerical properties.

11.3.2.2 Smoothing splines

The aim of smoothing splines is to derive a realistic looking curve through a set
of data points. For example, a spectroscopic measurement may generate a set of
discrete points (Fig. 11.7a). Rather than just plotting the sequence of dots, we want
to portray the continuous nature of the spectrum. Simply joining the dots yields a
continuous curve (Fig. 11.7a), but it does not bring across the smooth nature of the
spectrum. Technically, we may consider the ‘model’ shown in Fig. 11.7a as a
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20 2
a b
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y 10 y 10
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0 0
0 2 4 6 8 1 60 2 4 6 8 10
X X

0 2 4 86 8 1 0 2 4 6 8 10
X X

Fig. 11.7. Four spline models fitted to the same data: (a) interpolating linear spline model; (b)
interpolating cubic spline model (A = 0); (c) smoothing cubic spline model (optimum A): (d)
oversmoothed cubic spline model (large A).

first-degree spline function with a knot at every observed x-value. Since it fits each
observed data point, this type of function is known as an interpolating spline
function. Although the function itself is continuous, its first derivative is not. We
may obtain a quadratic interpolating spline function by applying the method
discussed in the previous section, treating each observed x-value as a knot. Now,
the function as well as its first derivative are continuous. The second derivative is
discontinuous, which may be visible as abrupt changes in the curvature of the
spline function at the knot positions. Therefore, we may go one step further and
obtain an interpolating cubic spline function by fitting the data with a general
intercept, a general linear term (x), a general quadratic term (x?), and a separate
third-order term (v = (x — x))3, i = 1,...,n) for each observed x-value. This fit is
shown in Fig. 11.7b. It has continuous second derivatives, so that the curvature
changes in a gradual manner, giving the curve quite a natural and realistic appearance.

In one sense, though, interpolating splines are not realistic. We know that the
measured data is noisy, so we may relax the requirement that the curve passes
exactly through the observed data points. We may allow some deviation of the
curve at the observed data points if this results in a smoother curve. Mathemati-
cally, this boils down to minimizing a composite optimization criterion that has
two contributions: the usual error sum of squares, SSg = 2.{y; ~ f(x;)}?, and a term
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representing the total amount of curvature, CURV = [{9%/dx?}%dx. In the composite
criterion the second term is weighted with a smoothing parameter A, i.e. one
minimizes SSg + A CURV. For small values of A the emphasis is on minimizing
SSk, hence on obtaining a close fit. The perfectly fitting interpolating spline of Fig.
11.7b corresponds to the limit A = 0. As A takes larger values smoother curves are
obtained. These are called cubic smoothing splines. Figure 11.7c shows a cubic
smoothing spline that displays a good balance between the two desiderata: fit and
smoothness. As the value of A grows larger the curves become smoother and deviate
more from the data (Fig. 11.7d). In the limit of A — o one approaches the ultimate
smooth curve that has no curvature at all, namely a linear fit. Of course, this may
represent a severe misfit of the data. The leave-one-out cross-validation technique
discussed in Section 10.3.4 may be applied to determine a best value for the smoothing
parameter avoiding overfitting (too small A) and underfitting (too large 7).

11.3.3 Other technigues

Recently some other techniques have been used to model in an empirical way
non-linear relationships. We will give a short qualitative description of two such
techniques, ACE and MARS. A full technical description of these techniques is
outside the scope of this book.

11.3.3.1 Alternating Conditional Expectation (ACE)

ACE, which stands for Alternating Conditional Expectations, is a method for
multiple regression where each of the predictors x; is optimally transformed into a
new variable z; = fi(x), j = 1,...,p, which allows a better fit of the response y. As a
simple example, if the true (unknown) relation reads y = b, Vx1 + box3 + by log(xs)
then ACE aims to uncover the three non-linear transformations from the data. The
transformation functions f, j = 1,...,p, which in principle will all be different, are
not given in analytical form (a formula), but in tabular form (x; vs. fi(x;)), i = 1,...,n).
Plotting the transformed vs. the original values and inspecting the scatter plot may
suggest the nature of the non-linear transformation for each predictor variable. The
response itself may also be transformed, say into zo = fo(y). In the latter case, the
predictors x; and the response y take equivalent roles, so that ACE becomes a
correlation technique rather than a regression technique. Here, we only discuss the
regression variant in which y is not transformed. The main idea is that the linear
additive model

y=Sz+e (11.42)

may, for certain choices of transformations fj, j = 0,1,...,p, be better satisfied than
the linear model in terms of the original variables

y:ijxj+e (11.43)
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The criterion for assessing and comparing the linear relationships is the multiple
coefficient of determination, R>. Thus, the task of ACE is to find non-linear trans-
formations, not necessarily in parametric form, of all the variables involved that
maximize R?. The algorithm starts with a multiple linear regression (eq. 11.43), and
we use the simple linear transformations (z; = byx), 7, = bax,, ...) as a first approxi-
mation to the optimal non-linear transformations.

y=d"+"+ .+ +e (11.44)

where 7V = byx; (j = 1,..,p), the superscript indicating the iteration number. Notice
that we have absorbed the proportionality constants b; into the transformed variable.
A still better fit can be obtained if the x-variables are also transformed non-linearly.
This is done in turn for each x;, giving the x-variable in question the temporary
status of a response variable. Starting with x,, we rearrange eq. (11.44) into

R R I (11.45)

This now shows z; as the ‘dependent’ variable and y as a predictor. Next we try and
obtain an update for z; through a process called back-fitting. For this, a smooth
curve is fitted through the scatterplot of z{" against (y = 25" — 28 — ... = z"). In its
simplest form we can move a window (e.g. spanning 20% of the data points) along
the x; axis and compute the expectation of z, for each data point as the (local)

average of (y — 28 — 8" ~ ... — z("). Using the updated transformation for z, we
proceed to fit z, to the other variables, i.e.
=y - e (11.46)

When all variables have been transformed according to this back-fitting procedure
we start again with a new cycle (2%, j = 1,...,p). Such cycles of alternatingly
updating the variable transformations are repeated until convergence.

Estimating the expectation functions fi(.) can be done in different ways. In the
original ACE algorithm [9] it is done by a local smoothing operation. In the related
MORALS algorithm (MORALS = Multiple Optimal Regression by Alternating
Least Squares) spline regression is used [10]. It is also possible to restrict the
non-linear transformations to a certain class, e.g. monotone transformations which
preserve ranking order. Another closely related method is AVAS [11]. In this
method also care is taken to stabilize the variance. AVAS (= Additivity and
V Ariance Stabilization) is claimed to be better suited for predictive modelling than
the correlation-based ACE method.

As an example Fig. 11.8 shows the transformation plots (z; versus x;) for the
predictor variables in a QSAR investigation [12]. The x-variables represent struc-
tural parameters of a set of 6-anilinouracils. The response y was the enzyme inhibitor
activity. Non-linear transformations (quadratic or piecewise linear) of the predic-
tors are clearly indicated. The best transformation of the response appeared to be
nearly linear.
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Fig. 11.8. ACE transformations of the predictor variables in QSAR data set [9].

The optimal transformation approach of ACE (or MORALS) is best applicable
when there are many observations compared to the number of predictors. The
technique is especially suitable for data which have been measured on non-linear
scales. For example, with rank scales one only has information on the relative
ordering of items, the distances between successive categories are not necessarily
equal. One may consider applying monotone transformations which affect the
distances along the scale, which improve the fit in a regression model and still
preserve the original ranking of the items. Notice that the transformations can be
very flexible but that the model remains additive, i.e. it does not accommodate for
interactions between variables. A general introduction to these additive models is
the book of Hastie and Tibshirani [13].
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11.3.3.2 Multivariate Adaptive Regression Splines (MARS)

In principle the idea of spline fitting can also be applied in a multivariate setting.
In practice this is a difficult task since the problem of placing the knots becomes
much harder. Consider a problem with 5 variables and 2 knots per variables. This
already generates 3 regions per variable, or 3° = 243 subregions in 5-dimensional
predictor space. If we fit each region with a constant value, i.e. the average
response for that region, we need at least one data point per region, i.e. at least 243
observations in total. Such a model would be equivalent to an ANOVA model
containing all high-order interactions. It would be discontinuous at the boundaries.
As a first step toward a continuous response surface, we should fit each subregion
with a first-degree model requiring 6 parameters to be estimated. A very modest
number of 10-20 observations would be necessary to estimate such a local model.
Thus, we would need at least 1000, preferably over 3000, observations to fit the
overall model. More often than not, such a large number of data points is not
available. A possible way out of the dilemma is to search for a multivariate spline
model that is more parsimonious in the number of subregions.

The recent technique of Multiple Adaptive Regression Splines (MARS) com-
bines forward variable selection with spline fitting to develop a non-linear muitiple
regression model [14]. The model can be written as a summation of a few basis
Sunctions. Each basis function is a piecewise polynomial associated with a variable
and a certain range of that variable. It is possible to include interaction terms
involving two or three variables and which are active in a localized region of the
variables involved. The task of MARS is to select the important variables and to
determine the subregions for each variable by optimal location of a knot. Like
many other advanced non-linear multiple regression methods, MARS can only be
applied when a large number of observations is available.

Figure 11.9 gives a simple two-dimensional response surface that can be fitted
by a superposition of the two contributions shown separately and a localized
interaction term. The model can be written as:

Y =fi00 = t)s + X — 8-+ 1l — B)e + falxa— to)- + fs((er = 1)+ (02— 13),) (11.47)

where the notation (.), indicates that the result is set to zero when the argument is
not positive (see eqs. (11.40a and b)). Likewise, the minus suffix in (.)_ indicates
that the result is left unaltered for negative values of the argument and set to zero
for positive values. The parameters 1,, 1, and t; are knot positions. The knot position
t; belongs to x,, whereas 7, and #; are knot positions for x,. Each knot splits the
experimental range of the predictor involved in two sub-regions that are separately
modelled.

As drawn in Fig. 11.9, the functions f; to f; are simple linear functions making
the response surface not smooth at the knot positions. Notice that the last term in
eq. (11.47) is an interaction term that is only active in a local region, viz. in the
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Fig. 11.9. MARS model as a superposition of univariate and bivariate spline models. (a) linear spline
along x; (b) linear spline along xy; (¢) local x;xx, interaction spline; (d) total model combining the
three contributions.

corner for which x; > ¢, and x, > t3. By going from a first-degree spline to a spline
of degree 2 or 3 a smoother impression of the fitted surface is obtained. Quadratic
or cubic functions give continuity in the first or second derivative. There are
several levels of complexity of a MARS model having to do with the number of
terms (basis functions) in the model, the degree of the piecewise polynomials
(splines) and the level of interactions allowed (no interactions, only two-variable
interactions, or three-variable interactions).
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Fig. 11.10. Search for the best variable and its optimal knot position for explaining the response y.
Predictor variable x, (a) explains the response better than variable x; (b). For each predictor variable
the solid line presents the best fitting single-knot linear regression spline.

How are the variables and the knot positions selected? The method starts by
choosing the first predictor variable, x,, as a candidate for the first pair of basis
functions. Each value x;, (i = 1,..,n) observed in the data set for variable x, is
considered as a candidate for placing the first knot z. The knot splits variable x; into
two segments: observations with a lower value (x;; < ) and observations with a
higher value than the knot (x; > ). A simple regression of y on x; is done for the
two subsets of data, i.e. for the two segments of data space. The error sum of
squares is recorded. The best knot position is the one corresponding to the best fit,
i.e. smallest error sum of squares (see Fig. 11.10a). This is done for each variable
in turn. With p predictor variables and n observations one must consider p (number
of variables) times n (number of knot positions for each variable) pairs of simple
regressions. The variable x; and knot position ¢ = x;; giving the best fit among the
np candidates is selected (compare Figs. 11.10a and b). This then establishes the
first two basis functions.

This strategy can be seen as a search for the best way to split the experimental
region in two parts which are then separately modelled. The process is repeated
with the residual values of the response, now searching for a different way of
splitting the experimental region in two parts that best explains the remaining
variation in y. Quite likely a different variable will be selected, although it is
possible that the same variable is chosen but then at a different knot location.

Once subregions are formed, one may also consider splitting a subregion only
(cf the last interaction term in the example given). The model is expanded in this
forward manner to an extent that it is deliberately overfitting. Then it is checked
whether certain terms in the model can be dropped or neighbouring (sub)regions
be merged. In either case the complexity of the model is reduced leading to more
reliable predictions. This backward elimination proceeds until the criterion for
determining the optimal mode! complexity minimum is reached. The criterion
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Fig. 11.12. Additive components of MARS model for polymer property data.

equals (SS/n)/(1 — kM/n)?, where SS is the error sum of squares, M is the (final)
number of basis functions and k(=4) represents an empirically determined factor
that puts a penalty on each additional basis function.

Figure 11.11 shows a simple example of two predictor variables only. The first
split is on x,, the second on x; and the third on x, again, but only for the high x,
subregion. Notice that the last splitting introduces a strong interaction term as it
involves the levels of two variables. The advantage of the MARS approach is that
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it allows a representation of the model as a number of additive terms. For example,
the final model of a five variable system may be presented as in Fig. 11.12. The
model relates a physical property of liquid detergents to molecular structural
parameters of the polymeric system. Variable 3 enters the model linearly, variable
2 as a non-linear function with a plateau, and variables 1 and 5 show a strong
interaction. Variable 4 has very little effect and does not enter the model.

11.3.3.3 Recent developments

The estimation of nonparametric non-linear models involving many predictors
is an area of great research interest [15,16]. Artificial neural networks provide a
powerful technique for modelling non-linear relations between multivariate X and
multivariate Y (see Chapter 43). Whereas such ANN models often have good
predictive properties their interpretation is quite difficult. There are also non-linear
versions of popular multivariate regression techniques e.g. quadratic partial least
squares (PLS, see Chapter 35) [17], splines-PLS [18] or locally weighted regres-
sion (LWR) in conjunction with PCR [19]. Finally, there is a growing tendency to
exploit the growing computing power and the insight offered by interactive com-
puter graphics, leading to methods such as Projection Pursuit regression [20].
Genetic algorithms have been used to advantage in ill-determined curve fitting
problems [21]. Another computer-intensive natural computation approach is to
assemble models from a set of basic functions (constant, x, sin, log, exp) and
elementary operators (*, /, + , -, \/, exp, log, power) and to utilize genetic
algorithms (Chapter 27) in the search for plausible and well-fitting models among
the vast number of possibilities [22].
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Chapter 12

Robust Statistics

12.1 Methods based on the median
12.1.1 Introduction

All tests described so far have been based on the normal distribution. In applying
these tests it is assumed that the mean and the standard deviation are representative
measures of the central tendency and of the dispersion of the data examined,
respectively.

Here we introduce some methods in which no assumptions about the distribu-
tion of the population is made. Therefore they are called non-parametric or
distribution-free methods. Since they are also resistant to outlying observations,
which have a large effect on the mean and the standard deviation, these tests are
also identified as robust methods. '

We start with a discussion of some descriptive robust statistics and their
application for a visual inspection of the data. Different methods are then discussed
which are based on a ranking of the observations and make use of the median. In
Section 12.2 some other approaches are described.

12.1.2 The median and the interquartile range

The median is the value such that 50% of the observations are smaller (or
larger). It is obtained by ranking the n data. When n is odd the median is the
observation with rank (n + 1)/2; when n is even it is the mean of the observations
with rank »/2 and rank (n + 2)/2.

As an example, let us consider the data of Table 12.1. To obtain the median for
these data the measurements are ranked:

I.1 1.2 1.5 1.6 1.8 1.9 2.0 22 27 2.8
2.9 29 29 3.0 3.1 33 34 34 35 3.8
3.8 39 4.0 4.2 43 4.5 4.5 4.6 49 53
5.5 55 5.8 6.0 6.2
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TABLE 12.1

The determination of aflatoxin M in 7 laboratories (from Ref. [1])

Laboratory

a b c d e f g
1.6 4.6 1.2 1.5 6.0 6.2 33
29 2.8 1.9 2.7 39 3.8 38
35 3.0 2.9 34 43 5.5 5.5
1.8 45 1.1 2.0 5.8 4.2 4.9
22 31 29 34 4.0 5.3 4.5

There are 35 values and consequently the median has rank (35 + 1)/2 = 18. Thus
the median is 3.4 (the mean is 3.5). Sometimes the median gives a better idea of
the central tendency than the mean because it is rather insensitive to the skewness
of the distribution and to extreme values. The mean as well as the median of 15,
16, 17, 18, 19 equals 17. By the addition of the value 100 to this small data set the
mean increases to 30.8. This is obviously not a good representative of the central
tendency of the data since it exceeds 5 of the 6 observations. The median, on the
other hand, hardly changes to 17.5.

The first quartile or lower fourth, Fy, is the value so that 25% of the observations
are smaller. Similarly the third quartile or upper fourth, Fy, corresponds to the
value that is exceeded by 25% of the observations. The second quartile is the
median. The fourth spread or interquartile range (IQR) is computed as the
difference between Fy and F,. It represents the range containing the middle 50%
of the data and therefore is a measure of spread. Note that in a normal distribution
50% of the observations are contained in a 1.356 range. The IQR is less sensitive
to extreme values than the standard deviation since it is not affected by values that
lie beyond Fy and F,..

In our example the median is the measurement with rank 18 and the lower fourth
is obtained as the median of the first 18 ranked observations. Consequently, the
lower fourth, Fy, is the mean of the observations with rank 9 and 10. These are
respectively 2.7 and 2.8. Therefore F,. = 2.75. In a similar way the median of the
last 18 observations, being the mean of observations with rank 26 and 27, corre-
sponds to the upper fourth. Therefore Fy = 4.5 and the interquartile range is
obtained as:

IQR=Fy-F.=45-275=1.75

A possible approach for identifying extreme values makes use of the IQR. The
IQR is muitiplied by 1.5 and the result is taken on both sides of the interquartile
range. Values outside this interval (or acceptable range) are considered to be
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outliers or at least extreme values that deserve close scrutiny. In our example
values beyond 4.50 + 1.75 x 1.5 = 7.13 and 2.75 - 1.75 X 1.5 = 0.13 would be
regarded as extreme. There are no such values in this case. Since in a normal
distribution the IQR almost corresponds to %0 the interval calculated above corre-
sponds to about 50.

12.1.3 Box plots

All the parameters introduced in the previous section can be used to construct a
box and whisker plot (or simply box plot) which allows a visual representation of
the data. One constructs a box with ends corresponding to the lower and upper
fourths in which the median is represented by a horizontal bar. From each end of
the box a vertical line is then drawn to the most remote data point that is not an
outlier. These most remote, non extreme values are pictured with a small horizontal
line, called “whisker”. For our example of the previous section, the box plot is
represented in Fig. 12.1a. Since no outliers were identified the whiskers correspond
to the lowest and the highest value in the data set, i.e. 1.1. and 6.2.

Outliers are indicated by a cross outside the whiskers. If in our example the
highest value, 6.2, was replaced by the value 7.5 the resulting box plot would
be the one represented in Fig. 12.1b. The box itself would be the same since
neither the median nor the IQR would be affected by this change. Only the upper

* 15
62 6.0
4.5 45
34 34
275 275
11 11
a) b)

Fig. 12.1. An example of box plots.
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whisker changes since the highest value which is not an outlier is now 6.0. The
value 7.5 being larger than 7.13 (which was calculated in Section 12.1.2 as being
the upper limit of the acceptable range) is indicated as an extreme value or
outlier. Box plots allow a visual interpretation of the data. They contain infor-
mation concerning the range (characterized by the whiskers), the spread (char-
acterized by the length of the box) and the distribution of the observations
(characterized by the position of the median and the box). A horizontal bar
(representing the median) situated out of the middle of the box, for example, is an
indication of a skewed distribution. The latter is illustrated in Fig. 12.2a, obtained

(x100)
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*
15 1 al
g1 1 *
ERS *
* ¥
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3
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| 2 3
group
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7.3 *
6.3 1
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Fig. 12.2. Box and whisker plots of (a) the lead contents (in ppm) in surface enamel. Group 1, in vivo
samples; group 2, in vitro urban group; and group 3, in vitro indust group. Asterisks indicate outlying
lead values; (b) the natural logarithm of the lead data displayed in (a).
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Fig. 12.3. Box plots used in the comparison of groups of data.

from Cleymaet et al. [2]. The example concerns the lead content of surface enamel.
Acid etch surface enamel microbiopsies were taken from extracted permanent teeth
from persons living in an urban area (urban groups) and from persons living within
a distance of 10 km from a lead-polluting nonferrous-metal industrial plant (indust
group). A third group of samples was obtained in vivo from adult volunteers living
in an urbanized area (in vivo group). The box plots indicate that the three groups
are characterized by a skewed distribution and that the indust group shows higher
lead contents and a larger variation than the urban groups. The box plots of Fig.
12.2b show the effect of a logarithmic transformation of the lead content: the
variance in the different groups is comparable and the skewness of the distribution
is reduced.

Box plots are also useful for the comparison of different groups of data. Fig. 12.3
summarizes the box plots for the laboratories of Table 12.1. It is immediately
obvious that some of the groups are very different from the others (e.g. ¢ from f).
Moreover, this plot also indicates that the spread in each of the groups is similar
which means that the within laboratory precision is more or less the same. There
seems to be homogeneity of variance so that the classical ANOVA can be applied
for a further analysis of the data.
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12.1.4 Hypothesis tests based on ranking

12.1.4.1 The sign test for two related samples

The sign test is a non-parametric alternative to the paired -test (see Section 5.2)
which makes use of positive and negative signs. To illustrate the test let us take the
data from Table 12.2 in which the results obtained with a test method, xr, are
compared with those of a reference method, xg. For each sample, the sign of the
difference between xg and xr is considered. Differences equal to zero are not taken
into account since they have no sign. If there is no true difference between the two
paired samples the number of positive signs can be expected to be almost equal to
the number of negative signs. In our example, seven out of the 10 differences are
positive and three are negative. To test whether too few negative differences occur
the binomial distribution with p = g = 1/2, which is discussed in Chapter 15, is used.
However, statistical tables are available which contain the necessary information
to perform the test. In Table 12.3 r represents the number of fewer signs and n the
number of total signs. Since differences that are zero are not taken into account, n
is smaller or equal to the number of paired observations. The table gives the
probability that out of n (positive and negative) signs, the smaller number of like
signs (here the — signs) is equal to or smaller than r. The probabilities given are for
a one-sided test. They should be doubled for a two-sided test.

In our example n = 10 and r = 3. Since we only want to know whether there is
a difference between both methods, the test is two-sided. For n = 10 the two-
tailed probability that r <3 is 0.344. This figure has to be compared with 0.05
if the test is performed at the 5% significance level. Since it indicates non-
significance, the null hypothesis that there is no difference between both methods
cannot be rejected.

TABLE 12.2

Data to illustrate the sign test and the Wilcoxon signed rank test for two paired samples

Sample xR xT d; Sign Rank Signed rank
1 114 116 -2 - I -1
2 49 42 +7 + 75 +71.5
3 100 95 +5 + 4 +4
4 20 10 +10 + 9.5 +9.5
5 90 94 -4 - 25 -2.5
6 106 100 +6 + 5.5 +5.5
7 100 96 + 4 + 25 +2.5
8 95 102 -7 - 75 =75
9 160 150 +10 + 9.5 +9.5
10 110 104 +6 + 55 +5.5
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TABLE 12.3

The sign test. The table gives the probability that out of n positive and negative signs, the smaller number of like
signs is equal to or smaller than . The values are for a one-sided test. They. should be doubled for a two-sided test.

nY 0 1 2 3 4 5 6 7 8 9 10

4 0.063 0313 0.688

N 0.031 0.188 0.500

6 0016 0.109 0344 0.656

7 0.008 0.062 0.227 0.500

8 0.004 0035 0.145 0363 0.637

9 0.002 0.020 0.090 0.254 0.500

10 0.001 0011 0055 0172 0377 0623
t 0.006 0033 0113 0274 0500

12 0003 0019 0073 0.194 0387 0613

13 0.002 0011 0046 0.133 0291 0500

14 0.001 0.006 0029 0095 0212 0395 0.605

15 0.004 0018 0.059 0.151 0304 0.500

16 0.002 0.01f 0.038 0.105 0227 0402 0.598

17 0001 0006 0025 0072 0.166 0315 0.500

18 0.00l 0004 0015 0048 0119 0240 0407 0593

19 0.002 0010 0032 0084 0180 0324 0500

20 0.001 0006 0021 0058 0132 0252 0412 0588

For large samples (n > 25) the binomial distribution can be approximated by a
normal distribution [3] with:

mean=,=1/2n

and

standard deviation = 6, = (1/2) Vn_

The null hypothesis is then tested by computing

x—W x—(2)n
o. (2)Vn

and using one of the tables in Section 3.4.

Z:

12.1.4.2 The Wilcoxon signed rank test or the Wilcoxon t-test for two paired
samples

A more powerful alternative to the paired #-test is the signed rank test. Besides
the direction of the deviation between the observations, which is the only informa-
tion used in the previously described sign test, the signed rank test also considers
the magnitude of the deviation. Its main limitation is that it cannot be applied for a
two-tailed test if n < 6. For the example of Table 12.2 the absolute values of d,, the
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TABLE 124
Critical values of the Wilcoxon signed rank test (o = 0.05)

n One-tailed Two-tailed
6 2 0
7 3 2
8 5 3
9 8 5

10 10 8

11 13 10

12 17 13
13 21 17
14 25 21
15 30 25
16 35 30
17 41 35
18 47 40
19 53 46

20 60 52

21 67 59

22 75 66

23 83 73

24 91 81

25 100 89

differences for each pair of measurements are ranked. When ties are present the
mean of the ranks is computed. For example here the value four occurs twice; they
are both given the rank (2 + 3)/2 = 2.5. The next value, 5, is then given rank 4.
Afterwards each rank is attributed the same sign as the original difference. If there is
no true difference between the two paired samples there should not be a large
difference between the sum of positive ranks (7") and that of negative ranks (7). The
test consists in comparing 7 = min (7%, T") to a critical value. The critical values
for one and two tailed tests of significance at & = 0.05 are given in Table 12.4. The
null hypothesis is rejected if the calculated T is less or equal to the tabulated T.
Notice that in the parametric tests the null hypothesis is rejected if the calculated
test-statistic is larger than the tabulated critical value. In the example T" = 44.0
and T~ = 11.0 and therefore T = 11. For a two-sided test and n = 10, the critical value
of T at a = 0.05 is 8. It is concluded that the null hypothesis can be accepted and that
there is no significant difference between the results of the two methods.

For large samples (n > 25) it can be shown [3] that the sum of ranks, 7, is
approximately normally distributed with mean

_nn+1)
Mr=—"7—"

and standard deviation
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GT:\/n(n-}- 1;i2n+ 1)

The null hypothesis is then tested by computing

Z=T—“T
Or

and using one of the tables in Section 3.4

12.1.4.3 Mann-Whitney U-test for two independent samples

A powerful alternative to the parametric t-test for independent samples (see
Section 5.1) is the Mann—Whitney U-test. As an example consider the following
two groups of measurements that are to be compared:

A:11.2;13.7;14.8; 11.1; 15.0; 16.1; 17.3; 10.9; 10.8; 11.7 n; =10
B:10.9;11.2; 12.1; 12.4;, 15.5; 14.6; 13.5; 10.8 n, =8

First, all data are taken together and are ranked. When ties are present again the
mean of the ranks is computed. This yields the ranking as given in Table 12.5.

If there is no true difference between both samples the ranks for A and B
measurements should appear at random in the above list. The test consists in
comparing the smaller of the following two test-statistics with the critical value for
U in Table 12.6:

TABLE 12.5
Ranking of the measurements for groups A and B in the Mann—~Whitney U-test

Group Result Rank
A 10.8 1.5
B 10.8 1.5
A 10.9 35
B 10.9 35
A 11.1 5
A 11.2 6.5
B 11.2 6.5
A 11.7 8
B 12.1 9
B 124 10
B 13.5 11
A 13.7 12
B 14.6 13
A 14.8 14
A 15.0 5
B 155 16
A 16.1 17
A 17.3 18




348

TABLE [2.6

Tables for the Mann-Whitney test. The following tables contain critical values of the U statistic for significance
levels o equal to 5% and 10% for a two-sided test. If an observed U value is less than or equal to the value in the
table, the null hypothesis may be rejected at the level of significance of the table.

n,\"Z 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Critical values of U for o equal to 5%
[

2 0 0 0 0 i 1 1 1 I 2 2 2 2
3 0 I I 2 2 3 3 4 4 5 5 6 6 17 7 8
4 0 1 2 3 4 4 5 6 7 8 9 10 b 11 12 13 13
5 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 t 2 3 5§ 6 8 10 Il 13 14 16 17 19 21 22 24 25 27
7 i 35 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 4l
9 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48
10 0 35 8 I 14 17 20 23 26 29 33 36 39 42 45 48 52 55
i 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 S51 55 58 62
12 I 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69
13 1 4 8 12 16 20 24 28 33 37 41 45 S0 54 59 63 67 72 76
14 [ 5 9 13 17 22 26 31 36 40 45 S50 55 59 64 67 74 78 83
15 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90
16 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 8 92 98
17 2 6 11 17 22 28 34 39 45 S1 57 63 67 75 81 87 93 99 105
18 2 7 12 18 24 30 36 42 48 55 61 67 74 80 8 93 99 106 112
19 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119
20 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

Critical values of U for a equal to 10%

t 0 0
2 0 o 0 0 1 i [ 1 2 2 2 3 3 3 4 4 4
3 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 1l
4 I 1 2 3 4 5 6 7 8 9 10 i1 12 t4 15 16 17 18
5 0 2 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
6 0 2 3 S5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
7 0 2 4 6 8 Il 13 15 17 19 21 24 26 28 30 33 35 37 39
8 1 35 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
9 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
10 1 4 7 11 14 (7 20 24 27 31 34 37 41 44 48 51 55 58 62
11 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
12 2 S 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
13 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84
14 2 7 11 16 21 26 31 36 41 46 51 56 61 66 Tt 77 82 87 92
15 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
16 3 8 14 19 25 30 36 42 48 354 60 65 71 77 83 89 95 101 107
17 3 9 15 20 26 33 39 45 S5I 57 64 70 77 83 89 96 102 109 115
18 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
19 4 10 17 23 30 37 44 51 S8 65 72 80 87 94 101 109 ti6 123 130
20 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 (38
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+1
U1=n,n2+%—Rl (12.1)
+1
Uzzl’l] n2+_"1-2(7122_)_R2

where n; and n, = the smaller and the larger sample size, respectively; and R, and
R, = the sum of the ranks for the group with sample size n; and n,, respectively.

The null hypothesis is rejected if the test-statistic (the smaller of U; and U,) is
less or equal to the tabulated U.

For our example n; = 8, n, = 10, R, = 70.5 and R, = 100.5. Consequently, U; =
45.5 and U, =34.5. The smaller of these values, i.e. 34.5, has to be compared with
the critical value of U. For a two-sided test with n; = 8 and n, = 10 the 5% level of
U, as obtained from Table 12.6, is 17. Therefore the null hypothesis is accepted and
one concludes that there is no evidence for a difference between the two groups of
measurements.

For large samples (n, > 20) U is approximately normally distributed with mean

_hun
T2
and standard deviation

(i tm+1)
O _\/ 12

The null hypothesis is then tested by computing

_ U - Hu
0ll

Z

and using one of the tables in Section 3.4. A corrected standard deviation when a
large amount of ties are present can be found in Siegel [3]. Different alternatives,
requiring the use of different tables with critical values, for this test have been
proposed.

12.1.4.4 Kruskal-Wallis one-way analysis of variance by ranks

In this section a non-parametric test is introduced for the comparison of k
independent samples. To illustrate the method, the data from Table 12.1 will be
used as an example. As in the previous test all data are first taken together and they
are ranked. For ties the mean of the ranks is computed. In the table the original data
are then replaced by their corresponding rank and the sum of the ranks in each
column (= R; with i = 1, ..., k) is calculated. For our example this results in Table
12.7. With this information the following test-statistic is calculated:
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TABLE 12.7
Ranks for the data of Table 12.1

a b c d [ f g
4 28 2 3 34 35 16
12 10 6 9 22 20.5 205
19 14 12 17.5 25 315 315
5 26.5 1 7 33 24 29
8 15 12 17.5 23 30 26.5
R; 48 93.5 33 54 137 141 1235
k R2
12 ;
H= Y -3+ (12.2)
NN +1) n;

=1

where & = the number of samples; n; = the number of observations in the ith sample;
and N = Y, the total number of observations.

Since H is distributed approximately as x> with k — 1 degrees of freedom [4] the
test consists in comparing the calculated H value with the tabulated ¥* given in
Table 5.4. The null hypothesis is rejected at the chosen level of significance if H is
equal to or larger than the tabulated ? value.

For our example

12 48> 93.52 123.5?
H==rr—r"""|—+ +...+
3030+ 1)| S 5 5

=24.94

J- 3(50+1)

Since %3056 = 12.59 the null hypothesis is rejected. It is concluded that the results
obtained by the seven laboratories differ significantly. In this example all samples
are of equal size (all n; = 5) but eq. (12.2) applies equally well with samples of
different size.

The %2 approximation to the distribution of H is only valid if there are at least 5
observations in the different groups. Moreover with less than 5 observations the
test should not be used at a significance level lower than 1%.

12.1.4.5 The Spearman rank correlation coefficient
This non-parametric correlation coefficient for measuring the degree of associa-
tion between two variables y; and y, in a sample is calculated in the following way:
62d?
Cn(n?-1)

ry=

(12.3)
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TABLE 12.8

Calculation of d? to obtain Spearman rank correlation between Cu and Zn data from Table 8.8

Brain structure  Cu Zn Rank Rank d; &
Cu Zn

(ug g™ dry weight)

1 25.8 78.0 9 11 -2 4
2 242 81.8 8 12 —4 16
3 27.3 694 10.5 9 1.5 225
4 328 76.1 12 10 2 4
5 27.3 62.5 10.5 8 2.5 6.25
6 17.9 60.1 7 7 0 0
7 14.0 342 2 3 9
8 13.3 355 4 3 1 1
9 10.0 333 1 1 0 0
10 10.9 389 3 4 -1 1
11 10.7 40.8 2 5 -3 9
2 16.0 46.4 6 6 0 0

where n = the number of paired observations; and d; = the difference between the
ranks given separately to the variables y, and y,.

It can be shown [3] that r, is the Pearson product-moment correlation coefficient
r, as defined by eq. (8.58), between the ranks of y, and y,.

Consider, for example, the Cu and Zn concentrations determined in 12 different
structures of the human brain from Table 8.8. The calculation of r; is illustrated in
Table 12.8. In the case of ties, tied values have been given the average rank. For
the example r, is found to be 0.816 whereas the product-moment correlation
coefficient calculated in Section 8.3.1. was 0.898. The significance of r, (Ho: p, = 0;
H,: p, # 0) can be deduced from Table 12.9 which tabulates critical values of r,.
Since ry is larger than the critical value at the 5% significance level, a significant
correlation between Cu and Zn has been detected.

When n is larger than 25, r, can also be tested as described in Section 8.3.2 for
the Pearson correlation coefficient, . There will be little error in using eq. (8.61)
or Table 8.9.

12.1.4.6 Detection of trends by the runs test

In order to be able to draw conclusions about a population from a sample taken
from that population the sample must be random. The runs test can be used to test
the random sampling assumption if the original order in which the observations
were obtained is known.

