
Preface 

In 1991 two of us, Luc Massart and Bernard Vandeginste, discussed, during one of 
our many meetings, the possibility and necessity of updating the book Chemometrics: 
a textbook. Some of the newer techniques, such as partial least squares and expert 
systems, were not included in that book which was written some 15 years ago. 
Initially, we thought that we could bring it up to date with relatively minor revision. 
We could not have been more wrong. Even during the planning of the book we 
witnessed a rapid development in the application of natural computing methods, 
multivariate calibration, method vaUdation, etc. 

When approaching colleagues to join the team of authors, it was clear from the 
outset that the book would not be an overhaul of the previous one, but an almost 
completely new book. When forming the team, we were particularly happy to be 
joined by two industrial chemometricians. Dr. Paul Lewi from Janssen Pharmaceutica 
and Dr. Sijmen de Jong from Unilever Research Laboratorium Vlaardingen, each 
having a wealth of practical experience. We are grateful to Janssen Pharmaceutica 
and Unilever Research Vlaardingen that they allowed Paul, Sijmen and Bernard to 
spend some of their time on this project. The three other authors belong to the Vrije 
Universiteit Brussel (Prof. An Smeyers-Verbeke and Prof. D. Luc Massart) and the 
Katholieke Universiteit Nijmegen (Professor Lutgarde Buy dens), thus creating a 
team in which university and industry are equally well represented. We hope that 
this has led to an equally good mix of theory and application in the new book. 

Much of the material presented in this book is based on the direct experience of 
the authors. This would not have been possible without the hard work and input of 
our colleagues, students and post-doctoral fellows. We sincerely want to acknow­
ledge each of them for their good research and contributions without which we 
would not have been able to treat such a broad range of subjects. Some of them 
read chapters or helped in other ways. We also owe thanks to the chemometrics 
community and at the same time we have to offer apologies. We have had the 
opportunity of collaborating with many colleagues and we have profited from the 
research and publications of many others. Their ideas and work have made this 
book possible and necessary. The size of the book shows that they have been very 
productive. Even so, we have cited only a fraction of the literature and we have not 
included the more sophisticated work. Our wish was to consolidate and therefore 
to explain those methods that have become more or less accepted, also to newcomers 
to chemometrics. Our apologies, therefore, to those we did not cite or not exten­
sively: it is not a reflection on the quality of their work. 



Each chapter saw many versions which needed to be entered and re-entered in 
the computer. Without the help of our secretaries, we would not have been able to 
complete this work successfully. All versions were read and commented on by all 
authors in a long series of team meetings. We will certainly retain special memories 
of many of our two-day meetings, for instance the one organized by Paul in the 
famous abbey of the regular canons of Premontre at Tongerlo, where we could 
work in peace and quiet as so many before us have done. 

Much of this work also had to be done at home, which took away precious time 
from our families. Their love, understanding, patience and support was indispen­
sable for us to carry on with the seemingly endless series of chapters to be drafted, 
read or revised. 

September 1997 



Chapter 1 

Introduction 

1.1 The aims of chemometrics 

1,1,1 Chemometrics and the ^'arch of knowledge^^ 

Scientific methodology follows a two-fold pathway for the establishment of 
knowledge. As explained by Oldroyd [1], these pathways lead through an exami­
nation of observable phenomena to general rational "first principles" (analysis); 
and from such "first principles" back again to observables, which are thereby 
explained in terms of the principles from which they are held to be deducible 
(synthesis). The shape of this methodological project led Oldroyd to the concept of 
the "arch of knowledge". Chemometrics conforms to this general pattern. This will 
become apparent from its definition. For the purposes of this book, we define 
chemometrics as follows: "Chemometrics is a chemical discipline that uses mathe­
matics, statistics and formal logic (a) to design or select optimal experimental 
procedures; (b) to provide maximum relevant chemical information by analyzing 
chemical data; and (c) to obtain knowledge about chemical systems". 

This definition is derived and adapted from the one given in an earlier version 
ofthisbook[2]. 

Starting with a certain chemical knowledge (the "first principles") (Fig. 1.1), 
chemists define a hypothesis. To be able to test this hypothesis and thereby verify 
its validity, they need experimental data (the "observables"). They therefore first 
decide which experiments to carry out (point (a) of the definition). The chemomet-
rician's approach will be to do this with the help of mathematical and statistical 
techniques, such as the use of experimental design methodology. The experiments 
generate data and the chemometrician uses them to extract information (point (b) 
of the definition), for instance to derive a model by computing a regression 
equation that describes how the result of the measurement (the response) is related 
to the experimental variables. A chemist can use this information and chemical 
intelligence to generate more knowledge about the system (point (c) of the defini­
tion). If, for example, the chemical domain investigated is the study of chemical 
reactions, the chemist may conclude that the reaction kinetics are second order 
(analysis). With the increased knowledge about the system the chemist can formulate 
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Fig. 1.1. The arch of knowledge (adapted from Ref. [ 1 ]). 

an experimental design (synthesis) to obtain still more data and therefore more 
information and insight and eventually build a solid arch of knowledge. 

The chemometrics relating to points (a) and (b) have hitherto been more 
extensively investigated than those relating to (c). Many of the 44 chapters of this 
book will refer to (a) and (b), and some also to (c). However, most chapters stress 
one of the three points to a greater extent than the others. In Sections 1.2.1 to 1.2.3 
we will give for each a short overview of the main subjects to be discussed. 

1.1.2 Chemometrics and quality 

Chemometrics is not always involved in obtaining new knowledge and this is 
particularly so in industrial applications. Chemometrics is involved in the process 
of producing data and in the extraction of the information from these data. If the 
quality of the measurement processes and therefore the quality of the data is not 
good enough, the information may be uncertain or even wrong. 

Quality is an essential preoccupation of chemometrics and this is also the case 
for industry. It is, therefore, not surprising that chemometrics has been recognized 
in recent years as an important subject. Indeed, many of the techniques that 
chemometricians apply to obtain better measurement processes are also used to 
obtain better processes in general or better products. The measurement processes 
themselves often have the aim of assisting the development of better products or 
of controlling processes. 

Very often, therefore, the ultimate aim of chemometrics is to improve or optimize 
or to monitor and control the quality of a product or process. Several chapters are 
devoted to such domains or to quality aspects. An overview is given in Section 1.2.4. 



1.2 An overview of chemometrics 

1.2.1 Experiments and experimental design 

Whenever experimentation is considered, one should first decide which experi­
ments should be carried out (point (a) of the definition). This is discussed in many 
chapters. For instance, in Chapter 4 one of the questions is how many experiments 
must be carried out to be able to accept or reject a hypothesis with sufficient 
confidence that the decision is correct; in Chapter 5 we explain that to compare two 
means one can opt for a paired or an unpaired design; and in Chapter 6 we describe 
when an analysis of variance should be carried out according to a crossed or a 
hierarchical design. The chapters that discuss regression for calibration or modelling 
purposes such as Chapter 8 (linear regression). Chapter 10 (multivariate regression) 
and Chapter 36 (multivariate calibration) insist on the importance of the selection of 
the calibration design to obtain the best-fitting models or the best predictions. 

The design of experiments is the more important element in Chapters 21 to 27. 
These chapters describe how to design experiments to decide in a cost-effective 
way which variables are important for the quality of a product or a process and then 
how to find the optimal combination of variables, i.e. the one that yields the best 
result. An overview is given in Table 1.1. 

TABLE 1.1 

Brief contents of the chapters on experimental design 

Chapter 21: General introduction into experimental design. 
Chapter 22: Two-level factorial designs to decide which variables are important and which variables 

interact, and to describe the effects of variables on responses with first-order models. 
Chapter 23: Two-level fractional factorial designs to achieve the aims of Chapter 22 but with fewer 

experiments and with the lowest loss of information possible. 
Chapter 24: More than two-level designs to obtain second- (or higher-) order models for the responses in 

function of the variables affecting the process (response surfaces) and to obtain optimum 
responses for these process variables. 