It is especially useful in testing the random sequence of observations. In
Chapters 8 (Section 8.2.2.1) and 10 (Section 10.3.1.3) on regression we concluded
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TABLE 12.9

Critical values of the Spearman rank correlation coefficient for a two-tailed test at different p values

" p=0.10 p=0.05 p =001
6 0.829 0.886 1.000
7 0.714 0.786 0.929
8 0.643 0.738 0.881
9 0.600 0.700 0.833

10 0.564 0.648 0.794

1 0.536 0618 0.755

12 0.503 0.587 0.727

13 0.484 0.560 0.703

14 0.464 0.538 0.675

15 0.443 0.521 0.654

16 0.429 0.503 0.635

17 0414 0.485 0615

18 0.401 0.472 0.600

19 0.391 0.460 0.584

20 0.380 0.447 0.570

21 0.370 0.435 0.556

2 0.361 0.425 0.544

23 0.353 0.415 0.532

24 0.344 0.406 0.521

25 0.337 0.398 0511

that a random sequence of positive and negative residuals (y; — y; ), when plotted
against y; , is an indication for the adequacy of the model used to fit the data. For
the residuals plot in Fig. 8.5b a non-random arrangement of residuals was detected.
Here we will show how we came to that conclusion by using the runs test. The
following pattern of positive and negative residuals was obtained:

—————— +++++++++—+——

There are 19 residuals (n = 19), 9 of which are negative (n, = 9) and 10 of which
are positive (n; = 10). A run being a sequence of identical signs, 5 runs (r = 5) are
observed in these data: a run of 5 negative residuals is followed by a run of 9
positive residuals, a run of one negative residual, a run of one positive residual and
finally a run of 2 negative residuals. Table 12.10 gives the critical values of r at o
= 0.05 for n, and n, less or equal to 20. For each combination of n, and n, two
critical values are listed. An observed r value which is less than or equal to the
smaller critical value or greater than or equal to the larger critical value results in
a rejection of the hypothesis of a random arrangement at the 5% significance level.
For our example with n; =9 and n, = 10 a non-random sample would contain 5 or
less runs or 16 or more runs. Since only 5 runs are observed a non-random arrange-
ment of positive and negative residuals has been detected.
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Critical values of r in the runs test [4]
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V2 304 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20
2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
9 9 - - - - - - - - - - e

5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
9 10 10 Il 1l - - - - - - - - - - - -

6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6
-9 10 11 12 12 13 13 13 13 - - - - - - - -

7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6
— - 1112 1313 14 14 14 14 15 15 15 - - - - -

8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 1 1 7
- - Il 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17

9 2 3 3 4 4 5 5 5 6 6 6 7 7 17 7 8 8 8
- - - 13 14 14 15 16 16 16 17 17 18 18 i8 18 18 I8

10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9
- - - 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20

i 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9
- - - 13 14 15 16 17 17 18 19 19 19 20 20 20 21 2I

2 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
- - - - 13 14 16 16 17 18 19 19 20 20 21 21 21 22 2

B3 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
~ - - = - 15 16 17 18 19 19 20 20 21 21 22 22 23 23

4 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 (0 i 11
- - - = - 15 16 17 18 19 20 20 21 22 22 23 23 23 24

5 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 1l Il 11 12
- - - - - 15 16 18 18 19 20 21 22 22 23 23 24 24 25

l6 2 3 4 4 5 6 6 7 & 8 9 9 10 10 U I 1l 12 12
- - - = - - 17 18 19 20 21 21 22 23 23 24 25 25 25

7 2 3 4 4 5 6 7 7 8 9 9 10 10 Il i1 1 12 12 13
- - - — - — 17 18 19 20 21 22 23 23 24 25 25 26 26

18 2 3 4 5 5 6 7 8 8 9 9 10 10 Il 11l 12 12 13 13
- - - = - - 17 18 19 20 21 22 23 24 25 25 26 26 27

19 2 3 4 5 6 6 7 8 8 9 10 10 Il Il 12 12 13 13 13
- - - = - - 17 18 20 21 22 23 23 24 25 26 26 27 27

20 2 3 4 5 6 6 7 8 9 9 10 10 II 12 12 13 13 13 14
- - - = - - 17 18 20 21 22 23 24 25 25 26 27 27 28
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When either n; > 20 or n, > 20 a normal approximation may be used [3] with

2nn
mean:u,=—r]ll+l

where n = n; + ny, and

2nny(2nyny — n)
n(n-1)

standard deviation = G, =\/

The null hypothesis is then tested by computing

i
G,

Z

and using one of the tables in Section 3.4.

The runs test can also be used when the observations can be dichotomized (i.e.
converted into two categories). Consider, for example, 20 successive measure-
ments performed on a sample. To test whether there is a drift in the results, the runs
test above and below the median can be used. Observations that are lower than the
median are denoted by a negative sign and observations that are larger than the
median by a positive sign. Observations that are equal to the mean are either
disregarded [5] or are all given a positive or a negative sign [6].

In the following example the median is 8 (the average of the 10th and 11th
measurement after ranking) and there are 9 runs:

1 23 45 6 7 89 10111213 14151617 1819 20
Result 5 9 9 107 3 7 109 7 9 9 4 910 9 4 6 2 3
Sign - + + 4+4- - - 4+ - + + - + + + - - - -

Since it follows from Table 12.10 that with n; = 10 and n, = 10 a non-random
sample would contain 6 or less runs or 16 or more runs at the 5% significance level
there is no drift in the results.

12.1.5 Median-based robust regression

The classical least-squares regression, which consists of minimizing the sum of
the squared residuals assumes among others a normal error distribution. Conse-
quently, the presence of outliers can have a large influence on the estimated
parameters. The lack of robustness of the regression parameters is illustrated in Fig.
12.4. The hypothetical data consist of six points (0.0,0.0), (1.0, 1.1), (2.0,2.0), (3.0,
3.1), (4.0, 3.8) and (5.0, 10.0). It is clear that the last point is not representative for
the linear model fitted by the rest of the data. The outlier in this straight line
relationship attracts the regression line, computed by least squares, to such an
extent that the estimated line is unacceptable. It could be argued that outliers can
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Fig. 12.4. Hypothetical data with an outlier. The line is the least squares line. The data are given in
the upper part of Table 12.2.

be discovered by examining the least-squares residuals. Unfortunately this is not
always true: the outlying point in Fig. 12.4 does not have a particularly larger
residual than some other data points (see the upper part of Table 12.12).

The concept of robust estimation has been extended to regression analysis and
different robust regression methods that resist the violations of the classical
assumptions have been described. The resistance of a procedure to outliers is
measured by means of the breakdown point. Hampel [7] defined the breakdown
point as the smallest percentage of contaminated data (outliers) that can cause the
regression estimators to take on arbitrarily large aberrant values. Since even one
outlier can have a large influence on the least squares line, the least squares method
has a breakdown point of 0%. Here some median-based robust regression methods
will be described. Other robust methods in which weighting procedures are introduced
to downweight the influence of outlying observations are given in Section 12.2.

12.1.5.1 Single median method

The single median method (SM) proposed by Theil [8] is the simplest median-
based robust regression method for a straight line relationship. The slope, by, is
estimated as the median of the n(n — 1)/2 slopes between all pairs of data:

by =med ((y; — yi) Ax; — x)) I<i<j<n (12.4)
i)j

For the data in Fig. 12.4, n = 6 and n(n — 1)/2 = 15. The slopes for all pairs of data
are given in Table 12.11. The median of these slopes is 1.03. Consequently the
single median slope, b;, equals 1.03. The estimator of the intercept, by, can be
obtained as the median of the intercepts calculated with this robust slope for all data
points:

b() = med (y, - b]X,’) (125)
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TABLE 12.11
Slopes for all pairs of data in Fig. 12.4

i j Slope

1 2 1.10

I 3 1.00

1 4 1.03

I 5 0.95

| 6 2.00

2 3 0.90

2 4 1.00

2 5 0.90

2 6 2.23

3 4 1.10

3 5 0.90

3 6 2.67

4 5 0.70

4 6 3.45

5 6 6.20

For our example the intercepts calculated are:

Point 1 2 3 4 5 6
Intercept  0.00 0.07 -0.06 0.01 -0.32 4.85

Consequently the single median intercept, by, equals 0.00 (0.005 rounded to 0.00)
and the SM regression line is:

y=0.00+ 1.03 x

It can be shown [9] that this method has a breakdown point of 29%. In Table
12.12 (Data 1) notice the large residual from the robust SM fit for the outlying
point. This indicates that the line is less influenced by the outlying point than the
least squares line. However, if two outliers exist in these data (see Data 2 of Table
12.12) the contamination by outliers is too large to obtain correct estimators.

12.1.5.2 Repeated median method

The repeated median method (RM) is an improvement of the single median
since the breakdown point is increased to 50%. In this method developed by Siegel
[10] the slope and the intercept are obtained as:

by = med med (0; =) A~ ) (126)
{ b}

b() = med (y,' - b] X,') (127)
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TABLE 12.12

Comparison of least-squares and median-based robust regression methods

x y LS Residual
SM RM LMS
DATA | 0.0 0.0 0.90 0.00 -0.03 0.00
(1 outlier) 1.0 1.1 0.30 0.07 0.06 0.07
2.0 2.0 -0.49 -0.07 —0.06 -0.07
3.0 3.1 -1.08 0.00 0.03 0.00
4.0 38 -2.07 -0.33 -0.29 -0.33
5.0 100 244 483 489 483
regression by -0.90 0.00 0.03 0.00
parameters by [.69 1.03 1.02 1.03
DATA 2 0.0 0.0 .19 0.45 0.00 0.00
(2 outliers) 1.0 1.1 0.07 ~0.45 0.00 0.07
2.0 2.0 -1.26 -1.55 -0.20 -0.07
3.0 3.1 -2.38 -2.45 -0.20 0.00
4.0 10.0 2.30 2.45 5.60 5.87
5.0 10.0 0.08 0.45 4.50 4.83
regression by -1.19 -0.45 0.00 0.00
parameters b, 222 2.00 1.10 1.03

First, for each of the n data points the median of the (n — 1) slopes between that
point and all other points is calculated. Thus » medians are obtained and the median
of these n medians is the repeated median estimator of the slope. The procedure is
explained in Fig. 12.5 for the data from Fig. 12.4 which are also given in the upper part
of Table 12.12. The lowest median is 0.90 for point 5 and the highest median is 2.67
for point 6. In Fig. 12.5b the 6 medians are ranked and the RM estimator of the
slope, by, is the mean of the third and fourth ranked median values. It equals 1.02.

The estimation of the RM intercept is identical to the SM estimation of the
intercept described in the previous section. Consequently, the RM line calculated
for our example is

y=003+1.02x

which again is not influenced by the outlying point. That the RM method is more
robust than the SM method follows from the lower part of Table 12.12. Even with
two outliers the repeated median method behaves well.
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Fig. 12.5. Illustration of the repeated median method for the data in Table 12.2. (upper part). (a)
Ranked slope b, for each point i, joined by a line to each of the other points; and (b) ranked median
slopes selected from (a). Medians are indicated by a cross and 3-5(5)indicates that for point 5 the
median slope is that of the line between points 3 and §, etc.

12.1.5.3 The least median of squares (LMS) method

Another important median-based robust regression method, which is also applica-
ble to the multiple regression situation, is the least median of squares method proposed
by Rousseeuw [9] and first introduced in chemometrics by Massart et al. [11].

The LMS method is based on the minimization of the median of the squared
residuals. For the straight line relationship this means:

minimize med (y; — b x; — bp)*

with the median defined here as the ([#/2] + 1)th ranked value; [n/2] denotes the
integer part of n/2. Notice that this definition of the median differs slightly from
the one given in Section 12.1.2 if n is even.

In its simplest form, the slope and the intercept are estimated as follows: the
lines between all possible pairs of points are calculated; with n data points this
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TABLE [2.13

Least median of squares regression for the example of Fig. [2.4

i j by by Residuals (r) med (%)
1 2 3 4 5 6
I 2 1.100 0.000 0.000 0.000 -0.200 -0.200 -0.600 4.500 0.040
I 3 1.000 0.000  0.000 0.000 0.000 0.100 0200 5.000 0.010
1 4 1.033 0.000  0.000 0.067 -0.067 0.000 -0.333 4.833 0.004
I 5 0.950 0.000  0.000 0.150 0.100 0.250 0.000 5.250 0.023
I 6 2.000 0.000 0000 -0900 -2000 -2900 4200 0.000 4.000
2 3 0.900 0.200 -0.200 0.000 0.000 0.200 0.000 5.300 0.040
2 4 1.000 0.100 -0.100 0.000 -0.100 0.000 0300 4.900 0.010
2 5 0.900 0.200 -0.200 0.000 0.000 0.200 0.000  5.300 0.040
2 6 2225 -1.125  1.125 0.000 -1.325 -2450 -3.975 0.000 1.756
3 4 1.100 -0.200  0.200 0.200 0.000 0.000 -0400 4.700 0.040
3 5 0.900 0200 —0.200 0.000 0.000 0.200 0.000 5.300 0.040
3 6 2.667 -3.333 3333 1.767 0.000 -1.567 -3.533 0.000 3121
4 5 0.700 1.000 -1.000 -0.600 -0.400 0.000 0.000  5.500 0.360
4 6 3.450 -7.250 7250 4.900 2.350 0.000 -2.750 0.000 7.563
5 6 6.200 -21.000 21.000 15900 10.600 5.500 0.000  0.000 112.360

yields n(n — 1)/2 trial estimates for by and b, each; for each line the squared
residuals for all n data points are calculated; finally the line is retained for which
the median of the squared residuals is minimal.

For our example of Fig. 12.4 (Data 1 in Table 12.12) the slopes and intercepts
of the 15 lines between all pairs of the 6 data points as well as the residuals for 6
data points and the median of the squared residuals for each line are summarized
in Table 12.13. From this table it follows that the median of the squared residuals
(med(r*)) is minimal for the line between point 1 and point 4. Consequently, the
LMS line is

y=0.00+1.03x

It should be noted that in this way the LMS line always exactly fits two of the
data points. Rousseeuw [9] proposes an adjustment of the intercept by replacing
the intercept term by the LMS location estimate of the n values:
b()(i)zyi—bl Xi = 1, [Py ¢ (128)

where b, represents the robust estimate of the slope determined as described above.

The LMS location estimate is the midpoint of the shortest half of the sample
which is obtained as follows. After ranking the intercepts, by finding the smallest
of the differences

bowy = oy bors1y = boys - -+ Bogy = Bogn-nen)
where A = [n/2] + 1.
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In our example the ranked intercepts are:

—01.32 -0.06 0.00 O.Pl 0.07 4.85
0.33

0.13

4.85

The halves of the sample are indicated by the horizontal lines. The shortest half is
between —0.06 and 0.07. Therefore the midpoint of this interval, namely 0.00, is
the LMS location estimate.

Rousseeuw and Leroy [9] indicate that the standardized residuals resulting from
a robust fit such as LMS can be used to diagnose outliers. The procedure first
involves the calculation of an initial scale estimator, s°;

s°=1.4826(1 + 5/(n — 2)) Vmed &2 (12.9)

The expression is based on the median of the squared LMS residuals where 1.4826
is an asymptotic correction factor for the case of normal errors and (1 + 5/(n — 2))
is a finite sample correction factor. The latter is necessary to make s° unbiased
when errors are normally distributed. If le/s°l < 2.5, the data point is retained,
otherwise it is rejected. The final scale estimate, s*, for LMS regression is then
calculated:

5' —_,/ }; e /n' -2) (12.10)
i=1

where n” represents the number of data points retained.

For the ultimate identification of an outlier, each observation is evaluated again:
if le/s* < 2.5 the data point is retained, otherwise it is rejected.

For our example where the LMS line is y = 0.00 + 1.03 x this procedure yields
the following results:

X; Vi vi & e? els*
0.0 0.0 0.00 0.00 0.0000 0.00
1.0 1.1 1.03 0.07 0.0049 0.36
2.0 2.0 2.06 -0.06 0.0036 -0.31
3.0 3.1 3.09 0.01 0.0001 0.05
4.0 38 4.12 -0.32 0.1024 -1.67
5.0 10.0 5.15 4.85 23,5225 25.26

The median of the squared residuals, here the 4th ranked value (see earlier), is
0.0049. Therefore from eq. (12.9), s° = 1.4826 (1 + 5/(6 — 2)) V0.0049 = 0.234.
Since for the last data point le/s° = 4.85/0.234 > 2.5 this point is deleted and the
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final scale estimate (eq. (12.10)) is calculated as s =V0.111/5 —2) =0.192. The
outlier test reveals that the last point is an outlier since e/s” = 25.26 > 2.5.

In reweighted least squares based on LMS, proposed by Rousseeuw and Leroy
[9], the outlier is given a zero weight and the classical least squares procedure is
applied to the remaining data points. Reweighted least squares for the example
yields the following regression equation: y = 0.08 + 0.96 x.

LMS can also be applied in multiple regression. For further information the
reader is referred to the book by Rousseeuw and Leroy [9].

12.1.5.4 Comparison of least squares and different median based robust
regression procedures

Hu et al. [12] used simulated data contaminated with outliers to compare
different regression methods. For data that do not contain outliers least squares
provides the best results, i.e. the least biased estimates of slope and intercept and
the least variance. The robust regression methods also behave well: the estimated
regression parameters are similar to the ones obtained by LS; however their
dispersion is larger. When outliers are present the performance of LS degrades
rapidly with increasing magnitude of the outlying observations. The effect 1s
largest for outliers situated at the extreme points. Robust methods are then better
suited, the best results (in terms of bias) being obtained for the LMS procedure.

The authors also applied the outlier diagnosis, as described in the previous
section for LMS, to the other median-based robust regression methods. SM and
RM detect only part of the outliers while in some situations LMS treats too many
points as outliers. They propose the use of these methods in the exploratory
validation of linear calibration lines and in suitability checks in routine calibration.
Robust regression is applied to detect outliers in calibration lines found to have a
bad quality, after which reweighted least squares is performed.

For the least-squares method confidence intervals for the regression parameters
can be easily obtained (see Chapter 8). For the median based methods this seems
less evident. Rousseeuw and Leroy [9] proposed (complicated) approximate con-
fidence intervals for the LMS parameters. These confidence intervals are, of
course, not needed if a reweighted least squares procedure is used.

12.2 Biweight and winsorized mean

Another approach to robust estimation is Mosteller and Tukey’s biweight
approach [13]. It is representative for a class of methods that use iterative weight-
ing procedures to downweight the influence of outlying observations. It is compu-
tationally more complex, but, as shown later, it has other advantages. The biweight,
x"*, is defined as:
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= ZW,‘)C,‘
XW,‘
where

(1 = ((xi — )c*)/CS)Z)2 when ((x;— x*)cS)* < 1

i

0 otherwise

with S a measure of spread such as half the interquartile range (1/2 IQR); and c a
constant, usually 6.

For a normal distribution, where S = (2/3)¢ (see Section 12.1.2), 65 corresponds
to 46 and therefore observations that are more than 46 away from the mean are
given a zero weight.

Iterative calculations are required since, to obtain the different weights, w;, one
needs x* and to obtain x" the values of w; must be known. As starting value for x*
the mean or the median can be used. Iteration proceeds until a stable value for x” is
obtained. An example adapted from Mosteller and Tukey [13] is given in Table
12.14. The biweight determined for the observations 7, 3, 3, -2, -5, -6, -21, is
—0.79 (it can be checked that after a fifth iteration, not shown here, a stable value
of —0.79 is obtained). This is quite different from the value for the median (-2) and
of the mean (-3). Both the median and the biweight are less affected by the outlier
than the mean, but the median is affected here by the fact that there is a rather large
difference between the middle values 3, -2, and 5. For the example the biweight
1s probably a better measure of central tendency of these data.

To describe the influence of an outlier on the different measures of central
location discussed here, we will consider a somewhat larger series of numbers [ 13]
-8, -6,-5,-5,-2, 3,3, 3,7, 10 for which the mean, the median and the biweight
are equal or very close to zero. Let us see how these measures of location behave
when an | Ith measurement, x, which takes different values is added. In Fig. 12.6
the effect of x on the mean (x), the median (represented as x) and the biweight (x”)
is shown. One observes that the biweight performs best: it remains closest to zero
and when x becomes an outlier it does not have any influence on the biweight. The
median of course is most influenced by changes in the middle values of the data
set. Once x reaches a value outside this middle range, the median is no longer
influenced. The largest influence of a single observation is observed on the mean.
If the observation is sufficiently outlying the mean becomes +eo or —ce.

Mosteller and Tukey [13] recommend the use of

— median-based estimations in explorative data analysis

— the biweight (or related estimates such as the trimmed mean (see further))
when higher performance is needed for data that are not normally distributed or for
which normality has not been verified;
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TABLE 12.14

Example of biweight mean computation

First iteration: x} =x=-3
S =4.5 = half the distance between 3 and —6 (in fact —5.5, but —6 is used for ease of computation)

X X;—X] Lx; — x1V6S = u; u? 1—uf w; wiK;

7 10 0.37 0.14 0.86 0.74 5.18

3 6 0.22 0.05 0.95 0.90 2.70

3 6 0.22 0.05 0.95 0.90 2.70
-2 1 0.04 0.00 1.00 1.00 -2.00
-5 -2 0.07 0.00 1.00 1.00 -5.00
-6 -3 0.11 0.01 0.99 0.98 -5.88
=21 -18 0.67 045 0.55 0.30 -6.30

Y= 582 > = -8.60
x5 =-1.48
Second iteration:

X; Xi— X Lx; — x5/6S = u; u? [ - w; wix;
7 8.48 0.31 0.10 0.90 0.81 5.67
3 4.48 0.17 0.03 0.97 0.94 2.82
3 4.48 0.17 0.03 0.97 0.94 2.82
-2 -0.52 0.02 0.00 1.00 1.00 -2.00
-5 -3.52 0.13 0.02 0.98 0.96 —4.80
-6 —4.52 0.17 0.03 0.97 0.94 -5.64
=21 -19.52 0.72 0.52 0.48 0.23 -4.83
> =582 Y= -596
x3= -1.02

Third iteration:
X Xi—x3 Ix; = x3V68 = u; u? I - u? w; Wix;
7 8.02 0.30 0.09 0.91 0.83 5.81
3 4.02 0.15 0.02 0.98 0.96 2.88
3 4.02 0.15 0.02 0.98 0.96 2.88
-2 -0.98 0.04 0.00 1.00 1.00 -2.00
-5 -3.98 0.15 0.02 0.98 0.96 —4.80
-6 —4.98 0.18 0.03 0.97 0.94 -5.64
21 -19.98 0.74 Q.55 0.45 0.20 —4.20

Y=58 X= -507
xi= 087

Fourth iteration:

X; Xj— X4 Ix; — X368 = u; u? - w; Wixi

7 7.87 0.29 0.08 0.92 0.85 595

3 3.87 0.14 0.02 0.98 0.96 2.88

3 3.87 0.14 0.02 0.98 0.96 2.88
-2 -113 0.04 0.00 1.00 1.00 -2.00
-5 —4.13 0.15 0.02 0.98 0.96 —4.80
-6 -5.13 0.19 0.04 0.96 0.92 -5.52
=21 -20.13 0.75 0.56 0.44 0.19 -3.99

T=584 L= 460
xi=-0.79




Fig. 12.6. The effect of an eleventh value x, added to the numbers -8, -6, -5,~-5,-2, 3, 3,3,7, 10, 0n
the mean (x), the median (%) and the biweight (x*).

— mean-based calculations when careful studies indicate that all aspects of the
normal distribution are verified.

A somewhat similar approach is the winsorized mean [14] for which different
proposals exist. Thompson [15] applied one of these to method validation in
analytical chemistry. The robust estimate of the mean, x,., is obtained as:

Xy — 2 Xi(w) /n

where the x;., are the winsorized values of x;. They are obtained as follows:

Xiwy = Xi lf IX,‘ - xwl < CS
Xipw) = X + cS if Xi—Xw>CS
Xitw) = X — CS ifxi—x,<-cS

The value of ¢ depends on the amount of outliers expected and a value of 1.5 is
often used. S is a robust estimate of the standard deviation for which, with ¢ = 1.5,
Thompson uses the expression:

S? = variance x;,/0.778

This means that values within a spread of 35 around the winsorized mean are used
as such, while more outlying observations are given the less extreme value of x,, +
1.5Sorx,—158S.

As for the biweight approach, an iterative calculation of x,, and S is required.
Initial estimates of these parameters used by Thompson are:

Xw(0) = med Xi

Sy = 1.483 med (Ix; — med xl)
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12.3 Iteratively reweighed least squares

In Section 12.1.5 median based robust regression methods, that make use of the
robustness of the median as location estimator, have been described. In other robust
methods weighting procedures are introduced in order to downweight the influence
of possible outliers in the regression data. Different weight functions have been
proposed among which the biweight described in the previous section. Iteratively
reweighted least squares (IRLS) is a least-squares method in which at each
iteration the observations are weighted. Weighted least squares is applied itera-
tively. At each iteration the regression coefficients are estimated and new weights
based on the residuals are calculated. If the biweight is used the observations are
weighted according to:

1 —(e; /cS)?*?  when lef<cS
W=
0 otherwise

where ¢; is the residual, the deviation of the ith observation from its value predicted
by the regression model (= y; — y; ); S is a robust measure of spread (the median of
the absolute residuals is frequently used; then S = (med Ir)); ¢ is a constant, usually 6.

Initially, all observations are given a weight equal to one. Consequently the
starting values for the regression parameters are obtained from a simple least-
squares procedure. From the least-squares fit new weights are calculated which are
used to estimate new regression parameters by means of a weighted regression
procedure (see Section 8.2.3.2). Iteration is continued until stable regression
coefficients are obtained.

The technique of iteratively reweighted least squares will be illustrated with the
hypothetical data of Section 12.1.5. Only the calculations for the first three steps
are given in Table 12.15. A summary of the complete results is given in Table 12.16.
The intermediate results were rounded to two decimal places. Stable regression
coefficients are obtained after 6 iterations. The weight of the outlying observation is
then zero while all good points reach weights very close to one. Therefore the
regression equation obtained corresponds to the line through the first five data points.

Philips and Eyring [16] have proposed a correction for the initial least-squares
estimates used as starting values since they suffer from lack of robustness and
according to the authors can lead to incorrect results. The correction is based on a
winsorizing of the residuals from the least squares fit. The authors [16] compared
iteratively reweighted least squares and classical least squares regression (LS).
They propose approximate confidence intervals for the IRLS regression parame-
ters which are based on an estimate of the variance for the biweight, given in
Mosteller and Tukey [13]. Philips and Eyring conclude that IRLS is superior to LS
when errors are not normally distributed or when normal data are contaminated
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TABLE 12.15

Computation of the first three steps in iteratively reweighted least squares applied to the hypothetical data of
Section 12.1.5 :

Step! «x y
0.0 0.0
1.0 1.1
20 20 y=-0.90+1.69 x
3.0 3.1
4.0 38
5.0 10

Step2  x y led leil6S w;
0.0 -0.90 0.90 0.15 0.96
1.0 0.79 0.31 0.05 1.00
2.0 248 0.48 0.08 0.98
3.0 4.17 1.07 0.18 0.94
4.0 5.86 2.06 0.35 0.77
5.0 7.55 245 041 0.69

$=(0.90 + 1.07)/2 = 0.99
$=-078 + 162 x

Step 3 x y lejt leil/6S wi
0 -0.78 0.78 0.15 0.96
1 0.84 0.26 0.05 1.00
2 2.46 0.46 0.09 0.98
3 4.08 0.98 0.19 092
4 5.70 1.90 0.36 0.76
5 7.32 2.68 0.51 0.55
S=(0.78 +0.98)/2=0.88
y=-066+1.54x
TABLE 12.16

Summary of the iteratively reweighted least squares applied to the hypothetical data of Section 12.1.5

Xi Yi Wi
Step: | 2 3 4 5 6 7 8
0.0 0.0 t 0.96 0.96 0.96 0.96 0.96 0.96 0.96
1.0 1.1 1 1.00 1.00 1.00 1.00 0.98 0.98 0.98
2.0 2.0 I 0.98 0.98 0.98 0.98 1.00 1.00 1.00
3.0 3.1 1 0.94 0.92 0.92 0.92 092 0.92 0.90
4.0 38 I 0.77 0.76 074 0.71 0.86 0.92 0.92
5.0 10.0 1 0.69 0.55 0.34 0 0 0 0
by —0.90 —0.78 -0.66 -047 0.07 0.09 0.08 0.08

by 1.69 1.62 1.54 1.39 0.97 0.96 0.96 0.96
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with outliers. LS however is to be preferred in the ideal situation of normally
distributed observations. This conclusion therefore is similar to the one made for
median-based robust regression methods in Section 12.1.5.4.

12.4 Randomization tests

In a randomization test the probability (p) of falsely rejecting the null-hypothe-
sis when in fact it is true, is not determined from statistical tables. Significance is
determined from a distribution of the test statistic generated by randomly assigning
the experimental data to the different conditions (i.e. groups, treatments, methods,
etc.) studied.

An example of the randomized independent z-test will illustrate this. The
example is obtained from Ref. [17]. Two treatments A and B which yield the
following results: A: 18; 30; 54 and B: 6; 12 are compared. If the null hypothesis
(Ho: pa = pp) is true one could randomly interchange the results for A and B
without affecting the conclusion. The example is small to allow an illustration of
the complete procedure. The t-value (see eq. (5.8)) calculated for these data is 1.81.
The significance of this calculated f-value is determined by computing ¢ for all
permutations of the data. These are given in Table 12.17. For a one-tailed test (Ho:
La = Up; Hy: pa > W) the ordered theoretical distribution of #: —3.00, —1.22, —0.83,
-0.52,0.00, 0.25, 0.52,0.83, 1.22, 1.81 is considered. A r-value as high as the one
obtained with the experimental data (1.81) occurs only once in the ten possible
permutations. In this example 7 > 1.81 has a probability of 0.10 (p = 0.10).
Therefore, if Hy is true, the probability that the random assignment performed
would result in a #-value as large as the one obtained with the experimental results
is 0.10. If the pre-established level of significance o = 0.20, Hy is rejected.

TABLE 12.17

Data combinations obtained by permutation of the original data [17]

A B A B A B A B A B
6 30 6 18 6 18 6 12 6 12
12 54 12 54 12 30 i8 54 18 30
18 30 54 30 54
X 12 42 16 36 24 24 18 33 26 21
t -3.0 -1.22 0.00 -0.83 0.25
6 12 12 6 12 6 12 6 8 6
30 18 18 54 18 30 30 18 30 12
54 30 54 54 54
x 30 15 20 30 28 18 32 12 34 9

t 0.83 -0.52 0.52 1.22 1.81
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TABLE 12.18

Comparison of two series of measurements; an outlier is present in the data of treatment B [17]

Treatment A Treatment B
0.33 0.28
0.27 0.80
0.44 372
0.28 1.16
0.45 1.00
0.55 0.63
0.44 1.14
0.76 0.33
0.59 0.26
0.01 0.63
xa= 0412 xp= 0.995
=178

In general, the one-tailed probability for  for a randomization test is defined as
the probability, if Hg is true, to obtain a r-value at least as large as the obtained
value. For a two-sided test (Hy: pa = ig, Hy: 1a # [p) the probability for ¢ is defined
as the probability, if Hy is true, to obtain a value of I#l as large as the obtained value
of l#l. For our example the following ordered theoretical distribution of I: 0, 0.25,
0.52,0.52,0.83,0.83, 1.22, 1.22, 1.81, 3.00 is obtained. Two values are at least as
large as the lfl for the experimental data. Therefore p = 0.20 and for o = 0.20 Hy 1s
rejected.

The data from Table 12.18 show that the test is robust. The outlier in B (3.72)
causes the (two-tailed) parametric independent r-test to yield a non-significant
result (p = 0.092). The randomization test yields p = 0.026. The presence of the
outlier increases the standard deviation for group B, sg, and reduces the value of ¢.
Because s increases more than [x, — xgl the r-value is lower.

A randomization test requires a great amount of computation, even for small
samples. For the analysis of the results of Table 12.18 e.g. 184756 ¢ values have to
be computed, requiring a computer. For large samples the computer time can be
reduced by using random data permutation programs [17]. With random data
permutations the test statistics are only calculated for a given number of permuta-
tions from all those possible.

This has been applied in the next example which illustrates the randomization test
procedure for one-way analysis of variance. The data are given in Table 12.19. Four
laboratories analyzed the same sample containing trifluoperazine with the same
titrimetric method. Each laboratory obtained 10 replicate results. The question is then
whether there is a significant difference between the mean results obtained.
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TABLE 12.19

Comparison of 4 laboratories for the analysis of trifluoperazine with the same titrimetric method

1 2 3 4
(%) (%) (%) (%)
100.25 100.83 99.58 100.89
100.29 100.82 99.76 100.99
100.09 100.60 100.53 99.98
100.49 99.43 100.1 100.41
101.18 100.73 99.1 100.53
101.32 100.85 100.3 101.05
100.63 100.17 99.7 101.92
100.90 101.22 99.2 100.12
100.76 100.21 99.6 100.35
100.46 98.96 99.6 100.08
x= 100.64 100.38 99.75 100.63
s= 041 0.71 0.45 0.60

The ANOVA takes the form of Table 6.3 with k =4 and n = 40. Systematic data
permutation would result in about 5 x 10*' permutated data sets. The random data
permutation method was used to select 3000 permutations. To perform the ran-
domization ANOVA test one could compute F for each of these permutated data
sets and compute the probability for F' as the proportion of the 3000 permutations
that yield an F-value as large as the F-value for the original data set. Edgington
[17] shows that one can advantageously use (X(77 /n,), with T; and n; the sum and
the number of experimental results for a particular condition (here method), to test
the significance of F. Since for the example only 8 out of the 3000 permutations
provide a value for 3(T? /n;) as large as that for the obtained data the probability of
obtaining such a large F is 0.0026. The selection of another 3000 permutations
confirmed the differences between the laboratories.

Besides the fact that randomization tests do not require the assumptions of
normality and homoscedasticity they have an additional advantage. Randomization
tests can also be applied when the random sampling assumption, which is the basis of
all classical statistics, is violated. One such violation is systematic selection which may
occur in some intercomparison studies in which only good laboratories participate.

12.5 Monte Carlo methods

Monte Carlo (MC) methods are part of the field of numerical simulation (Part
B, Chapter 42) and play an important role in mathematics and statistics since their
formal development in 1945. They originated within the context of the Manhattan
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project which dealt with the design of the first atomic bomb and nuclear reactor.
During that period the approach was code named Monte Carlo, which is also
reminiscent of gambling and casinos. The founders of modern MC methods were
Ulam, Metropolis, Fermi and von Neumann [18,19].

We will discuss two aspects of the MC approach. The first is referred to as
deterministic MC and aims to determine theoretical quantities, that arise from
differential equations and integrals, by means of simulated random events. The
other is called probabilistic MC and is used for the simulation of properties of
stochastic processes, such as the distribution of a random variable and the robust-
ness of a statistical procedure.

12.5.1 Probabilistic MC for statistical methods

Due to the steady improvement in speed of computers and the decreasing cost
of computing, Monte Carlo methods constitute a robust alternative to physical and
statistical models that often have to introduce simplifying assumptions in order to
obtain a manageable solution. The role of Monte Carlo methods in statistics can be
compared to that of experimentation in the natural sciences [20]. Consequently,
there also is a need for proper conduct and reporting of MC experiments.

The scope of the statistical MC also includes the permutation and randomization
tests (Section 12.3) and of the resampling tests which are based on bootstrapping
and jack-knifing. In bootstrapping one produces a number of samples of size n from
an original sample of the same size n by means of random selection with replace-
ment. From these bootstrapped data one can then compute various statistics, such
as the confidence intervals for the median, interquartile range, etc. of the original
sample. Jack-knifing employs a similar technique, but with the difference that
resampling produces a predetermined number of samples of size m < n by means
of random selection without replacement. The statistics computed from the jack-
knifed data are then corrected for the loss of degrees of freedom that resulted from
drawing samples whose size is smaller than that of the original sample [21].

One of the earliest applications of this approach is attributed to Student (W.S.
Gosset) for the study of the ¢-distribution for small samples, before the analytical
form of the distribution was known [22]. The particular shape of the ¢-distribution
can be studied empirically by repeatedly taking two samples of a given size n from
the normal distribution. One then computes the -statistic in the usual way:

1= (x, — X2) Asp Nn) with s2 = (s7 + 53) 22

where x, x, and s,, s, represent the means and standard deviations of the two
samples, respectively.

This operation is repeated a large number of times, after which the distribution
of the r-values is plotted. Figure 12.7 shows the result of an MC simulation of the
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Fig. 12.7. Student’s ¢-distributions for the difference of the means from two samples with size 2 and
100, respectively, drawn from a normal population. The distributions have been derived from 1,000
runs in a probabilistic Monte Carlo simulation.

t-distribution for n equal to 2 and 100, using 1000 runs in each case. One can
observe the protracted tails of the z-distribution for small sample sizes and the
asymptotic convergence toward the normal distribution for larger sample sizes.

The MC procedure can be employed for the study of distributions whose
analytical form is difficult to obtain. Practical applications of this approach can be
found in problems that involve waiting lines (queues) or random walks where the
basic transition probabilities are not stationary, such as occurs in self-regulating
and adaptive systems.

In MC models one often makes the simplifying assumption that the phenomena
are normally distributed, with a given mean and standard deviation. An expedient
way to generate pseudo-normally distributed random numbers follows from the
central limit theorem. (The term pseudo-normal indicates that the numbers are only
approximately normally distributed.) To this effect, 12 random numbers u;, us, ...
u; are drawn from the uniform distribution between 0 and 1. It can be shown that
the pseudo-normal variable z is given by:

12
z=£2 ui]~6 (12.11)
i=1

A practical application of probabilistic MC is the robust determination of the
minimal sample size n for a minimal detectable difference d in a test for the
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comparison of two means, when the distribution of the test statistic x is known but
not normal [23]. The procedure is as follows. First, one constructs an alternative
distribution by shifting the original distribution of x by the amount 4. Then one
takes a sample of a relatively small size n from each of the two distributions. The
preferred two-sample test is performed and one notes whether the outcome is
significant at the stated level of significance a (e.g. 0.05) or not. The sampling is
repeated a large number of times (of the order of 10000) and the fraction of
significant outcomes is determined. This fraction is the power 1 -- 3 of the test for
the given distribution of x, level of significance a, difference d and small sample
size n. Usually, the power thus obtained will be smaller than the required one (e.g.
0.80). The procedure is repeated again for the same settings of d and o, but for a
substantially larger sample size n. The resulting power may turn out to be larger
than required. If not, the procedure is repeated once again until a power of at least
equal to the prescribed one is obtained. Finally, the power 1 — B is plotted against
the sample size n. From this plot one can determine the minimal sample size by
means of interpolation for a given power 1 — 3, significance «, difference d and
distribution of x.

A drawback of the Monte Carlo approach is that the number of simulation runs
that must be performed can be excessively high. As a general rule one can state that
the error d between a theoretical and MC-estimated distribution decreases with the
square root of the number of runs N [21]. In order to obtain an accuracy 6 with a
certainty of 99% one must have at least:

N =(1.63/8)* (12.12)

For example, in the case of 3-digit accuracy (8 = 0.0005) the minimal requirement
is about 107 runs.

12.5.2 Probabilistic MC for physical systems

Generally in statistics, phenomena with a random component are studied by
means of a model. Sometimes, however, the model is too complex to be solved
either analytically or numerically. With Monte Carlo methods, the model itself is
studied by means of simulated random events.

The latter was the case with the design of the first atomic bomb and nuclear
reactor. The physical model which accounted for production, scattering and absorption
of secondary neutrons produced by fission of uranium was intractable by ordinary
mathematical methods. Hence, no reliable estimates for the design parameters could
be obtained, which either guaranteed rapid explosion or controlled operation.

The Monte Carlo approach consisted in modelling the chains of random events
that could take place. These are represented schematically in Fig. 12.8 which
shows two types of events following fission of an Up;s atom in the core of a reactor.
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Graphite

Fig. 12.8. Random walks of secondary neutrons produced by fission of uranium inside the core of a
nuclear reactor. The mean free path length of the neutrons can be estimated by means of a probabilistic
Monte Carlo simulation of the physical processes.

Inevent A, a neutron is produced by fission of U,3s5 and is scattered outside the fuel
rod into the surrounding graphite mantle. The neutron is slowed down by succes-
sive collisions and eventually reenters the fuel rod as a thermal neutron where it
contributes to the chain reaction by fission of another U,ss atom. In event B, a
secondary neutron is also scattered into the graphite moderator, but is absorbed in
the graphite and thus lost for a sustained chain reaction. The successive events
constitute a random walk, which is characterized by the mean free path length of
the neutrons. This is a critical parameter for the controlled operation of a nuclear
reactor. In reality the model is much more complicated than we have described
here. The point is, however, that the random processes inside a reactor can be
simulated, given the relevant physical characteristics and design parameters, such
as the cross section for scattering and absorption of neutrons by graphite and
uranium, the proportion of U,ss to Uasg, the dimensions of the fuel rods, the spacing
between rods, etc. For various settings of the design parameters, one can then
obtain statistical estimates for the operating characteristics, such as the yield of
secondary neutrons, heat production, etc.

The phenomena of photon scattering and absorption inside a photographic film
have been studied likewise by means of MC calculations [24]. Three basic types
of events are represented schematically in Fig. 12.9. In event A, a photon is
absorbed directly in the photographic emulsion on top of the film. In event B, the
photon is scattered into the supporting film and is subsequently lost, while in C it
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Fig. 12.9. Random walks of photons that interact with the sensitive emulsion and plastic support of
a photographic film. The sensitivity of the film can be determined by means of the probabilistic Monte
Carlo approach.

1s back scattered into the sensitive emulsion layer. In this case, the description of
the physical system also led to intractable mathematical equations. The MC
approach, however, allowed to design photographic films with controllable sensi-
tivity for various types of emulsion and support.

12.5.3 Deterministic MC

In deterministic applications of MC a deterministic quantity is expressed as a
parameter of some random distribution, and then that distribution is simulated. A
classical illustration of the deterministic approach is the so-called needle game of
Buffon, which was designed around 1750 for the determination of the number 7
[25]. In this game, parallel lines, separated by a distance d are drawn on a sheet of
paper (Fig. 12.10). A needle with length /, smaller than d, is thrown nf times on the
sheet, and the number of times nc that the needle crosses one of the lines is
recorded. The value of 7 can be determined to any desirable degree of accuracy,
depending upon the number of throws nt, by means of the formula:

=2 I/{d k) withk =nc/nt (12.13)

Deterministic MC s also used for the calculation of high-dimensional integrals
for which analytical or numerical solutions are difficult to obtain. The procedure
for the one-dimensional case is illustrated in Fig. 12.11. We assume that the
function f(x) to be integrated ranges between the values fii, and fi,,x on the interval
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Fig. 12.10. The needle game of Buffon, a classical illustration of the deterministic Monte Carlo
method.

f(x)

Fig. 12.11. Integration of a function by the deterministic (hit-or-miss) Monte Carlo approach.

of x between 0 and 1. The rectangle defined by the limits fiyn, fmax and O, 1 is then
seeded randomly by nt points and the number of points nb that lie below the curve
of f(x) is recorded. The integral is then determined to any degree of accuracy,
depending on nt, by means of:

i
j £GO)dx = Finin + k(Fax — Fin) With k = nbint (12.14)

0

The above approach is also referred to as the hit-or-miss Monte Carlo method.

In a broad sense one can also regard the so-called natural computing techniques,
such as genetic algorithms and simulated annealing (Chapter 27), as modern
developments of the Monte Carlo approach. While the crude Monte Carlo method
uses only random sampling of the space of possible solutions, natural computing
algorithms make use of both random variation and selection rules in order to arrive
at the solution.
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Chapter 13

Internal method validation

13.1 Definition and types of method validation

Method validation in analytical chemistry is the last step in method develop-
ment. Once a candidate method has been obtained, it has to be shown to meet the
requirements of the user, namely to measure a specific substance with a given
precision, accuracy, detection limit, etc. Method validation is carried out to ensure
the quality of a method. It is therefore an essential part of any quality assurance
program in the laboratory. Quality assurance (in general) has been defined [1] as:
“A system of activities whose purpose is to provide to the producer or user of a
product or a service the assurance that it meets defined standards of quality with a
stated level of confidence.”

Chemical analysis can also be considered as a service. To “meet defined
standards of quality” requires, among other things, that the analyst should define
the performance characteristics that a method must meet and the “stated level of
confidence” requires a statistical approach to measuring those performance char-
acteristics. This then leads to the following definition [1]:

“Method validation consists of documenting the quality of an analytical
procedure, by establishing adequate requirements for performance criteria,
such as accuracy, precision, detection limit, etc. and by measuring the values
of these criteria.”

The word “document” is important. Several regulatory bodies require that one
details the analytical procedures used as standard operating procedures (SOP).
They also require proof that one has indeed carried out a validation of such methods
and this means one must document the validation as part of a quality assurance
program. Method validation requires different experimental set-ups according to
the purpose and the context and must always be concluded with a statistical
analysis of the data produced by the method validation experiments. The statistics
applied are also very diverse and require knowledge of a large part of the statistical
techniques described in the preceding chapters. It is therefore one of the main fields
of application of chemometrics.
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Two types of method validation can be distinguished. The first will be called
internal method validation. It consists of the validation steps carried out within one
laboratory, for instance, to validate a new method that has been developed in-house
or to verify that a method adopted from some other source is applied sufficiently
well. In many cases the method validation stops here. When a company is prepar-
ing a method for the determination of a drug in blood, it is often not necessary to
collaborate with other laboratories in doing this. However, there are many situ-
ations in which two or more parties are involved, e.g. the laboratory of a manufac-
turer and that of a third party. Also, there are many instances where analytical
results are of interest to the general scientific community. In such cases agreement
about analytical results requires interlaboratory validation. Moreover, confronting
many laboratories is the best way of thoroughly testing a method. Internal valida-
tion is described in this chapter and the interlaboratory approach in Chapter 14.

Primary and secondary performance criteria can be distinguished. The primary
criteria are precision, which describes the size of random errors, bias, accuracy
and/or trueness, which measure the magnitude of systematic errors (see Sections
2.5 and 2.6) and the detection limit, which determines the lowest quantity of a
substance that can still be distinguished from the background. Secondary criteria
are criteria that have an influence on the primary ones. An example is linearity. In
many cases the determination requires a calibration step and the calibration line is
often a straight line. If the method is based on the linearity of the calibration line,
then deviation from this postulated relationship will lead to bias. Other secondary
criteria are as follows.

— The range (i.e. the interval between upper and lower analyte levels) in which

the linear relationship or any other calibration relationship used is correct.

— The quantification limit, which is the lowest concentration of the analyte that
can be determined with sufficient precision and accuracy.

— The selectivity, which ensures that the signal measured is not influenced by
concomitant substances or, at least, that the contribution of other substances
is removed.

— The sensitivity, which gives an indication of how much the signal changes
with concentration. As discussed in Section 13.8, this term is also used in a
very different context together with specificity and terms such as false positive
rate and false negative rate to describe the performance of qualitative analy-
sis procedures.

— The ruggedness, which measures to what extent a method is sensitive to small
changes in procedure or circumstances.

All the terms given above are used in this section in a colloquial sense.
Definitions will be given and discussed in the sections devoted to each of the
performance criteria. It should be noted immediately that terminology is a
major problem. At the time of writing this chapter (1996), there are for instance
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nomenclature guidelines by ITUPAC [2-4], by ISO [5,6] and a proposed terminol-
ogy by AOAC [7]. These definitions do not agree on several points. Moreover,
many other guidelines, norms, and definitions exist in specific areas. Where
possible, we will follow ISO, IUPAC and AOAC guidelines. Where they disagree,
we will say so and state our preference for one or other term.

13.2 The golden rules of method validation

There are three very important rules which must always be kept in mind:

— Validate the whole method: Quite often, one validates only the actual determi-
nation (e.g. the atomic absorption measurement). One must however validate also
the preparatory steps, such as dissolution and digestion of the sample. Where
relevant, attention must be paid to the sampling and the storage of the sample.
These, however, are not part of the validation of the analytical determination as
such. In other words, one assumes that the sampling is correct and this assumption
is tested separately.

— Validate over the whole range of concentrations: A method may work very
well at high concentration but be inadequate at low concentration. It is also known
that precision depends on concentration (see further Sections 13.4.2 and 14.2.5).

— Validate over the whole range of matrices: 1t is evident that a method for
moisture in cheese does not necessarily work for the same determination in
chocolate. However, even “cheese” consists of sufficiently different types of
matrices to require that one should consider several representative kinds of cheese
in the validation. This is also true for “urine” (include several urines from different
patients) or “waste waters” (identify the different types of waste water and include
a representative set in the validation procedure).

13.3 Types of internal method validation

There are several types of internal laboratory validation:

~ Prospective validation. This is carried out when a new method is introduced.
The method must then be fully tested for its performance characteristics. Prospec-
tive validation can often be divided in an exploratory phase and a full validation.
In the exploratory validation stage one determines with a limited number of
samples whether the method can be considered to be a good candidate for its
purpose. Very often this initial phase will focus on those aspects of a method which
are known to be the more delicate ones (e.g. selectivity of a chromatographic
method, freedom from matrix interferences of an atomic absorption method) and a
cursory determination of repeatability. When the results are considered acceptable,
a more detailed full validation follows, the extent of which is determined by the
context in which the analysis is carried out (e.g. is the method to be used for a short
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period or over many years? In the first case, there is no sense in determining the
ruggedness of the method — see Section 13.4.5).

— Suitability checks. These can be applied when transferring a method from one
laboratory (where it was fully tested) to another. This is then called transfer
suitability check and requires the receiving laboratory to do a reduced amount of
testing. Method bias (see Section 13.5.1) has been eliminated as a source of error
in the prospective validation phase, but laboratory bias may exist. This means that
one will no longer need to study, e.g., freedom from matrix effects, but the
recetving laboratory will need to analyze a few samples which have also been
analyzed by the developing laboratory. The receiving laboratory will certainly also
need to determine its own repeatability values (see Section 13.4.1).

System suitability checks are used to investigate whether the instruments, re-
agents, etc. are functioning correctly before starting a new series of determinations.
It often consists of checking whether certain key characteristics of the method are
respected. This will nearly certainly involve an evaluation of the calibration line
(is it still straight? Has the sensitivity changed?) and, where this is relevant, of the
blank. Method specific characteristics are also used. For instance, in chromatogra-
phy one will require that a certain resolution (often >1.5) is obtained. This type of
suitability checking is often included when working under Good Laboratory
Practices (GLP) rules or under a quality assurance program and should be specified
in the standard operating procedure (SOP).

— Retrospective validation. One can collect over a period of time the results of
a certain number of determinations. These are then used to determine precision
over long periods.

~ Quality control. Running one or a few samples with known composition,
preferably in a blind way, permits the preparation of charts for both the mean result
(detection of bias) and the range (repeatability). This was discussed in detail in
Chapter 7 and will not be considered further here.

Which type of method validation has to be carried out depends on the applica-
tion field of the laboratory. Because there are so many different contexts, it is
impossible to give an exhaustive enumeration. However, one can distinguish more
or less three types of situations, namely:

— The laboratory develops its own methods, to a large extent for its own use. A
typical example is a pharmaceutical company that develops and produces its own
active molecules and requires analytical methods for content and stability in
formulations, to investigate metabolization, etc. The methods are essentially meant
for use in the company, but must be validated and be available to regulatory bodies.
Such a laboratory will essentially carry out full validation about all the perform-
ance characteristics described in Section 13.2. It may also develop suitability
checks for transfer to other laboratories of the same group or contract laboratories
and will certainly prepare suitability checks for inclusion in SOPs.
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— The laboratory develops new methods for general use. An example might be
a research institute for the agro-food industry. This laboratory will need to carry
out a full validation and prepare suitability checks for the SOP. If the method is
successful and thought to be of more general use, the laboratory will take steps to
have some official organization, such as the Association of Official Analytical
Chemists (AOAC), organize an interlaboratory study of the method-performance
type (see Section 14.1).

— The laboratory uses standard methods. Examples here are control laboratories,
both governmental and industrial. Since the method has been validated its perform-
ance characteristics are known. The laboratory should concentrate on proving that
it is generally proficient in its chosen area, for instance by analyzing reference
materials, and, where possible, by participating in interlaboratory studies of the
lab-performance type (see Section 14.2). When the laboratory carries out routine
analyses on a regular basis, it will also need suitability checks for daily use and
quality control procedures.

13.4 Precision
13.4.1 Terminology

The precision is a measure for the size of the random errors. Random errors are
discussed in Sections 2.2.2 and 2.5. From a statistical point of view, precision
measures the dispersion of the results around the mean, irrespective of whether that
mean is a correct representation of the true value. Therefore, it requires the
measurement of the standard deviation. How this is done depends on the context.

Two extreme types of precision are usually distinguished, namely the repeat-
ability and the reproducibility. Reproducibility, as defined by ISO [5,6], can be
determined only with interlaboratory experiments and for this reason, we define
these terms in Section 14.2.1 and recommend that the reader should read that
section together with the present section.

In short, repeatability is the precision obtained in the best possible circum-
stances (same analyst, within one day when possible) and reproducibility in the
most adverse possible circumstances (different laboratories, etc.). Intermediate
situations may and do occur.

A protocol about collaborative studies prepared under the auspices of IUPAC
[8] also considers what it calls preliminary estimates of precision. Among these it
defines the total within-laboratory standard deviation. It includes both the within-
run (= repeatability) and the between-run variation. This means that one has
measured on different days and preferably used different calibration curves. The
total within-laboratory standard deviation can be considered as a within-laboratory
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reproducibility. These estimates are preliminary when the experiments are carried
out as a prelude to an interlaboratory method performance study. Other terms, such
as intra-assay (= within-run) and inter-assay (= between-run) precision are also
used. The ISO-standard [6] also gives some definitions in this context. A laboratory
cannot determine reproducibility as such, because this has to be done in interlabo-
ratory experiments, but it can determine intermediate precision conditions (i.e.
intermediate between reproducibility and repeatability). ISO recognizes what is
called M-factor different intermediate precision conditions (M = 1, 2 or 3), where
M = 1 means that only one of the three factors (operator, equipment or time) is
different, or the equipment is recalibrated between successive determinations. M =
2 or 3 means that two or all three factors differ between successive determinations.
The term intermediate precision has been accepted for instance by the ICH [9], the
International Committee for Harmonization that regulates terminology in pharma-
ceutical analysis.

A third term used in the context of precision is robustness or ruggedness. An
analytical procedure consists of a set of instructions, such as “Adjust the pH to 5
by adding acetic acid 1 N,” or “Heat during 5 minutes at a temperature of 100°C.”
Small departures from these details often occur when one carries out the procedure
in practice and one may wonder how rugged the procedure is to such variations. In
the same way, the analyst developing a method is faced with the question of how
strictly instructions should be stated. Should a pH of 5 £ 0.05 be required oris 5 £
0.5 sufficient? The question will also be how rugged the new method is in relation
to departures from the nominal values put in. In this case, one needs to measure the
robustness or ruggedness of the method. The determination of the ruggedness is
sometimes carried out to detect possible critical experimental parameters, that have
a larger effect on the results than other parameters. Controlling such parameters
may lead to better reproducibility or to avoid sources of laboratory bias (see also
Section 13.5.1).

13.4.2 Repeatability -

A laboratory can measure its own performance for a certain application in terms
of repeatability, or several laboratories together can measure the repeatability of
the method by carrying out an interlaboratory experiment. The latter is explained
in Section 14.2 and we will confine the discussion here to the former. The basic
procedure is simple. Six to eight replicate determinations are carried out, when
possible within a single run by the same analyst, and the standard deviation is
determined. The result can also be reported as a relative standard deviation
(sometimes symbolized as RSD) or the coefficient of variation (% CV) (see also
Section 2.1.4.3). IUPAC [2] prefers the term percentage standard deviation instead
of coefficient of variation, but recommends that the relative standard deviation be
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reported. Some guidelines suggest carrying out the repeatability measurement
three times, to pool the variances (see Section 2.1.4.4) and obtain the standard
deviation from the pooled variance. Care should be taken that the replicates are true
replicates and not only measurement replicates, i.e. it should be ensured that all
steps are replicated. If the blank is a possibly important source of variation, then it,
too, should be replicated. Because precision often depends on concentration, it
should not only be determined at the standard or specification values of concentra-
tion but also at the upper and lower limits (see also quantification limit — Section
13.7.3 ) of the concentration range if this is not very limited. Of course, it may be
useful to measure separately the repeatability of a certain step in the procedure. For
instance, repeatability of the injection is often measured by chromatographers.
This permits the steps responsible for important parts of the total variation to be
identified and a decision made as to which step should be better controlled. To
make a distinction, certain organizations [10] distinguish between what they call
the precision of a method and the precision of a system. The former requires
repetition of the whole procedure, while the latter results from replicate measure-
ments of a standard preparation “in a form ready for direct measurement of the
analyte (e.g. no further sample treatment is required)”.

There are situations which require more elaborate experimental designs. Con-
sider, for instance, the example of Table 13.1. The left part of this table has already
been given as Table 2.3. A method for measuring moisture in cheese was devel-
oped. It is not acceptable to validate it for only one type of cheese. This would
violate the third rule of method validation (Section 13.2). We then need to select a
certain number of cheeses that covers sufficiently well the scope of the method. Let
us suppose that this was achieved by selecting the seven first types in Table 2.3
(reprinted as Table 13.1). In that case we can analyze a number of replicates n; of

TABLE 13.1

Comparison of the repeatabilities of two methods for moisture in cheese

Type of cheese Karl Fischer Oven

S n; Si n;
Processed cheese food 0.29 10 0.01 2
Processed cheese food 0.31 10 0.01 2
Monterey jack 0.35 8 0.12 2
Cheddar 0.24 8 0.13 2
Processed american 0.30 8 0.13 2
Swiss 0.31 8 0.25 2
Mozzarella 0.24 9 0.01 2
8 0.293 0.126

df 54 7
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each type as described in the table. It is not always necessary that as many
replicates of each sample are analyzed as for the Karl Fischer method. In fact, we
will see that in certain applications duplication can be sufficient.

When the replicates of one cheese are analyzed within the shortest possible time
and, when possible within one run, a measure of repeatability is obtained. It does
not matter that there is a time lapse between the analysis of each different cheese.
Indeed, the calculation procedure is such that one determines precision under
repeatability conditions for each separate cheese and then pools them to obtain an
average measure of repeatability. How to do this was shown in Section 2.1.4.4. We
conclude that the repeatability standard deviation, s, = 0.293. When the number of
replicates is only two then we have paired data and eq. (2.8) can be applied.

A question which can be asked in method development is whether a certain
method is more precise than another. Let us consider an example. We want to
compare the Karl Fischer method, which was used for the data of Table 2.1 with
another method, namely an oven method. This leads to the data of Table 13.1.

In Chapter 5 we learned that two standard deviations can be compared using the
F-test. We make use of this here for the pooled standard deviations. The calculated
F is given by F = (0.293)%(0.126)*> = 5.41.

For Hy: o, (Fischer) = o, (oven) and H,: o, (Fischer) # G, (oven), i.e. a two-sided
test, and a = 005, ch = F0‘05;54_7 =427

Since F'> F;, we reject Hy or, in other words, the Fischer method has a different
repeatability from that of the oven and, in view of the results obtained, we conclude
that the oven shows better repeatability.

Note that it is not possible to show that the Karl Fischer and the oven method
have a different repeatability for the first processed cheese food (or any other
cheese) specifically. Indeed, for the first type of cheese F = (0.29)%/(0.01)* = 841
and Fgy = Fooso1 = 963. This is due to the small number of replications (and
therefore of degrees of freedom) for the oven method. We should remember that
the B-error (not finding a difference, when that difference is real) depends on the
number of replicates (see Chapters 4 and 5). An ISO norm [11] gives graphs that
allow to determine [ at a given a and number of replicates n or the n needed to
reach a given 3 at a certain level of o, both for the comparison of an experimental
s with a given ¢ or the comparison of two standard deviations. Unfortunately, for
the comparison of two standard deviations the graphs are given only for situations
where the number of replicates is the same for both standard deviations. It will be
clear that the larger n is and therefore the degrees of freedom, the smaller 3 will be.
Pooling variances as we did here, is useful in such cases, because the number of
degrees of freedom increases. For cheese 1 we are not able to decide whether the
Karl Fischer method is worse than the oven method, but we can decide that this is
so for cheese samples on the whole. Part 6 of ISO norm 5725 [6] gives numbers of
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Fig. 13.1. Standard deviation (a) and relative standard deviation (b) as a function of concentration.
Models derived for ICP[12]; A:6=1/3+0.1 C,B: 6*= 4 +0.12 C.

measurements required to detect a difference between precisions as a function of
what is called the detectable ratio. This is defined as the minimum ratio of
precision measures that the experimenter wishes to detect with high probability
from the results of experiments using two methods.

A final question that can be asked is how the repeatability changes with
concentration. The data of Table 13.6 are typical. They show that the repeatability
standard deviation increases with the concentration. The coefficient of variation
usually decreases, but may stabilize for higher concentrations. When the concen-
trations cover a large range, this phenomenon of heteroscedasticity is often noted.
Several studies have evaluated repeatability as a function of concentration. For
instance, Thompson [12] studied repeatability in 700 geochemical materials for 25
elements by ICP. He investigated several models, the most adequate of which was
also the simplest, namely 6 = G, + b, C. Good results were also obtained with the
relationship 6% = 6§ + b’} C?, where C is concentration. The authors consider this
to be theoretically more satisfactory because variances are additive and standard
deviations are not. The relationships are shown in Fig. 13.1. It should be noted that
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these relationships are studied also in the context of interlaboratory studies (see
Section 14.2.5).

In Chapter 8 it was explained that when the variance is not constant over the
range studied weighted regression may be preferable when constructing calibration
lines, because it will lead to results with better precision. It follows that in many
cases weighted regression should indeed by preferred.

13.4.3 An intermediate precision measure: within-laboratory reproducibility

In this section we will discuss the determination of (time-different) intermediate
precision or within-laboratory reproducibility as defined in Section 13.4.1.

The basic experimental set-up is again straightforward. One measures the
standard deviation of a set of replicate measurements, for instance by analyzing
one replicate each day for a certain number of days (often n = 5 to n = 8). More
complex set-ups are possible. For instance, one can estimate within-laboratory
reproducibility and repeatability in a single experimental set-up with duplicates.
Consider, for example, Tables 13.2 and 13.3. Two measurements are carried out
on 7 days. The ANOVA table learns that the residual mean squares, which here are
termed the mean squares within-days, is 0.0414. This represents s? under repeat-
ability conditions (s; = 0.20). To determine the variance due to the between-day
effect, one uses eq. (6.20) and substitutes sZcween ad MSpepeen fOr 55 and MS 4
respectively

TABLE 13.2

Experiment for the determination of within-laboratory reproducibility and repeatability from a single experimental
set-up

Day Replicate | Replicate 2
I 31.2 317

2 30.9 30.9

3 30.7 309

4 311 315

5 313 31.6

6 314 316

7 314 31.4
TABLE [3.3

ANOVA Table for the data of Table 13.2

Source SS df MS
Between days 0.9843 6 0.1640
Within days 0.2900 7 0.0414

Total 1.2743 13
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Sl%etween = (Msbetween - MSwithin) /nj ( 13. 1)

For MSteween = 0.1640, MSyiin = 0.0414 and n; = 2, this yields sgepween = 0.0613.
The within-laboratory reproducibility s&r is equal to:

SHR = 87+ Sterween = 0.103 (13.2)
SWR = 0.32

The conclusion is that the repeatability standard deviation is 0.20 and the within-
laboratory reproducibility standard deviation is 0.32.

The number of replicates and days depends on the situation. Some guidelines
give minimal requirements. For instance, the Société Francaise des Sciences et
Techniques Pharmaceutiques (SFSTP) [13] requires 6 replicates and 3 days or
laboratories or operators or instruments, depending on the type of intermediate
precision one needs to measure. The National Committee for Clinical Standards
(NCCLS) [14] recommends 20 days and determinations in duplicate. In all cases,
one should remember that the repeatability and within-laboratory reproducibility
are estimates of the true values of these parameters and that the estimate becomes
better when n increases. The NCCLS procedure is more equilibrated than the
SFSTP one. In the latter there are 15 df for the repeatability compared to only 2 for
the between-day component. In the former there are 20 df for the repeatability and
nearly as many (19) for the between-day component.

13.4.4 Requirements for precision measurements

The precision required depends on the application. However, we can ask what
precision should reasonably be expected. Important work in this context has been
done by Horwitz [15] in the context of interlaboratory studies (see Section 14.2).
Some guidelines have been proposed by several organizations in specific areas. For
instance, in the area of pharmacokinetics, a committee [16] proposed that precision
is acceptable if it is smaller than 15% relative standard deviation, as measured with
n 2 5 replicates, except at the quantification limit (see Section 13.7.3) where it
should not exceed 20%. Strangely, these values are given both for repeatability and
within-laboratory reproducibility. As the latter is usually worse than the former,
one can infer that the criteria given above are meant for within-laboratory repro-
ducibility. The Canadian Acceptable Methods guidelines [10] expect a method
intra-day and inter-day relative precision of 1% for drug substances and less than
2% for active substances in dosage forms. For minor components (impurities/re-
lated substances) less than 5% system relative precision is expected at the 0.2%
concentration level. In all these guidelines it would seem that one does not
distinguish between true precision and precision, measured with the recommended
number of replicates (5 to 8), which is only an estimate of the true precision. If one
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finds that the estimated precision measure is 4.8% and 5% is the accepted limit,
should one then accept the method because 4.8 < 5 or should one reject it, because
the upper confidence limit around 4.8 exceeds 5? It would seem that the first
position is adapted, but this is not made clear. This is certainly a weakness of such
guidelines.

In Section 2.4 we studied the quality of a measurement in relation to the quality
of a process. Relating the capability of a process and the tolerance limits of a
process to the acceptable precision for a measurement method is possible, but
seems to have been performed only rarely in the analytical literature.

A very interesting new development is the use of precision clauses based on
repeatability or reproducibility standard deviations. For the moment, this is only
advocated for standard methods resulting from interlaboratory experiments. How-
ever, there is no reason why they should not be included more generally in
suitability checks, SOPs, QC programs, etc. An example of such a clause is: “The
absolute difference between two single test results obtained under repeatability
conditions should not be greater than 0.5 mg/kg”. This is described in Chapter 14.2.

13.4.5 Ruggedness

There are no definitions of ruggedness by the more general authorities such as
ISO or IUPAC, but there are some in the pharmaceutical world, such as in the US
Pharmacopeia [17], the Canadian Acceptable Methods [10] and the SFSTP docu-
ment [13]. In the chemical literature the term ruggedness or robustness is used
when one measures the influence of small changes in the stated procedure on the
result. If the change induced is considered to be acceptably low, then the procedure
is considered to be rugged. The French definition comes close to this. It states that
“the ruggedness of an analysis procedure is its capacity to yield exact results in the
presence of small changes of experimental conditions such as might occur during
the utilization of these procedures.” It continues by defining that by small changes
in experimental conditions is meant “any deviation of a parameter of the procedure
compared to its nominal value as described in the method of analysis.”

The US Pharmacopeia, on the other hand, defines ruggedness as follows: “The
ruggedness of an analytical method is the degree of reproducibility of test results
obtained by the analysis of the same samples under a variety of normal test
conditions, such as different laboratories, different analysts, different instruments,
different lots of reagents, different elapsed assay times, different assay tempera-
tures, different days, etc.”. In short, this is a definition of reproducibility. It should
be noted that the definitions of the US Pharmacopeia often do not follow general
usage in method validation. For instance, the term repeatability is not known by
them. The Canadian document [10] follows the US Pharmacopeia, but includes a
paragraph hinting at the French definition by including different levels of ruggedness
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testing. One level “requires verification of the basic insensitivity of the method to
minor changes in environmental and operational conditions”, while another level
is very similar to the US Pharmacopeia definition. We consider the French defini-
tion as the most apt. As a consequence, a ruggedness test as we understand it here
consists of a set of experiments according to an experimental design to study how
an analytical method is affected by small changes in the implicit or explicit
procedural details. By explicit, we mean a factor mentioned in the procedure, for
instance the time during which one has to boil a solution or the molarity of the
hydrochloric acid to be added. The implicit factors are not mentioned as such but
may have an influence. For instance, if no temperature is mentioned at which
certain steps in the procedure have to be carried out, then one will work at ambient
temperature. We may then wonder whether carrying out these steps at 15°C or at
25°C will have an effect on the end result.

The term “ruggedness” was introduced by Youden and Steiner { 18] into analyti-
cal chemistry. They recommend that for each factor one defines a nominal and an
extreme level. The nominal level is the level given in the procedure or the most
probable level of an implicit factor, the extreme level is the one which exception-
ally might be attained in practice. Usually, one exaggerates a little in defining the
extreme level to make sure that one measures the maximum effect possible. For
instance, if a procedure states: “Boil the solution during 10 minutes”, then one
could reason that it is unlikely that anyone would boil it for longer than 15 minutes.
The nominal level would be 10 minutes, the extreme level 15 minutes. One can
also consider two extreme levels around the nominal level. For instance, the
nominal level for boiling a solution being 10 minutes, one could consider that the
extremes are 7 minutes and 15 minutes and try to determine the effect on a response
between those two levels.

As there are two levels of each variable and one does not want to perform too
many experiments, the experimental design used is often one of the screening
designs, described in Chapter 23, i.e. either a saturated fractional factorial or a
Plackett Burman design. Different articles concerning the measurement of rugged-
ness using designs of this type were published by Vander Heyden et al. [19] and
van Leeuwen et al. [20].

It is not possible to go into the details of exactly how these designs are applied
and interpreted yet but a few examples should give an idea. Table 13.4 is an
example of the simplest possible application namely a design consisting of four
experiments to examine the ruggedness of a procedure towards three factors. Let
us suppose that we have developed a colorimetric procedure and are concerned
about the effects of the factors pH (A), temperature (B) and concentration (C) of a
reagent on the absorbance. The nominal values are pH = 8.0, concentration = 0.10
M and the temperature is not specified. We could decide to investigate the
experimental region from pH 7.8 to 8.2, concentration from 0.09 M to 0.11 M and
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TABLE 13.4

Ruggedness determination for three variables: (a) actual values; (b) coded values; (c) computation of effects

(a) Exp. pH t° Conc. Result
I 8.2 25 0.11 1.00
2 7.8 25 0.09 0.90
3 8.2 18 0.09 1.01
4 7.8 18 0.11 0.89

(b) Exp. A B C y
1 + + + 1.00
2 _ + - 0.90
3 + _ - 1.01
4 - - + 0.89

(c) Effect A =[(y; +y3) — (y2 + y2)}/2=0.11

Effect B = [(y; + y2) — (y3 + y)}2 = 0.0
Effect C = [(y; + y4) — (y2 + y3)1/2 = -0.01

temperature from 18°C to 25°C. We will call the lowest value the — level and the
higher one the + level. Referring to Table 13.4, this means that one should carry
out the first experiment at pH +, i.e. 8.2, concentration +, i.e. 0.11 M, and
temperature +, i.e. 25°C.

Note that for each factor there are two experiments at the + and two at the —level.
For instance, for pH the experiments 1 and 3 are at the +, 2 and 4 at the —level. One
reasons that by subtracting the sum of the two — experiments from the two +
experiments and dividing by 2, one estimates the effect of that factor. Thus, one
obtains the estimates given in Table 13.4. The effect of A (in absolute values) is
higher than that of B and C. How to treat such data is described in more detail in
Chapter 23. However, it is clear that, if the standard deviation on the four experi-
ments is not appreciably higher than that obtained for the repeatability, one may
conclude that the method is rugged. Also, if one variable needs to be better
controlled, it is variable A.

More complex designs are sometimes required. One such design is the so-called
reflected design. An example is given in Table 13.5. This is applied when one
considers that effects may be asymmetric, for example a higher pH than the nominal
one may have an effect but a lower one not. Two designs are then made, one with the
upper level (1) and the nominal one (0) and one with the lower level (- 1) and the
nominal one. The experiments 1—12 make up the first design and experiments 12-23
the second. It should be noted that experiment 12 is common to both designs. The
statistical interpretation of the results will be discussed further in Chapter 23.
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TABLE 13.5
Reflected design for 11 factors (FI-F11) (from [20])

Exp. Fl F2 F3 F4 FS F6 F7 F8 F9 F10 Fll
1 I 0 [ 0 0 0 [ I 1 0 !
2 1 1 0 I 0 0 0 1 1 1 0
3 0 I I 0 l 0 0 0 I I 1
4 1 0 i 1 0 I 0 0 0 1 t
5 1 1 0 l 1 0 I 0 0 0 1
6 ! 1 1 0 1 I 0 t 0 0 0
7 0 1 L 1 0 1 I 0 1 0 0
8 0 0 I 1 I 0 I 1 0 I 0
9 0 0 0 l 1 t 0 { 1 Q t

10 1 0 0 0 ! 1 1 0 1 1 0

11 0 1 0 0 0 I 1 I 0 1 [

12 0 0 0 0 0 0 0 0 0 0 0

13 -1 0 -1 0 0 0 -1 -1 -1 0 -1

14 -1 ~1 0 -1 0 0 0 -1 -1 -1 0

5 0 -1 -1 0 -1 0 0 0 ~1 -1 -1

16 -1 0 -1 -1 0 -1 0 0 0 -1 -1

17 -1 -1 0 -1 -1 0 -1 0 0 0 -1

18 -1 -1 -1 0 -1 -1 0 -1 0 0 0

19 0 -1 -1 -1 0 -1 -1 0 -1 0 0

20 0 0 -1 -1 -1 0 -1 -1 0 -1 0

21 0 0 0 -1 -1 -1 0 -1 -1 0 -1

22 -1 0 0 0 -1 -1 -1 0 -1 -1 0

23 0 -1 0 0 0 -1 -1 -1 0 -1 -1

When one interprets the ruggedness as proposed by the US Pharmacopeia [17]
(see above) and would like to quantify the effects of, for instance, different
laboratories and different instruments, it is not possible to apply designs such as
those of Tables 13.4 and 13.5. Supposing that one lab is situated in the US, the other
in Japan, this would require the Japanese instrument to be moved to the US and the
US instrument to Japan to carry out experiments for combinations of the variables
“country” and “instrument” as required in a factorial design. In such cases, one
would prefer to carry out nested designs (see Chapter 6).