Chapter 25: Mixture designs to model mixture variables and to optimise mixtures. 
Chapter 26: Sequential approaches to optimization, selection of evaluation criteria, including Taguchi 

designs. 
Chapter 27: Numerical optimization through the use of genetic algorithms and related techniques. 

1,2.2 Extraction of information from data 

1.2.2.1 Displaying data 
The extraction of information from data or data analysis (point (b) of the 

definition) usually starts by describing or displaying the experimental data ob­
tained. In general, these data constitute a data table or tables. Let us first consider 



the situation where a single table is obtained (Figs. 1.2a-d). This consists of 
columns (and in the simplest case, one single column) each giving the value of one 
variable for a set of objects. Very often these objects are samples of a population 
of objects and the reason for making the measurements is to infer from the results 
obtained some characteristic of the population. An example is the estimation of the 
mean and standard deviation (Chapters 2 and 3). Often we want to know whether 
the data follow a certain distribution, such as the normal distribution (Chapter 3) 
or other distributions (Chapter 15), or whether outliers are present (Chapter 5). 

It is very important to look at the data whenever possible. To be able to do this 
we need methods to display them. Histograms (Chapter 2) and box plots (Chapter 
12) are among the methods that best allow visual evaluation for univariate data 
(i.e., data for a single variable x\ Fig. 1.2a). Plots for special purposes, such as 
normal distribution plots, that allow us to evaluate visually whether a data set is 
normally distributed are also available (Chapter 3). 

In many cases the objects are described by many variables (multivariate data; 
Fig 1.2b). To plot them we need as many dimensions as there are variables. Of 
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Fig. 1.2. Data structures for display: (a) univariate; (b) multivariate; (c) univariate, with objects 
subjected to some kind of order, e.g. ordered in time; (d) multivariate, with ordered objects. 



course, as soon as there are more than three dimensions a straightforward plot of 
the data is no longer possible so that displaying them for visual evaluation becomes 
more difficult. Chemometrics offers methods that allow the display of such multi­
dimensional data by reducing the dimensionality to only a few dimensions. The 
most important technique in this respect is principal component analysis, which is 
first treated in a relatively non-mathematical way in Chapter 17. Principal compo­
nent analysis is also the starting point for studying many other multivariate 
techniques and so-called latent variable techniques such as factor analysis (Chapter 
34) and partial least squares (Chapter 35). For this reason, principal components 
analysis is considered again in a more formal and mathematical way in Chapter 31. 

In some instances the objects in a table are ordered, for example, in time when 
samples are taken from a (measurement) process. In Chapter 7 measurements of a 
single variable are displayed in control charts to find out whether a process is under 
control (Fig. 1.2c). In Chapter 20 the same is done for multivariate data (multivari­
ate quality control) and we investigate how to sample processes in time or space to 
be able to predict the value at other times or locations. In data sets ordered in time 
(data taken from a continuous process) or according to wavelength (spectra) the 
individual responses that are measured are subject to noise, as is the case for all 
measurements. The signal processing techniques described in Chapter 40 allow a 
better and more informative description of the process by reducing the noise. 

Many of the techniques described in Chapter 34 are also applied to data that are 
ordered in some way. However, the data are now multivariate (Fig. 1.2d). A typical 
situation is that of spectra obtained for samples ordered in time. In such 
situations one suspects that there are several compounds involved, i.e. the 
measured spectra are the sum of spectra of different compounds. However, one 
does not know how many compounds, or their spectra, or their individual 
concentration profiles in the time direction. The techniques described attempt 
to extract this type of information. 

1.2.2,2 Hypothesis testing 
The description of the data often leads to the formulation of hypotheses (which 

are then verified by hypothesis testing), to describe quantitatively the value of one 
or more variables as a function of the value of some other variables {modelling) or 
to try to classify the objects according to the values of the variables obtained 
{classification). Hypothesis testing, modelling and classification are the main 
operations required when we want to extract information from data in a more 
formal way than by visual evaluation. They are related: classification can be 
considered as a special kind of modelling and a model is often validated through 
the use of hypothesis tests. 

Hypothesis testing is the main subject of the chapters listed in Table 1.2. In these 
chapters the characteristics of two sets of data are often compared, for instance 



TABLE 1.2 

Brief contents of the chapters in which the emphasis is on hypothesis testing 

Chapter 4: General principles; comparing an experimentally obtained mean with a given value. 
Chapter 5: Comparison of two means or variances, detection of extreme values, comparison of an 

experimental distribution with the normal distribution. 
Chapter 6: Comparison of more than two means and/or variances (analysis of variance). 
Chapter 13: Applications to method validation. 
Chapter 16: Tests of hypotheses about frequency (contingency) tables involving only two variables. 

their means or their standard deviations and the hypothesis tested is their equality 
(or sometimes their inequality). However, other hypotheses can also be tested, such 
as, e.g., whether a certain result belongs to a set of results or not (outlier testing). 

The subject of hypothesis testing is so essential for statistics and chemometrics 
that it is applied in most chapters. It is for instance important in the chapters on 
modelling, e.g. Chapters 8 and 10. In these chapters a model is proposed and a 
hypothesis test is required to show that the model can indeed be accepted. In the 
chapters on experimental design (Section 1.2.1) techniques are described that 
allow us to detect factors that may have an effect on the response under study. A 
hypothesis test is then applied to decide whether indeed the effect is significant. 

Certain tests are specific to certain application domains. This is the case for 
Chapter 38, for instance, where tests are applied to sensory analysis that are not 
applied in other domains. 

1.2,2.3 Modelling 
Modelling is the main emphasis of the chapters described in Table 1.3. These 

chapters describe regression techniques of different complexity. Modelling is also 
an important aspect in: Chapter 44 on neural networks; Chapters 12 and 19, where 
methods are explained for robust and fuzzy regression, respectively; and in Chapter 
41, where Kalman filters are applied to the modelling of dynamic processes. It is 
an important tool in many other chapters, e.g. Chapter 13 (method validation). 
Chapter 24 (response surface methodology). Chapter 37 (quantitative structure-
activity relationships), and Chapter 39 ( pharmacokinetic models). 

TABLE 1.3 

Brief contents of the chapters in which the emphasis is on modelling 

Chapter 8: Univariate regression and calibration. 
Chapter 10: 
Chapter 11 
Chapter 35 
Chapter 36: 

Multivariate and polynomial regression. 
Non-linear regression. 
Latent variable-based methods for relating two data tables. 
Multivariate calibration. 



Modelling is applied when two or more characteristics of the same objects are 
measured, for example when one tries to relate instrumental responses to sensory 
characteristics (Chapter 38), chemical structure of a drug to its activity (Chapter 
37), or the performance of two analytical methods by analysing the same objects 
with the two methods (Chapter 13). This is also the case when one verifies whether 
there is a (linear) relationship between objects of two populations by measuring the 
correlation coefficient (Chapter 8). The purpose of the modelling is to find rela­
tionships that explain the data and/or to allow us to make predictions. 

The data structure is shown in Figs. 1.3a-c. Two sets of data are related: the y 
or Y data have to be explained or predicted from the x or X data. In Fig. 1.3a a 
single column of 3; values are related to a single column of x values. In a classical 
univariate calibration experiment (Chapter 8) the x values would be concentrations 
and the y values some response such as absorbance. Both Figs. 1.3b and c are 
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Fig. 1.3. Data structures for modelling: (a) relationship between two variables x and y for a set of 
objects, i.e. between vectors x and y; (b) relationship between a set of variables x (matrix X) and a 
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multivariate situations with one y and several x values, respectively (Chapter 10), 
or even several x and several y values per object (Chapter 35). Techniques that 
allow us to work with such data structures are extremely important topics in 
chemometrics. However, we do not share the tendency of some chemometricians 
to consider this as the only topic of importance. 