13.5 Accuracy and bias
13.5.1 Definitions

Systematic errors are characterized by terms such as trueness and bias and
related to the term accuracy. Unfortunately, there is quite a lot of confusion about
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them, because the definitions by different organizations are sometimes contradic-
tory. ISO [5,6] defines accuracy as “the closeness of agreement between test result
and the accepted reference value” and adds as a note that the term accuracy
describes a combination of random components and a common systematic error or
bias component. A test result can be a single result or the average of a set of results.
IUPAC [2] and AOAC [7] give definitions that are very similar. Probably the
AOAC definition is clearest. It states that the accuracy is the difference of individ-
ual values from the “true” or “assigned” or “accepted” value.

ISO [6] defines the trueness as “the closeness of agreement between the average
result obtained from a large series of test results and the accepted reference value”.
The definition adds that the measure of trueness is expressed in bias. In other
words, trueness is the concept and bias is the measure. Bias itself is defined as “the
difference between the expectation of the test results and an accepted reference
value”. In practical terms, this means that to ISO bias and trueness essentially mean
the same thing. It should be noted that IUPAC [2] gives the same meaning to bias,
but does not recognize the term trueness. AOAC also accepts bias in the same
sense. It states that bias is the “long term” or expected difference from an average
of many groups of individual values from the “true” or “assigned” or “accepted”
value. AOAC defines trueness on the contrary as the difference of an average for
a group of individual values from the “true” or “assigned” or “accepted” value. It
thereby creates a hierarchy such that accuracy is the difference of an individual
result from the true value, the trueness that of a single average and the bias that of
many averages.

Although the wording of the definitions is different one should note that all three
organizations seem to agree about the terms accuracy and bias. As the terminologi-
cal situation stands now, it therefore seems reasonable to avoid the term trueness
and use only the others.

It is only recently that the term accuracy was accepted by the chemical commu-
nity as having the meaning given in the above definition. Indeed, as ISO writes in
its introduction “accuracy was at one time used to cover only the component now
named trueness”. It was an ill-advised move of ISO not to have kept the term
accuracy as it was used originally and introduced trueness, because then all
organizations would have agreed without difficulty. Indeed, in the 1990 draft to its
present document IUPAC still defined accuracy (of the mean) as “The cloreness
of agreement between the true value and the limiting or population mean'result
which would be approached by applying the experimental procedure a very large
number of times”. The ICH [9], for instance, still states that the “accuracy of an
analytical procedure expresses the closeness of agreement between the value
which is accepted either as a conventional true value or an accepted reference value
and the value found” and add as an afterthought. “This is sometimes termed
trueness”. The reader should be warned therefore that in many textbooks and
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documents the terms discussed above will be defined or used differently and that,
moreover, 1t is probable that further changes will occur in the terminology.

Let us now try to clarify the situation with a simple example. Suppose the true
value, Uy, is known to be 100. For a single measurement yielding 92 one would then
say that the accuracy is —8. If that measurement were to be replicated a number of
times, say 5 to 8 times as would be the case for a repeatability measurement and
yield an average of 89, then in AOAC terminology the trueness would be —11, ISO
would still call this accuracy and [IUPAC does not seem to have a specific term for
this situation. Probably it would be best to call this an estimated bias or, in analogy,
with precision measurements, an intermediate estimate of bias. If many sets of
averages are obtained for instance by several labs, and this would yield 90, then
IUPAC, AOAC and ISO would say that the bias is (estimated to be) —10 and ISO
would consider this bias a measure of the trueness of the method. In this book, we
will use bias to describe both the intermediate case and that for which the three
organizations use that term. Bias, A, is then determined as

A=p—Uo (13.3)

where L is the population mean of the experimental results and i, the true value.
Since | is not known, but estimated from an observed mean x, it would in fact be
better to define an estimated bias D = x — o (IUPAC uses A or A [3]).

There are two components of bias. The first is method bias, the error inherent to
the method, the second is laboratory bias. The latter is often viewed as the bias
introduced by the way a specific laboratory applies an otherwise unbiased method.
In certain definitions, it is however considered to be the total bias in a given
laboratory. IUPAC [14] states: “The laboratory bias should be defined as the
difference of the long-term average value from the true, formulated, or assigned
value. The average of all individual laboratory biases is the estimate of the method
bias”. This definition was made in the context of inter-laboratory comparisons and
a wider definition would be useful. ISO [6] states that the laboratory bias is the
difference between the expectation of results (i.e., the mean of a sufficiently large
number of results) from a particular laboratory and the accepted reference value.
The bias of a measurement method is defined as the difference between the
expectation of test results obtained from all laboratories using that method and the
accepted reference value. The laboratory component of bias is the difference
between the average of a large number of results in that laboratory and the overall
average result for the measurement method obtained by all laboratories. According
to these definitions, the laboratory bias thus is the (algebraic) sum of the bias of the
measurement method and the laboratory component of the bias.

Depending on the situation the laboratory component of the bias can be consid-
ered to be part of the systematic or of the random error (Fig. 13.2). From the point
of view of the individual laboratory this component of bias is a systematic error.



396

A
Bias (A) Repeatability

True value Population mean ———— Single result

Ho Method bias Lab component of bias 1] Xij

| (estimated by X;) J
or 1< ]
accuracy
B I |
Bias (A) Between-lab Repeatability
standard deviation

True value ——— Population Population — Single result

Ko mean mean Xij

H (of ali labs) Hj (in one lab)

Mecthod bias

1 1

reproducibility

Fig. 13.2. Bias and precision components for (A} a single laboratory j working under repeatability
conditions; (B) the interlaboratory situation.

However, when carrying out method-performance interlaboratory studies, we can
consider that the between-laboratory component of reproducibility includes the
laboratory components of the bias of the participating laboratories. When using a
standard method, which has been found free from method bias, any bias detected
by a laboratory is a lab bias and must be considered to be due exclusively to the
laboratory component of bias. To avoid ambiguities concerning the systematic or
random nature of errors, ISO [5] also uses the term uncertainty. This is defined as
“an estimate attached to a test result which characterizes the range of values within
which the true value is asserted to lie.” This range is determined by several error
components, both random and systematic.

Systematic errors may be constant (absolute) or proportional (relative). Suppose
that the true result of three samples is respectively 100, 200 and 300, that no random
error is made and that one finds 110, 210 and 310. This is a constant error. If we were
to find 110, 220 and 330, we would call it proportional. A constant error refers to a
systematic error independent of the true concentration of the analyte and should be
expressed in concentration units. A proportional error depends on the concentration of
the analyte and should be expressed in relative units, such as percentage.

The main sources of constant error are insufficient selectivity, which is caused
by another component that also yields a response, and inadequate blank correc-
tions. Proportional errors are caused by errors in the calibration, for instance by
different slopes of the calibration lines of the standards and in the sample (matrix
interference). The incorrect assumption of linearity over the range of analysis will
also cause errors related to the concentration to be determined.
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13.5.2 Restricted concentration range — reconstitution of sample possible

The experimental design to estimate bias depends on a number of experimental
considerations, mainly the extent of the concentration range to be investigated, the
availability of blank material (i.e. the matrix to be analyzed without the analyte to
be determined) and the possibility to add analyte to such a material in a repre-
sentative way. We will discuss different typical situations going from the simplest
(in this section) to the most difficult (the following sections) from a practical point
of view.

In some instances the expected concentration is known within a rather narrow
margin, for instance when one needs to verify the content of a manufactured
product, such as a drug in a pharmaceutical preparation. When this is technically
possible, one validates the method by reconstituting the sample e.g. by preparing
synthetic preparations (i.e. preparations with exactly the same composition as the
one that has to be assayed) or by spiking (addition of the analyte to blank material).
Since one needs to validate over the whole range of concentrations that can be
encountered, one prepares a synthetic preparation with a content of 100% of the
expected value and contents that are considered to be the extreme limits that can
occur in practice, often 80% and 120%.

The validation consists in carrying out the analysis on a number of replicates at
each level, often n = 6 and comparing the mean obtained with the known content
of the placebo. The statistical analysis is therefore carried out with a r-test. Let us
return to our example from Chapter 4. Suppose that a synthetic preparation
containing 100 mg of a substance was prepared. The results obtained are 98.9,
100.3, 99.7, 99.0, 100.6, 98.6 and x = 99.5.

Ho: = 100
Hy: p# 100

Although we observe that x < 100, the statistical question is two-sided (U is
different from 100) and not one-sided (i < 100), since no a priori reason was given
why, in the case of p # 100, it should necessarily be smaller. In method validation,
the test is always carried out at the o = 5% level. Since n < 30, the r-test is
employed. In this case, s = 0.813, so that

i 199.5 1001 _
T 0813A6

fo.02s5,5 = 2.57

Since 1.51 < 2.57 the result of the hypothesis test is negative: no significant
difference between L, estimated as 99.5, and 100 can be shown. Let us now suppose
that, in fact, the 0.5 mg difference obtained is real and let us also suppose that this
difference in the context of the analyzing laboratory is important, so that we would

1.51



398

really want to have detected the difference. Why then was it not detected? The
reason is that for the value of the parameter A (= difference/standard deviation —
see Section 4.8) = 0.5/0.813 = 0.61 the number of replicates, n = 6, is not large
enough to achieve a reasonable B-error, i.e. the probability of not detecting a
difference of 0.5 when that difference is real. The ISO norm [11] shows that, in
fact, one needs n = 36 for § = 0.05 and n = 30 for B = 0.10! Unfortunately this type
of reasoning is seldom applied in method validation, although the definition of
Section 13.1 really requires it: one should state how much bias is admitted, and,
taking into account the experimentally determined repeatability, compute how
many replicates are required to rule out that the bias is larger with a stated
probability of making an error. Part 4 of the recent ISO-norm [6] gives a complete
description of how to determine laboratory bias by analyzing a reference material
with known concentration for the special case that the method applied is a standard
method. This norm includes an equation for determining how large n should be.

We should note here that there is a statistical problem. Indeed, the same -test at

the & = 5% level is carried out three times (at 80, 100 and 120% of the nominal
level). Therefore, o for the whole experiment approaches 15% (see Section 5.2).
One might take two attitudes:

— the joint level of confidence for the three tests should be & = 5%; therefore
each test should really be applied at & = 5/3 = 1.66%

— if something is wrong with the method, then, from a chemical point of view,
it is more probable that this occurs at one of the extreme levels. Therefore,
experiments at these levels should be considered as separate experiments. In
practice, this means that each of them should be judged at the 5% level.

Apparently, the latter approach is always taken. Nevertheless, 1t would be

preferable that the problem be investigated by regulatory agencies and that an
explicit decision be taken about which of the two attitudes should be preferred.

13.5.3 Restricted concentration range — reference material available

Reference materials are employed very often. They are of limited value in a full
validation of a method, in the sense that they include a certain amount of analyte
in a certain matrix and that therefore one will generally not be able to validate with
them the whole range of concentrations and matrices required. However, when the
range of concentrations and matrices is covered, analyzing reference materials is
the validation method to be employed. Moreover, even when the reference materi-
als do not cover the full range, they should be analyzed when available. Obtaining
good results on a reference material indicates that the method is at least acceptable
for that composition of the matrix and that further full validation over a wider range
of compositions has a chance of being successful. A bad result means that further
full validation is not useful. Thus analyzing reference materials is often part of the
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exploratory validation process (see Section 13.3). Reference materials are also
invaluable to detecting the laboratory component of bias and measure the profi-
ciency of individual laboratories in using standard methods (which should be free
of method bias).

The statistical analysis of the measurements obtained by a user on a reference
material poses a problem. Basically, what must be done is to compare the mean
obtained by the user with the mean obtained during the certification process, i.e.
the comparison of two means. At first sight this should be done using the ¢-test to
compare two means as described in Section 5.1. However, there is a problem,
namely that n; of eq. (5.6) is not defined. Indeed, the user laboratory compares the
mean of the replicate analyses it has carried out (the number of which in this
context is called n,, the n; of eq. (5.6)) with the mean of an unknown number of
replicate determinations in an equally unknown number of laboratories participat-
ing in the certification, so that not all data are available that are required to carry
out the comparison of the two means by a 7-test.

To avoid this difficulty, one should then carry out the computations as described
by the certifying organization. For instance the BCR [21] recommends to proceed
as follows:

— check that the repeatability of the method is compatible with the repeatabilities
of the certifying laboratories. BCR proposes that this be done by verifying that the
standard error of the mean of the user laboratory results, su/\/a , 1s less than the
standard deviation s of the distribution of certifying laboratory mean values, as
stated on the certification document

— if the repeatability standard deviation of the user laboratory is acceptable, then
it can verify whether the mean obtained, y,, falls within the confidence limit of the
certified value, which is considered to be £ 2s and is given by the certifying
organization: (certified value — 2s) < y, < (certified value + 2s) where 2 is the
approximate value of ¢ for a sufficiently large number of degrees of freedom or z
at the o = 5% level of confidence.

13.5.4 Large concentration range — blank material available

Since the concentration range is large, one must validate over that whole
concentration range. When material to be analyzed without the analyte can be
obtained, one can spike it. For instance, when one must determine a drug in blood,
one can obtain blood without the drug and then add the drug in known concentra-
tions. Spiked samples are also called fortified samples [7]. The result is often given
as % recovery (or recovery rate), i.e the amount found compared to that added
expressed as a percentage. The situation is rather similar to that described in
Section 13.5.2. However, because the range is large, regression methods can be
used: in a narrow range, this would not be recommended (see Section 8.2.4)
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because the estimates of the parameters of the regression line would not be optimal.
Moreover, the question arises of how many concentration levels to test.

From the chemical point of view, spiking is sometimes less evident than one
would think at first sight: for instance, when one analyzes an inorganic species it
can be in a different form in the material than in the standard added. This can have
a profound influence on the analytical behaviour. In particular, the first steps in
some procedures such as dissolution or digestion are difficult to test in this way.
We should warn that the chemical problems should not be forgotten by worrying
exclusively over the statistics.

One usually adds three to eight different concentration levels, covering the range
to be determined. In the same way as for the repeatability and the within-laboratory
reproducibility, one should at least determine the recovery at the upper and lower
limits of the concentration range, with particular emphasis on any standard or
specification value. The Washington consensus document {16] states that one
should carry out this type of experiment at at least three concentrations, one near
the lower quantification limit (Lg), one near the centre, and one near the upper
boundary of the standard curve.

A first approach is similar to that described in Section 13.5.2 and consists of
analyzing enough replicates at each concentration level to be able to carry out a
t-test. At each level, one compares the mean obtained with the known amount
added. At each level, this then is the same situation as in Section 13.5.2. Let us
consider an example. The example comes from a study about the analysis of a
pharmaceutical drug in urine [22]. The author studied two chromatographic meth-
ods A and B. The only difference between the two is that in method A an internal
standard is added, while such a standard was not added in method B. The author
stated that when a method is under control, addition of an internal standard is not
useful and that it will merely increase imprecision, as one adds the variation on the
measurement of the internal standard to that of the analyte. The data are given in
Table 13.6. We will use the data here to investigate, as an example, whether method
B is unbiased. For this purpose we have computed l¢gl = bep = Hol where xp is the

sAn

mean of the values obtained with method B at a certain level and  is the
concentration level obtained by spiking. This must be compared with 5, ¢25 5 = 2.57.
One concludes that the differences are significant at all levels except at the level
10. There is a (positive) bias in method B. It is small and probably the user would
conclude that although the bias exists, it is too small to be of chemical consequence.
Indeed, in this area one seems to consider biases up to 15% as acceptable. The bias
increases with increasing quantity of drug, so that one would conclude that there is
a proportional systematic error and that probably the calibration procedure is not
optimal.
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TABLE 13.6

Analysis of a drug in urine (adapted from Ref. [22]). tg is the observed t value when comparing the amount
obtained with method B with the known amount.

Amount added Method A Method B Itgl
(ug/ml) (ng/ml £ ) (ug/ml £ 5)
6 replicates (6 replicates)

0 0.5%£0.3 0.5+03 4.08
1 1.31£0.2 1.3+£0.2 3.67
3 3.6+04 35£04 3.06
10 10.6 £0.6 103105 1.47
30 34915 339+1.8 531
100 107.21+2.6 104129 3.46
300 3189+8.1 316.1+94 4.20
1000 1051.0+£29.2 1037+ 4.4 20.60

The fact that at the level 10 no bias could be shown, will not be considered in
this context as an indication that there is no bias, but rather that it could not be
detected: a B-error has occurred. The inverse also occurs: one finds no bias at all
levels, except one. Suppose that we have carried out tests at the levels 5, 10, 20, 50,
100, 200, 500, 1000 ng/ml and that the test at the 50 ng level shows a difference,
while all others do not. What interpretation should be given? It does not make
chemical sense to declare that the method is free from bias in the ranges 5-20 ng/ml
and 100-500 ng/ml, but is biased at 50 ng/ml. We would probably be tempted to
disregard the result at 50 ng/ml, but then we must ask the question whether
statistical tests of which we disregard the conclusions should be taken seriously.
Carrying out several r-tests in the same validation experiment and interpreting each
of them separately, carries with it the philosophical problem we already discussed
in Section 13.5.2. For each test separately, one accepts implicitly a possibility of
making the decision that there is a difference, while in fact there is not (type I or &
error), usually of 5%. In Section 13.5.2 only 3 levels were tested, but it quite often
happens that one tests up to 8 levels. Performing eight tests at the 5% level of
confidence means that one has about 34% probability that one of the eight tests will
lead to a type I error.

If the discrepancy described above occurs at the extremes of the concentration
range, one should investigate whether the analytical range was well chosen, for
instance by looking at the linearity of the calibration line and as a result probably
shorten the range. If the concentration level at which a bias was found is situated
in the middle of the range as described higher, one should remember that when
several t-tests are carried out in a single experiment (here a method validation
experiment), one should really interpret them in a simultaneous fashion and apply,
e.g., Bonferroni’s method (see Chapter 5).
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One might reason that this simultaneous interpretation should include also the
extremes of the range. In practice, there is a higher probability of something being
wrong at these extreme ranges and one would not like to run the risk to miss that.
Bonferroni’s method has the disadvantage of making detection of bias at each
separate level less sensitive and therefore less adapted to finding bias at the
extremes of the analytical range.

Purely from the point of view of detecting bias, the experiment described above
is not really optimal. Instead of analyzing 8 levels in 6-replicate, one would have
been better inspired to focus on two or three extreme levels (the extremes plus one
in the middle). In the latter case, and with the same amount of work, one would
have been able to analyze 16 replicates at 3 levels, thereby decreasing the B-error
(the possibility of not detecting a bias, when there is one). This is also what we
recommend. It is in this case better to concentrate on 3 levels of concentration.
However, when one is interested at the same time in determining repeatability in
function of concentration, there may be some justification in carrying out the
experiment as described.

Instead of summarizing the experiments by using Bonferroni’s principle, it is
possible to apply regression techniques. One or only a few replicate determinations are
then carried out at each level and a graph of the amount found (y) against the amount
added (x) is made — see also Fig. 13.3. If no measurement error were made and
there were no bias, this would yield the relationship y = x, which can be written as:

y=0+1x (13.4)

This ideal situation is depicted in Fig. 13.3a. Because at least random errors are
made, one determines the coefficients by regression

5)=b0+b,x

and one has to show that By, estimated by bo, and [, estimated by b;, are not
significantly different from 0 and 1, respectively:

Hp (intercept): Bo=0; H;:Be#0
H;, (slope): Bi=1; Hp:p =l

Example 5 of Section 8.2.4.1 is an example of method validation using this
approach. Let us also apply the same calculations to the data of method B in Table
13.6. Since individual results were not given, we used the mean values to obtain
the regression equation. We obtain by = 1.17 + 1.54 and b, = 1.037 £ 0.006, where
* gives the 95% confidence limits. It follows that Bo=0and B, # 1. If B; # 1 (Fig.
13.3b), then the slope of the line differs from what is expected. The difference
between the actual line and the ideal one increases with concentration. This is
indicative of a proportional systematic error. If it had been found that 3, # 0, then
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a) bl

c) d)

Fig. 13.3. Possible relationships between x (known amount added) and y (amount found); (a) by =0,
by = 1: no systematic error; (b) b, =0, b, # | proportional systematic error; (c) by # 0, b| = 1: absolute
systematic error; (d) non-linearity.

the regression line would be shifted away from what it should be by an amount
equal to the intercept by (Fig. 13.3¢). This amount does not depend on concentra-
tion and one has therefore detected an absolute systematic error.

In the example of Table 13.6, since By = 0 and B, # 1, one concludes that there
is a proportional systematic error. Since b, = 1.037, the best estimate of this error
1s 43.7%. As described in Section 8.2.4.2, it would be possible, and even recom-
mended, to apply joint confidence intervals. However, in practice this is rarely
applied.

Before carrying out the regression analysis, one should first investigate whether
the line is indeed a straight line. This can be carried out with the ANOVA
procedure described in Section 8.2.2.2. If non-linearity occurs, then this may be
due to a problem at one of the extreme levels such as in Fig. 13.3d. One should
carry out the validation over a shorter concentration range (if this is still compatible
with the original aim!).
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An important question is how many levels and how many replicates should be
analyzed for a regression experiment. Some guidelines [16] exist and intuitively
experimenters seem to favour a relatively large number of levels (up to 8) and a
relatively restricted number of replicates. It can be shown that we should test only
3 levels and carry out as many replicates at each level as is considered economi-
cally feasible. In fact, in the chapters on experimental design (Chapters 21-25), we
will stress that the best estimates of a straight regression line are obtained by
concentrating on two (extreme) levels (see also Section 8.2.4.3). The confidence
intervals are narrower for, e.g., 6 replicates at 2 levels than for 2 replicates at 6
levels. The third level is added here because it allows us to investigate linearity in
the same experiment.

The regression model not only allows us to investigate whether bias occurs, but
also when it occurs it helps to diagnose the problem. Indeed, absolute and relative
systematic errors are due to different causes and therefore identifying one of these
errors points to its source and this is a first step towards finding a remedy.

Requirements for % recovery have been published in a few fields. For instance,
the pharmacokinetics consensus document [16] requires a recovery of 85-115%
and an EEC guideline for control of residues in food [23] allows the following
deviations: < | pg/kg: =50% to +20%, > 1 ug/kg to 10 pgrkg: —30% to +10%, > 10
ug/kg: —20% to +10%.

13.5.5 Large concentration range — blank material not available

When no sample can be obtained that does not contain the analyte, the tech-
niques described in the preceding section cannot be applied. This is often the case.
For instance, since it is not possible to obtain blood without iron, we cannot apply
the techniques of Section 13.5.4 to evaluate the bias in the determination of iron in
blood. In this section, we will consider the situation that analyte can be added to
the sample in a representative way. As already stated in the preceding section, this
1s not evident and the analyst should consider carefully whether the chemical
composition of the spiking solution ensures that the addition can be considered
representative.

As in the preceding section, two approaches are possible. In both one adds m
different known amounts and analyzes n replicates of the different concentration
levels thus obtained. In the first approach the results at each level are interpreted
separately by comparing the known amount added with the difference between the
results obtained with and without the addition, and in the second all results are
interpreted as one experiment. In the first approach, t-tests are therefore applied,
and in the second regression.

Let us first consider interpretation at each level and let us, for simplicity, assume
that only one known amount is added (m = 1). If the unknown concentration
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originally present in the sample is |; and the amount added is such that the
concentration increases with the known quantity L, then the total concentration is
Wy = Wy + Mo and U, too is unknown. One can now carry out the analysis with the
method to be validated and obtain the estimates x; and x, of |1, and [,, respectively.
It follows that

X2—X =X (13.5)

Ideally, x should be equal to . As it is obtained from two estimates, x itself is an
estimate. We call the quantity it estimates \. No bias is detected if po = L. If the
analyses are replicated to a sufficient extent, one can use a z-test as described in
Chapter 4 to verify whether

Ho: p=po (Hy: g po)

is true. Suppose the sample is analyzed 6 times and the following results are
obtained (in mg/ml).

90.00 - 90.80 — 89.70 — 89.20 — 88.60 — 91.20 (x; = 89.92, 5, = 0.972)
and after addition of 60.00 mg/ml
156.00 - 154.20 - 155.30 — 155.60 — 153.80 - 154.70 (x, = 154.93, 5, = 0.843).

The difference between the two series of measurements is x = 65.01. We should
now test whether this differs from 60. We should apply the following -test proce-
dure. The 95% confidence interval around the difference x; — x, is given by (Sec-
tion 5.1.1.2):

(154.93 -89.92)+£2.23 | [(5%0.9722+5 x 0.848%)/10] [l 4

= +
6 6] 65.01 £ 1.17

where 025,10 = 2.23.

Since 60 1s not included in the confidence interval, we conclude that 65.01 is
significantly different from 60. We could also carry out the test, by subtracting 60
from the second mean (154.93 — 60 = 94.93) and compare the mean 89.92 (s, =
0.972) with 94.93 (s, = 0.848) using the independent r-test as described in Section
5.1.1.2.

What do we validate in this way? Let us suppose we make an absolute system-
atic error, such as a blank error leading to an overestimation of the concentration
by x,. Since the error is absolute it occurs equally at all concentrations and will
affect equally x, and x;. When performing the subtraction of eq. (13.5), x, will be
eliminated, so that it will not be revealed by the t-test. Proportional errors on
the other hand would be noted. Suppose that there is such an error, so that a
result fx (f # 1) is obtained when one should find x. Then the subtraction of eq.
(13.5) leads to
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fo-fi=foo-x)=fitx
and if f is different enough from 1, the difference between [, which is now
estimated by fx, and L, will be declared significant by the ¢-test.

The conclusion is that the experiment described here does detect proportional,
but nor absolute, systematic errors. These proportional errors are due to different
slopes of the calibration line and the line relating response to concentration in the
sample. As a slope is best studied through regression methods, the second ap-
proach, which we will now describe, is often preferred. This approach is called the
method of standard additions. Standard addition was described in Chapter 8. As
applied in method validation, standard addition requires the comparison of two
lines. The first is the calibration line obtained with aqueous standards, i.e. the
calibration line that would be used to analyze unknown samples. The other line is
the standard addition line. This is obtained by adding m known amounts to aliquots
of the material to be analyzed, often without replication (n = 1), and plotting
amount added (x) against signal measured (y). In such a graph, yy, the value of y
measured for x = 0 will probably be positive because of the (unknown) amount of
substance present at the start of the experiment. It is therefore not possible to do a
test on the intercept as in the preceding section, so that one cannot detect absolute
systematic errors.

One expects both lines to have the same slope. In Fig. 13.4, line a is a standard
addition line. If b were the aqueous calibration line, then one would declare that no
bias can be detected; with calibration line ¢ the conclusion would be that there is a
proportional systematic error. If b,. 1s the slope obtained for the calibration line and
by, the slope for the standard addition line, then one tests

Ho: Blc = Bls

How to do this was described in Section 8.2.8. If the slopes are found to differ this
means that a relative systematic error is present. This was the case in Example 9 of
Section 8.2.8. For an analysis procedure of Al in serum a standard addition experiment
was carried out. The slope of the calibration line was found to be 8.63 and that of the

y 4

|

Fig. 13.4. The standard addition method; y = signal measured; x = amount added. Line a = standard
addition line, b and ¢ = aqueous calibration lines.

X
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Fig. 13.5. (a) Spectra for analyte X and interferent Y. (b) The H-point.

standard addition line 8.03. The difference between the two slopes was found to be
significant. It was concluded that the method is subject to proportional error. The
best estimate is that the results are {1 — (8.03/8.63)] x 100% = 7.5% too low.

As the method of standard additions detects only proportional systematic errors
other approaches (using reference materials, comparing different methods — see
next section) are required to make sure that there is no absolute systematic error. It
should be noted that absolute systematic error does not depend on concentration. It is
therefore sufficient to show for one or two concentration levels, for instance with a
reference material, that there is no bias. Combined with standard addition over a
sufficient range of concentration, this validates the absence of bias for the method.

The standard addition method can be extended in certain cases. The H-point
standard addition [24,25] is a modification of the standard addition method that
permits correcting for both absolute and proportional systematic errors. In the
simplest case (one interferent, the spectrum of which is known; see Fig. 13.5a) the
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method requires measurement of a standard addition line at two wavelengths, A (1)
and A (2), where the interferent shows the same absorbance. The two standard
addition lines intersect at the so-called H-point with coordinates (Cy; An), where
Cy 1s the concentration of the analyte in the sample and Ay the analytical signal due
to the interferent at both A, and A, (Fig. 13.5b). Modifications of this method can
be applied when the spectrum of the interferent is not known.

13.5.6 Comparison of two methods or laboratories

When none of the methods described in the preceding sections can be applied,
the last resort is to develop two independent methods and to compare the results.
If both methods yield the same results, then both are considered unbiased. It should
be noted that both methods should be completely independent, i.e. different. If, for
example, method A consists of an extraction, followed by a spectrophotometric
determination and method B uses the same extraction and HPLC, then one can
validate the spectrophotometric and HPLC steps, but not the extraction. The
interpretation can be difficult when the results of both methods are not found to be
the same. In that case, one knows that one of the methods, or both, are subject to
bias but not more. To know which method is wrong, additional experimentation
and chemical reasoning is required.

Comparison of two methods is recommended in the following situations:

—none of the experimental situations described in the preceding sections can be
applied to the material to be analyzed. This often occurs. Suppose, for instance, one
wants to determine moisture in cheese: it is then not possible to add in a homoge-
neous and representative way a known amount of water to the cheese.

— one would like to replace an old method, the accuracy of which is considered
to be proven, with a new more convenient one. Part 6 of the ISO-standard [6]
describes how to do this when one of the two methods is a standard method.

—when it is not sufficient to detect proportional systematic errors with a standard
addition experiment, but absolute systematic errors must also be excluded.

A rather similar experimental set-up is encountered when the comparison occurs
between two laboratories. Such a comparison is carried out when one lab transfers
a method to another lab. This is then called a transfer suitability check. The
laboratory component of the bias due to the receiving laboratory can be detected
by analyzing a set of samples covering the range of application of the method in
both the developing and receiving laboratory. Suppose laboratory A has developed
and fully validated a method to analyze a certain drug in blood and wants to transfer
the method to laboratory B. The best way of studying bias in the receiving
laboratory is to analyze the same set of m real blood samples in both laboratories
and compare the result according to one of the experimental set ups to be described
later. If a difference is found it must be due to lab bias in laboratory B.
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The following experimental set-ups are most common.

(a) One analyzes replicates at a restricted set of concentration levels covering
the whole concentration range with the two methods. For instance, one might carry
out the comparison at the quantification limit, the highest level to be determined
and some in-between value.

(b) One analyzes many samples over the whole concentration range. Each sample
is analyzed with both methods and few replicate measurements are carried out.

The former method is preferred when a single type of well-defined matrix is
analyzed. When many different types of matrix occur, then one prefers the latter
method.

Let us first consider the method in which only a few concentration levels are
analyzed. At each level several replicate analyses are carried out. Their number is
preferably determined using B-error considerations, but is often in practice situated
between 5 and 8. As in Section 13.5.4 the number of levels is best restricted to three.
The statistical procedure required is an unpaired (independent) #-test at each level.

Let us consider one such level. The results obtained are:

x=326 5=256 n=11
;2:31.6 S2=2.01 I’L2:13
It should be remembered (Chapter 5) that the independent ¢-test requires that the

two series of measurements have the same variance. Therefore, the F-test is first
carried out.

F=5%/53=6.55/4.04=1.62

This is compared with the critical F-value for o = 0.05 at 10 and 12 degrees of
freedom for a two sided-test, Fe = 3.37. Since F < F.y, 07 = 63. Therefore one can
pool the variances:

,_ 10x6.55 + 12x4.04
o 2

=5.18

and compute

t=(32.6 - 31.6)N5.18(1/11 + 1/13) = 1.072

Because of the low r-value we conclude that the two methods are equivalent:
there is no bias at the level considered.

When many samples over the whole concentration range are analyzed with both
methods, we can apply two types of statistical analysis. A first possibility is to use
a paired r-test and the second is to compare the results of both methods by
regression. In this case preliminary visual analysis of the results is particularly
useful and we will first discuss these visual methods.
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Fig. 13.6. Comparison of two clinical methods. The dashed line is the y = x line, the solid line is the
regression line. Adapted from Ref. [26].

In some cases, particularly with automatic measurement techniques, it is possi-
ble to analyze many samples (often up to a few hundred). One plots the result for
each sample of method 1 against that of method 2. If the two methods yield the
same results then the points on the plot should be spread out evenly around the line
y=x. Including the line for y = x in the plot helps the visual assessment. An example
is given in Fig. 13.6. This consists of a comparison of a potentiometric and a flame
photometric method [26]. One observes easily that the results in the middle range
coincide, but that at higher leveis the result of the potentiometric method is
higher. There probably is a proportional error (calibration problem) in one of
the methods.

Another visual interpretation method will be introduced with a data set from
Ref. [27]. This concerns two methods to determine fat in pork products; 19
materials with different fat content were selected. Each was analyzed in duplicate
with the two methods. The data are shown in Table 13.7.

One can plot Iw;l and Iw,l against x| and x,, respectively (see Fig. 13.7). Iw,l and
Iwyl are the absolute differences between the two replicate results (which is
equivalent with the range). These plots do not show a trend in the differences
between the replicates and therefore indicate that s is constant over the range
studied, so that we can expect the standard deviation of the differences between
x; and x; to be constant too. This is a necessary condition for carrying out the #-test,
because the test assumes that there is one single standard deviation of the differ-
ences between the two methods.

One then plots d = x; — x, in function of x = (x) + x,)/2 (see Fig. 13.8). This too
does not show a trend, either in magnitude or in range, so that we can safely assume
that the conditions are fulfilled for applying the paired t-test. Indeed, we test
whether d is different from 0. This means that one assumes that all d spring from
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TABLE 13.7
Determination of fat in pork products (adapted from Ref. [27])

Product Method 1 Method 2
X1 wl X wyl X1 —X

1 4.83 0.00 463 0.00 0.20

2 6.74 0.14 7.39 0.80 -0.65

3 8.46 0.09 8.76 0.24 -0.30

4 12.60 0.33 11.85 1.30 0.75

5 13.52 0.14 13.67 0.49 -0.15

6 1572 0.62 15.80 1.31 -0.08

7 15.83 0.24 16.05 0.12 -0.22

8 18.37 0.54 18.22 0.74 0.15

9 18.90 0.34 18.79 0.90 0.11
10 23.10 1.03 22.80 0.15 0.30
11 3245 0.05 32.53 0.39 -0.08
12 40.89 0.64 41.03 0.82 -0.14
13 41.42 0.77 41.52 0.26 -0.10
14 43.36 0.49 43.70 0.16 —-0.34
15 45.96 0.59 45.89 0.03 0.07
16 47.70 0.04 47.81 1.16 -0.11
17 50.02 0.07 50.11 0.56 -0.09
18 57.20 0.39 57.51 0.65 031
19 78.48 0.40 79.38 0.09 -0.90
il &
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Fig. 13.7. Visual representation of the pork fat data of Table 13.7 for method 1.

the same distribution with true difference 6. If d depends on the concentration this
assumption does not hold. In our example, the mean difference, d = -0.099 (s =
0.351), so that we can write that the differences between the two methods come
from a population with mean and confidence interval
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Fig. 13.8. Bland and Altman plot for the data of Table 13.7.

—0.099 + fo,005.15 (0.35119) = —0.099 £ 0.169

This includes 0 so that the difference is not significantly different from 0O: the two
methods are equivalent and no bias is detected.

This type of plot, proposed by Bland and Altman [28], is of great diagnostic
value by itself. In the present case, without carrying out statistics, it is clear that the
two methods are equivalent, except perhaps at the highest concentration and it
would be recommended to study this concentration in more detail. This way of
plotting permits us to observe certain points that would have escaped attention
otherwise. Some typical situations are shown in Figs. 13.9a,b and c. Figure 13.9a
would be obtained in the case of an absolute systematic error, b for a proportional
error and ¢ is obtained when the variance of the methods depends strongly on
concentration.

A problem in applying this method is that, by the selection of real samples of
which the concentration is not known a priori, one will tend to analyze most
samples in the medium concentration range and only a few at the lowest and the
highest concentration levels. The data of Table 13.7 are illustrative of the problem:
the highest concentration levels are not well represented. Therefore, if at all
possible, one should carry out a preselection of the samples, so that the extreme
levels are equally well represented as those in the middle.

The same remarks apply, of course, when one carries out the interpretation by
regression. The latter is to be preferred in this case to using the t-test, because it
gives more information. It is very similar to that of the preceding sections (Sections
13.5.4 and 13.5.5). Ideally, the slope should be 1 and the intercept 0. A deviation
of the former indicates a proportional discrepancy between the two methods, and
if one of the two has been validated earlier (reference method), then the other (test
method) is subject to a proportional systematic error. A non-zero intercept is
diagnosed as an absolute discrepancy or an absolute systematic error.
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Fig. 13.9. Bland and Altman plots for situation with (a) absolute systematic error; (b) proportional
error; (c) heteroscedasticity.