The modelling element can be important without being explicit. This is the case 
with the neural networks of Chapter 44. One of its main uses is to model complex 
phenomena. Very good results can be obtained, but the model as such is usually 
not derived. 

Modelling and hypothesis testing are related. In many cases they are either 
alternatives or complementary. When the methods that emphasize hypothesis 
testing are applied, the question is often: does this process (or measurement) yield 
the same result (or response) at pH = 6 and at pH = 7 or pH = 8? It does not give 
an immediate answer to what will happen at pH = 7.5 and this can be answered by 
modelling techniques. When such a technique is applied, the question will be: how 
does the result or response depend on pH? When simplifying both questions, one 
eventually is led to ask: does the pH influence the result or response? It is, 
therefore, not surprising that the same question can be treated both with hypothesis 
tests and modelling approaches, as will be the case in Chapters 13 on method 
validation and Chapter 22 on two-level factorial designs. 

1.2.2.4 Classification 
In classification one tries to decide whether the objects can be classified into 

certain classes, based on the values they show for certain variables. The data 
structures are shown in Figs. 1.4a-c. Chapters 30 and 33 are devoted entirely to this 
aspect and it is an important topic in Chapter 44. 

Basically, there are three types of question: 
- Can the objects be classified into certain classes (see also Fig. 1.4a)? The 

classes are not known a priori. This is called unsupervised pattern recognition 
or learning or also clustering; it is discussed in Chapter 30. The Kohonen and 
fuzzy adaptive resonance theory networks of Chapter 43 have the same purpose. 

- Can a new object be classified in one of a number of given classes (see also 
Fig. 1.4b) described by a set of objects of known classification? This is called 
supervised pattern recognition or discriminant analysis and is described in 
Chapter 33. Most of the neural networks described in Chapter 44 can be 
applied for the same purpose and so can the inductive expert systems of 
Chapter 18. 

- Does the object belong to a given class described by a set of objects known 
to belong to that class (see also Fig 1.4c)? This can be studied with the disjoint 
class modelling by supervised pattern recognition methods such as SIMCA 
or UNEQ described in Chapter 33. 
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Fig. 1.4. Data structures for classification: (a) classification of a set of objects, characterized by several 
variables, classes not known a priori; (b) classification of a new object into one of a number of given 
classes, each class being described by a set of objects for which several variables were measured; (c) 
does a new object belong to a given class, described by a set of objects for which several variables 
were measured? 

Additional aspects are discussed in Chapter 16 (quality of attributes in relation 
to classification in one of a few classes) and Chapter 19 (fuzzy search). 

We should stress here again the relationship between classification on the one 
hand and modelling or hypothesis testing on the other. For instance, supervised 
pattern recognition methods can, in certain cases, be replaced by modelling meth­
ods such as PLS (see Chapter 33) when the y-variables are class indicator variables 
(e.g. 0 for class A and 1 for class B), while SIMCA can be reformulated as a 
multivariate outlier test. 
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1.2.3 Chemical knowledge and (artificial) intelligence 

Deductive reasoning capacity in chemistry, as in all science branches, is the 
basic and major source of chemical information. This reasoning capacity is gener­
ally associated with the concept of intelligence. With the development of numeri­
cal methods and computer technology it became possible to extract chemical 
information from data in a way that had not previously been possible. Chemomet-
ric methods were developed that incorporated and adapted these numerical tech­
niques to solve chemical problems. It became clear, however, that numerical 
chemometric techniques did not replace deductive reasoning, but rather were 
complementary. Problems that can be solved by numerical techniques, e.g. pattern 
recognition, cannot easily be solved by deductive reasoning. However, selection of 
the best chemical analysis conditions, for example, is a deductive reasoning 
process and cannot be solved in a straightforward way by mathematical methods. 

To increase further the efficiency and power of chemometric methods the 
deductive reasoning process must be incorporated. This has resulted in the devel­
opment of the so-called "expert systems" (Chapter 43). These are computer 
programs which incorporate a small part of the formalized reasoning process of an 
expert. In the 1980s they were very popular but their performance to solve difficult 
problems was clearly overestimated. In the early 1990s there was a dip in their 
application and development and the phrase "expert system" became almost taboo. 
Recently, however, they have reappeared under the name of decision support 
systems, incorporated among others in chemical instruments. In combination with 
the numerical chemometric methods they can be very useful. 

The inductive reasoning process (learning from examples) is implemented in the 
inductive expert systems (see Chapter 18). Neural networks can also be considered 
as an implementation of the inductive reasoning process (Chapter 44). 

1.2.4 Chemical domains and quality aspects 

Quality is an important point in many chapters of this book. In Chapter 2, we 
introduce the first elements of statistical process control (SPC), and Chapter 7 is 
entirely devoted to quality control. Chapters 13 and 14 describe an important 
element of quality assurance in the laboratory, namely, how to validate measure­
ment methods, i.e. how to make sure that they are able to achieve sufficient 
precision, accuracy, etc. Chapter 14 also describes how to measure proficiency of 
analytical laboratories. It makes no sense to carry out excellent analysis on samples 
that are not representative of the product or the process: the statistics of sampling 
are described in Chapter 20. 

The treatment of sensory data is described in Chapter 38. Their importance for 
certain products is evident. However, sensory characteristics are not easy to 
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measure and require expert statistical and ehemometrical attention. Chapter 40 is 
devoted to the analysis of signals and their improvement. It is also evident that in 
many cases the experimental design in Chapters 21-26 has as its final objective to 
achieve better quality measurements or products. 

1.2.5 Mathematical and statistical tools 

Statistics are important in this book, so we have decided to give a rather full account 
of it. However, the book is not intended to be an introduction to statistics, and therefore 
we have not tried to be complete. In certain cases, where we consider that chemomet-
ricians do not need that knowledge, we have provided less material than statistics 
books usually do. For instcince, we have attached relatively little importance to the 
description of statistical distributions, and, while we need of course to use degrees of 
freedom in many calculations, we have not tried to explain the concept, but have 
restricted ourselves to operational and context-dependent definitions. 

Most chapters describe techniques that often can only be applied to data that are 
continuous and measured on so-called ratio or interval scales (lengths, concentra­
tions, temperatures, etc.). The use of other types of data often requires different 
techniques or leads to other results. Chapters 12, 15, 16, 18 and 19 are devoted to 
such data. Chapter 12 describes how to carry out hypothesis tests and regression 
on ranked data or on continuous data that violate the common assumption of 
normal distribution of measurement errors; Chapter 15 describes distributions that 
are obtained when the data are counts or binary data (i.e., can only be 0 or 1); 
Chapter 16 concerns hypothesis tests for attributes, i.e. variables that can take only 
two or a few values. Chapter 18 describes information theory and how this is used 
mainly to characterize the performance of qualitative measurements, and Chapter 
19 discusses techniques that can be used with fuzzy data. 

Figure 1.2 shows that in all cases the structure of the data is that of a table or 
tables, sometimes reduced to a single column. Mathematically, the columns are 
vectors and the tables are matrices. It is therefore important to be able to work with 
vectors and matrices; an introduction is given first in Chapter 9 and a fuller account 
later in Chapter 29. 

1.2.6 Organization of the book 

The book consists of two volumes. In the first volume (Part A) the emphasis is 
on the classical statistical methods for hypothesis testing and regression and the 
methods for experimental design. In the second volume (Part B) more attention is 
given to multivariate methods, often based on latent variables, to signal processing 
and to some of the more recent methods that are considered to belong to the 
artificial intelligence area. 
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One can certainly not state that the methods described in Volume I are all 
simpler, older, or used more generally than those described in Volume 11. For 
instance, techniques such as non-linear regression using ACE or cubic splines 
(Chapter 11), robust regression (Chapter 12), fuzzy regression (Chapter 19) or 
genetic algorithms (Chapter 27) are certainly not commonplace. However, the 
general level of mathematics is higher in Part B than in Part A. For that reason 
certain subjects are discussed twice, once at a more introductory level in Part 
A, and once at a higher level of abstraction in Part B. This is the case for matrix 
algebra (Chapters 9 and 29) and principal component analysis (Chapters 17 and 
31). 

1.3 Some historical considerations 

The roots of chemometrics go back to 1969 when Jurs, Kowalski and Isenhour 
published a series of papers in Analytical Chemistry [3-5] on the application of a 
linear learning machine to classify low resolution mass spectra. These papers 
introduced an innovative way of thinking to transform large amounts of analytical 
data into meaningful information. The incentive for this new kind of research in 
analytical chemistry was that "for years experimental scientists have filled labora­
tory notebooks which often has been disregarded because lack of proper data 
interpretation techniques" [6]. How true this statement still is today, more than 25 
years later! This new way of thinking was developed further by Wold into what he 
called "soft modelling" [7] when he introduced the SIMCA algorithm for model­
ling multivariate data. These new techniques did not pass unnoticed by other 
academic groups, who became actively involved in the application of 'modern' 
algorithms as well. The common interest of these groups was to take advantage of 
the increasing calculation power offered by computers to extract information from 
large data-sets or to solve difficult optimization problems. Dijkstra applied infor­
mation theory to compress libraries of mass spectra [8]. Compression was neces­
sary to store spectra in the limited computer memory available at that time and to 
speed up the retrieval process. At the same time Massart became active in this field. 
His interest was to optimize the process of developing new chromatographic 
methods by the application of principles from operations research [9]. These 
developments coincided with a fundamental discussion about the scientific basis 
of analytical chemistry. In Germany this led to the foundation of the 'Arbeitskreis 
Automation in der Analyse', which published a series of more or less philosophical 
papers on the systems approach of analytical chemistry [10,11]. All this coincided 
with the growing belief of analytical chemists that "some of the newer mathemati­
cal methods or theories, such as pattern recognition, information theory, operations 
research, etc. are relevant to some of the basic aims of analytical chemistry, such 
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as the evaluation, optimization, selection, classification, combination and assignment 
of procedures, in short all those processes involved in determining exactly which 
analytical procedure or programme should be used" [12]. Also in other fields 
outside analytical chemistry, the application of pattern recognition received a great 
deal of attention. An important area was the study of relationships between 
chemical structures and their biological activity, e.g. in drug design, where several 
papers began to appear in the early 1970s [13]. 

It took until June 1972 before this research was called "chemometrics". This 
name was mentioned for the first time by Wold in a paper published in a Swedish 
journal [14] on the application of splines to fit data. He christened his group 
"Forskningsgruppen for Kemometri", an example which would be followed by 
Kowalski, who named his group the "Laboratory of Chemometrics". 

The collaboration between Wold and Kowalski resulted in the foundation of the 
Chemometrics Society in 1974. A year later, the society defined chemometrics as 
follows: "it is the chemical discipline that uses mathematical and statistical meth­
ods to design or select optimal measurement procedures and experiments and to 
provide maximum chemical information by analysing chemical data" [15]. As one 
may notice, in this book we have adapted this definition by including a third 
objective "to obtain knowledge about chemical systems" and we have specified 
that the chemical information should be "relevant". With the distribution of the 
software packages ARTHUR [16] by Kowalski and SIMCA [7] by Wold, many 
interested analytical chemists were able to explore the potentials of pattern recog­
nition and multivariate statistics in their work. In 1976 a symposium was organized 
entitled "Chemometrics: Theory and Application" sponsored by the Division of 
Computers in Chemistry of the American Chemical Society, which published the 
first book on chemometrics [17] with contributions from Deming (optimization), 
Harper (ARTHUR), Malinowski (factor analysis), Howery (target-transformation 
factor analysis), Wold (SIMCA) and others. This book already indicated some of 
the main directions chemometrics would follow: design of experiments, optimiza­
tion and multivariate data analysis. 

Two years later, in 1978, three European chemometricians, Kateman, Massart 
and Smit organized the international "Computers in Analytical Chemistry (CAC)" 
conference in Amsterdam — the first of what was to be a long series. This 
coincided with the launching of Elsevier's series "Computer Techniques and 
Optimization" in Analytica Chimica Acta under the editorship of Clerc and Ziegler 
[18]. On this occasion more than 100 analytical chemists from all over the world 
gathered to hear about a new and exciting discipline. After the first book on 
chemometrics was published by the ACS, other textbooks rapidly followed in 1978 
by Massart et al. [12], in 1981 by Kateman and Pijpers [19], in 1988 again by 
Massart et al. [2], in 1982 by Lewi [20] and in 1986 by Sharaf et al. [21]. Other, no 
less important, textbooks are mentioned in the suggested reading list. 
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A milestone in the short history of chemometrics was certainly the introduction 
of Partial Least Squares [22] by S. Wold and coworkers in 1983, based on the early 
work of H. Wold [23]. Since 1972, Analytical Chemistry, an ACS publication, 
included a section on Statistical and Mathematical Methods in Analytical Chemis­
try in their biannual reviews. In 1978 Shoenfeld and DeVoe [24] provided the 
editor of Analytical Chemistry with the new title "Chemometrics". This was a 
formal recognition of the appearance of a new discipline in analytical chemistry, 
which was emphasized by the special attention on chemometrics at a symposium 
organized on the occasion of the celebration of the 50th anniversary of Analytical 
Chemistry [25]. Since 1980, the field of research expanded rapidly and several new 
centres in Europe and the USA emerged which became actively involved in 
chemometrics. Norway, Italy and Spain, for instance, are three of the centres of 
chemometrics in Europe. In 1974 two teams became active in chemometrics in 
Italy, those of Forina in Genova and of Clementi in Perugia. Around this time, other 
chemists began to pay more attention to the statistical side of analytical chemistry, 
such as Dondi in Ferrara. In 1978 Forina and Armanino published "Elements of 
Chemometrics", the first book for second-cycle students of Chemometrics in Italy. 
However, a milestone in the chemometrics history in Italy is certainly April 13, 
1981, when the first Italian seminar on chemometrics was organized in Genova. In 
1983 all major centres were represented at the most inspiring NATO Advanced 
Study Institute on Chemometrics [26] in Cosenza, hosted by Forina. Experts 
presented and discussed in a relaxed ambience recent developments in experimen­
tal design, multivariate calibration and factor analysis. The 1980s witnessed further 
growth and diversification. In Seatde Kowalski focused on Process Analytical 
Chemistry at his Centre for Process Analytical Chemistry (CPAC), a successful 
consortium between the University of Washington and a number of industrial 
partners, which would expand to the impressive number of 50 partners. In Europe 
there was a growing belief that much analytical knowledge could not be caught in 
either hard or soft models. Therefore, an EEC-funded research project "Expert 
systems for chemical analysis" was initiated in 1986 with Vandeginste, Massart 
and Kateman and three industrial partners. At the same time the EEC funded a large 
chemometrics teaching network, Eurochemometrics, which would organize an 
impressive series of short courses all over Europe. In the US leading chemometri-
cians gather annually at the prestigious Gordon Research Conference "Statistics in 
Chemistry and Chemical Engineering" where advanced research topics are dis­
cussed and commented upon. The launching of two specialized chemometrics 
journals in 1986, the Journal of Chemometrics (Wiley) and Chemometrics a.'d 
Intelligent Laboratory Systems (Elsevier), confirmed that chemometrics had evolved 
into an established science. 

By the end of the 1980s, industry had become increasingly interested in this new 
and promising field and was offering positions to young chemometricians. A real 
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challenge for them is to prove that chemometric algorithms are robust enough to 
cope with the dirty data measured in practice, and powerful enough to derive the 
requested information from the data. For instance, curve resolution methods should 
not only be able to resolve the spectra of major co-eluting compounds by HPLC 
but also compounds at a level below 1 % detected with a diode array detector. 