One important problem is the following. In the preceding sections, we plotted
on the x-axis a known amount or concentration and on the y-axis the experimental
result. In other words, we considered the x-values to be free from random error and
the y-values not. Ordinary least squares regression can then be applied. However,
when comparing two laboratories or two methods both the x and the y are
experimental results. We should use the model of Section 8.2.10 with residuals
orthogonal to the regression line, instead of parallel to the y-axis. Using orthogonal
residuals means that similar precisions are assumed for both methods. If necessary,
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different precisions can also be taken into account but this is very rarely, if ever,
done. It should be noted that in practice, the classical regression model is often
applied instead. This is acceptable only when the measurement error variance in x
(i.e. reproducibility or repeatability — according to experimental conditions —
squared), which we will call here 63, is small compared with the spread of the x
values over the concentration range as measured by the variance of the x-values,
62. From simulations by Hartmann et al. [29)], it follows that errors are made quite
easily in practice and it therefore seems advisable nor to apply ordinary least
squares at all in such a comparison.

A method which is often applied, but should in fact never be used in this type of
study is to compute the correlation coefficient between the results obtained with
the two methods. The correlation coefficient is a measure of association and all it
can be used for is to decide whether two methods give indeed related results. As
this is the least one expects, measuring the correlation coefficient is of no use in
this context (see also Section 13.6.1).

13.5.7 An alternative approach to hypothesis testing in method validation

All the methods described so far test whether there is no bias e.g. Ho: 1o = L as
in Section 13.5.2. However, fundamentally it is improbable that there should be no
difference at all. We should state rather that the difference should not be larger than
a given bias. Such a situation is similar to that described in Chapter 4.10. In this
section, it was explained that instead of the use of point hypothesis tests, we may
prefer to apply interval hypothesis tests. This was also proposed for method
validation by Hartmann et al. [30]. They showed that this also allows a better way
of taking B-error into account, which, as stated in preceding sections is often not
done at all in method validation.

13.5.8 Comparison of more than two methods or laboratories

From time to time, more than two methods will have to be compared. This will
usually not be the case in the full validation step, but it may happen during the
exploratory stage. As an example, we refer to Table 6.1a. In this case we were
interested in the analysis of a specific mineral-vitamin formulation. The experi-
mental set-up consisted of analyzing 6 replicates of the material by 6 different
methods. The statistical analysis is carried out by one-way ANOVA. As explained
in Section 13.2, when the concentration levels cover a larger range, or, if different
types of matrices can occur, we should analyze several materials. This then
constitutes a two-way ANOVA (materials, methods). We are interested in the
factor methods and the interaction between materials and methods. The variance
due to materials is not of interest, but has to be taken into account in the ANOVA.
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TABLE (3.8

Comparison of wet oxidation methods for the analysis of Se (results in pg Se/100 ml sample). Adapted from Ref.
[271.

Material Procedure
A B C D E

| 6.0 7.8 6.7 4.0 8.6
2 16.8 21.6 19.5 18.5 19.6
3 11.9 17.5 13.7 10.5 16.6
4 45.8 48.9 44.6 44.1 493
5 75.7 76.6 74.4 74.9 78.6
6 54.4 56.8 54.6 514 56.3
7 86.1 90.4 89.0 84.1 89.4
8 19.7 239 18.9 18.3 21.5
9 125.9 130.8 127.1 124.2 128.6

ANOVA analysis

Source df Sum of squares ~ Mean square F
Materials 8 65573.71

Procedures 4 150.81 37.70 34.0
Materials x procedures 32 35.63 (.t

(= residue)

Here, we will discuss another example of the latter type, taken from Ref. [27]. The
data concern the analysis of Se in urine using 5 different wet oxidation procedures.
B is a fully validated procedure and the other four are possible alternatives. Nine
urines were analyzed and the results are given in Table 13.8.

The example is interesting, because, at first sight, it is not possible to estimate
the effect of interaction because there is no replication. The materials require 8
degrees of freedom, the procedures 4 and the interaction 32. Since the total number
of results is 45, there are 44 degrees of freedom that are used up by the effects,
leaving none for the residual. However one should remember that the mean square
is a variance. The interaction effect therefore corresponds to a standard deviation
of V1.11 = 1.05. If this is significantly larger than the experimental error, we would
conclude that the effect is significant.

In this case, the experimental error is not obtained from the ANOVA experi-
ment, but it was known from earlier experiments that the repeatability standard
deviation was of the order of 1.25. As this is certainly not smaller than 1.05, the
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interaction effect cannot be significant and its sum of squares and degrees of
freedom can be incorporated into the residual error, which can then be estimated
(see also Chapter 6.7). It is a good example of how outside information can be
put to advantage. In this case, it eliminated the need for replication. Note also
that this is what we called in Chapter 6 repeated testing: MS and F for the factor
materials are not calculated. We know that the materials are different and must
therefore include the effect into the ANOVA to filter out its contribution to the
overall variation, but it is not relevant to compute the variance of that effect
(MS) nor its significance (through F). As a conclusion, we need only to assess
the effect of the factor procedures. Since Fyps.432= 2.67, there is a clear effect
of the procedures. Further statistical analysis shows that only E gives equivalent
results with B and that this is the only alternative procedure meriting further
consideration.

It 1s also very useful to carry out intercomparisons with a few laboratories. This
type of study is not the complete intercomparison, which will be described in
Chapter 14 and which requires much work and planning, but rather an additional
step in the intralaboratory validation of a few laboratories with common interests
or a preliminary step in a true interlaboratory study. The experimental set-up then
consists of g laboratories (often only 3 or 4) using p methods (often 1) to analyze
m different materials in n-replicate. As an example, we give here an experiment
preliminary to the proposal of a new method for the titrimetric analysis of chlor-
promazine in the European Pharmacopeia [31]. Three methods were studied, one
being the existing one, and another being proposed because it does not require
mercury salts and is therefore environmentally more friendly. Four laboratories
participated and three materials were analyzed in 10-replicate. The analysis of the
resulting data set can be carried out using a three-way (g X p X m) ANOVA, but it
is not necessarily a good idea to apply this without further thought. Instead it is
preferable to have a look at the data first with box plots (see Chapter 12). Indeed,
because of the preliminary nature of the intercomparison it is possible that the data
contain outliers and that the precisions of the laboratories are very different. If this
is the case, classical ANOVA becomes a doubtful proposition and we prefer in this
case to use randomization tests (see Chapter 12).

Figure 13.10 shows the box plot for the three methods on one of the materials.
A figure like this immediately allows some conclusions to be made. There is no
evidence for systematic differences in concentration levels found between the three
methods, so that there probably is no systematic error in any of the methods. Also
laboratory 1 works with consistently better precision than 3 and the correspon-
dence between laboratories is best with method B. Because this is an indication of
ruggedness, method B was chosen for further validation.
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Fig. 13.10. Box plot for the comparison of three methods, (a), (b), (c), carried out by four laboratories
(adapted from Ref. [31]).

13.6 Linearity of calibration lines

Most measurement techniques make use of a calibration graph to estimate the
analyte concentration in unknown samples. This implies that a decision concerning
the nature of the relationship between the concentration and the response has to be
taken. Very often a simple straight line relationship is preferred and many meas-
urement techniques are designed to achieve proportionality between response and
concentration. In practice, however, deviations from linearity are frequently ob-
served. Therefore, it is essential for a method validation program to include a
linearity test. Such tests are discussed in this section.

Before discussing these tests, it should be noted that in pharmaceutical guide-
lines [17,32] linearity is used in a different context. For instance, the Committee
for Proprietary Medicinal Products [32] defines linearity of a test procedure as “its
ability (within a given range) to obtain test results directly proportional to the
concentration (amount) of analyte in the sample”. The US Pharmacopeia [17] adds
that the mathematical treatment normally is a calculation of a regression line by the
method of least squares of test results versus analyte concentrations. In other
words, methods described in the context of the determination of bias are used
(Section 13.5.4). It also follows that if methods have been shown to be unbiased at
the lowest and highest levels of interest and at an intermediate one (for instance,
the nominal level when this notion applies), that there is no sense in determining
the linearity of the test procedure. As the bias is always investigated at at least three
levels including two extreme levels, the determination of the linearity of a test
procedure is superfluous. Linearity in this section will therefore mean linearity of
the calibration line.
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13.6.1 The correlation coefficient

As described in Section 8.3 the correlation coefficient, r, between x and y
evaluates the degree of linear association between the two variables. It only
indicates whether the variables vary together linearly. Therefore, as shown in Fig.
13.11, a correlation coefficient very close to 1 can also be obtained for a clearly
curved relationship. Consequently, the correlation coefficient, which is commonly
used, in itself is not a useful indicator of linearity.

Nevertheless, calculation of the correlation coefficient is acceptable for a system
suitability check if the full method validation has established linearity between the
response and the concentration. The check could further consist in a comparison of
the correlation coefficient with a default value specified from the method valida-
tion results. For instance, one could require that r > 0.999. If r is found to be less,
this is taken to mean that the calibration line is not good enough. The reason for
this can then be ascertained further through visual inspection.

13.6.2 The quality coefficient

Another suitability check is the calculation of the quality coefficient. It was
defined by Knecht and Stork [33] to characterize the quality of straight line
calibration curves and is calculated from the percentage deviations of the calcu-
lated x-values from the ones expected:

[ .
¢z (% ierl?tlon) (13.6)

with

.. Xpredicted — Xkn
% deviation = ZPE2EC TV 1y

Xknown
The better the experimental points fit the line, the smaller the quality coefficient.
A similar expression, based on the percentage deviations of the estimated
response, has been used by de Galan et al. {34] in their evaluation of different
models to fit curved calibration lines in atomic absorption spectrometry:

(13.7)

with y; = the measured response, and y; = the response predicted by the model.
Since these expressions are calculated from the percentage deviation of either
the calculated x or y values, they assume that the relative standard deviation (RSD)
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is constant. For the evaluation of straight line calibration lines with homoscedastic
measurements the following adaptation of the quality coefficient has been pro-
posed [35]:

(13.8)

Each residual (y; — y; ) being related to the same absorbance value, i.e. y, which is
the mean of all responses measured, implicitly means that the absolute deviation is
considered constant.

If a target value for the quality coefficient has been specified, for instance from
the full method validation or from previous experience, the suitability of a calibra-
tion line can be checked. The line is unacceptable if its QC value exceeds the target
value. As an example, consider the calibration line of Fig. 13.11 which is also given
in Table 13.9. The straight line equation is y = 0.051 + 0.3225x. From this fitted
line the QC (eq. 13.8) is calculated as follows (see Table 13.10):

-2
QC = 1004/ &—34—%19~ =5.4%

The calibration line is from atomic absorption spectrometry for which a target
value of 5% has been proposed [35]. Consequently it is concluded that the line is
unacceptable, in this case due to non-linearity.

1.2

T T T T -

00 04 08 12 16 20 24 28 32
ug/ml

Fig. 13.11. Example of a curved calibration line with a correlation coefficient close to 1 (r = 0.996).
The data are given in Table 13.9.
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TABLE 13.9

Test of linearity: absorption signal y measured as a function of concentration x

X (Lg/ml) W(A)
0.00 0.000
0.40 0.173
0.80 0.324
1.20 0.467
1.60 0.610
2.00 0.718
2.40 0.825
2.80 0.938
3.20 1.048
TABLE 13.10

Calculation of the QC for an atomic absorption calibration line (y = absorption signal, x = concentration)

X Vi ¥i (i =) /y)?
(1g/ml) (A) (A)
0.0 0.000 0.051 8.090 1073
0.4 0.173 0.180 0.1521073
08 0.324 0.309 0.700 1073
1.2 0.467 0.438 2.616 107
1.6 0.610 0.567 5751107
2.0 0.718 0.696 1.505 107
24 0.825 0.825 0
28 0.938 0.954 0.796 107
3.2 1.048 1.083 3.810 1073
y=0.567 Y= 2342107

0C = 100V2.342 10728 = 5.4%

Since inegs. (13.7) and (13.8) the QC corresponds to a relative residual standard
deviation it seems in fact more logical to divide by (n — 2) rather than by (n - 1),
the former also being used in the expression of the residual standard deviation (see
eq. (8.6)).

The QC is to be preferred over the correlation coefficient not only because it
gives a better idea of the spread of the data points around the fitted straight line but
also because it gives some indication on the percentage error to be expected for the
estimated concentrations. Moreover, the QC can also be used in the evaluation of
more complex calibration models. Division by (n — p), p being the number of
regression coefficients included in the model, might then also be preferred.
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13.6.3 The F-test for lack-of-fit

In full method validation we use either the F-test for lack-of-fit or the one
described in Section 13.6.4. Both are included in draft IUPAC guidelines for
calibration in analytical chemistry [36]. The test for lack-of-fit described in Section
8.2.2.2 verifies whether the straight line model adequately fits the calibration data.
As pointed out earlier it requires that replicate measurements are available to
estimate the pure experimental error. Because of this requirement the F-test for
lack-of-fit is generally restricted to the full method validation program. For a
worked example the reader is referred to Example 2 of Chapter 8.

13.6.4 Test of the significance of b;

Another possibility to test linearity of a calibration graph is to fit a second degree
polynomial to the data:

y:bo+b1x+b2x2

A straight line relationship is demonstrated if the quadratic regression coeffi-
cient, b,, is not significant. The hypothesis that the quadratic term is zero (Hy: B, =
0; H,: B, # 0) can be tested by means of the confidence interval for 3, or by means
of a -test (see Section 10.4). In the ¢-test the absolute value of

1= bylsy,

with s, the standard deviation of b, as obtained from eq. (10.18), is compared with
the tabulated 7 for n — 3 degrees of freedom at the chosen confidence level.
Example:

Table 13.9 gives the data shown in Fig. 13.11. The second degree equation is:
y =0.0064 + 0.4181 x — 0.0299 x*

and s, = 0.00324

From the 95% confidence interval for [3,:

—0.0299 = (15056 % 0.00324)

—0.0299 £ (2.447 x 0.00324)

—0.0299 £ 0.0079

or from the absolute value of:
t =-0.0299/0.00324 = - 9.228

as compared to fopss = 2.447, it is concluded that the quadratic term is not zero.
Consequently non-linearity is demonstrated.
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ISO [37,38] and IUPAC [36] include this approach, although in a different form,
to evaluate the linearity of the calibration line. The test is performed by means of
the partial F-test discussed in Section 10.3.2. If non-linearity is detected ISO
recommends either reducing the working range in order to obtain a straight line
calibration function or, if this is not possible, using the quadratic calibration
function. However, it should be noticed that the significance of the quadratic term
does not imply that the second degree model fits the data correctly. This was also
recognized by Penninckx et al. {39] who propose a general strategy for the
validation of the calibration procedure that makes use, among others, of the
ANOVA lack-of-fit test, the test of the significance of b, discussed in this section
and a randomization test (see Section 12.4) for lack-of-fit.

13.6.5 Use of robust regression or non-parametric methods

Robust regression methods can be applied to detect non-linearity. Indeed, robust
regression methods are not sensitive to outliers. The use of the straight line model
when a deviation from linearity occurs, will result in model outliers (i.e. outliers
due to the erroneous use of the straight line model). They can be detected with
robust regression methods such as the least median of squares (LMS) method as
described in Section 12.1.5.3.

In principle, LMS could be used in full validation. However, we prefer for this
purpose the methods described in the preceding sections. The method can, how-
ever, be applied for a system suitability check to diagnose problems with the
calibration line, if QC or r exceed their threshold value. Its use for this purpose, in
conjunction with another test, called the slope ranking method, was proposed by
Vankeerberghen et al. [40].

13.7 Detection limit and related quantities

An important characteristic of an analytical method is the smallest concentration
of the analyte that can be detected with a specified degree of certainty. In the
seventies [IUPAC [41] stated that the limit of detection, expressed as the concen-
tration, x;, or the quantity g, is derived from the smallest measure y., that can be
detected with reasonable certainty for a given analytical procedure, where

YL = Yo + kSl (13.9)

with yy the mean of the blank responses, sy, the standard deviation of the blank
responses and k a constant. The detection limit x;, (or g.) is obtained as:

xp. (or q1) = kspi/S (13.10)
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with S, the sensitivity of the analytical method (see Section 13.8), corresponding
to the slope of the calibration line. IUPAC strongly recommends to use a value of
k=3.

In general terms, the detection limit has been defined as that concentration
which gives an instrument signal (y) significantly different from the blank signal.
The different interpretations of the term “significantly different” have resulted in
different definitions for the quantification of the detection limit and this has led to
a lot of confusion. The fact that both blank and sample measurements are subject
to error requires the problem of chemical detection to be treated in a statistical way.
This implies that detection decisions are prone to the two kinds of errors associated
with any statistical testing: false positive decisions (type I or a-error) and false
negative decisions (type II or B-error). Traditional approaches for determining
detection limits (such as the former IUPAC definition [41]) only provide protection
against type I errors. They do not take the B-error into account. According to Currie
[42, 43] three limiting levels are required to completely describe the detection
capabilities of an analytical method: (1) the decision limit at which one may decide
a posteriori whether or not the result of an analysis indicates detection, (2) the
detection limit at which a given analytical procedure may be relied upon to lead a
priori to detection and (3) the determination limit (or quantification limit) at which
a given procedure will be sufficiently precise to yield a satisfactory quantitative
estimate. The decision limit is related to the question “Has something been
detected?”, the detection limit to the question “How little can be detected?”. The
most recent IUPAC Nomenclature document [3] recognizes the necessity to con-
sider both o and 3 errors and includes the different limits specified above.

The discussion of the detection limit and related quantities in this section is
based on papers by Currie [42], Hubaux and Vos [44], Winefordner and Long [45]
and Cheeseman and Wilson [46] and on a textbook edited by Currie [43]. Termi-
nology and symbols for the measurement limits in this discussion are as far as
possible as recommended by IUPAC [3]. In the literature and in some specific
guidelines several other terms and symbols are used.

13.7.1 Decision limit

Let us first consider the blank measurement. The blank is a sample which is
identical to the sample of interest except that the analyte to be measured is not
present. The measurement of that blank is of course also subject to error, which we
consider to be normally distributed. This means that a sufficiently large number of
observations on the blank can be represented by a normal distribution of the
responses, with mean |y, the true blank value, and standard deviation oy as shown
in Fig. 13.12. Now consider a response, Lc, which is made k¢ standard deviations
away from the mean blank value:
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Fig. 13.12. Normal distribution of the blank measurements.

LC:Hbl‘}'kCGbI (131])

The probability to measure a blank signal, y,;, which is larger than Lc is equal
to o. The higher Lc is, compared to the mean blank value, the less probable it
becomes to obtain a blank signal that is larger than Lc. From this it follows that if
Lc is sufficiently larger than the mean blank value a measured signal which is larger
than Lc is unlikely to be due to the blank. If signals larger than L¢ are interpreted
as “‘component present”, then only a fraction o of blanks will be (mis)interpreted
as “component present”.

The critical value, Lc, thus depends both on the standard deviation of the blank
measurements and on the risk one is willing to take of making a wrong decision.
For kc = 3, Lc 1s equal to y;_as formerly defined by IUPAC [41]. A value of kc =3
corresponds with a probability o = 0.13% that a signal larger than Lc is due to a
blank. Therefore, it can be concluded with a high probability (1 — & =99.87%) that
the component has been detected.

However, if a signal is measured which is lower than L it cannot, with the same
certainty, be concluded that the component is not present. To explain this, consider
a sample with a true concentration corresponding to an average response L¢. The
distribution of an infinite number of repeated measurements on this sample is
represented, together with the distribution of the blank measurements, in Fig.
13.13. A normal distribution with a standard deviation equal to Gy; is assumed. Note
that 50% of the signals observed for the sample will be smaller than the limit Lc.
Therefore, the statement that the component is absent if the measurement is smaller
than Lc is very unreliable. Indeed, the probability of not detecting the analyte when
it is present with a concentration yielding a signal Lc, is 50% (= the [ error, the
probability of false negative decisions — see Chapter 4). Consequently, with this
limit Lc, the probability to decide that the analyte is present when in fact it is absent
(= overror) is small whereas the probability to decide that the analyte is absent when
in fact it is present (= 3 error) is very large.
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Fig. 13.13. Illustration of the decision limit, Lc.

Due to the large B error it has been proposed to use this limit only for an a
posteriori decision about the presence of a component, i.€. a decision after the
signal is measured. It is then defined as the critical level or decision limit above
which an observed signal may be reliably recognized as detected [3,42,43]. IUPAC
[3] proposes a default value for o equal to 0.05. This corresponds with k¢ = 1.645.

13.7.2 Detection limit

To reduce the B error, so that eventually the o and the 3 error are better balanced,
the two distributions in Fig. 13.13 have to be separated to a larger extent. In Fig.
13.14 the situation is represented where a = 3. It is assumed that G at the detection
limit Lp is equal to oy,

Fig. 13.14. Illustration of the detection limit, Lp.
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The detection limit Ly is set kp standard deviations away from Lc:
LD=Lc+kDGb| (1312)
= Wyl + k,D Gy with k/D =kc + kp

From Fig. 13.14, where the relationship between the critical level, L¢, and the
detection limit, Lp, is illustrated, it follows that Ly, has the following meaning: for
a sample that does not contain the analyte (the true concentration corresponds to
an average response Uy less than a% of the measurements will exceed Lc. For a
sample with a true concentration corresponding to a response Lp only B% of the
measurements will be below L¢ and are indistinguishable from the blank. There-
fore, given L¢ (or @), Lp protects against false negative decisions.

In Fig. 13.14 o. = B because k¢ = kp. With for example ke =kp =3, a=B=0.13%
and

LD=LC+30b|=}Lb1+6Gm (1313)

Therefore, with Lp as detection limit, as defined by eq. (13.13), we run a risk of at
most 0.13% to conclude that the component is absent when in fact it is present.
Consequently, the risk for both false positive (o) or false negative results (B) is very
small.

Taking the default values for both o and f3 equal to 0.05, IUPAC [3] proposes a
multiplication factor equal to 3.29 (= 2 x 1.645).

13.7.3 Quantification limit

The determination or quantification limit, Lq, is defined as the level at which the
measurement precision will be satisfactory for quantitative determination (IUPAC
[3] recommends not to use the term determination limit). In other words, the
quantification limit is the concentration that can be determined with a fixed
maximum relative standard deviation (RSD) and a suitable accuracy.

It is defined as: '

LQ=p.b]+kQ Ob (1314)

If for quantitative determination an RSD of 5% is required, kq should be 20. The
relative standard deviation at the level Lq is thus 1/kg (= Ow/(Lg — Hs1)). Conse-
quently, the relative standard deviation of the quantitative measurement at the
decision level L¢ is 33.33% and at L, 16.67%. IUPAC [3] proposes a default value
of 10 for kq. The above definition of course assumes that G at the quantification
limit is equal to oy In practice therefore, L is preferably determined from the
precision measured at the level thought to be equal to Lq.

The SFSTP group [13] specifies that the precision and accuracy have to be
evaluated at the quantification limit by preparing n independent samples (n = 6)
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containing the component to quantify at the concentration Lg and performing the
test procedure on each sample.

The choice of the k values (or the r values — see next section) determines the
risk one is willing to take of making a wrong decision. However, the different
values for the constants used have contributed to the existing confusion about
detection limits. Therefore, when reporting the lower limits of measurement, the
way they are defined and determined should be specified. In this context, the
Analytical Methods Committee of the Royal Society of Chemistry [47] recom-
mends the former IUPAC definition for the detection limit which as mentioned
earlier, specifies k = 3, and discourages the use of the other lower limits of
measurement (decision limit and quantification limit). The committee prefers a
simple operational definition for the detection limit that is regarded as a rapidly
acquired but approximate guide to performance of an analytical system. Be-
cause of difficulties in the interpretation of detection limits it is considered that
there is no point in trying to estimate them very precisely, or in defining them
strictly in terms of confidence intervals. We agree that this makes sense but in
many disciplines such as the bio-analysis of drugs [16], one has to state a
quantification limit.

13.7.4 Measuring the blank

The expressions for Lc, Lp and L are based on the mean blank and on the
variability of the blank. To ensure that realistic estimates of these limits are made
it 1s important to select the appropriate blank. A solvent or reagent blank, which is
the solution that contains the reagents in the same quantity used to prepare the
calibration line or to dilute the sample, may give detection limits which are too
optimistic. If our main interest, however, is in the comparison of detection limits
of different instruments such a solvent blank is perfectly useful. An analytical
blank contains all reagents and has been analyzed in the same way as the samples.
It is a blank solution which has been taken through the whole procedure, from the
pretreatment up to the measurement and therefore it is much more appropriate to
determine the detection limit of the analytical method that is being validated.
Therefore detection limits based on the signal to noise ratio should only be used if
they can be obtained from the entire measurement process. The ideal blank is the
matrix blank which has exactly the same composition as the sample except for the
analyte to be analyzed. In some situations a sample in which the analyte is not
present can be obtained e.g. if a drug has to be determined in blood, blank blood
without the drug can usually be obtained. Alternatively, if a blank sample is not
available, the variability of a sample with a very low analyte concentration
(concentration near the detection limit) can also be used for the evaluation of the
detection and quantification limits.
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Good estimates of the mean and the standard deviation of the blank require a
reasonable number of blank measurements, n. The fact that the calculated standard
deviation is only an estimate can be taken into account by replacing the constants
ke, kp and kg in eqs. (13.11, 13.12 and 13.13), which are derived from the
standardized normal distribution, by ¢ values (ic, #p and #; for n — 1 degrees of
freedom). However, if a reasonable number of blank measurements have been
made, the values obtained for the different limits will be very similar to those given
earlier. [UPAC [3] specifies that when G is estimated as s, a confidence interval
must be given for the detection limit Lp, to take the uncertainty in s into account. This
can be done by considering the confidence interval for ¢ as derived from eq. (5.16).

Another approach, which is also included in the ICH document [9], is to estimate
the standard deviation of the blank from the residual standard deviation of the
calibration line (s,, see eq. (8.6)). It should be obvious that this is only useful
provided (i) that the calibration standards have the same composition as the
samples to be analyzed, (i1) that the calibration standards have been taken through
the whole analytical procedure and (iii) that the calibration data are homoscedastic.

Practices also differ with respect to the blank correction. Indeed eqs. (13.11) to
(13.14) are based on the comparison of the measured signal with the blank signal.
However, when blank correction is part of the analytical procedure, the measured
response should first be corrected for the blank response. The decision that the
analyte 1s present is then based on a comparison of the net signal with zero. If yy
represents the net signal, ys the gross signal and yy, the blank signal:

YN=Ys = Yol

Consequently, unless the blank is well known, the variability of the net signal is:
ON = O3 + Opy

If the standard deviation is independent of the concentration:

o4 =2 o}

When the sample does not contain the analyte, ys = yy, and their difference follows
a normal distribution with a population mean of zero and a standard deviation oy
=2 oy Therefore, the decision limit and the detection limit for blank corrected
signals are given by

Le = ke 6o = ke V2 oy
(13.15)
Lp= le Gy = k,D \/50131 with k’D =kc + kp

Equation (13.15) applies for paired comparisons {43]. This means that with each
sample (or each batch of samples) a blank is analyzed and each sample response
(or the sample responses within a batch) therefore is individually blank corrected.
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If the blank correction is performed by subtracting the mean of » blank determi-
nations the equations given above change into

YN=Ys = Yol
with
ON = O3 + Oh /n
Thus, if the standard deviation is independent of the concentration
Go=V1+(1/n) Gy
and

Le=kcOg= \11+(1 /n) kCGbl

Lp= k,D Go=VN1+ (1 /n) k,D Gy (k'D :kc +kD)

Notice that the recent ITUPAC [3] basic definitions consider the mean value of
the blank response as well as the variance of the blank to be precisely known since
the expressions for Lp and Lc, given o = § = 0.05, and for Lq, given kg = 10, are:

(13.16)

Le=1.645 6, (13.17)
Lo=329 0, (13.18)
Lo =10 o, (13.19)

However several of the possible complications discussed in this section are also
treated in the JIUPAC document [3]. It also briefly discusses the effect of hetero-
scedasticity on the expressions for the measurement limits.

13.7.5 Concentration limits

The detection limits have been described so far in terms of the measurement
signal. They can be re-expressed into concentration or analyte detection limits by
making use of the slope of the calibration line, b;:

XC_LC—Mbl_kCO'bl
T b b

, 13.20
p :LD—Hbl_kDGbI ( )
T T b

With k& = 3 these expressions correspond to the detection limit as formerly
recommended by IUPAC (eq. 13.10) which should be reported as xi =3).

In eq. (13.20) it is assumed that the blank is well known since in the blank
correction the variability of the blank is not taken into account. If this variability is
considered, concentration limits have to be calculated from eq. (13.16).
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(13.21)
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13.7.6 Example

Lead in foodstuffs is analyzed by means of GFAAS after microwave digestion
of 0.25 g material and dilution to a final volume of 25 ml. The calibration equation
for standard solutions containing between 0 and 60 ng Pb/ml is y = 0.002 +
0.00291x. The variability of the blank is obtained from the analysis, including the
microwave digestion, of 10 analytical blanks. The following responses, expressed
as peak area, are measured for those blanks:

blank area
0.025
0.037
0.012
0.029
0.048
0.026
0.024
0.015
0.041

10 0.019
x*s5=0.028+0.012

—_—

Neliie <BEN e NNV N SRS O]

For the determination of the detection limit the traditional IUPAC definition as
well as some other approaches discussed earlier will be calculated for o= 3 = 0.05.

From egs. (13.9) and (13.10) the traditional TUPAC detection limit is obtained
as follows:

Y=y = 0.028 + (0.012 x 3)
and
XLp=n = (0.012 % 3) /0.00291 = 12 ng/ml

Taking into account the weight of material (0.25 g) and the final volume (25 ml)
used in the analysis, this corresponds to a detection limit in the original foodstuff
of 1.2 ug Pb/g.

At the 5% probability level chosen (a = 3 = 0.05) for the illustration of some other
approaches, the (one-sided) r-values for 9 degrees of freedom are #c = tp = 1.833 (as
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compared to k¢ = kp = 1.645 for df = o). We will consider two different situations.

(A) In the analysis each sample absorbance is blank corrected with the mean
blank absorbance calculated previously. The decision limit Lc becomes (see eq.
(13.16)).

Lc=1.833~1+(1/10) 0.012=0.023
The detection limit, Lp, is then 0.046. Those limits are converted into the following

concentration limits (see eq. (13.21))

0023
€7 0.00291

xp =2 xc =16 ng Pb/ml

= 8 ng Pb/ml

Taking into account the weight of material (0.25 g) and the final volume (25 ml)
used in the analysis, this corresponds to a decision and a detection limit in the
original foodstuff of respectively 0.8 ug Pb/g and 1.6 pg Pb/g. According to
Kirchmer (see Ref. [43]) for a sample yielding a Pb concentration of 0.9 ug/ml, it
can be decided that Pb 1s present and the result can be reported as such. On the other
hand, an estimated sample concentration of 0.6 ug Pb/g should then be reported as
<1.6 pg Pb/g to take into account the possibility of false negative decisions.
However, this way of reporting is generally not used. We advise to follow the
IUPAC [3] recommendation that all results less than the detection limit, including
negative values, and their uncertainty are always reported.

(B) In the analysis the variability of the blank is obtained from the replicate
blank measurements given earlier but for each batch of sample analyses a single
blank determination is performed. The decision limit is then (see eq. (13.15)):

Lc = 1.83342 0.012 = 0.031
and the detection limit
Lp=0.062

This corresponds to a decision and a detection limit in the original foodstuff of
respectively 1.1 pg Pb/g and 2.2 ug Pb/g.

13.7.7 Alternatives

For analytical methods that involve the measurement of a peak on a noisy
baseline (e.g. chromatography) the method detection limit (MDL) has been intro-
duced [48]. It is defined as “the minimum concentration of a substance that can be
identified, measured and reported with 99% confidence that the analyte concentra-
tion 1s greater than zero and is determined from analysis of a sample in a given
matrix containing the analyte”. The method detection limit is obtained as
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0 hmax

20 x peakwidth at
halfheight

Fig. 13.15. Alternative approach to determine limits of measurement from, e.g., a chromatographic run.

MDL = 50101 §

where ¢ is Student’s ¢ value at n — 1 degrees of freedom and o = 0.01 (one-sided)
and s is the standard deviation of n replicate analyses of standards or samples with
a low concentration of the analyte. The term method detection limit is misleading
since the value not only depends on the method but also on the instrument sensi-
tivity, the nature of the samples and the skill of the analyst [43].

For methods such as chromatography the SFSTP [13] advises the following
procedure. The complete analysis is performed on a matrix blank and the chroma-
togram is recorded. The maximum amplitude, A, over a distance which is equal
to twenty times the width at half height of the peak corresponding to the analyte is
determined as shown in Fig. 13.15. From this the detection limit is obtained as
3haR and the quantification limit as 10h,,R where R is the response factor
quantity/signal (expressed in peak height). The precision and accuracy at the
quantification limit is evaluated by the analysis of samples with a concentration
corresponding to the limit of quantification. It should be noted that this procedure
applies to signals expressed as peak height. For measurements obtained as peak
areas the evaluation of the detection and quantification limits can be based on the
variability of a sample with an analyte concentration near the detection limit. The
earlier described approaches can then be used.

13.7.8 Determination of the concentration limits from the calibration line

In the following approach for the concentration detection limit, which up to now
1s not generally practised, allowance is also made for the uncertainty in the
calibration line. Indeed, the calibration line is only an estimate of the true regres-
sion line. It is possible to take this uncertainty into account by considering the
confidence limits of the calibration curve. Therefore, consider Fig. 13.16 in which
the lower part of the calibration line with the lower and upper confidence limits are
shown.

The possible outcomes for estimations of the response of the blank (x = 0) are
represented by the distribution drawn at the left of the figure. In this distribution yc
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Fig. 13.16. Illustration of the detection limit taking into account the uncertainty in the calibration line.

represents the lowest detectable signal and corresponds to L¢ defined earlier: a
measured signal larger than yc is unlikely to be due to the blank, the probability
that it is due to the blank being 1000%. From this, the lowest concentration, xp,
which can be distinguished from zero, the blank, can be obtained as the intersection
of the horizontal line y = yc and the curve describing the lower confidence limit. If
we measure a sample with an unknown concentration which is smaller than xp, the
B error, the risk for false negative decisions, increases. For example xc cannot be
considered as the detection limit because the B error is 50% which is much too high.
With xp as detection limit a better balance between the two types of error, o and B,
is obtained. From xp, the corresponding detection limit, expressed in terms of the
signal, can be calculated from the calibration function.

The calculation of these limits can be performed as follows:

1. Consider the confidence limits for the mean of m responses at a particular x
value, xq (see Section 8.2.5.1).

1 1 (xo—x)?
by + b x T, SeJ—+—+—‘—_—
0 1 A0 2 m n Z(X[ — x)z
t corresponding to a probability o for the upper limit and 8 for the lower limit.
2. Compute yc which is the upper confidence limit (one-tailed) for the mean of
m responses when the analyte concentration is zero:

ve=by + ¢ s \/l +1+ X
ye =byo e L T
FEEN M n Y%

3. xp can be obtained in different ways:
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— as the intersection of the line y = yc with the curve describing the lower
confidence limit, y = y;, where:

1 (xp — x)?
=by+b — g e\/ —_—t
yL=0o 1XD = lBin—2 S +”+2(x,-—x)

This calculation is rather cumbersome.

— by iteration. xp, is then defined as the lowest value of x which gives a value for
yL exceeding or equal to yc.

— the following approximation has been proposed by the AOAC [27]:

(2xc = x)*
Xp = Xc + tg.n sb-\/—+ +—=
D = XC + g2 S/ b Sa 9
This originates from:

(XD x)’
XCc=Xp—1I8n2S b\/—+—
C = XD — -2 Sl =3

xc being the lower (1 - 8) % confidence limit for a predicted concentration xp and
the exact value of xp being near 2 xc.

4. From the calibration line, if necessary, calculate the corresponding limit in
terms of the response

b =bo + by xp

The detection limit determined in this way can be decreased by improving the
precision (s,), increasing the number of standards (n) and the number of measure-
ments made for the sample (m). The calibration design, e.g. the concentration range
considered and the distribution of the standards within this range also influences
the detection limit through its effect on x and Y(x; — x)*. It has been recognized, for
example, that limits which do not reflect the real performance capability of the
analytical method (because they are too large) can result from a calibration line in
which the lowest standard(s) are considerably removed from the origin [43]. It
should also be realized that it is assumed that the residual variance, estimated as
52, is equal to the sample measurement precision. When this assumption does not
hold, which might, e.g., be the case when simple calibration standards are used, the
detection limit will be underestimated. The calibration should then be planned to
include the complete measurement process from the pretreatment up to the actual
measurement.