Although the study and introduction of novel multivariate statistical methods 
remained in the mainstream of chemometric research, a distinct interest arose in 
computationally intensive methods such as neural networks, genetic algorithms, 
more sophisticated regression techniques and the analysis of multiway tables. 
Chemometricians rapidly discovered the wealth of new opportunities offered by 
modem communication tools such as e-mail and the Internet. An on-line discussion 
group ("ICS-L") on chemometrics has been set up for the International Chemomet-
rics Society, using the LISTSERV facility. More recently, the first worldwide 
electronic conferences (InCINC94 and InCINC96) have been organized by Wise 
and Hopke, who have set an example which will certainly be followed by many 
others. Also, many research groups in chemometrics have started to build home 
pages with information about their current research activities. 

Despite the enormous progress in our capability of analyzing two- and three-
way tables, a fundamental issue remains the poor precision reported in collabora­
tive analytical studies. Apparently, analytical methods which are essential in 
process control and in research and development lack robustness and are not 
suitable for their purpose. The application of multicriteria decision-making and 
Taguchi designs as suggested by several chemometricians should lead to some 
improvements. Such a study is the objective of an EU-funded project within the 
Standards, Measurement and Testing Programme, carried out by a group of Italian, 
Spanish and Belgian academic chemometrics centres in collaboration with major 
European industries. 

The 1990s appear to be the age of quality and quality improvement. Most 
industrial and governmental laboratories are opting for compliance with one of the 
quality systems: GLP, ISO 9000, etc. To demonstrate and maintain quality requires 
a skilful application of statistics. This is the area of Qualimetrics which is the 
synergy between chemometrics and quality assurance — an area of great impor­
tance for the industrial chemist. 

1.4 Chemometrics in industry and academia 

Many excellent researchers in academia as well as in industry have contributed 
to the successful development of chemometrics in recent years. The interested 
reader is referred to the Journal of Chemometrics [27,28], which devotes a column 
on academic chemometric research, in which centres present their work and 
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philosophies on chemometrics and its future. It shows that many distinguished 
academic chemometricians either started their careers in industry, or (Windig, 
Lewi, de Jong, Berridge, Vandeginste, etc.) still occupy a research position in 
industry. We ought to realize that long before statistics and chemistry found their 
synergy in chemometrics applied statistics was an indispensable tool in industrial 
research and production. The first industrial chemometrician was probably W.S. 
Gossett (Student), who developed the r-test, while working for the Guinness 
breweries [29]. In 1947 Box from ICI published a book on "Statistical Methods in 
Research and Production" [30], followed in 1956 by "The Design and Analysis of 
Industrial Experiments" [31], which culminated in the book by Box, Hunter and 
Hunter [32]. In his introduction Box writes "Imperial Chemical Industries Ltd has 
long recognized that statistical methods have an important part to play in industrial 
research and production". This book, illustrated with many real-life examples from 
ICI and written for the chemist is still recommended basic reading on experimental 
design. Lloyd Currie at the National Bureau of Standards (now the National 
Institute of Standards and Technology) has been an early promoter of the applica­
tion of statistics in analytical chemistry. Certainly the work of Malmstadt, Enke 
and Crouch, while not directly chemometrics in the early days, led to its develop­
ment by getting more people involved in the details of dala collection. Very 
rapidly, chemometrics started to cover the whole range from fundamental research 
to development. For obvious reasons industry became active in developing chemo­
metrics applications and tools. Optimization in HPLC is a very good illustration. 
For many years sequential and simultaneous optimization strategies by Simplex 
and experimental design were the subject of research for many academic chemo­
metricians. The importance of optimization for productivity improvement was 
quickly recognized by industrial researchers who demonstrated its practical appli­
cability — Berridge at Pfizer, and Glajch and Kirkland at DuPont de Nemours, to 
name but a few. Instrument manufacturers took over the idea and developed this 
technique further to systems integrated with HPLC equipment. As a result, optimi­
zation strategies are now widely available and routinely applied in industrial 
laboratories. The same happened to PLS which is included in the software of NIRA 
instruments and in molecular modelling software. 

Chemometrics is fairly well disseminated in industry. Many applications are 
found in the pharmaceutical industry, e.g. the study of structure-activity correla­
tions is of great importance to guide the synthesis process in the search for new 
active drugs. In the experimental phase synthesis conditions are optimized for 
maximal yield. Once a compound is synthesized, a long and tedious route follows 
in determining whether the compound is really active or not. In this area, Lewi 
developed in 1976 a Biplot technique, called Spectral Map Analysis (SMA) [33]. 
Originally, SMA was developed for the visualization (or mapping) of activity 
spectra of chemical compounds that had been tested in a battery of pharmacological 
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assays. The problem of classifying compounds with respect to their biological 
activity spectra is a multidimensional problem which can be solved by factor 
analytical methods. In the food industry the analysis of sensory data in its various 
facets requires a multivariate approach, as does, for example, the prediction of taste 
keepability of vegetable oils from a few indicators, the classification of oils 
according to their origin and the evaluation of nutrition trials. Complex modelling 
techniques are applied to relate data blocks from several origins, e.g. the chewing 
pattern of test persons to the intensity of their taste perception as a function of time 
for various products. The petrochemical industry wants to predict the oil content 
in rocks, e.g. by variable temperature FTIR. 

Coinciding with early academic chemometrics activities, analytical chemists of 
the Dutch States Mines (a large producer of bulk chemicals and fertilizers) realized 
that the analytical laboratory is not simply a producer of numbers but forms an 
integral part of a process control chain. The quality of the analytical results, 
expressed in terms of speed, precision and sampling rate, defines the effectiveness 
of process control. Van der Grinten [34] and Leemans [35] in their pioneering work 
on process analytical chemistry derived a relationship between the properties of the 
analytical method and the capability of process control. In-line analysis offers 
speed often at the expense of precision, specificity and selectivity. This is the area 
of sensors and NIRA in combination with multivariate calibration, where several 
successful industrial applications have been reported [36]. 

Another important line of industrial applications is the retrieval of spectroscopic 
data from libraries, and the interpretation of combined IR, NMR and MS spectra, 
including the resolution of mixture spectra by Factor Analysis [37]. 

In the area of chromatography, the optimization of the mobile phase in HPLC 
has received much attention from both instrument manufacturers and industrial 
analytical chemists [38]. LC linked to full scan spectroscopic detectors (UV-Vis, 
IR) is a common technique in many analytical laboratories, specifically for the 
assessment of the purity of pharmaceutical compounds. In this area Windig at 
Kodak developed the Variogram [39] and SIMPLISMA [40] to decompose bi­
linear data produced by hyphenated techniques in its pure factors (spectra). 

The ultimate added value of chemometrics — better chemistry, more efficient 
experiments and better information from data — is highly relevant and appealing 
to any industry. This is also the incentive for collaboration with academic centres 
of expertise, usually in a regional network, as there are in the Benelux, Spain, 
Scandinavia and the USA. These centres fulfil a twofold function: the distribution 
of chemometric principles to the bench of the industrial chemical researcher, and 
a source of inspiration for improvements and new challenges to be picked up by 
fundamental chemometrics researchers. 