IUPAC [3] proposes a propagation of error approach, using the Taylor expan-
sion for the variance of x at the detection limit xp, to take the uncertainty in the
calibration line into account. Without an explicit derivation the following expres-
sion for the detection limit (homoscedasticity and o = B) is considered:
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xp = (2048 Oo/b1) (KI)
where K = 1 + r(bo,b1) (05/00) [to.ae(Cn/b1)]
=1 - [tau(Cp/b1)]?
In this expression r(bg,b;) is the correlation coefficient between slope and intercept
which is obtained as —x/N(Xx?)/n. However it is not indicated how the degrees of
freedom are obtained, which are necessary in the selection of the z-value. Moreover
it is remarkable that in another TUPAC document [2] this same expression is given
with each o replaced by s.

As a conclusion to the discussion of measurement limits it should be re-empha-

sized again that, due to the many different approaches that are possible, in reporting
these limits it is of paramount importance to specify how they were obtained.

13.8 Sensitivity
13.8.1 Sensitivity in quantitative analysis

IUPAC [3] and ISO [37] define the sensitivity as the slope of the calibration line
because a method with a large slope is better able to discriminate between small
differences in analyte content. In metrology and in analytical chemistry, the
sensitivity is defined as the slope of the calibration line. The reader should note that
because one says colloquially that a method is sensitive when it has a low detection
limit, sensitivity is sometimes used erroneously in lieu of detection limit.

In fact, there is little sense in including sensitivity as a performance charac-
teristic when it is defined as the slope. It is not sufficient to know the slope of the
calibration line to determine whether two concentrations can be discriminated: one
also needs the standard deviation on that slope. The smallest difference d that can
be distinguished between two signals depends on the standard deviation s of the
two signals (which we can consider to be the same for the two) and the risks o and
B one takes respectively to conclude there is a difference when there is none and to
conclude that there is no difference when it exists (see Chapter 4). To determine
the smallest difference d one can distinguish in concentration units one must relate
signal to concentration using b, the slope. The following equation has been
proposed for the sensitivity [13]:

d=(t1an+tip) SN2 (1/by) (13.22)

where the z-values are determined for o = 0.05 (two-sided) and 3 = 0.05 (one-sided)
for the number of degrees of freedom with which s was determined. Suppose that
the relevant precision measure (repeatability, intermediate precision, ...) s was
determined with 10 determinations, then #|_o» = 2.26 and #,_g = 1.83. It then follows
thatd = 5.76 s/b,.
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13.8.2 Sensitivity and specificity in qualitative analysis

In Chapter 16, we will learn that sensitivity and specificity are used to charac-
terize the quality of assays with a binary output, yes or no (e.g., see Section 16.1.3:
are there HIV antibodies in the urine or not?). Recently, these terms have been
introduced into analytical chemistry. AOAC [7] proposes the following definitions:

Specificity rate = qualitative — the probability, for a given concentration, that
the method will classify the test samples as negative given that the test sample is a
“known” negative. Specificity is calculated as number of found negatives/total
number of “known” negatives.

Sensitivity rate = qualitative — the probability, for a given concentration, that
the method will classify the test sample as positive given that the test sample is a
“known” positive. Sensitivity is calculated as number of found positives/total
number of “known” positives.

AOAC also proposes the following related definitions:

False positive rate = Number of false positives/total number of “known”
negatives.

False negative rate = Number of false negatives/total number of “known”
positives.

The proposal states for all four definitions that the term is applicable to immu-
nological assays, microbiological assays, clinical studies and clinical chemistry.
The terms false positives and false negatives are now also being used in food
analysis [49,50].

13.9 Selectivity and interference

When another substance, a set of substances or the matrix as a whole have an
effect on the signal of the analyte measured and this is not accounted for in the
method developed, then systematic errors can affect the result and cause bias. This
situation is described by stating that there is a lack of selectivity or that interfer-
ences occur. There do not seem to be generally accepted and clear definitions for
these terms. For instance, several guidelines use “specific” instead of “selective”
and some make a distinction between those two terms. In view of the use of the
term specific in another context, described in the preceding section, it seems
preferable not to use it for the characterization of quantitative analysis procedures.

The term interference is often a general term. Van der Linden [51] states “An
interfering substance in analytical procedures is one that, at the given concentration,
causes a systematic error in the analytical result”.

Selectivity and matrix effect or matrix interference have a more restricted
meaning. The literature does not make the distinction clearly. In our opinion, the
difference lies in the type of systematic error they cause.
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Matrix interferences lead to relative systematic errars. The factors yielding such
interferences may be physical or chemical and do not lead to a response as such.
They affect the slope of the calibration line. The effect can be due to one specific
substance (for instance in AAS, the presence of phosphate decreases the slope of
the calibration line of Ca, because it forms a compound with it) or to many (for
instance, the potential of an ion-selective electrode is affected by the ionic strength
and therefore by all the ions that are present). Matrix interferences can be detected
by comparing the slope of the calibration line with the relationship between signal
and concentration in the matrix, using methods such as standard addition (see
Sections 8.2.8 and 13.5.5).

A method 1s considered selective when no concomitant species has a response
of its own that adds to that of the analyte. Lack of selectivity would affect the blank:
a sample containing all substances in the sample, including the concomitant
spectes, but not the analyte would yield a positive value. If not corrected for, this
would lead to a constant systematic error.

Unfortunately, statistics does not help very much in detecting problems with
selectivity due to blanks. One must use chemical reasoning, make a list of possible
interferents and show experimentally that the substance in question does not
influence the result. Often, the interpretation is simple. For instance, in chromatog-
raphy one can often conclude that the peak of the candidate interferent is com-
pletely separated from that of the analyte. When an analyte-free matrix can be
obtained, one can analyze this and, if the blank is sufficiently low, conclude that
the substances in such a sample do not contribute to the signal with which the
analyte will be quantified. This is not a guarantee, since it is always possible that
another matrix may contain other concomitant substances, that will be measured.
However, Shah et al. [16] write in their guidelines for bioanalysis that analyzing
six samples of different origin in this way may be considered as proof of sufficient
selectivity. Sometimes, one will do determinations on a number of samples with
and without the possible interferent(s). This means one compares two series of
measurements sample by sample. This is the same type of comparison as discussed
in Section 13.5.5 and one can therefore use the same type of experimental design
and statistical interpretation.

In some other cases, bivariate approaches may help. By this we mean that
instead of measuring the signal according to one single variable, one can add a
second dimension. A bivariate approach is often applied in hyphenated chroma-
tographic techniques such as high performance liquid chromatography (HPLC)
with a diode array detector (DAD). If the spectrum measured with the DAD
stays constant over the whole length of the peak, this is taken to mean that the
peak is due to a single analyte. The interpretation of the data tables obtained is
not always straightforward. Sometimes factor analytical techniques (Chapter
40) are required.
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Chapter 14

Method Validation by Interlaboratory Studies

14.1 Types of interlaboratory studies

Interlaboratory studies are studies in which several laboratories analyze the
same material. Three types can be distinguished.

— Method-performance or collaborative studies in which the performance char-
acteristics of a specific method are assessed. These performance characteristics
usually have to do with precision. How to proceed in this case has been described
in an ISO guideline [1], in which this type of study is called a precision study. The
AOAC/IUPAC protocol [2] can be seen as amending the ISO guideline. ISO itself
[3] recently has amended its guideline and has also published a guideline to
estimate the bias of a measurement method.

— Laboratory-performance or proficiency studies, in which a material is analyzed
of which the true concentrations are known or have been assigned in some way,
often from the interlaboratory experiment itself. The participants apply whatever
method is in use in their laboratory. The results of the laboratories are compared to
evaluate the proficiency of individual laboratories and to improve their performance.
IUPAC [4] describes a protocol for the proficiency testing of analytical laboratories.
Recommendations are also given by the Analytical Methods Committee [5].

— Material-certification studies in which a group of selected laboratories ana-
lyzes, usually with different methods, a material to determine the most probable
value of the concentration of a certain analyte with the smallest uncertainty
possible. The objective of such a study is to provide reference materials. This latter
type of study is very specialized and reserved to institutions created for that
purpose, so that we will not discuss it here.

14.2 Method-performance studies
14.2.1 Definition of reproducibility and repeatability

Repeatability refers to precision as measured under repeatability conditions.
These have been defined as follows [1]:
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“Repeatability conditions are conditions where mutually independent test
results are obtained with the same method on identical test material in the
same laboratory by the same operator using the same equipment within short
intervals of time.” ’

Reproducibility refers to reproducibility conditions and these were defined as
follows:

“Conditions where test results are obtained with the same method on identical
test material in different laboratories with different operators using different
equipment.”

In other words, reproducibility of a method is measured in collaborative preci-
sion studies of a (proposed) standard method, in which several laboratories analyze
the same material.

Repeatability and reproducibility conditions are extremes. In the former, the
operator, the instrument, and the laboratory are the same and the time interval is
kept short. In the other, the laboratory is changed, so that operator and instrument
are also different and the time interval is greater. In interlaboratory studies only
these extremes are of interest, but we should remember (see Chapter 13) that
several intermediate measures of precision are possible.

All reproducibility measures lead to variance models with a within-lab and a
between-lab component. Before explaining this model we note the convention that
everything related to repeatability is represented by r and everything related to
reproducibility by R. For instance, the standard deviation obtained experimentally
in a repeatability experiment is written down as s, and that in a reproducibility
experiment as sg.

The basic statistical model is a random effects model (see Chapter 6.1.4)

y=y+B+e (14.1)

where y is the general average for the material analyzed, B represents the laboratory
component of bias and e is the random error. The latter is estimated by s? the
repeatability variance, while B gives rise to s¢, the between-laboratory variance.
By definition the mean value of B is zero. We can then write that:

sk=s2+st (14.2)
Equations (14.1) and (14.2) state that, as noted in Chapter 13, laboratory compo-
nents of biases are systematic errors from the point of view of a single laboratory,
but random errors from the interlaboratory point of view.

It should be noted here that the Guide to the Expression of Uncertainty in
Measurements [6] defines reproducibility as “the closeness of agreement between
the results of measurements of the same measurand, where the measurements are
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carried out under changedvconditions”. The Guide continues to specify that the
changed conditions can include different principles or methods of measurement,
different observers, different measuring instruments, different locations, different
conditions of use or different periods of time. Reproducibility is then no longer
linked to a specific method and a note specifies that “a valid statement of repro-
ducibility requires specification of the conditions changed”. In the context of
interlaboratory studies as described in this chapter and in the ISO, IUPAC and
AOAC norms, reproducibility is a precision measurement for a specific method.

14.2.2 Method-performance precision experiments

A precision experiment is carried out by p > 8 laboratories. They analyze the
materials with the method, the performance of which is studied, at m levels of
concentration. Indeed, precision can (and usually does) depend on concentration
and when a method is validated this has to be done over the whole range concerned
(see Chapter 13.2). Each level is analyzed n times. The recommended value for n
is 2. The number of levels m depends on the concentration range. ISO [1] recom-
mends m = 6 and IUPAC [2] at least 5 materials, where a material 1s a specific
combination of matrix and level of analyte. However, there are cases where this
makes little sense. For instance, when one validates a method for the analysis of a
drug in formulations, its concentration is probably situated in the relatively small
range at which it is pharmacologically active but not toxic so that it is improbable
that drugs will be formulated at vastly different concentrations. A smaller m can
then be accepted. The number of laboratories should be at least 8, but when only
one single level of concentration is of interest the ISO standard recommends to
include at least 15 laboratories. It should be noted that the numbers of laboratories
given here, are those cited in the standard. They are needed if one wants to develop
an internationally accepted reference method. This does not mean that method-per-
formance studies with smaller numbers of participants are not useful.

The experiment can be run as a uniform level experiment or a split level
experiment. In a uniform level experiment one carries out n = 2 replicate determi-
nations on the same material. This can in some cases lead to an underestimation of
the precision measure. If operators know they are analyzing replicates, they may
be influenced and produce results that are as alike as possible. This may be avoided
with split level experiments, in which a material with slightly different concentra-
tions is used. Each of the levels is analyzed once. In Section 14.2.4 we will describe
how to compute the results for uniform level experiments. How to carry out similar
computations for split level experiments is described in [1] and [3]. It should be
stressed also that this chapter describes what is of interest to the chemometrician,
namely the statistical analysis of the data. Readers who want to study in detail how to
carry out method performance experiments should be aware that the organizational



444

aspect is very important. This is described in Refs. [1] and [3]. Tutorial articles
such as Ref. [7] are also useful to understand better how to set up such experiments.

14.2.3 Repeatability and reproducibility in a method-performance experiment

The ISO standard [1,3] describes two measures for the repeatability and the
reproducibility. The repeatability can be described by the repeatability standard
deviation s,, which is the standard deviation measured under repeatability condi-
tions (see Section 13.4.1). How to obtain this value is described in Section 14.2.4.
It estimates, as usual, the true repeatability standard deviation G,. The relative
repeatability standard deviation is written as RSD,. Another measure is the
repeatability (limit), r. This is the value below which the absolute difference
between two single test results obtained under repeatability conditions may be
expected to lie with a probability of 95%. The standard states that

r=280, (14.3)

In the same way one can define the reproducibility standard deviation sg, the
reproducibility limit R and the relative reproducibility standard deviation, RSDg,
and write

R=280, (14.4)

The value of 2.8 can be understood as follows. The variance of the difference
between two replicate measurements is 26> (G being estimated by s, or sg, accord-
ing to the situation). The confidence interval at 95% level on the difference is
0+ 196 \20. If s, or sg estimate ¢ well enough, as should be the case in an
interlaboratory experiment, then one can write that the confidence interval is £ 1.96
V2 s, (or sg) rounded to £ 2.8 s, (or sg). There is therefore a 95% probability that
the difference between two individual determinations will not exceed 2.8 s, (or sz).

The repeatability and reproducibility values can be used to include precision
clauses in the description of the method. A typical precision clause is: “The
absolute difference between two single test results obtained under reproducibility
conditions should not be greater than 0.7 mg/1”.

An experimental difference between two values larger than r, therefore indicates
that the laboratory’s repeatability for the method investigated is not up to standard.
Part 6 of the ISO standard [3] describes a procedure on how to judge on the
acceptability of results when the repeatability limit is exceeded.

14.2.4 Statistical analysis of the data obtained in a method-performance
experiment

The analysis of the data starts by investigating the statistical assumptions. The
main assumptions are:
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1. Normal distribution of the laboratory means at each level.

2. Equality of variance among laboratories at each level.

Since outliers lead to non-normal distributions, ISO recommends to investigate
the existence of outliers to test the first hypothesis. A violation would indicate
unacceptable laboratory bias in the outlying laboratories. The second assumption is
investigated by testing the ranges (if n = 2) or variances (if n > 2) for outliers. Violation
would indicate unacceptable differences in repeatability among laboratories.

The standards describe a procedure for outlier removal. The flowchart of the
outlier removal procedure is shown in Fig. 14.1. One first tests the homogeneity of
the variance in the laboratories with the use of the Cochran test (see Chapter 6.2).

START
CALCULATE
|  PRECISION
MEASURES
DROP LAB UNLESS
COCHRAN YES OVERALL FRACTION OF
OUTLIER? LABS DROPPED WOULD
EXCEED 2/9
NO
DROP LAB UNLESS
OVERALL FRACTION
OF LABS DROPPED
WOULD EXCEED 2/9
DROP LABS UNLESS
OVERALL FRACTION OF
LABS DROPPED WOULD
EXCEED 2/9
YES LABS

DROPPED IN THI

END

Fig. 14.1. Flowchart for outlier removal from a precision experiment (adapted from Ref. [7]).
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The averages for the same level presented by the p laboratories are then tested for
outliers by the Grubbs’ test (see Chapter 5), first with the 2-sided single outlier test,
then with the Grubbs’ pair test (double outlier test in the ISO terminology). ISO
uses a version of the latter test which detects two simultaneous high or two
simultaneous low values, while the AOAC/IUPAC version also detects one high
and one low value occurring simultaneously. In all tests, outliers at the 1% level
are eliminated (at the 2.5% level in the AOAC/IUPAC protocol [2]), while
stragglers at the 5% level are flagged, but are included in the analysis except when
an assignable cause for the outlying result is found. A graphical way to evaluate
the consistency of results and laboratories, and recommended in [3], is what are
called Mandel’s /4 and & statistics. These statistics can also be used to evaluate the
quality of laboratories and we describe these methods in Section 14.3 on laboratory-
performance studies.

An example of the analysis of a uniform level experiment is given in Table 14.1.
The example concerns a standard test method, involving a thermometric titration
[8]. Nine laboratories participated, five materials were analyzed in duplicate. The
first step is the outlier removal procedure. It is carried out using the data of Tables
14.2 and 14.3. The data of Table 14.2 are subjected to the Cochran test. At level 4,
the test value for 1.10 (laboratory 7) is 0.667; at level 5 the test value for 1.98
(laboratory 6) is 0.636. The critical values for n =9 are 0.754 (o0 = 1%) and 0.638
(0. = 5%) (see Tables in Chapter 5). The value 1.10 is a straggler and 1.98 is so
close to it that it is also flagged. However, none of these values is eliminated yet.
The single Grubbs’ test indicates that there are outliers at levels 3 and 4 of
laboratory 1 (Table 14.4). The two values are eliminated. The other values obtained
by laboratory | are not detected as outliers, but they too are high and therefore it
was decided to reject all values of laboratory 1. The Cochran test is now applied

TABLE 14.1

A uniform level experiment (from [8]). Data are given in % mass/mass

Lab. i Level j

I 2 3 4 5
1 4.44 439 934 934 17.40 16.90 19.23 19.23 2428 24.00
2 403 423 842 833 14.42 1450 16.06 16.22 20.40 1991
3 370 370 760 740 13.60 13.60 1450 15.10 19.30 19.70
4 410 410 893 880 1460 1420 15.60 1550 2030 20.30
5 397 404 7.8 812 13.73 1392 1554 15.78 20.53 20.88
6 375 403 876 924 1390 14.06 16.42 16.58 18.56 16.58
7 370 380 800 830 14.10 1420 14.90 16.00 19.70  20.50
8 391 390 8.04 807 14.84 1484 15.41 1522 21.10 20.78
9 4.02 407 844 817 1424 14.10 15.14 15.44 2071 21.66
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TABLE 14.2
Cell ranges for the data of Table 14.1

Laboratory i Level j
1 2 3 4 5

| 0.05 0.00 0.50 0.00 0.28
2 0.20 0.09 0.08 0.16 0.49
3 0.00 0.20 0.00 0.60 0.40
4 0.00 0.13 0.40 0.10 0.00
5 0.07 0.23 0.19 0.24 0.35
6 0.28 0.48 0.16 0.16 1.98
7 0.10 0.30 0.10 1.10 0.80
8 0.0} 0.03 0.00 0.19 0.32
9 0.05 0.27 0.14 0.30 0.95
TABLE 14.3

Celi averages of the data of Table 14.1

Laboratory i Level j
i 2 3 4 5

I 4.415 9.340 17.150 19.230 24.140
2 4.130 8.375 14.460 16.140 20.155
3 3.700 7.500 13.600 14.800 19.500
4 4.100 8.865 14.400 15.550 20.300
5 4.005 8.005 13.825 15.660 20.705
6 3.890 9.000 13.980 16.500 17.570
7 3.750 8.150 14.150 15.450 20.100
8 3.905 8.055 14.840 15.315 20.940
9 4.045 8.305 14.170 15.290 21.185
TABLE 14.4

Application of Grubbs’ test to the cell averages of Table 14.3

Level Single low Single high Double low Double high
{ 1.36 1.95 0.502 0.356

2 1.57 1.64 0.540 0.395

3 0.86 2.50 - -

4 091 2.47 - -

S 1.70 2.10 0.501 0.318
a=1% 2215 2215 0.149 0.149

o=5% 2.387 2.387 0.085 0.085
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again. The critical value for n = 8 being 0.680 at &t = 5%, none of the two previously
identified stragglers can be considered an outlier. However, the value 16.58 of level
5 from laboratory 6 might by mistake have come from level 4 and this result is
therefore considered to have an assignable cause and eliminated. The result at level
4 for laboratory 7 is however accepted. It should be noted that outlier rejection is
not applied here (and should never be applied) as an automatic procedure, but
rather that the statistical conclusions are only one aspect of the whole context
leading to the final uecision.

After elimination of the outliers, one can determine s, and sz by one-way
analysis of variance at each concentration level (and, by multiplication with the
factor 2.8, rand R can also be obtained). Simple hand calculations are also possible
and are carried out as follows for a uniform level experiment. One uses the equation
for paired results, eq. (2.8). This yields:

2ol po

s,—2p2d, i=1,..,p

sa=[—1—zz@i—§>2-s3}/2
p—1

- 26— -2
p—1

where d; is the difference and y; the mean of the two results obtained by laboratory
i and y the grand mean, i.e. Yy/p. When s? and s{ have been computed, s can be
obtained from eq. (14.2).

An example of the calculations for one of the m levels is given in Table 14.5.
The calculations are given only for level 5. The results for all the levels are
summarized in Table 14.6.

A last step 1s to investigate whether there is a relationship between the s,; (or sg;)
and the concentration y; obtained at each level j. Indeed, it is known that precision
measures can depend on concentration (see Section 13.4.2). The ISO document 3]
recommends the following models be tested:

S,= b| y
s, =bo+b\y (14.5)
log s, =b"y+b" logy

Similar models are developed for sg. The simplest of the models that is found to
fit the data sufficiently well is adopted for further use. Weighted regression is
applied and a procedure to decide on the weights is described in the norm. For s,
the results are:
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TABLE 14.5
Example of calculation of r and R (adapted from 1SO [1]) (level 5 of Table 14.1)

Laboratory ¥i d; & yi—y Gi-y?
2 20.155 0.49 0.240 ~0.255 0.0650
3 19.500 0.40 0.160 0910 0.8281
4 20.300 0.00 0.000 ~0.110 0.0012
5 20.705 035 0.122 0.295 0.0870
7 20.100 0.80 0.640 -0.310 0.0961
8 20.940 0.32 0.102 0.530 0.2809
9 21.185 0.95 0.903 0.775 0.6006
) 142.885 2.167 1.9583
T=20.41

§7=2.167/14=0.1548 5,=0.393 r=28x0393=1.102

st = 1.9583/6 — 0.1548/2 = 0.2490
s2=0.1548 +0.2490 = 0.4038 sz =0.6358 R=28x0.6358=1.783

TABLE 4.6
Repeatability (r) and reproducibility (R) values for the data of Table 14.1

Level y r R

! 3.94 0.258 0.478
2 8.28 0.501 1.393
3 14.18 0.355 [.121
4 15.59 0.943 1.620
5 2041 1102 1.783
5,=0.019y

5,=0.032+0.015y

5, =0.031y>7"

No formal procedures have been described to decide which of the equations fits
best. In this case, it is decided that the simplest equation is good enough, so that this is
the one that is finally adopted. In the present case, the first equation is adopted.

14.2.5 What precision to expect

One of the questions that could be asked in a method-performance experiment
is what values of s, and sz should be expected. Interesting work in this context has
been carried out by Horwitz et al. [9]. They examined results of many interlaboratory
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Fig. 14.2. Relative reproducibility standard deviation RSDx as a function of concentration (adapted
from Ref. [9]).

collaborative studies on various commodities ranging in concentration from a few
percent (salt in foods) to the ppb (ng/g) level (aflatoxin M1 in foods) but including
also studies on, for example, drug formulations, antibiotics in feeds, pesticide
residues and trace elements. They concluded that the relative reproducibility
standard deviation RSDg (%) as a function of concentration is approximated by the
following relationship (see also Fig. 14.2):

RSDg% = 2(1703 100 ©) (14.6)

where C is the concentration expressed as a decimal fraction (for example for a
concentration of 1 pg/g, C = 107 g/g). This equation states that RSDk approximately
doubles for every 100-fold decrease in concentration, starting at 2% for C = 1 (or
log C = 0). This means, for instance, that when one carries out a purity check by
analysing the main component, one should count with a relative reproducibility
standard deviation of 2%. This leads to Table 14.7. It should be noted that these
results have been obtained under optimal conditions. Laboratories participating in
a between-lab study want to be able to show good results and probably exercise
somewhat more care than would be the case in normal routine.

One of the notable conclusions of Horwitz’ study is that the RSDy depends only
on the concentration and not on the analyte or method. This is true to such an extent
that in a later publication [10] the author states that RSDg-values are suspect, when
they exceed by more than a factor 2 what is expected from eq. (14.6). The ratio
between the reproducibility obtained and the one expected from eq. [4.6 is
sometimes called the HORRAT (short for Horwitz ratio).
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TABLE 14.7

Relative reproducibility standard deviation for some concentrations (in %) (from Ref. [9])

Type {(Concentration) Fractional RSDg
Pure substances (100%) 1 2
Drug formulations (1%) 0.01 4
Drug in feeds (0.01%) 0.0001 8
Trace elements (pg/g) 0.000001 16
Aflatoxins (10 ng/g) 1078 32

Another interesting result is that the corresponding repeatability measure
(RSD,) is generally one-half to two-thirds of the reproducibility. A similar result
was obtained in clinical chemistry by Steele et al. [11]. From eq. (14.2), it follows
that s7 is about 0.5 to 0.75 of s3.

14.2.6 Method-performance bias experiments

Until recently, method-performance experiments were synonymous with preci-
sion experiments. Part 4 of the ISO standard [3] describes methods for estimating
the bias of a measurement method and the laboratory bias, when applying that
method. It is restricted to the study of standard methods and requires that a
reference value can be established, for example by measurement of reference
materials. It also considers only situations where the measurement is carried out at
a single level and where no interferences are present.

14.3 Laboratory-performance studies

14.3.1 Visual display methods

Table 14.8 gives a summary of the data of an experiment for the proficiency of
laboratories in analyzing clenbuterol in urine [12]. This is a B-blocker illegally
used as growth promoter for cattle. The set-up was the following. The 10 partici-
pating laboratories, identified by a code number in Table 14.8, used their own
method to analyze (in 10-replicate) 3 samples, namely a spiked sample containing
the known amount of 1.5 ng/ml (mean result y,), a real sample with a concentration
close enough to 1.5 ng/ml not to be easily distinguishable from the first sample
(mean result y), a second real sample with higher content (mean result y3). The
samples were randomly coded so that the two first samples in particular could not
be distinguished by the participants. Three visual display methods are discussed in
this section. A fourth, based on principal components, is found in Section 17.5.2.
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TABLE 14.8

Performance assessment of laboratories by ranking. The data are for clenbuterol in urine [12]

Lab Results (in ng/ml) Ranks Score
¥ »2 33 R Ry Ry

| 1.15 1.33 313 8 8 8 24
12 1.49 1.76 332 7 4 7 18
20 1.64 1.70 3.40 4 5.5 5 14.5
30 t.51 1.70 3.38 N 5.5 6 16.5
40 1.67 1.98 4.42 3 2 | 6
50 1.07 0.74 239 9 10 9 28
60 1.50 1.82 4.02 6 3 2 11
70 0.69 0.85 132 10 9 10 29
81 1.68 1.54 3.67 2 7 4 13
82 191 2.01 4.01 I ! 3 5

14.3.1.1 Box plots

In all cases where this is relevant one should first evaluate the results visually.
The box plot (see Chapter 12) is a very useful way to do that. Figure 14.3 gives the
results for the first two samples. The two figures show, for instance, that laboratory
70 delivers clearly lower results than the others and so, to a lesser extent, do 50 and
1'1. Laboratory 60 is less repeatable than the others. Comparison with the known
content of 1.5 immediately shows that laboratories 11, 50, 70, 82 do not deliver the
correct result. Others, such as 40, are probably significantly biased but the differ-
ence is not large enough to be considered important.

14.3.1.2 Youden plots

The information in Fig. 14.3 can be looked at in another way, namely by making
a Youden plot [13]. This consists of plotting the results of two samples with similar
concentration, for instance in a split level experiment, against each other for each
laboratory. Such sets of samples are sometimes called Youden pairs. The two first
samples of Table 14.8 have slightly different concentrations and their Youden plot
is shown in Fig. 144,

In the original publication [13], the origin of the plot was situated at the median
values of both samples, in later publications one uses the averages. Through this
origin one draws lines parallel to the x- and the y-axis, thereby dividing the graph
into four quadrants. If the origin of the graph is accepted as the most probably true
value for both samples, then laboratories situated in the upper right corner have a
positive bias on both samples. Laboratories in the lower left corner have a negative
bias on both samples and the two other quadrants are high for sample 1 and low for
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Fig. 14.3. Laboratory-performance study for the analysis of clenbuterol [12]. The numbers 11-82 are
the codes of the laboratories. (a) Blank urine spiked with 1.5 ng/ml. (b) Real sample.

sample 2, respectively low for sample 1 and high for sample 2. If only random
errors occurred, one would expect the points to be more or less equally distributed
over all quadrants. However, the situation of Fig. 14.4 occurs more frequently:
there are more points in the upper right and lower left quadrant, indicating that most
laboratories have either consistently too high or too low results, in other words,
there is a systematic error. When all laboratories use the same miethod, these
systematic errors are laboratory biases. In our example the laboratories all use
different methods, so that it is not possible to conclude whether the systematic error
is due to the methods or to the laboratories.
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Fig. 14.4. Youden plot. Average concentrations found for sample (a) and (b) by the laboratories of
Fig. 14.3 plotted one against the other.

A more general treatment was given by Mandel and Lashof [14]. Youden’s
article assumed that the concentration of the analyte in the two materials was nearly
the same, so that the repeatability as well as the laboratory biases would be the
same for two materials. Mandel and Lashof investigate the situation where the two
samples do not have a similar concentration so that random and systematic errors
are no longer necessarily the same for both methods. They showed that in all cases
the points in the plot fall within an elongated ellipse. When Youden’s assumptions
are obeyed, then the major axis makes a 45° angle, but when these assumptions are
found to be incorrect other angles may be obtained. Their paper contains a
procedure to decide whether lab bias occurs or not and to estimate all variance
components.

14.3.1.3 Mandel’s h and k consistency statistics

Mandel’s /4 and k consistency statistics are a graphical way of describing the
variability in the set of data and to look for inconsistencies [3]. The h-statistic
essentially studies the variability of the mean results obtained at each level and the
k-statistic compares standard deviations of the laboratories.

The equations are the following:
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hy= Yi—Y (14.7)
|

— X -y

pi—1

where j is the jth level and the other symbols have the same meaning as in Section
14.2.4,

k//:S[//Si with (148)

Py
Si=y 2 sp/p;
=1

The ISO standard also gives indicator values at the 1 and 5% levels. y;; — y; is the
deviation of the cell average y; of laboratory i at level j from y;, the general average
at level j and the A-ratio therefore compares the deviation for a laboratory from the
general average at that level with the standard deviation of the mean values
obtained by all p; laboratories that have reported results at level j. A plot for the
data of Table 14.1 i1s shown in Fig. 14.5 and the clenbuterol data are found in Fig.
14.6. In Fig. 14.5, one observes that four of the five values of laboratory | are larger
than the 5% indicator values. Moreover, all values for that laboratory are rather
high. This confirms that the results of laboratory 1 are inconsistent with those of
the others. No other inconsistencies are observed. For the clenbuterol data of Fig.
14.6, it is observed that laboratory 70 yields too low results. One of the results of
laboratory 50 also exceeds the 5% indicator value, but we probably would not
decide to eliminate 50 from further consideration.
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Fig. 14.5. Mandel’s h-statistic for the data of Table 14.1.



456

b h consistency statistic

«21

*-

—
L

| ll. 1, ‘ II ll

ll

-24

1 12 20 30 40 S0 60 0 81 82

Fig. 14.6. Mandel’s h-statistic for the data of Table 14.8.
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Fig. 14.7. Mandel’s k-statistic for the data of Table 14.1.
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The k-ratio compares the standard deviation s;; of laboratory i at level j with that
of all laboratories at that level, S;. The plot for the data of Table 14.1 is given in
Fig. 14.7. It shows that two values exceed the 1% level and also that, in general,
laboratory 6 seems to deliver less repeatable results. As explained in Section
14.2.4, it was found that the result at level 5 should be eliminated.

14.3.2 Ranking method

Some methods for evaluating laboratory performance make use of scores calcu-
lated for the laboratories. In the ranking method [15] these scores are based on a
ranking of the results obtained by the laboratories. Table 14.8 illustrates the
procedure for the clenbuterol data introduced in Section 14.3.1. For each of the
three urine samples the highest result is given rank 1, the one but highest is given
rank 2 and so on. When ties are present the mean of the ranks is computed. The
ranked results for the three urine samples are given in the table under R;, R; and
R;. The laboratory score is obtained as the sum of the ranks the laboratory received.
For our example the lowest possible score is 3 while the highest possible score is
30. The former will be obtained by a laboratory that systematically reports the
highest results for all materials while the latter will be the score of a laboratory that
systematically reports the lowest results for all materials. Therefore extreme scores
are an indication for the presence of systematical errors. Table 14.9 gives, for
different combinations of m (number of materials analyzed) and p (number of
laboratories involved in the study), upper and lower limits for the scores. For each
combination of p and m two critical values are listed. A calculated score which is
less than or equal to the smaller critical value or greater than or equal to the larger
critical value results in the rejection of the hypothesis of a random ranking at the
5% significance level. For our example (p = 10 and m = 3) random ranking would
result in a score not less than 5 and not more than 28. The score 29 for laboratory
70 therefore is considered extreme and points to a systematic error resulting here
in low results. The performance of laboratories 50 and 82, respectively with scores
28 and 5 at the border of the critical region, might also be questioned.

14.3.3 The z-score method

Scores have the advantage that they constitute a simple way to compare labora-
tories among each other or the present performance of a laboratory with its
previous performance and that they can be used as a formal way of eliminating
laboratories, that do not perform sufficiently well, from accreditation. Such a score,
known as the z-score, was described by the Analytical Methods Committee {5] and
TUPAC [4] and will be explained here.

The z-score of an individual laboratory is obtained as follows:
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TABLE 14.9

Critical values of ranking scores [15]

Number  Number of materials (m)
of labs
()
3 4 5 6 7 8 9 10 11 12 13 14 15
3 4 5 7 8 10 12 13 15 17 19 20 22
12 15 17 20 22 24 27 29 31 33 36 38
4 4 6 8 10 12 14 16 18 20 22 24 26
16 19 22 25 28 31 34 37 40 43 46 49
5 5 7 9 i1 13 16 18 21 23 26 28 31
19 23 27 31 35 38 42 45 49 52 56 59
6 5 7 10 12 15 18 21 23 26 29 32 35
18 23 28 32 37 41 45 49 54 58 62 66 70
7 3 5 8 11 14 17 20 23 26 29 32 36 39
21 27 32 37 42 47 52 57 62 67 72 76 81
8 3 6 9 12 15 18 22 25 29 32 36 39 43
24 30 36 42 48 54 59 65 70 76 81 87 92
9 3 6 9 13 16 20 24 27 31 35 39 43 47
27 34 41 47 54 60 66 73 79 85 91 97 103
10 4 7 10 14 17 21 26 30 34 38 43 47 Sl
29 37 45 52 60 67 73 80 87 94 100 107 114
Il 4 7 11 15 19 23 27 32 36 41 46 51 55
32 41 49 57 65 73 81 88 9% 103 110 117 125
12 4 7 11 15 20 24 29 34 39 44 49 54 59
35 45 54 63 71 80 88 96 104 112 120 128 136
13 4 8 12 16 21 26 31 36 42 47 52 58 63
38 48 58 68 77 86 95 104 112 121 130 138 147
14 4 8 12 17 22 27 33 38 44 50 56 61 67
41 52 63 73 83 93 102 112 121 130 139 149 158
15 4 8 13 18 23 29 35 41 47 53 59 65 71
44 56 67 78 89 99 109 119 129 139 149 159 169
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z=x-X)/S (14.9)
where x is the result obtained by a laboratory, X the true concentration of the
analyte or its best estimate X and S some kind of standard deviation. The difficulty
with using eq. (14.9) is the determination of X and S.

The best way of determining X is to add a known amount of analyte to the base
material. Unfortunately, there are several chemical reasons why this often is not
possible, nor recommended. Among them there is the difficulty of adding homogene-
ously the analyte to many types of base material, the speciation which may be different
and the problem of obtaining such materials, free of analyte. When it 1s not possible to
determine X in this way, one needs consensus values. These can be obtained in two
ways, namely by a group of expert laboratories using best possible methods or by the
participants themselves. The former is more costly, but has the advantage to provide
an external performance standard with which to measure the proficiency of other
laboratories. The latter is cheaper, since the consensus is not determined in a special
round of experiments, but in the actual proficiency testing round. A further question is
how to compute X. One possibility is to obtain the mean of the participating laborato-
ries, after elimination of outliers. Another is to obtain a robust mean such as the
median, the biweight or winsorized mean described in Chapter 12.

S can be obtained in a proficiency testing round as the standard deviation of the
laboratories’ results after the elimination of outliers. However when possible it is
to be preferred that S should be a target value of precision. This could be derived
from the precision required to perform a certain task, from method performance
studies (Section 14.2.3) or from the Horwitz curve (Section 14.2.5).

With good estimates of X and S, z corresponds to a standardized variable.
Consequently one expects that Izl > 2 in only 4.55% of the cases and Izl > 3 in only
0.27%. The latter indicates unacceptably poor performance in terms of accuracy
while for a satisfactory performance Izl <2 is required.

When, as is usual, more than one test material is being analyzed a composite
score over all the test materials might be required. For this purpose one can use
some type of sum of scores. The Analytical Methods Committee and IUPAC prefer
the sum of squared scores, SSZ
SSZ = X7

This follows a %2 distribution with m degrees of freedom, where m is the number of
scores that is combined into SSZ. An interpretation for the SSZ similar to that for the
z-scores requires the use of Table 14.10. A SSZ < A is satisfactory, if A <SSZ < B the
performance is questionable and for SSZ > B it is unsatisfactory. A and B are
respectively the 4.55% and 0.27% points of the > distribution which corresponds to
the two-sided z-values 2 and 3 used in the interpretation of the z-score. The above-men-
tioned organizations do not recommend the general use of combination scores
because a significant single score can systematically be masked in this way.
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TABLE 14.10

Classification of SSZ scores [5]

m A B m A B
2 6.18 11.83 [l 19.99 28.51
3 8.02 14.16 12 21.35 30.10
4 9.72 16.25 i3 22,70 31.66
5 11.31 18.21 14 24.03 33.20
6 12.85 20.06 15 25.35 34.71
7 14.34 21.85 16 26.66 36.22
8 15.79 23.57 17 27.96 37.70
9 17.21 25.26 18 29.25 39.17
10 18.61 26.90 19 30.53 40.63
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Chapter 15

Other Distributions

15.1 Introduction — Probabilities

In Chapter 3 we described the normal distribution and stated that it is the best
known probability distribution. There are several other probability distributions. In
certain cases the data are not continuous, but discrete and we need other distribu-
tions such as the binomial, the hypergeometric and Poisson distributions to de-
scribe these data. Other probability functions have been defined for specific
purposes. Examples of some of the more important special distributions are
described in Sections 15.5 and 15.6. Hypothesis tests based on these distributions
have been developed, but will not be described here.

Since we will have to apply probability calculus in this and several of the next
chapters, some concepts and axioms must be defined here.

(1) The probability of an event X is a non-negative number smaller than or equal
to 1

0<PX]< 1 (15.1)

(2) The sum of the probabilities of all possible events X; for a given situation is
equal to 1

T PX]=1 (15.2)

When one carries out quality control, some objects will be found to have no defects,
some a single defect and some two defects. Supposing that objects with three or
more defects do not occur, one can write;

Plno defect] + P[1 defect] + P[2 defects] = |

(3) X and Y are said to be mutually exclusive if no event belongs to both X and
Y. In this case

P[XUY] = P[X] + P[Y] (15.3)

XUY (X or Y) is called the union of X and Y. It is the event which consists of all
the simple events belonging to X or Y or both X and Y. It can also be written as
event X + Y.
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Suppose that an item can have either defect A or B, but not both, then defects A
and B are mutually exclusive. If, of 100 items investigated, 10 are found to have
defect A and 10 defect B, then

PIAUB] = Pldefect] = P[A] + P[B] =0.2

(4) When an event can belong to both X and Y, then X and Y are not mutually
exclusive and the probability of the union is then given by

PIXUY] = PIX] + P[Y] - PIX"Y] (154)

XY (X and Y) is the intersection of two events X and Y. It is the event consisting
of all events belonging to both X and Y and is sometimes written as X.Y or XY.

Suppose now that A and B are not mutually exclusive i.e. an object can have
only defect A, only defect B or both defects. Then P[both defects] = P[ANB].

If Plonly A] = 0.1, Plonly B] = 0.1, P[both defects] = 0.05, then P[A] = 0.15,
P[B] = 0.15 and P[defect] = P[A] + P[B] - P[ANB] =0.15 + 0.15 - 0.05 = 0.25.
Equation (15.4) 1s known as the addition law.

(5) Two events X and Y are said to be independent if and only if

P[X"Y]=P[X] PlY] (15.5)

A company produces two types of items, blue-coloured ones and red-coloured ones.
Defects are not related to colour. The amount of blue-coloured objects produced is
one-quarter of the total production (P[blue] = 0.25). Suppose P[defect] = 0.1. The
occurrence of blue objects with a defect in the total population of objects is

P [blue m defect] = 0.025
Two events are complementary if
PIX1+PY]=1 (15.6)

An object can either present no defect or at least one (object defective). Both events
are complementary:

Pldefective] + P[no defect] = 1
In that case all events that do not belong to X can be written as not-X ()~(), so that
PIX] = P[Y]

(6) P[X1Y] is called the conditional or posterior probability of event X given the
occurrence of event Y. To detect a defect, one carries out a test. This test can have
two outcomes (positive, which is supposed to mean there is a defect, or negative,
leading to the conclusion there is no defect). The test in question is however not
perfect: in a few cases a test will not be positive when there is a defect and now and
then a non-defective sample will yield a positive test. P[defectlpositive] is then the



463

probability that an object is indeed defective, when a positive test has been
obtained. It can be shown that

P[XIY] = PIXNY]/P[Y] (15.7)

By contrast, P[X] is then often called the prior probability. P{defect] is the
(prior) probability that a specific object would be defective if no other informa-
tion is available. When a test has been carried out, more information is present.
Pldefectlpositive] is then the (posterior) probability that there is a defect, when the
test was positive. A test is all the more informative when the difference between
posterior and prior probability is larger. This is related to the concepts of sensitivity
and selectivity of tests, introduced in Section 13.8.2 and treated in detail in Chapter
16 and to the information theory described in Chapter 18.

15.2 The binomial distribution
15.2.1 An example: the counter-current distribution method

Counter-current distribution (CCD) is a separation method in which one repeat-
edly partitions an analyte between two liquid phases. One phase is called stationary
and the other mobile. In this technique one starts by bringing all the analyte into
the first (Fig. 15.1a) of a series of cells. In each cell a stationary phase is available
and in cell 1, one has also added mobile phase and one carries out the partition in
that cell between the mobile phase and the stationary phase. The partition coeffi-
cient is given by K = ¢/p, where ¢ is the fraction of analyte in the mobile phase and
p is the fraction in the stationary phase. Since ¢ and p are fractions, it also follows

that
analyte —| M
S S s s| ¢
1 2 3 [A
g N
new —e| M
M ] 1 b)
S S S S
1 2 3 A
newM —=| M
c)
S S S
1 2 3 b

Fig. 15.1. The CCD process: (a) initial situation, (b) first transfer, (c) second transfer.
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prg=1=(p+q) (15.8)

The mobile phase of cell 1 is now transferred to cell 2 (Fig. 15.1b) and new
mobile phase is added to the first cell. The analyte present in both cells is
partitioned between the two phases in those cells. If Nernst’s partition law is
followed, the partition coefficient is independent of concentration and therefore the
same in all cells throughout the distribution. In cell 1 there is a fraction p present.
A fraction p of p (p?) remains in the stationary phase and a fraction g of p (pg) is
transferred to the mobile phase of cell 1. In cell 2 a fraction p of g (pg) remains in
the stationary phase and a fraction g of g (g°) will be found in the mobile phase.
When the mobile phases of both cells are now transferred to the next cell, one finds
in cell 1 a fraction p?, in cell 2 a fraction 2 pq (pq remaining in the stationary phase
of cell 2, pq from the mobile phase of cell 1) and in cell 3 a fraction ¢*. The total
amount is of course still equal to 1, so that

PP+2pg+q=1=(p+q) (15.9)

We can verify that after the next round of partitioning and transfer (Fig. 15.1c)
of the mobile phase, the fractions in successive cells are p*, 3 p’q, 3 pg® and ¢°, so
that these fractions are given by the terms of (p + g)°.

(p+q@)’=p’+3p’q+3pg* +q’ =1 (15.10)

In separation chemistry, counter-current distribution is used to separate two or
more substances with different partition coefficients K. These will yield different
distributions over the cells so that a separation effect occurs.

Let us now rephrase this in a way that is more customary in statistics. The
analyte consists of a certain number of molecules. These molecules can assume
two states in the separation process: they can go into the mobile phase (M) or stay
in the stationary phase (S). Let us suppose that the molecules had three occasions
to choose between M and S. Then we sort them as follows:

Situation 1: SSS
Situation 2: MSS
Situation 3: MMS
Situation 4: MMM

The order is not relevant. MSS means that the molecule once was M and twice S.
The M-state may have occurred in partition step one, two or three.

The calculations of this section show that the different combinations of two
possible states can be computed using the terms of the equation described by (p + ¢)".
The resulting distribution is called the binomial distribution and we will discuss
this distribution more formally in the next section.
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15.2.2 The distribution

The binomial distribution can be used to model the distribution of objects that
can take on two states. In statistics books, the binomial distribution is often
explained with an urn in which there are a number of balls, the pth fraction of which
are red, and the rest black. When one takes a ball from this urn it has a probability
p to be red and a probability ¢ = 1 — p to be black. If R is red and B is black, then
the following combinations of red and black balls can be obtained when three balls
have been drawn.

Combination 1: RRR
Combination 2: BRR
Combination 3: BBR
Combination 4: BBB

where the order of B and R is not relevant: only the final result is important. It is
not difficult to see the connection with the process described in the preceding
section. It is shown that, if the drawing operation is repeated n times (i.e. there are
n independently selected items) and the selected ball is replaced (i.e. put back into
the urn each time), then the probability of having selected x red balls is:

f(x)=(;)p‘(1—p)"" x=01,..,n 0<p<1 (15.11)
with

!
Mo (15.12)
X xl(n—x)!

An example of a binomial distribution is given in Fig. 15.2. The populatlon
parameters for the binomial distribution are

w=np o =vnp(l —p) (15.13)
or
w=p 6 =Vp(1 - p¥n (15.14)

depending on whether one presents the results as counts (number defectives, for
instance) or as fractions (fraction defectives, for instance).

It should be noted here that one can also describe multinomial distributions. In
this case each object can take on more than two states.
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probability, f(x)

0,41

0,3 1 i

0.2- ’ .
XN
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Fig. 15.2. Binomial distributions for n = 10, p = 0.2 (*) and p = 0.5 (@).

15.2.3 Applications in quality control: the np charts

Suppose that in a manufacturing process one selects at random 100 produced
items and inspects them for a certain characteristic. It is known that the process,
when it is under control, produces 2% defective items. The mean number of
defectives will then be | = np = 100 x 0.02 = 2. Of course, when one draws 100
items and inspects them this will often lead to the detection of fewer or more than
2 defective items. When the number of defects becomes much higher than 2, this
will be considered as an indication that the process is no longer performing
correctly. This reasoning is applied in constructing the np chart for attributes. At
regular times one draws n items from the process and inspects them. One then sets
warning and action lines such that (see Chapter 7) certain probabilities are not
exceeded. These limits can be obtained from tables of the binomial distribution,
but usually one applies approximate equations that are very similar to those applied
in Chapter 7. The general equation is:

Limit = L + ko

For the warning line (probability = 0.05) k = 2 and for the action line (probability
=0.01) £ =3, so that

Upper action limit = np + 3Vnp(1 — p)
Upper warning limit = np + 2Vnp(1 — p)

For our example (see Fig. 15.3) this becomes:

Upper action limit = 2 + 3v2(0.98) = 6.2
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Fig. 15.3. An np chart. The number of defectives per 100 items is charted and the upper warning limit
(UWL) and upper action limit (UAL) are given for a mean number of defectives equal to 2 (p = 0.02).
Item 20 exceeds the UWL, but item 21 does not, so that the process is considered under control.

which means that when 7 defectives are found, one will consider that action must
be taken. The upper warning limit is 4.8, so that 5 defectives is the level at which
a warning is issued. The rules applied are the same as in Chapter 7. For instance,
when two consecutive runs lead to a warning, then the process is considered to be
out of control and action must be taken.

Instead of np charts, p charts, in which one plots the proportion of defectives,
have also been described.

15.3 The hypergeometric distribution

The hypergeometric distribution is similar to the binomial distribution but
sampled without replacement. Consider again the urn with red and black balls. To
obtain the binomial distribution, we took one ball, noted its colour and put it back
into the urn before taking the next ball. Suppose now that instead of putting each
ball back in the urn, we simply take n balls and count the number of red balls.
Suppose that there are m red balls in the urn, then the probability of taking a red
ball at the outset is p = m/N where N is the total number of balls. If the first ball
to be taken out, turns out to be red, then for the second ball, p has changed to
(m—1/(N - 1). The probability of finding x individuals characterized by prob-
ability p in a sample of n items from a population of size N is then given by the
hypergeometric distribution:

N—m\rm
f(x):f——M—]”_x L =01 ...n) (15.15)

)
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In quality control terms, f(x) would be the probability of finding x defectives in
a sample of size n taken from a population of size N in which the probability p of
finding a defective sample is given by p = m/N.

At first sight, the QC application described in Section 15.2.3 might be consid-
ered a situation that should be described better by the hypergeometric than by the
binomial distribution. However, it can be shown that when N is large compared
with n, the hypergeometric distribution reduces to the binomial one. This follows
for instance from a comparison of the population parameters. For the situation
where the results are presented as proportion defectives, these population parame-
ters are given by Duncan {1, p. 103}

n=p o =\[p(1 - p¥/n] - [(N - n}AN - 1)] (15.16)

The variance of the hypergeometrical distribution is equal to that of the binomial
one multiplied by (N — n)/(N — 1) which becomes very close to 1 when N >> n.

15.4 The Poisson distribution
15.4.1 Rare events and the Poisson distribution

In the two preceding sections, we studied situations in which the total number
of objects could be counted. We selected a sample of n objects, each of which was
in one of two states. For instance, we took 10 objects from a production line and
counted the number of defectives. The rest is not-defective. This is not always
possible. Suppose the production consists of spray-painting a metal surface. Small
defects may then occur on the painted surface. The number of defects can be
counted, but how do we define the number of non-defects? In principle, the defects
will occur only here and there and will therefore be relatively rare events. If we
want to do quality control of the spray-painting shop, we will have to make
conclusions based on the probability of 1, 2, 3,... defects occurring on a certain
area: we have to study the distribution of a rare event. Other such situations are
found in epidemiology or in measurements based on counting (microbiology,
radioactivity). If x is the number of defects or counts observed in a given unit (area
in m? for the spray-painting, time for radioactivity counting, ...) then f(x), the
probability of observing x defects or counts in such a unit is given by

f(x) = e M(A¥/x!) (15.17)

where A is the average number of defects or counts observed in the given unit.
Examples are shown in Fig. 15.4.
The population parameters are

pn=A o=\ (15.18)
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Fig. 15.4. Poisson distributions for A =2 (®) and A = 5 (*).
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Suppose, for instance, that a radioactive source is measured repeatedly. Then, if the
mean counting rate is 10000 counts/min, the standard deviation is 100 counts/min. One
observes that the higher the number of counts, the smaller is the relative standard

deviation: counting precision is better when there are more counts.

It is possible to determine confidence limits for rarely occurring events. Suppose
3 new cases of juvenile diabetes are observed in a population of 30000 people over
a certain period. The observed value 3 is an estimate of the true incidence in that

TABLE 15.1

95% confidence limits for Poisson-distributed values. n = observed value, LL

limit factor.

= lower limit factor, UL = upper

n LL UL n LL UL

0 0 3.00

1 0.0253 5.57 22 0.627 1.51

2 0.121 3.61 24 0.641 1.49

3 0.206 2.92 26 0.653 1.47

4 0.272 2.56 28 0.665 1.45

5 0.324 2.33 30 0.675 1.43

6 0.367 2.18 35 0.697 1.39

7 0.401 2.06 40 0.714 1.36

8 0.431 1.97 50 0.742 1.32

9 0.458 1.90 60 0.770 1.30

10 0.480 1.84 80 0.798 1.25

11 0.499 1.79 100 0.818 1.22

12 0.517 1.75 150 0.849 1.178
13 0.532 1.71 200 0.868 1151
14 0.546 1.68 250 0.882 1.134
15 0.560 1.65 300 0.892 .12t
16 0.572 1.62 400 0.906 1.104
17 0.583 1.60 500 0.915 1.093
18 0.593 1.58 600 0.922 1.084
19 0.602 1.56 800 0.932 1.072
20 0.611 1.54 1000 0.939 1.064
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population over such a period. The 95% confidence limits on that observation can be
obtained by multiplying it by the lower and upper limit factors from Table 15.1 [2].
This yields the confidence interval 3 X 0.206 to 3 X 2.92 or 0.62 to 8.8. The confidence
interval for the incidence rate per 100000 people is therefore 2.1 to 29.3. The
uncertainty will be smaller when the sample size is larger. Suppose one had observed
the same incidence rate on a population of 300000. We would then have observed
30 cases. The confidence intervals for the incidence rate per 100000 people would then
be 30 x 0.675 x (100000/300000) to 30 x 1.43 x (100000/300000) or 6.75 to 14.3.
Since we can determine confidence intervals, we can also carry out hypothesis tests.
The test will be more powerful when the sample size is larger, since the confidence
intervals are then relatively smaller. The same conclusion was reached in Section 4.8.

15.4.2 Application in quality control: the c and u-charts.

The c-chart is the traditional name for a chart which monitors the number of
defectives in situations such as the spray-painting example. c is then the average
number of defects per unit (i.e. is equal to A, the symbol more generally used in
statistical texts). The limits are then given by:

Upper action limit (p =0.01) =c+ 306 =c+3Vc
Upper warning limit (p = 0.05) = ¢+ 26 =c + 2\

Suppose the mean number of defects ¢ per unit is 4.0, then from eq. (15.18), it
follows that ¢ = V4.0 = 2.0. The upper wamning limit is then given by 4.0 + 2
% 2.0 = 8.0 and the upper action limit by 4.0 + 3 x 2.0 = 10.0. An example of a chart
is shown in Fig. 15.5.

Pnumber of

defects -—take action
——————————— UAL
————————— UwL
T T T —TT T T T T T -
5 10 Item no

Fig. 15.5. A c-chart. Item no. 5 exceeds the UWL, the inspection is repeated and yields no. 6 which
exceeds the UAL. Action must be taken and is successful (item no. 7). Adapted from Ref. [3].
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We use u-charts when the unit investigated is not always the same. Suppose that
instead of investigating always the same area of spray-painted metal, we decide to
investigate metal plates of varying area; u would then be the number of defects per
m? and follows again a Poisson distribution.

15.4.3 Interrelationships between the binomial, Poisson and normal
distributions

One approach to introducing the Poisson distribution is to consider it as a
limiting case of the binomial distribution for which » tends to infinity, p becomes
very small but np remains constant and equal to A. The Poisson distribution tends
to normality when A is sufficiently large (A > 10). The binomial distribution can be
approximated with a normal distribution when np > 5 and n(1 - p) > 5.

15.5 The negative exponential distribution and the Weibull distribution

The negative exponential distribution is of interest in the SPC for describing
lifetime (time-to-failure), degradation or reliability of a product. It is given by

f(x)zée‘*/e (15.19)
or
f(x) = % oG- (15.20)

where 7 is a threshold. The mean is equal to 6 in eq. (15.19) and to 6 + ¢ in eq.
(15.20). In both cases the standard deviation is equal to 8. An example of the
distribution with and without threshold is given in Fig. 15.6.

fix) A
14 c Q
0.5 1
b
-2 0 2 L 6 x

Fig. 15.6. The negative exponential distribution: (a) =0, 0= 1; (b) r =0, 8=2; (c) r = -2, 0=1.
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-2 0 2 H 6 x
Fig. 15.7. The Weibull distribution: (a) t=0,0=2,B8=2;(b)=0,0=2, B=L(t==2,0=1,p=2

The negative exponential distribution is a special case of a more general
distribution, called the Weibull distribution (Fig. 15.7). It is given by

1
f(x) = (B/8) (X—;—T exp [— [’%’D (15.21)

Again, t is a threshold, often equal to 0, and B, 6 > 0. Examples of the distribution
are shown in Fig. 15.7. It can be verified that for B = 1 the negative exponential
distribution is obtained.

15.6 Extreme value distributions

Extreme values are of interest when describing or predicting catastrophic situ-
ations, e.g. the occurrence of floods or for safety considerations. In this section we
will follow the description of extreme-value techniques given by Natrella [4].

Figure 15.8 is a typical curve for the distribution of largest observations. This
curve is the derivative of the cumulative probability function

F(x) = expl- exp(-x)] (15.22)

This distribution is skewed and describes largest values, for instance the largest
values of atmospheric pressure obtained in a year in a certain location. The
distribution can be used for extreme-value plots similar in approach to normal-
probability plots. In one axis we plot the value of x and in the other the probability,
according to eq. (15.22), of the observations ranked from smallest to largest.
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d Fix)/dx
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Fig. 15.8. An extreme-value distribution (adapted from Ref. [4]).

| pressure in mm

01 05 08 09 095 0.99 p

Fig. 15.9. Extreme-value plot. The plot describes the largest annual atmospheric pressure in Bergen
(Norway) in the period 1857~1926 (adapted from Ref. [5]).

Suppose there are 50 observations, then the smallest one will be plotted at the
probability value 1/(50+1). An example is shown in Fig. 15.9. This graph allows
to conclude that the probability that the largest value will exceed 793 mm in any
year 1s 0.01. Smallest values can also be plotted. They are of interest, for instance,
in fracturing or fatigue situations.

Other distributions can also be applied, for example, the Pareto distribution of
Fig. 2.8. One of the main tasks in studying extreme value distributions is then to
decide which of the many possible distributions fits the data best. More details can
be found in a book by Beirlant et al. {6].
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Chapter 16

The 2x2 Contingency Table

16.1 Statistical descriptors
16.1.1 Variables, categories, frequencies and marginal totals

A contingency table arises from the classification of a sample according to two
qualitative variables [1]. Hence, the cells of a contingency table contain counts or
frequencies. Each cell of a contingency table, say in row i and column j, represents
the number of elements in the sample that have been observed to belong simulta-
neously to category i/ of the first variable and to category j of the second variable.
If the two variables have n and p categories, respectively, we speak of an nxp
contingency table. We assume that the categories of any given variable are exhaus-
tive and mutually exclusive, which means that each element in the sample can be
classified according to that variable into one and only one category.

In this chapter we deal exclusively with 2x2 contingency tables. The general
nxp case will be treated extensively in Chapter 32. Here we assume that the two
variables are dichotomous. A dichotomous variable provides for only two categories.
This is the case with the outcome of a screening assay when it is reported as either
positive or negative, and with a diagnosis of a patient when it is stated as either diseased
or healthy. In dichotomous variables, such as outcome and diagnosis above, there is
no provision for categories in between. For example, one may have studied a cohort
of twenty patients that became HIV positive at about the same time. Ten of these
received antiviral monotherapy (e.g. AZT), the remaining ten received combination
therapy (e.g. AZT + ddI). The aim of the study is to know whether the expected
proportion of patients that developed AIDS symptoms after 5 years of therapy is
smaller under combination therapy than under monotherapy. There are four contin-
gencies in this study, i.e.: AIDS (mono), no AIDS (mono), AIDS (combination) and
no AIDS (combination), and the corresponding frequencies of occurrence can be
arranged in a 2x2 contingency table. Clearly, if combination therapy is superior to
monotherapy we would expect to obtain more patients without AIDS in the former
category. The difference between observed and expected frequencies, however, may
be due to chance, especially as we are dealing with a small number of patients. In this
chapter we will develop the necessary statistical concepts and tests which will lead
to correct conclusions from 2x2 contingency tables.
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TABLE 16.1

Outcome of assay A for diagnosis of HIV infection

Outcome Diagnosis Total
Diseased Healthy

Positive 276 15 291

Negative 24 285 309

Total 300 300 600

By way of illustration we consider the outcomes of an assay for the presence of
HIV antibodies in urine which we have adapted from Science Briefings [2]. We
assume here that this screening test, which we call assay A, has been applied to 600
subjects. Specimens of urine were collected from 300 persons with confirmed HIV
infection and from 300 uninfected persons. It was found that 276 of the 300
diseased persons tested positively in this assay, while only 15 of the 300 healthy
persons obtained a positive outcome. The two variables in this example are
diagnosis (diseased or healthy) and outcome (positive or negative). The results are
summarized in Table 16.1.

The row and column totals of a contingency table are called the marginal totals.
They indicate the cell frequencies observed in each category of the two variables.
The grand total represents the sample size. In Table 16.1 we find that the sample
of size 600 has been evenly divided between the two diagnostic categories (dis-
eased and healthy). Note that the column totals in this example are fixed by the
design of the assay. We also observe that the same sample is divided into 291
persons with positive outcome and 309 with negative outcome. In practice, these
row totals are subject to random sampling errors. Replication of the assay, using
identical sample size and marginal column totals, will probably produce different
row totals. Later on we will discuss the case where only the grand total is fixed.
This situation occurs for example in epidemiological studies where the number of
persons found with or without a disease is also subject to sampling error. On rare
occasions a design is obtained in which both sets of marginal totals are fixed.

16.1.2 Probability and conditional probability

We consider a 2x2 contingency table with the dichotomous variables of diagno-
sis and outcome. In Table 16.2 we define a general layout for 2x2 contingency
tables in the context of diagnostic assays [3]. This layout can be adapted to
chemical and other applications by replacing the names of the variables and their
dichotomous categories.
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TABLE 16.2

2x2 contingency table for diagnostic assay

Outcome Diagnosis Total
Diseased Healthy

Positive tp fp tp+1p

Negative fn tn fn+tn

Total tp + fn fp+1tn N

TABLE 16.3

2x2 contingency table for diagnosis and outcome, in terms of probabilities

Outcome Diagnosis Total
Diseased Healthy

Positive Pldp] Plhnp] Plp]

Negative ~ Pldnn} Plh~n] Pln]

Total P[d] P[h] 1

In Table 16.2 N represents the sample size or grand total. The variable diagnosis
has the categories diseased (d) and healthy (h). The variable outcome consists of
the categories positive (p) and negative (n). The four cells of the table correspond
to the four possible contingencies, the probabilities of which are shown in Table 16.3:

true positive (tp) = diseased and positive (d N p)
false negative (fn) = diseased and negative (d M n)
false positive (fp) = healthy and positive (h M p) (16.1)
true negative (tn) = healthy and negative (h ™ n)

We denote by P[X] the probability of the occurrence of event X. In particular,
P[d m p] is the joint probability of observing simultaneously a positive outcome
and a diseased person. Likewise, P[d] is the prevalence of the disease and P[p] is
the probability of a person obtaining a positive outcome whatever his diagnosis.
The probabilities in the table are estimated by dividing observed frequencies by the
sample size N (Table 16.4):

Pld np] is estimated by tp/N
P[d] is estimated by (tp + fn)/N
Plp] 1s estimated by (tp + fp)/N, etc.
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TABLE 16.4

2x2 contingency table for diagnosis and outcome, showing observed proportions

Outcome Diagnosis Total
Diseased Healthy

Positive tp/N fp/N (tp + fp)/N

Negative fn/N tn/N (fn + tn)/N

Total (tp + fn)/N (fp + tn)/N ]

From the axioms of probability, which have been stated in Chapter 15, we can
derive the following propositions in the context of our example from clinical assays:

P[d] 20

Pld Uh]=P[d] +Plh]=1 (16.2)
P[d1p]=P[d N pl/PIp]

We must also have that:

Plpl=P[pnd]+ Pl[pnh] (16.3)

since d and h are mutually exclusive and exhaustive events: a positive person is
either diseased or healthy.
After substitution of eq. (16.3) in eq. (16.2) we obtain:

_ P[d npl]
~ Plpndi+Plpnh]
(Note that p nd equals d ™ p because of the commutative property of the intersection.)

If we replace probabilities by observed relative cell frequencies in eq. (16.4) we
develop an expression for the conditional probability:

P[d1p] (16.4)

P[d1p] = tp/N __tp

= = (16.5)
(tp+fp)/N tp+1p

The symbol = denotes that two expressions are approximately equal. It 1s used here
to indicate that theoretical probabilities are substituted by observed proportions.

16.1.3 Sensitivity and specificity
In order to compare assays with one another we need to measure their perform-

ance. Let us consider, for example, a competitive assay for the detection of HIV
antibodies in urine. This assay, which we refer to as assay B, has been applied to
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TABLE 16.5

Outcome of assay B for diagnosis of HIV infection

Outcome Diagnosis Total
Diseased Healthy

Positive 364 12 376

Negative 36 388 424

Total 400 400 800

400 persons who have been diagnosed previously to be carriers of the infection and
to 400 persons who were known to be free of infection. The observed outcomes are
found in Table 16.5. If we compare assays A and B, which of the two is to be
preferred? The ideal assay is, of course, the one which produces a positive outcome
for all persons in which the disease is present. Such an assay possesses a sensitivity
of 100%. Sensitivity is defined here as the proportion of true positives with respect
to the total diseased:

Numberof truepositives _ tp ~ Ppld] (16.6)

Sensitivity = Total number of diseased  tp + fn

where tp and fn represent the number of true positives and the number of false
negatives, respectively. The sensitivity of an essay is also called power. In the
context of testing of hypotheses (Section 4.7) one also defines power as 1 — j3,
where 3 represents the probability of obtaining a false negative, or P[n | d] in our
notation.The ideal assay also produces a negative outcome for all persons in which
the disease is absent. Such an assay has a specificity of 100%. Specificity is defined
here as the proportion of true negatives with respect to total healthy.

Number of true negatives __ tn
Total number of healthy ~ tn+ fp

Specificity = = P[n | h] (16.7)
where tn and fp represent the number of true negatives and the number of false
positives, respectively. In a statistical context one relates (1 — specificity) to the
level of significance of a test which is denoted by o and which represents the
probability of obtaining a false positive, or P[p | h] in our notation.

In the case of assay A for screening against HIV infection we ‘estimate the
sensitivity and specificity to be as follows:

Sensitivity = 100(276/300) = 92%
Specificity = 100(285/300) = 95%
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In the case of assay B we obtain the following estimates:
Sensitivity = 100(364/400) =91%
Specificity = 100(388/400) = 97%

On the basis of these estimates alone we cannot decide which of the two assays
performs best. On the one hand, assay A shows greater sensitivity than assay B. On
the other hand, assay B possesses greater specificity. But are these differences
significant in a statistical sense? Perhaps replication of the assays using different
samples of infected and non-infected persons may produce different results. It is
important to realize that the above sample estimates are not the population values
of sensitivity and specificity of assays A and B. In order to make a sound statistical
analysis we also need to know the variances of these sample estimates. This idea
will be pursued in Section 16.2 on hypothesis testing. Let us suppose, however, that
the above estimates reflect statistically significant differences which are highly
unlikely to be due to the effect of random sampling. The question then arises
whether these differences have practical relevance.

Assay A has the greatest sensitivity and is therefore expected to produce more
true positives and, hence, a smaller number of false negatives. The cost to society
of declaring a diseased person to be healthy may be enormous. False negatives may
unknowingly spread the disease, contaminate blood banks and so on. Assay B has
the greatest specificity and is therefore expected to yield more true negatives and,
consequently, fewer false positives. In the case of mass screening it is mandatory
to retest all positives in order to protect false positives from unnecessary treatment
and discomfort. However, second-line assays are usually more expensive and
time-consuming than primary screening assays. Additionally, as we will see in the
next section, rare diseases may produce large numbers of false positives, even with
highly specific assays. Hence, the cost to society of declaring healthy persons to be
diseased may also be considerable. As will be discussed in more detail later, an
increase in sensitivity is usually at the expense of a decrease in specificity, and vice
versa. The balancing of costs and risks associated with the introduction of new
diagnostic assays and therapeutic treatments is a delicate task which also involves
the competence of health economists.

In the context of analytical chemistry definitions for specificity and sensitivity
similar to those described here have been proposed by the Association of Official
Analytical Chemists (AOAC). These definitions are described in Section 13.8 and
13.9 and are applicable to immunological assays, microbiological assays, clinical
studies and clinical chemistry. In other areas of analytical chemistry these terms
have very different meanings. Sensitivity is defined as the slope of a calibration
line relating the strength of the output signal to the concentration of a component
in a material to be analyzed [4]. Specificity is described as the ability of an
analytical method to respond to only one specific component in a mixture [5]. It is
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clear that the latter definitions are unrelated to the statistical definitions which we
use here in our discussion of the 2x2 contingency table.

16.1.4 Predictive values

In the laboratory, sensitivity and specificity of a diagnostic assay can be esti-
mated from samples of diseased and healthy persons, the sizes of which can be
fixed in the design of an experiment. But, in screening for a disease, the sizes of
the samples of diseased and healthy persons depend on the prevalence of the
disease, i.e. the proportion of diseased persons in the population at the time of
observation. Hence, in a 2X2 contingency table relating diagnosis of a disease to
outcome of a screening test in a large sample we find that all the marginal totals
are subject to sampling error.

In Tables 16.6 and 16.7 we have constructed the presumed outcomes from
screening 1 million persons for infection by HIV, using the sensitivities and
specificities of assays A and B which have been estimated above. It is assumed that
the prevalence of HIV infection in the general population is 1 in 2000. Conse-
quently, in a large sample of 1 million persons we expect to find 500 infected
persons. With assay A we expect to find 40 false negatives against 45 with assay B.
This is in accordance with a difference of 1% in sensitivity in favour of assay A.

TABLE 16.6

2x2 contingency table for screening with assay A

Outcome Diagnosis Total
Diseased Healthy

Positive 460 49975 50435

Negative 40 949525 949565

Total 500 999500 1000000

TABLE 16.7

2x2 contingency table for screening with assay B

Outcome Diagnosis Total
Diseased Healthy

Positive 455 29985 30440

Negative 45 969515 969560

Total 500 999500 1000000
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With assay A we expect to obtain 49975 false positives compared to 29985 with
assay B. This is in agreement with a difference of 2% in specificity in favour of
assay B. The large number of false positives is typical for screening of phenomena
with low prevalence in a large sample, such as for HIV infection, tuberculosis, drug
abuse, doping, etc. Even highly specific assays may still produce large numbers of
false positives.

The performance of a screening assay can be measured by means of its positive
predictive value (PPV) which is an estimate of the proportion of true positives (tp)
with respect to the total number of positives (tp + fp):

Number of true positives _ tp
Total number of positives ~ tp + fp

the right side of which is equal to that of eq. (16.5).

It thus follows that the positive predictive value of an assay is the conditional
probability for the presence of a disease when the outcome is positive, or P{d | p]
in our notation.

In screening for HIV infection we obtain:

PPV = 100 (460/50435) = 0.91% using assay A
PPV = 100 (455/30440) = 1.50% using assay B.

The positive predictive values of both assays for HIV antibodies in urine are
expected to be quite low when these assays will be applied to mass screening. The
positive predictive value depends on both the sensitivity and specificity of the
assay and on the prevalence of the phenomenon. This relationship follows from
Bayes’ theorem which will be demonstrated below.

In a similar way we define the negative predictive value (NPV) as:

PPV =

= P[d | p] (16.8)

Number of true negatives _ tn
Total number of negatives  tn + fn

NPV = = Pfh | n] (16.9)

16.1.5 Posterior and prior probabilities, Bayes’ theorem and likelihood ratio

Using the axioms of probability (eq. (16.2)) we can express the conditional
probability in eq. (16.4) in the following form:

Plpld]xP[d] _ Plp1d] x P[d]
Plp]  ~ P[pld]x P[d]+ P[p|h] x P[h]
which can be rearranged into:
(P[p 1 d)/P[p I h]) x P[d]
(Plp !1dV/Plp ! h]) x P[d] + (1 - P[d])
since P[h] =1 - P[d].

Pldip]=

Pldip]= (16.10)
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The conditional probability P[d | p] is also called the posterior probability. It is
the probability of finding a person with a disease, knowing that his outcome in a
diagnostic assay is positive. It also follows from eq. (16.8) that the posterior
probability can be estimated by means of the positive predictive value. The
probability P[d] represents the prevalence of the disease which is also called the
prior probability. It is the probability of finding a person with the disease without
having any prior knowledge.