Which challenges can we expect for the future? A number of clear trends are 
showing up. First, there is the still growing mass of data. An example is an image 



18 

where each pixel is no longer characterized by a grey scale or by a colour but 
instead by a complete spectrum. Supposing that the spectrum is measured at 1024 
wavenumbers, this represents a stack of 1024 images of a typical size of 512x512 
pixels, which should all be treated together by multivariate procedures! Secondly, 
data have become increasingly complex. In high resolution NMR, for example, 
spectra are measured in two and higher dimensions and contain an enormous 
amount of information on the secondary and tertiary structure of large molecules. 
This is an area in which advanced chemometric methods should provide real added 
value. Thirdly, relationships or models being studied are increasingly complex, e.g. 
complex multivariate models are necessary to relate product quality to all relevant 
manufacturing conditions for process control, or to relate three-dimensional struc­
tures of macromolecules to pharmaceutical or biological activity. Computer-inten­
sive methods will become increasingly important in the development of robust 
models and non-parametric inference methods based on randomization tests. By 
using genetic algorithms the model itself is becoming part of the modelling 
process. Many industries realize that the preservation and accessibility of corporate 
knowledge stored in (electronic) lab notebooks or laboratory information manage­
ment systems is becoming the Achilles' heel of success. Scientists should be able 
to interrogate and visualize data available in various formats: spectra, structures, 
texts, tables, images, catalogues, databases, etc. and their interrelationships in a 
network of information. One can imagine that by using hypermedia [41] a re­
searcher will be able to navigate through a giant web of data, which are instanta­
neously processed into information by local modelling or artificial intelligence and 
are displayed in a directly interpretable way, e.g. by virtual reality. This enormous 
task will be one of the challenges for chemometricians and information scientists. 

References 

1. D. Oldroyd, The Arch of Knowledge. Methuen, New York, 1986. 
2. D.L. Massart, B.G.M. Vandeginste, S.N. Deming, Y. Michotte and L. Kaufman, Chemomet-

rics: A Textbook. Elsevier, Amsterdam, 1988. 
3. P.C. Jurs, B.R. Kowalski, T.L. Isenhour and C.N. Reilly, Computerized learning machines 

applied to chemical problems. Anal. Chem., 41 (1969) 690-695. 
4. P.C. Jurs, B.R. Kowalski, T.L. Isenhour and C.N. Reilly, Computerized learning machines 

applied to chemical problems: Interpretation of infrared spectrometry data. Anal. Chem., 41 
(1969)1949-1953. 

5. P.C. Jurs, B.R. Kowalski, T.L. Isenhour and C.N. Reilly, Computerized learning machines 
applied to chemical problems: Multicategory pattern classification by least squares. Anal. 
Chem., 41 (1969)695-700. 

6. C.F. Bender, Pattern recognition. New approach interpreting chemical information. Comput. 
Chem. Res. Educ, Proc. Int. Conf., 2 (1973) 3/75-3/80. 

7. S. Wold and M. Sjostrom, SIMCA: A method for analyzing chemical data in terms of similarity 
and analogy, in: B.R. Kowalski (Ed.) Chemometrics: Theory and Application. ACS Symp. Ser., 
52, Analytical Chemical Society, Washington, DC, 1977. 



19 

8. G. van Marlen and A. Dijkstra, Information theory applied to selection of peaks for retrieval of 
mass spectra. Anal. Chem., 48 (1976) 595-598. 

9. D.L. Massart and L. Kaufman, Operations research in analytical chemistry. Anal. Chem., 47 
(1975) 1244A-1253A. 

10. Arbeitskreis Automation in der Analyse, System Theorie in der Analytik. I. Definitionen und 
Interpretationen Systemtheoretischer Grundbegriffe. Zeit. Anal. Chemie, 256 (1971) 257-270. 

11. Arbeitskreis Automation in der Analyse, System Theorie in der Analytik. II. System der 
Analytischen Mengenbereiche. Zeit. Anal. Chemie, 261 (1972) 1-10. 

12. D.L. Massart, A. Dijkstra and L. Kaufman, Evaluation and Optimization of Laboratory 
Methods and Analytical Procedures. Elsevier, Amsterdam, 1978. 

13. A.J. Stuper, W.E. Brugger and P.C. Jurs, A computer system for structure-activity studies using 
chemical structure information handling and pattern recognition techniques, in: B.R. Kowalski 
(Ed.) Chemometrics: Theory and Application. ACS Symp. Ser., Analytical Chemical Society, 
Washington, DC, 1977. 

14. S. Wold, Sphne-funktioner-ett nytt verktyg i data-analysen. Kemisk Tidskr., 3 (1972) 34-37. 
15. B.R. Kowalski, Chemometrics. Chem. Ind., 22 (1978) 882. 
16. A.M. Harper, D.L. Duewer, B.R. Kowalski and J.L. Fasching, ARTHUR, an experimental data 

analysis: the heuristic use of a polyalgorithm, in: B.R. Kowalski (Ed.), Chemometrics: Theory 
and Application. ACS Symp. Ser. 52, American Chemical Society, Washington, DC, 1977. 

17. B.R. Kowalski (Ed.), Chemometrics: Theory and Application. ACS Symp. Ser. 52, American 
Chemical Society, Washington, DC, 1977. 

18. J. Clerc and E. Ziegler, Editorial. Anal. Chim. Acta, 95 (1977) 1. 
19. G. Kateman and F. Pijpers, Quality Control in Analytical Chemistry. Wiley, New York, 1981. 
20. P.J. Lewi, Multivariate Data Analysis in Industrial Practice. Wiley, Chichester, 1982. 
21. M.A. Sharaf, D.L. Illman and B.R. Kowalski, Chemometrics. Wiley, New York, 1986. 
22. W. Lindberg, J.A. Person and S. Wold, Partial least-squares method for spectrofluorimetric 

analysis of mixtures of humic acid and ligninsulfonate. Anal. Chem., 55 (1983) 643-648. 
23. H. Wold in P.R. Krishnaiah (Ed.), Multivariate Analysis. Academic Press, New York, 1966. 
24. P.S. Schoenfeld and J.R. DeVoe, Statistical and mathematical methods in analytical chemistry. 

Anal. Chem., 48 (1976) 403R-41IR. 
25. B.R. Kowalski, Analytical chemistry: the journal and the science, the 1970's and beyond. Anal. 

Chem., 50 (1978) 1309A-1313A. 
26. B.R. Kowalski (Ed.), Chemometrics: Mathematics and Statistics in Chemistry. Reidel, Dor­

drecht, 1984. 
27. P. Geladi and K. Esbensen, The start and early history of chemometrics: selected interviews, 

part 1. J. Chemometrics, 4 (1990) 337-354. 
28. K. Esbensen and P. Geladi, The start and early history of chemometrics: selected interviews, 

part 2. J. Chemometrics, 4 (1990) 389-412. 
29. Student, The probable error of a mean. Biometrika, 6 (1908) 1-25. 
30. O.L. Davies (Ed.), Statistical Methods in Research and Production Design and Analysis of 

Industrial Experiments. Oliver and Boyd, Edinburgh, 1947. 
31. O.L. Davies (Ed.), The Design and Analysis of Industrial Experiments. Oliver and Boyd, 

Edinburgh, 1954. 
32. G.E.P. Box, W.G. Hunter and J.S. Hunter, Statistics for Experimenters, an Introduction to 

Design, Data Analysis and Model Building. Wiley, New York, 1978. 
33. P.J. Lewi, Spectral map analysis: factorial analysis of contrast, especially from log ratios. 

Chemom. Intell. Lab. Syst., 5 (1989) 105-116. 
34. P.M.E.M. van der Grinten, Regeltechniek en Automatisering in de procesindustrie. Het Spectrum, 



20 

Amsterdam, 1970. 
35. F.A. Leemans, Selection of an optimum analytical technique for process control. Anal. Chem., 

43(1971)36A-49A. 
36. H. Martens and T. Naes, Multivariate Calibration. Wiley, New York, 1989. 
37. M. Maeder and A.D. Zuberbuehler, The resolution of overlapping chromatographic peaks by 

evolving factor analysis. Anal. Chim. Acta, 181 (1986) 287-291. 
38. J.C. Berridge, Techniques for the Automated Optimization of HPLC Separations. Wiley, New 

York, 1985. 
39. W. Windig and H.L.C. Meuzelaar, Nonsupervised numerical component extraction from 

pyrolysis mass spectra of complex mixtures. Anal. Chem., 56 (1984) 2297-2303. 
40. W. Windig and J. Guilment, Interactive self-modeling mixture analysis. Anal. Chem., 63 

(1991) 1425-1432. 
41. C.L. Macher, M. Cadish, J.-T. Clerc and E. Pretsch, Hypermedia — a new concept for 

information management. Chemom. Intell. Lab. Syst., 28 (1995) 213-228. 