Equation (16.10) is known as Bayes’ theorem. In this context it relates the positive
predictive value of an assay P[d | p] to the prevalence of the disease P[d] by means of
the ratio of two conditional probabilities which is called the likelihood ratio LR:

Likelihood Ratio = LR = P[p | d)/P[p | h] (16.11)

After substitution of probabilities by relative cell frequencies we derive that:

LRZP[pmd]/P[pmh] ___tpN / fp/N (16.12)
P[d] Plh]  (tp+fnyN’ (tn+ fp)/N
-t , fp
tp+fn th+fp
and after rearrangement we obtain:
IR = tp J(1- tn N Sen51t1.\/1‘t}f (16.13)
tp +fn tn+fp) 1~ Specificity

Finally, after substitution of eq. (16.11) into the expression of Bayes’ theorem by
eq. (16.10), we obtain the relationship between posterior probability and prior
probability (prevalence):

. ... LR xP 1
Posterior Probability = X rrevalence (16.14)
LR X Prevalence + 1 — Prevalence

16.1.6 Posterior and prior odds

The concept of odds stems from the study of betting. How is a stake to be divided
fairly between two betters which are betting for the occurrence of an event with
known probability P? A bet can be regarded to be fair when the expected gain is
zero for each of the two parties. In such a fair game (also called Dutch book) there
is no advantage of betting one way or another, i.e. for the occurrence or for the
non-occurrence of an event with probability P. In this case it can be shown [6] that
the stake is to be divided between two betters according to the ratio:

Odds(P) = P/(1 ~ P) (16.15)

which is called the odds for an event with probability P. The odds associated with
an event range between 0 for certain non-occurrence (P = 0) to infinity in the case
of certain occurrence (P = 1). Odds larger than unity are associated with events that
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possess probabilities larger than 0.5. Conversely, odds smaller than unity are
related to events with probabilities smaller than 0.5. The relation between odds and
probabilities (eq. (16.15)) can be inverted yielding:

P = 0dds/(1 + Odds) (16.16)

The use of odds instead of probabilities is favoured in anglo-saxon countries. It also
presents an advantage in the calculation of pay-offs in horse races and other
gambling games. Here, we introduce the concept of odds because it simplifies
formulas that involve prior and posterior probabilities.

In the previous subsection we have established that the positive predictive value
(PPV) is an estimate of posterior probability (eq. (16.10)). In terms of odds we can
now write that:

PPV tp
1-PPV fp
The posterior odds reflect our belief in the occurrence of a disease in the light of

the outcome of an assay.
Similarly, we can define prior odds:

Posterior Odds = (16.17)

Prevalence _ tp+fn

Prior Odds = =
| —Prevalence tn+fp

(16.18)

The prior odds reflect our belief in the occurrence of a disease before an assay has
been performed.

Finally, if we combine eqs. (16.12), (16.17) and (16.18), we obtain a very
elegant relationship between prior and posterior odds:

Posterior Odds = LR X Prior Odds (16.19)

The likelihood ratio LR thus appears as a factor which, when multiplied by the prior
odds, returns the posterior odds. It is the ratio of posterior odds to prior odds. Hence
it tells by how much we are inclined to modify our initial belief in the occurrence
of a disease when we are informed about a positive outcome of an assay. This is a
Bayesian approach to statistical decision-making. It differs from the widely prac-
tised Neyman—Pearson approach of hypothesis testing, which will be discussed in
Section 16.2. One of the principal aspects of the Bayesian approach is that often
one starts with a subjective guess about the prior probability. In the light of
evidence that becomes available, the latter is transformed into a posterior prob-
ability, which in turn becomes a revised prior probability in a subsequent analysis.
Itis claimed that in the end, after many revisions, the posterior probability becomes
independent of the initial subjective prior probability.

From a philosophical point of view, the Bayesian approach of posterior prob-
abilities is deemed to be more scientific than the testing of a single hypothesis, as
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the former accumulates knowledge from several assays, whereas the latter relies
on the outcome of a single experiment [6].

Bayesian statistics can be regarded as an extension of Neymann—Pearson hy-
pothesis testing, in which the sample size is artificially increased as a result of prior
information. The stronger the a priori evidence, the larger will be the number of
pseudosamples that can be added to the observed sample size. Hence, the power of
the test is effectively increased, and stronger assertions can be derived from the
Bayesian test than would have been the case with classical statistics.

The Bayesian approach finds important applications in medical diagnosis [7,8]
and in risk assessment. It is of importance in all disciplines where decisions have
to be made under conditions of uncertainty in the light of experimental outcomes
and where maximal use must be made of prior knowledge.

16.1.7 Decision limit

The elevation of serum creatine kinase (SCK) is a diagnostic indicator for the
destruction of heart tissue during myocardial infarction (MI). Radack et al. [7] have
presented the outcomes of an experiment in which SCK (in IU/ml) was determined
in 773 persons who complained of chest pain. Of these, 51 were confirmed to suffer
from an attack of myocardial infarction, while the other 722 did not. The catego-
rized data are shown in Table 16.8 and the corresponding hand-fitted distributions
are presented in Fig. 16.1.

The mean SCK in patients with myocardial infarction is 234 with standard
deviation of 190 IU/ml (coefficient of variation of 81%). The mean SCK in patients
without myocardial infarction is 117 with standard deviation of 97 IU/ml (coeffi-
cient of variation of 83%). Although patients with the disease can be expected to

TABLE 16.8

Serum creatine kinase (SCK in IU/ml) and myocardial infarction in persons complaining of chest pain [7]. Number
of persons (N) and proportion (f) of total number in each group of persons

SCK(IU/ml) Myocardial infarction

Present Absent

N I N f
0-120 23 0451 471 0.652
121-240 6 0.118 201 0.278
241-360 7 0.137 24 0.033
361480 [ 0.118 12 0.017
>480 9 0.176 14 0.019

Total 51 1.000 722 1.000
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Fig. 16.1. Distributions of outcomes of serum creatine kinase (SCK in IU/ml) in subjects with
myocardial infarction present and absent. The decision limit of SCK is fixed at 240 IU/ml. (Adapted
from data by Radack et al. [7]).

produce larger values of SCK, the overlap between the distributions of persons
with and without the disease is considerable, as is apparent from Fig. 16.1. It also
appears that the distributions are far from being normal. Both show positive
skewness towards large values of SCK. There is also an indication that one of the
distributions may be bimodal. This situation is not unexceptional with clinical
chemistry data, especially with enzyme assays [9].

From the data in Table 16.8 we can estimate the prevalence of myocardial
infarction in patients with chest pain to be 51/(51 + 722) = 0.066. Hence, the prior
odds of the disease is estimated at 0.066/(1 — 0.066) = 0.071.

From these data we construct four 2x2 contingency tables, corresponding with
four different decision limits, namely 120, 240, 360 and 480 IU/ml (Table 16.9).
The decision limit defines the value above which the outcome of an assay is
declared to be positive. The decision limit also defines the sensitivity and specific-
ity of the assay. The shaded areas on Fig. 16.1 are proportional to the specificity
and sensitivity values of the SCK assay at the decision limit of 240 IU/ml. At each
of the four decision limits we computed the different measures of performance
which we have discussed so far: sensitivity, specificity, predictive value and
likelihood ratio. These results are presented in Table 16.10.

From this analysis it follows that the positive predictive value of the assay is
rather low. At the highest decision level of 480 IU/ml we expect only 39.1% of all
positive outcomes to be true positives. This is due in this case to the low prevalence
of the disease (0.066). The likelihood ratio indicates, however, that the assay may
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TABLE 16.9

SCK and myocardial infarction (MI) in patients with chest pain using different decision limits [7]

SCK MI Total SCK Ml Total
Present  Absent Present  Absent

>480 9 14 23 >360 15 26 41
<480 42 708 750 <360 36 696 732
Total 5] 722 773 Total 51 722 773
>240 22 50 72 >120 28 251 279
<240 29 672 701 <120 23 471 494
Total 5t 722 773 Total 51 722 773
TABLE 16.10

Measures of performance of the SCK assay for myocardial infarction at different decision limits

Decision limit Sensitivity Specificity Positive predictive value Likelihood ratio
120 0.549 0.652 0.100 1.58
240 0.431 0.931 0.306 6.25
360 0.294 0.964 0.366 8.17
480 0.176 0.981 0.391 9.26

be of considerable value. At the decision level of 480 IU/ml it modifies our prior
odds of the disease (0.071) into posterior odds by a factor of 9.26. Even at lower
decision limits this assay appears to perform well. For example, an outcome of 240
IU/ml would increase the odds for the disease by a factor of 6.25.

From Table 16.10 we observe an inverse relationship between sensitivity and
specificity. An increase in sensitivity (proportion of positive outcomes from total
with disease) is at the expense of specificity (proportion of negative outcomes from
total without disease). Conversely, we have a direct relationship between sensitiv-
ity and (1 — specificity), which is called the receiver operating characteristic
(ROC). The ROC is also used extensively in statistical process control (Chapter
20). It will be developed in more detail below.

16.1.8 Receiver operating characteristic

The predictive value of an assay can be displayed in the form of a plot of
sensitivity against (1 — specificity) at various settings of the decision limit. The
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Fig. 16.2. ROC of SCK assay for myocardial infarction, from data by Radack et al. [7].

resulting curve is called the receiver operating characteristic or ROC for short. The
use of ROC curves stems from the study of signal detection (initially in the
development of radar) and has been applied extensively in psychophysiology [10].
The ROC curve for the serum creatine kinase (SCK) assay for myocardial in-
farction in persons complaining of chest pain [7] is presented in Fig. 16.2.

The diagonal line of this diagram represents the case of an assay with zero
predictive value. The greater the distance of the ROC curve from this diagonal, the
more performing is the assay. ROC curves allow to estimate the performance of an
assay over a wide range of decision limits and independently from the prevalence
of the phenomenon under investigation. It is well-suited for the comparison of
assays and methods.

An alternative ROC diagram represents sensitivity and (1 — specificity) along
axes of normal deviates (z) [11]. If the distributions of the outcomes in subjects
with and without the disease are normal, then the ROC curve is transformed into a
straight line. The distance of this line from the diagonal line is again a measure of
the performance of the test. Figure 16.3 represents the transformed ROC curve of
Fig. 16.2. The deviation from linearity of the transformed ROC curve of Fig. 16.3
is the result of the apparent lack of normality of the distributions of SCK in
populations with the disease present and absent (Fig. 16.1).

In statistical terms, the ROC defines the relationship between the previously
defined o-error (of obtaining a false positive), the B-error (of obtaining a false
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Fig. 16.3. Transformed ROC of SCK assay for myocardial infarction on double normal deviate (z)
axes, from data by Radack et al. [7].

negative) and the smallest detectable difference 6 of the test. In the present
terminology we need to replace specificity by 1 — 0, sensitivity by 1 — B and the
decision limit by 8. For any given o and & one can derive 3, from the ROC. The
power of the test is thus defined as | — .

De Ruig and van der Voet [12] have advocated the use of sensitivity and
specificity as quality criteria for the analytical chemical laboratory (Chapter 13). They
also pointed out that a trade-off is to be made between sensitivity and specificity.
Increasing sensitivity (by lowering ) automatically leads to a decrease of specificity
(by raising o) for any given smallest difference 9, as defined by the ROC of the test.
From their point of view, the ROC defines the intra-laboratory standards for the test
and forms part of the contract between the laboratory and its clients. Inter-laboratory
quality standards can also be compared more easily by means of ROC.

16.2 Tests of hypothesis
16.2.1 Test of hypotheses for 2x2 contingency tables
We have already briefly outlined in Section 16.1 that observed frequencies in a

2x2 contingency table can be generated in three different ways, depending on the
design of the experiment. In order to expand on the differences between these, we
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TABLE 16.11

Observed frequencies in a 2x2 contingency table

Variable | Variable 2 Total
Category | Category 2

Category | ny np nyy

Category 2 ny ny n.

Total nyy ny Ry

adopt the notation of Table 16.11. For the purpose of illustration, we assume that
variable I is the outcome of an assay with categories positive and negative, and that
variable 2 is a diagnosed disease with categories present and absent. Furthermore,
we assume that all the observations which generated the 2x2 contingency table
have been made independently from one another. The double subscripts of the
symbols refer to the variables in the order given above. For example, n; is the
element at the intersection of row / and column j of the table. A subscripted plus
sign indicates that the sum has been taken over the categories of the corresponding
variable. For example n,, = n;, + n;», etc. The size of the sample is the grand total
of the table and is denoted in this section by ...

In a first type of design only the sample size n,. is fixed. In the context of clinical
assays this occurs when a sample is selected at random from a population. In this
case we find that the number of subjects with the disease present n,; and the
number of subjects without the disease n,, are variable and subject to sampling
error. Of course, the number of positives n,, and the number of negatives n,, are
also variable and subject to random fluctuation. This case is called a double
dichotomy [13].

A second type of design fixes one set of marginal totals. This arises when we
select at random a predefined number of persons n,; in which a disease has been
diagnosed to be present and another predefined number of persons n., in which the
disease is absent. Here, only the number of positives n;, and the number of
negatives n,, is variable. In this design we test the homogeneity of the two samples,
i.e. whether the proportion n;,/n,, is equal to the proportion n;5/n,,.

Finally, a third and rather uncommon design fixes all the marginal totals. We
may imagine a design of this type in which an additional constraint is imposed. We
inform the analyst in charge of the assay that he must produce exactly n,, positive
outcomes. The analyst is allowed to vary the decision limit of his assay such as to
match the number of positive outcomes with the fixed n,.. In this case we test the
independence of the two variables, i.e. whether n,1/ny; equals no/n;. In the
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previously discussed HIV assay the decision limit may be based on the amount of
precipitation produced by the antibody—antigen reaction. By lowering the decision
limit below that recommended, one could increase the number of positive out-
comes in the example to such an extent that the total number would be 300 instead
of 291 (Table 16.1). This also decreases the number of negative outcomes from 309
to 300, since the total number of patients was fixed at 600. Although a design with
all totals fixed is rather artificial, it is, nevertheless, the only one for which, strictly
speaking, exact probabilities can be computed. It has been shown that these exact
probabilities are the best possible approximations to those that arise in designs in
which not all marginals are fixed [13].

16.2.2 Fisher’s exact test for two independent samples

Fisher derived the exact probability of obtaining a given 2X2 contingency table
from the hypergeometric distribution (Section 15.2) which assumes that all mar-
ginal totals are fixed:

nydngtng Ing!

h n”!rzlz!nn!nn!nH! (1620)
where the factorial function k! denotes the consecutive product 12 3 ...(k — 1)k, and
particularly where 0! equals 1.

A statistical test for the significance of a 2x2 contingency table is set up by
considering all similar tables with the same marginal totals that have cell frequen-
cles as extreme or more extreme than that observed [14]. In the so-called Fisher’s
exact test we reject the null-hypothesis of independence between the two variables
if the sum of all the resulting probabilities is less than some predefined level of
significance o. Fisher’s test produces the best possible approximation to the exact
probability when the strong assumption of fixed marginal totals is not met. In the
laboratory, we most often find that only one set of the marginal totals is fixed. In
this case we will test for homogeneity of a variable in two samples.

By way of illustration we consider Table 16.12 which relates the outcome of an
assay (positive or negative) to a treatment (medication or control). The sizes of
both treatment groups have been fixed to 10 by the design of the experiment. In a
randomized design, subjects are assigned at random between the two samples.
These two samples are called independent as they are composed of different
subjects. After conclusion of the trial we find that 2 out of the 10 patients on
medication still produce a positive outcome in the assay, against 5 of the 10
controls. The magnitude of the difference amounts to 30% in favour of treatment.
Can we conclude that treatment had a significant effect on outcome? Or is the
difference due to random variation?
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TABLE 16.12

Observed outcomes of an assay in two treatment groups

Outcome Treatment Total (t)
Medication (m) Control (c)

Positive (p) 2 5 7

Negative (n) 8 5 13

Total (t) 10 10 20

TABLE 16.13

Outcomes of an assay in two treatment groups that are more extreme than those observed in Table 16.12

Outcome Treatment Total (t) Outcome Treatment Total (t)
m e m o

Positive (p) l 6 7 Positive (p) 0 7 7

Negative (n) 9 4 13 Negative (n) 10 3 13

Total (t) 10 10 20 Total (t) 10 10 20

Here we test the null hypothesis that the variable outcome is homogeneous in
the two treatment categories. The alternative hypothesis is that the proportion of
positive outcomes in the medication group is smaller than the one in the control
group. Note that we test a one-sided hypothesis, as we are only interested in
differences in one direction (i.e. less positive outcomes with medication). To this
end we compute the exact probability of Table 16.12 (which we call P1) and of the
ones that represent situations more extreme than that observed. The latter are
shown in Table 16.13. Here, there are two cases which are more extreme than the
one which we have observed, i.e., when the number of positive outcomes in the
medication group is 1 or 0 instead of 2. (The corresponding probabilities are called
P2 and P3).

The three relevant exact probabilities P1, P2 and P3 are computed as follows:

101 10! 7! 13!
k= 201

K
Pl= e = 01463
P2 K =0.0271

116191 4!
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K

P3=orarioran

=0.0015

In order to compute the probability of obtaining the observed case and all cases
which are more extreme, we have to add P1 + P2 + P3 which yields 0.1749. Hence
if we have fixed the level of significance in a one-sided test o at 0.05 then clearly
we have to conserve the null hypothesis. In this case, we cannot accept the alterna-
tive hypothesis that the less frequent positive outcomes are due to the effect of the
medication, although there is a tendency for the patients who received medication
to be better off than those in the control group. Perhaps failure to detect a real effect
of the observed magnitude is due to the limited size of the sample that has been
studied. In other words, our test lacks sufficient power to detect a difference of 30%
at the 0.05 level of significance. The concept of power has been introduced in
Section 16.1.3 in relation to the sensitivity of a test, i.e. the power to detect a real
effect. If we had enrolled more patients in the study, then perhaps the result might
have turned out to be significant, provided that the observed effect is not due to
random events.

As the number of discrete probabilities that are to be calculated increases with
the size of the sample x.., Fisher’s exact test has been usually reserved for small
samples. But this is a practical rather than a theoretical constraint. As we have
already pointed out, Fisher’s test is the best choice for testing hypotheses about 2x2
contingency tables, even if its strict assumption of fixed marginal totals is rarely
met [13]. Although the test is essentially for one-sided hypotheses, it can be
extended to handle two-sided hypotheses as well.

16.2.3 Pearson’s 7 test for two independent samples

If we reconsider the observed outcomes of an assay in the two treatment groups
in Table 16.12 we might ask what values we would expect if we knew in advance
that there was no difference at all between the two treatments. In other words, is it
possible to calculate expected values for the elements of a 2x2 contingency table
under the null hypothesis. It can readily be seen that the expected number of
positive outcomes in the medication group must be proportional to the correspond-
ing marginal totals, i.e. the total number of patients in the medication group (10),
the total number of patients with positive outcomes (7) and to the total number of
patients in the study (20). In what follows we will approach this problem in a
formal way.

Under the assumption of independence between the variables of a contingency
table, we can express the maximum likelihood estimate of any cell frequency as the
product of its corresponding marginal totals {13]:

E(n,;,—)=n';n+j withi=1,2andj=1,2 (16.21)

++
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where E(n;;) means expected value of n; and where the marginal totals n;,, n,; and
n,. have been defined before. The assumption of independence implies that all
marginal totals are fixed, a situation that is rarely met in practice. Notwithstanding
this limitation, expected values of a 2x2 contingency table are most often calcu-
lated by eq. (16.21), as if all marginal totals are fixed. As mentioned already, the
practical consequences of the violation of the strict assumption are minimal.

Using the result of eq. (16.21) we can derive Pearson’s ’ statistic for goodness
of fit between observed and expected values of a 2X2 contingency table:

(ny — E(ny))’
16.22
Z Z En) (16.22)

which possesses one degree of freedom (df). Note that a 2X2 contingency table
with fixed marginal totals possesses only one degree of freedom. This means that,
given one of the four cell frequencies, we can derive the other three cell frequencies
using the fixed marginal totals.
After substitution of expected values from eq. (16.21) into the expression of
we obtain [14]:
, (mnynp—ngp n21)2n-H-

x2 = S with df = 1 (16.23)

Ry Ny Ny Ry

The  statistic, as a measure of goodness of fit, has also been applied in the test of
normality described in Section 5.6.

We apply the above expression of eq. (16.23) to the data in Table 16.12 in order
to test the homogeneity of outcomes (positive or negative) in the two treatment
groups (medication or control):

, (2x5-5x8)°20
T Ix13x10x 10

From tabulated values of the y* distribution function we can determine the prob-
ability of obtaining a value of * as large or larger than the one observed. More
conveniently, we can make use of the property that x* with one degree of freedom
is distributed as the square of the standard normal deviate z. Hence, we determine:

z=Vy? =V1.978 = 1.406

and we look up the corresponding one-sided probability in a table of the standard
normal distribution function, which yields that p = 0.0798.

The one-sided probability of Pearson’s ¥* test statistic is at variance with
Fisher’s exact probability, which produced p = 0.1749 (one-sided). The lack of
agreement is attributed to the fact that the distribution of Pearson’s % is continuous,
whereas Fisher’s exact probabilities are dertved from the discrete hypergeometric

=1.978 with df = |
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distribution. Yates has proposed a correction for continuity which tends to make
probabilities obtained in Pearson’s * test conform more to those derived from
Fisher’s exact test [14]:

2
,_ (nyy ngy = npg noyl = nay 2)°ney

with df = 1 (16.24)

Ry By R4 Ay
The correction proposed by Yates is recommended when the sample size is small.
If Yates’ correction is applied in our example, we obtain:
, (12x5-5%81-10)20

x =0.8791 withdf =1
7x13x 10 x10

and
z="0.8791 =0.9376

From the table of the standard normal distribution we find that the probability of
Pearson’s x* with correction for continuity is 0.1742 (one-sided), whereas Fisher’s
test produced an exact probability of 0.1749 (one-sided). In this example, the
difference is negligible.

Cochran [15] has proposed a set of rules which may help in deciding between
Fisher’s exact test and Pearson’s x* test. Cochran’s diagram indicates that Fisher’s
exact probability test is to be preferred above the corrected ¥ test in the case of
small sample sizes (n,, <20) and in the case of near-zero cell frequencies (n; < 5).
These conditions are presented schematically in Fig. 16.4. It is observed from egs.

Begin

Yes

Fisher's
exact test

2
X" test, corrected
for continuity

Fig. 16.4. Selection of a test of hypothesis for two independent samples according to Cochran [15].
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(16.23) and (16.24) that the corrected ? is always smaller than the uncorrected one.
Hence, the corresponding probability of the corrected ? is always larger. For this
reason it is stated that the correction is conservative, as it tends to preserve the null
hypothesis more often than the uncorrected test statistic. More recently, the suit-
ability of Yates’ correction has been questioned [16] especially in the case of small
sample sizes, although many authors still recommend its use [1]. However, due to
increased availability of computational resources, there is a trend towards recom-
mending Fisher’s exact test throughout, e.g. for compliance to the guidelines for
good laboratory practices [17].

In summary, Fisher’s test is only ‘exact’ in the sense that it correctly derives
probabilities for discrete cases, whereas the y statistic applies to continuous cases.
Strictly speaking, Fisher’s test requires that all marginal totals be fixed, an
assumption which is rarely met in practice. Nevertheless, Fisher’s exact test is
regarded as the best choice, even when the strict assumption of fixed marginals
1s not satisfied, and certainly in the case of small sample sizes and near-zero cell
frequencies.

16.2.4 Graphical ? test for two independent samples

In practice it often happens that a large battery of assays and observations is
performed on the same pair of independent samples, for example in the comparison
of various effects of a treatment in a medication and a control group. This results
in a large number of tests for homogeneity of outcomes in the two samples. The
statistical tests can be performed graphically by means of the so-called ‘elevation-
contrasts’ diagram [18]. On the vertical and horizontal axes of the diagram in Fig.
16.5 we represented the proportion of positive outcomes of the SCK assay for
myocardial infarction, as described in Section 16.1.7 on decision limits. The vertical
axis thus represents sensitivity and the horizontal axis is defined by (1 — specificity).
Both axes are logarithmic in order to allow for a wide range of variation. Each point
in the diagram corresponds to a particular assay or observation.

In the ‘elevation-contrasts’ diagram one has to focus on the position of a point
relative to the diagonal line. This line represents the case of complete homogeneity
of outcomes in the two treatment groups. It is the line of zero contrast, where
contrast is to be understood in the sense of difference or heterogeneity. Points
above the line correspond to more positive outcomes in the medication group than
would be expected under the hypothesis of homogeneity. These points reflect
positive contrasts. Points below the line correspond to less positive (or more
negative) outcomes in the control group than can be expected under the null
hypothesis. These points possess negative contrasts. The further away a point is
from the diagonal, the stronger is its contrast. The curved contours are the significance
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Fig. 16.5. ‘Elevation-contrasts’ diagram for a battery of assays applied to a medication and control
group. Graphical y? test for two independent samples. Data are those of Table 16.9 (adapted from
Radack et al. [7]).

bands outside which the hypothesis of homogeneity is rejected at a predefined level
of significance using Pearson’s % test for 2 independent samples corrected for
continuity (with two-sided o = 0.05, 0.01 and 0.001).

Points that project on the high side of the diagonal have a high average rate of
positive outcomes. Points that project on the low side of the diagonal possess a low
average rate. The larger the average rate of positive outcomes in both treatment
groups, the higher is the elevation of the corresponding point along the direction
of the diagonal. The ‘elevation-contrast’ diagram allows us to visualize the signifi-
cance of contrasts together with the magnitudes of the outcomes in a battery of
tests. Hence its name ‘elevation-contrasts’ diagram. From Fig. 16.5 it appears that
an optimal choice for the decision level on the scale of SCK may be chosen
between 360 and 480 IU/ml. This will ensure high sensitivity and high specificity
together with a manageable number of false positives. The positions of the signifi-
cance bands on the ‘elevation-contrasts’ diagram depend on the sample size.
Hence, the contours must be recomputed for each new experiment, but this is a
practical rather than a theoretical difficulty. A problem arises, however, because
multiple comparisons are made on the same two samples. The likelihood of
obtaining a significant result by chance is thus considerably augmented. One may
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account for this effect of multiple comparisons by lowering the level of signifi-
cance in proportion to the number of comparisons. This procedure is referred to as
a Bonferroni test (Section 5.2) [19].

16.2.5 Large-sample x? test statistic for two independent samples

In Section 16.2.3 we have shown that a 2x2 contingency table possesses only
one degree of freedom provided that all marginal totals are fixed. This allows us to
focus on one particular cell frequency, say n,;, since all three others can be derived
from it using the marginal totals. For example, n;; equals (n,, — n;1), etc.

We define the difference between the observed and expected value (O ~ E) of a
cell frequency, say n,,, using eq. (16.21):

Ry Ny

O—E:n”—E(n”)zn”— (1625)

++

Under the assumption of fixed marginal totals we obtain the variance V of any cell
frequency from the hypergeometric distribution [13]:

Nyy Ny Ny Ny
= i (16.26)
ni(ny —1)

From egs. (16.25) and (16.26) we can derive a test statistic for large values of the
sample size n,,:

2 2:(0—5)2=(”1|'122-’112'121)2('1“—1)

=
14 Ny Ny Ny Ny

with df = 1 (16.27)

Note that this result is asymptotically equivalent (when n,, becomes large) to
Pearson’s ? test statistic (eq. (16.23)).

16.2.6 McNemar’s ? test statistic for two related samples

A special situation occurs when the same sample is assayed on two occasions.
For example, the outcome of an assay is recorded in a sample of subjects at the
beginning and at the end of a period of treatment. Note that Pearson’s % test and
Fisher’s exact test are not applicable here since the observations have not been
obtained independently from each other. We assume that n,, subjects remained
positive from the beginning to the end of the period. Likewise, n,, subjects
remained negative. But n,, subjects which were initially positive changed to
negative, and n,, subjects changed from negative to positive. This gives rise to the
2x2 contingency Table 16.14.
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TABLE 16.14

2x2 contingency table for two related samples

Before After Total
Positive Negative

Positive Tipp Tipn Nps

Negative Tnp oo [

Total Nyp Ny iy

We test the null hypothesis that the changes from positive to negative and vice
versa are due to chance. Under this hypothesis we expect that the frequencies 7,
and n,, are equal, apart from random variation. Under the null hypothesis of no
change we must have that the expected values for the changes are equal [14]:

E(ngn) = E(rap) = ﬁ*’—;—”g (16.28)

We now set up the ? test statistic for goodness of fit for the two occurrences of
interest (eq. (16.22)):

2 ton = B(15n))” | (tup = B(1ap))” (16.29)
E(l’lpn) E(nnp)

which becomes after substitution of expected values by eq. (16.28):

2 (npn - nnp)2

yr=—F T with df = 1 (16.30)

Pon + Pp
Note that in eq. (16.28) we have only considered the discordances (ny, and n,,) and
have deliberately disregarded the concordances (ny, and ny,).
McNemar’s % test statistic can be corrected for continuity:
2 (npy = ngpl = 0.5)>

Npn + Ayp

withdf =1 (16.31)

By way of example, we consider the case of 10 subjects which have been observed
at the beginning and at the end of a period of treatment, the outcomes (positive or
negative) of which are shown in Table 16.15. Before treatment, 6 patients were
found to be positive, of which 2 remained positive and of which 4 changed to
negative. Before treatment, 4 patients were originally found to be negative, of
which 3 remained negative and 1 changed to positive. McNemar’s ” test statistic
according to eq. (16.30) for this case is:
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TABLE 16.15

Outcomes of an assay before and after treatment

Before After Total
Positive Negative
Positive 2 4 6
Negative 1 3 4
Total 3 7 10
2
f:%%:—g:lﬁo with df = 1

7=V1.80 =1.342 and p =0.090 (one-sided)
and with correction for continuity according to eq. (16.31):

= (14 - 11-0.5)° _625
4+ 1 5

z=V1.250 =1.118 and p =0.154 (one-sided)

=1.250 with df=1

On the basis of the probability we must retain the null hypothesis that there is no
change in outcome between the start and the end of treatment at the one-sided level
of significance o of 0.05.

16.2.7 Tetrachoric correlation

The tetrachoric correlation coefficient r has been proposed as a measure of
association between two dichotomous variables, for example outcome of treatment
and outcome without treatment:

y= 1/ X (16.32)
Ny

where % is Pearson’s test statistic for two independent samples and where n,., is
the total sample size [20]. It may be considered as an estimate of the size of the
effect produced by treatment. Numerically, the tetrachoric correlation coefficient
is identical to the product-moment correlation coefficient computed from the two
dichotomous variables. Using the corrected %> obtained in the previous example
we compute from eq. (16.32):

1.250

r= T=0'354
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Unfortunately, the sampling distribution of the tetrachoric correlation coefficient
cannot be obtained in a simple way. Hence, it is difficult to derive its variance and
to produce the corresponding confidence interval. For this reason, the tetrachoric
correlation coefficient is now only of historic interest [13]. A more tractable
estimate of effect size will be discussed in the section devoted to the odds ratio.

16.2.8 Mantel-Haenszel '’ test statistic for multiple 2X2 contingency tables

Often a 2x2 contingency table is the result of pooling of outcomes from several
samples. For example, in a study of the effect of a medication one may pool results
obtained in subjects from different categories of gender and age. Although simple
pooling increases the size of the sample and hence improves the statistical power
of tests of hypotheses, it may also lead to biased conclusions. To illustrate this point
we consider a hypothetical case where two independent studies (study I and study
IT'in Table 16.16) each involving 110 subjects have been pooled into a single large
study (Table 16.17) with a pooled sample size of 220 subjects.

We can also represent this case in a graphical way. The vertical axis of Fig. 16.6
represents the proportion of positive outcomes in the medication group n,/(n;; +
n1) and in the control group n,2/(n; + ny). For example, in study I the proportions of

Outcome

1.0 A

) 8 Ny

ny+iy, bl

Medication Control
Treatment

Fig. 16.6. Outcome of an assay (positive or negative) as a function of treatment (medication and
control}) in two studies labelled I and II. The slope of the response line is a measure for the effect of
treatment. The difference in elevation is due to an effect of study. The response line of the pooled
study is severely biased.
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TABLE 16.16

Two independent studies of the outcome (positive or negative) of an assay as a result of treatment (medication or
control)

Outcome  Study 1 Total Outcome  Study II Total
Med. Contr. Med. Contr.

Positive 1 50 51 Positive 50 9 59

Negative 9 50 59 Negative 50 1 51

Total 10 100 110 Total 100 10 110

TABLE 16.17

Pooled study of the outcome (positive or negative) of an assay as a result of treatment (medication or control)

Outcome Pooled study Total
Med. Contr.

Positive 51 59 110

Negative 59 51 110

Total 110 110 220

positive outcomes are 1/10 = 0.1 and 50/100 = 0.5 for the medication and control
groups, respectively.

From the slopes of the response lines we can judge that the individual studies I
and II show a marked effect of treatment. The proportion of positive outcomes in
both studies is 40% less in the treatment group in comparison to the control group.
However, the pooled result indicates hardly any difference between the two forms
of treatment, as the slope of the corresponding response line is almost flat. Note
that the control group in study I and the medication group in study II are given a
10 times larger weight in the pooling, as appears from Table 16.16.

If we apply the large-sample % test statistic (eq. (16.27)) to the pooled data in
Table 16.17 we obtain:

_ iy Mot 110><110_
O-E=ny - s =51- 220 =-4
_ np;ml Mo+ My _ 110X ilOX 110110 =13.813
nt(ne —1) 220" x (220-1)
—_ 2 bd 2
x2:(0 E) _( 4) =1.158 df=1, p=0.141

vV 13.813
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TABLE 16.18

Statistical results from individual and combined studies from data given in Tables 16.16 and 16.17. Probabilities
are one-sided.

Study N O-E 1% $ 14

1 110 -3.636 2.281 5.795 0.008
| 110 -3.636 2.281 5.795 0.008
Combined 220 -7.272 4.562 11.591 0.0002

This result is not significant at the one-sided level of significance o of 0.05. The
results of the individual studies, on the contrary, are highly significant as is shown
in Table 16.18 (p = 0.008, one-sided). The paradox arises, on the one hand, from
an unbalanced allocation of subjects to treatment groups. On the other hand there
is a large difference between the proportions of positive outcomes in the two
studies, as is shown clearly by Fig. 16.6. This latter phenomenon is called the effect
of study. The effect of study may severely bias an estimate of the effect of treatment
when data are simply pooled as we have done in this hypothetical case. We state
that the effect of treatment is confounded by the effect of individual studies, or, in
other words, that type of study is a confounding factor of the effect of treatment.
Mantel and Haenszel [21] have proposed a test which accounts for effects of study
when combining independent 2x2 contingency tables. We use the term ‘combining’
to indicate a procedure which avoids the bias produced by simple ‘pooling’ of the
data. Their approach is to combine the individual observed minus expected fre-
quencies into (O — E). and to combine the corresponding variances into V.:

(O-E).=2(0-E) (16.33)
k
Ve=> Vi (16.34)
k

where the summation extends over all k individual 2X2 contingency tables.

We know that V, is the variance of (O — E)., provided that the individual
contingency tables are independent. This consideration leads to the Mantel-Haenszel
x? test statistic which possesses one degree of freedom:

,_(0O-E)
X - VC
The result of the Mantel-Haenszel test in the case of the two independent studies
is shown on the bottom line of Table 16.18. It is even more significant than in each
of the individual ones. It is also quite different from the biased result which we have
obtained from simple pooling of the individual studies.

with df = 1 (16.35)
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16.2.9 Odds ratio

So far, we have been discussing tests of hypotheses about 2x2 contingency
tables. It must be realized, however, that a statistically significant result does not
necessarily correspond in practice to a relevant effect. Indeed, for any negligibly
small effect one can find a sufficiently large sample size for which this irrelevant
effect will become statistically significant. It is felt therefore that a statistical
analysis of an effect should provide not only the probability of its occurrence under
some hypothesis, but also provide an estimate of the size of this effect, together
with its 95% confidence interval [3].

A common measure of effect in a 2x2 contingency table is the odds ratio which
is defined as follows in the notation introduced in Section 16.2.1:

RNy _ Odds (n/(n1; + na1))
na iz Odds (n/(ny; + ny))

Odds Ratio = OR = (16.36)
Note that the expected value of the odds ratio OR is 1 under the assumption of
homogeneity. In a comparison of two treatment groups, we can interpret the odds
ratio as the odds of obtaining a positive outcome in the treatment group divided by
the odds of obtaining a positive outcome in the control group (eq. (16.36)). In this
sense the odds ratio can be regarded as a measure of the size of the effect produced
by treatment.

Another interpretation can be derived from the notation used in Section 16.1.3
for sensitivity and specificity:

_tptn _ Odds (tp/(tp + fn))  Odds (Sensitivity)
~ fnfp  Odds (fp/(fp + tn)) "~ Odds (1 — Specificity)

We find here a striking resemblance between the expression for the odds ratio OR
(eq. (16.37)) and the one which we have derived above for the likelihood ratio LR

(eq. (16.13)):

IR = Sen5