Further suggested reading on historical and general chemometrics 

P. Geladi, The history of chemometrics. Chemometrics in Belgium Newsletter, 2 (1995). 
P. Geladi and A. Smilde, The future of Chemometrics. J. Chemometrics, 9 (1995) 1. 
B.G.M. Vandeginste, Chemometrics — general introduction and historical development. Topics 

Curr. Chem., 141 (1987) 1. 
B.G.M. Vandeginste, Chemometrics in the Benelux. Chemom. Intell. Lab. Syst., 25 (1994) 147. 

Other books on chemometrics 

R.G. Brereton, Chemometrics: Application of Mathematics and Statistics to Laboratory Systems. 
Ellis Horwood, Chichester, 1990. 

R.G. Brereton, Multivariate Pattern Recognition in Chemometrics. Elsevier, Amsterdam, 1992. 
R. Cela, Avances en Quimiometria Practica, Universidade de Santiago de Compostela, 1994. 
S.N. Deming and S.L. Morgan, Experimental Design: A Chemometric Approach. Elsevier, Amster­

dam, 1987. 
I.E. Frank and R. Todeschini, The Data Analysis Handbook, Elsevier. Amsterdam, 1994. 
A. Hoskuldsson, Prediction Methods in Science and Technology. Vol. 1: Basic Theory. Thor 

Publishing, Denmark, 1996. 
G. Kateman and L. Buydens, Quality Control in Analytical Chemistry, 2nd ed. Wiley, New York, 

1993. 
E.R. Malinowski, Factor Analysis in Chemistry, 2nd ed. Wiley, New York, 1991. 
T. Naes and E. Risvik, Multivariate Analysis of Data in Sensory Science. Elsevier, Amsterdam, 1996. 
R. Nortvedt, F. Brakstad, D.M. Kvalheim and T. Lundstedt, Application of Chemometrics within 

Research and Industry (Anvendelse av Kjemometri innem Forsking og Industri), Tidsskreift-
forlagetKJEMI, 1996. 



21 

Chapter 2 

Statistical Description of the Quality of Processes 
and Measurements 

2.1 Introductory concepts about chemical data 

Measurements generate data and these data are used to describe or evaluate the 
quality of processes and measurement procedures. A first question we must answer 
is how to utilize the data so that they give us more insight into the performance 
characteristics that will be used in the evaluation of the processes and measurements. 
This description and the performance characteristics are the subject of this chapter. 

2,1.1 Populations and samples 

Let us suppose that we have determined the concentration of sodium in five 
randomly selected bottles of water of a certain brand. These five bottles then 
constitute a sample in the statistical sense. They are a sample of the population of 
all existing bottles of water of that certain brand. In the same way, if we carry out 
six replicate determinations of sodium in a certain material, then the six individual 
observations constitute a sample — in this case from a population of all determi­
nations of sodium that could have been made with that measurement technique on 
that specific matrix if its supply were unlimited. 

The population of measurements consists of all the possible measurements that 
can be made and a set of experiments is considered to be a sample of the population 
of all the experiments that can be made, given unlimited resources. 

We observe that populations are often very large (the number of bottles) or 
infinite (the number of determinations). Although the number of existing bottles 
may be considered finite, it will be treated as infinite. There are, however, cases 
where populations are clearly finite. For instance, if we were to measure some 
characteristic for the 50 states of the USA, then that population (of states) is finite 
and small enough to be completely measured. In a few instances, statistical texts 
make distinctions between finite and infinite populations, but in almost all cases 
the population will be considered to consist of an infinite number of individuals, 
objects, measurements and we would investigate a finite sample of these to make 
conclusions about the whole population. 
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There is clearly a problem in terminology due to the use of the term "sample" 
and derivations such as "sampling" by analytical chemists, where the word means 
any material or test portion to be analyzed without necessarily supposing that that 
material is a sample of a larger population. For instance, if a forensic toxicologist 
is asked to analyze a tablet collected on the scene of a crime, he will call that his 
sample although the object is unique. To avoid confusion between statistical and 
chemical usage of the word, lUPAC [1] has proposed that in chemistry "sample" 
should only be used when it is a portion of a material selected from a larger quantity 
of material. This is consistent with statistical terminology. It also implies the 
existence of a sampling error, since the sample may not reflect accurately the 
content of the larger quantity. Sampling and sampling errors are discussed in 
Chapter 20. When sampling errors are negligible, such as when the parent material 
is a liquid and a small portion of it is analyzed, then the lUPAC guideline suggests 
the use of terms such as test portion, aliquot or specimen. 

2.1.2 Variables and attributes 

Variables can be defined as properties with respect to which individual elements 
in a sample differ in some ascertainable way [2]. 

Variables can be measured on three types of statistical scales: 
- The nominal scale is used when the individuals or objects can only be 

described in words. An object may be black, white or red, an individual 
manufactured object may be defective or acceptable, etc. The terms black, 
white and red or defective and acceptable constitute the nominal scale. 
Variables measured in this way are often called qualitative or categorical 
variables or attributes. 

- The ordinal scale consists of giving ranked values to a variable. An individ­
ual object's quality may be rated as "very poor", "poor", "average", "good", 
"excellent". There is a clear gradation in these terms. Variables measured in 
this scale are often called ranked variables. 

- The interval and ratio scales are measured on a scale in which the distance 
along that scale can be measured as a number. We sometimes distinguish 
between the two scales (the ratio scale has a zero point with an absolute value, 
e.g. temperature in degrees Kelvin; the interval scale has an arbitrary zero 
point, e.g. temperature in degrees Celsius), but this distinction is often not 
important to us. Variables measured in this scale are often called measure­
ment variables or quantitative variables. 

Of equal importance is the difference between continuous variables, such as 
temperature or concentration, and discrete variables, which can take only certain 
values. The latter are often the result of counting (bacterial counts, number of 
defects on an object) and the only possible values are then integer numbers. 



23 

We should be cautious about confusion between discrete variables and ranked 
variables. We could code the terms "very poor",... "excellent" used above as 1,..., 
5. This does not make it a variable on an interval or ratio scale because the distance 
between "very poor" and "poor" is not necessarily equal to that between "good" 
and "excellent". 

The type of scale of a variable determines the statistical tests that can be carried 
out and the distributions with which they are described. This is discussed further, 
for instance in Chapters 12 and 15. 

While we are discussing the meaning of the term variables, it is useful to make 
the distinction between univariate and multivariate. More precise definitions of 
terms such as univariate and multivariate distribution or space will be required 
later, but for the moment it is sufficient to state that a data set is univariate when 
the individual elements are described by only one variable and multivariate when 
the same individual element is described by two (sometimes also called bivariate) or 
more variables. In the next few sections and chapters only univariate data sets will be 
considered, but multivariate data sets will be discussed at length later in this book. 

2.1.3 Histograms and distributions 

When one has many data available and wants to describe them, it is useful to 
group them into classes and visualize their distribution with a histogram. This is 
demonstrated with the data of Table 2.1 concerning fluoride in the enamel of young 
children as obtained by Cleymaet and Coomans [3]. In this case the range of the 
data is 3754-722 = 3032. A convenient class interval is 200. This yields 16 classes 
and leads to Table 2.2. The number of classes is chosen so that there is neither too 
much nor too little detail. This may require some trials, but in general one should 
not make fewer than 5 classes (for small numbers of data) and not more than 25 
(for large data sets). Another rule of thumb is that the number of classes should be 
equal to the square root of the number of data. 

TABLE 2.1 

Fluoride concentrations in |ig/g in the enamel of teeth of n = 63 young children in Antwerp, Belgium (from 
Cleymaet and Coomans [3]) 

1506 
1946 
2150 
1418 
1130 
2041 
2842 
1628 

3063 
1186 
1898 
2360 
2357 
1358 
1288 
1909 

2657 
1375 
2452 
2897 
1890 
2733 
1862 
2239 

1964 
2196 
2187 
3208 
1622 
2225 
2212 
2154 

2220 
2284 
2443 
2260 
1738 
1195 
1194 
2116 

2730 
1654 
2154 
722 
2332 
2237 
1813 
2509 

3754 
1631 
3292 
2495 
1399 
1975 
2189 
2004 

1128 
3081 
2162 
2382 
2234 
1811 
2726 
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TABLE 2.2 

Relative and cumulative frequency distribution for the data of Table 2.1 

Class interval 

700- 900 
900-1100 

1100-1300 
1300-1500 
1500-1700 
1700-1900 
1900-2100 
2100-2300 
2300-2500 
2500-2700 
2700-2900 
2900-3100 
3100-3300 
3300-3500 
3500-3700 
3700-3900 

Class mark 

800 
1000 
1200 
1400 
1600 
1800 
2000 
2200 
2400 
2600 
2800 
3000 
3200 
3400 
3600 
3800 

Frequency 

1 
0 
6 
4 
5 
6 
6 

16 
7 
2 
5 
2 
2 
0 
0 
1 

Relative 
frequency 

0.016 
0 
0.095 
0.063 
0.079 
0.095 
0.095 
0.254 
0.111 
0.032 
0.079 
0.032 
0.032 
0 
0 
0.016 

Cumulative 
frequency 

1 
1 
7 

11 
16 
22 
28 
44 
51 
53 
58 
60 
62 
62 
62 
63 

Cumulative rel. 
frequency 

0.016 
0.016 
0.111 
0.174 
0.254 
0.349 
0.444 
0.698 
0.810 
0.841 
0.921 
0.952 
0.984 
0.984 
0.984 
1.000 

ISO [4] has defined the term class in the case of quantitative characteristics as 
each of the consecutive intervals into which the total interval of variation is 
divided. The class limits are the values defining the upper and lower bounds of a 
class. The mid-point of a class is then the arithmetic mean of the upper and lower 
limits and the class interval the difference between upper and lower limits of a 
class. The mid-point is sometimes also called class mark (although this is not 
recommended by ISO). 

By counting the number of individuals in each class and dividing by the total 
number of all individuals, one obtains the relative frequency of a class and the table 
of these values is the relative frequency distribution. This can be plotted in function 
of the class mid-point and yields then Fig. 2.1. 

By summing all frequencies up to a certain class, we obtain the cumulative 
frequency. For instance, the cumulative frequency up to and including class 
1300-1500 is 1+0 + 6 + 4 = 1 1 . The relative cumulative frequency is then 11/63 
= 0.174 or 17.4%. Again, it is possible to plot the cumulative relative frequency 
distribution to obtain Fig. 2.2. It should be noted that, in practice, we often drop 
the word relative. 

All these distributions are discrete, because the frequencies are given for 
discrete classes or discrete values of JC (the class midpoint). When the x-values can 
assume continuous values, continuous distributions result. If the data of Table 2.2 
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0.1 
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Fig. 2.1. Relative frequency distribution of the data of Table 2.1. 

ppm 

are truly representative of the population (i.e. the population of fluoride concentra­
tions of the enamel of young Belgian children), then the frequencies can also be 
considered to be probabilities to encounter certain fluoride-values in that popula­
tion. We could then state that the probability of obtaining fluoride values between 
1300 and 1500 |ig/g is 0.063 and that the cumulative probability of encountering 
values up to 1500 is 0.174. The plots of Figs. 2.1 and 2.2 could then be considered 
as the probability distribution (also called the probability density function) and 
cumulative probability distribution, respectively. Although, at first sight, the fre­
quency and probability distributions are really the same, we often make a distinc­
tion between them. The frequency distribution describes the actual data, that is the 
data of a sample of the population. The probability distribution describes the 
population as such, i.e. the distribution that would be obtained for an infinite 
number of data. In Section 3.8 we will show that the fluoride data can be considered 
to be normally distributed. We can then state that the data for the AI = 63 children 
yield the frequency distribution, while the probability distribution is really the 
normal distribution. 
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Fig. 2.2. Cumulative relative frequency distribution of the data of Table 2.1. 

2.1.4 Descriptive statistics 

2.1.4.1 Population parameters and their estimators 
The essential statistical information for describing a simple data set consists of: 
- the number of observations or individuals in the set, n\ 
- a parameter for central tendency or location, such as the (arithmetic) mean 

(or average); 
- a parameter for dispersion, such as the standard deviation. 

Probability distributions are characterized by population parameters, such as the 
mean and the standard deviation. To determine them would require an exhaustive 
number of determinations. For instance, suppose we need to determine the pH of 
a certain solution, then an infinite number of measurements would yield the prob­
ability distribution of the outcome of the pH measurement of that solution with a 
population mean of the measurements, \i, and z. population standard deviation a. 
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In practice, we would make a limited number of measurements, n. This is called 
the sample size because the measurements are viewed as a random sample of n 
measurements taken from all possible measurements. The mean obtained in this 
way is called the sample mean. The sample mean is an estimator of the true 
population mean. The concept of estimators will be discussed further in Section 3.1. 

2.1.4.2 Mean and other parameters for central location 
The mean, x, is given by: 

M (2.1) 

where xi is the /th individual observation or measurement. To avoid too cumber­
some a notation, this type of equation will in future usually be written as: 

X = Xx/ /n 

In Chapter 12 a non-parametric measure of central tendency, the median, will 
be described. In that Chapter we will also explain the term "non-parametric". For 
the moment, it is sufficient to state that non-parametric measures are preferred 
when the distribution characteristics are not known. 

2.1.4.3 Standard deviation and variance 
The standard deviation, s, is given by 

5 = J — (2.2) 
V n - l 

and the variance by the square of the standard deviation, s^. They estimate respec­
tively a, the population standard deviation and a ,̂ the population variance. The 
term ( n - l ) gives the number oi degrees of freedom (df). In some cases, one does 
not divide by (n - 1) but by n. When to do this is described in Chapter 3. However, 
eq. (2.2) can be used without problems in the rest of this chapter. 

The relative standard deviation is given by: 

r̂ = /̂Jc (x>0) (2.3) 

and when it is expressed as a percentage, by: 

s,{%)=\ms, (2.4) 

The latter is sometimes called the coefficient of variation. lUPAC prefers not to 
use this term. 

As will be described further in Chapter 3, experimentally obtained means are 
also subject to variation. The standard deviation of the means is called standard 
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error of the mean (SEM) and is given by 

sj = s,/^n=^— — (2.5) 
V n{n- 1) 

s^ should not be confounded with s. The term standard error is further defined in 
Chapter 3. 

Here again we will introduce in Chapter 12 a non-parametric measure of dispersion. 
The mean is also called the first (statistical) moment, and the variance the 

second moment of a distribution. Moments, including higher order moments such 
as skewness, are discussed further in Chapter 3. 

2.1,4.4 Pooled standard deviation and standard deviation from paired data 
In many cases groups of data have been obtained at different times or on 

different (but similar) samples and one wants to obtain a standard deviation from 
these grouped data. Let us suppose, for instance, that we want to determine the 
standard deviation for a determination of water in cheese [5]. Replicate determina­
tions on several types of cheese have been carried out (see Table 2.3). Consider 
first only the 7 first types of cheese (k = 7). We would be able to determine a 
standard deviation for each of the 7 types of cheese separately. However, we would 
prefer to determine one single standard deviation for cheese as a whole. This can 
be done by pooling the variances according to: 

7 _ (AZI - l)5i + ( A 2 2 - 1 )52+ . . . (rik- l)sl .^ . . 
Spooled - , .. , ,. , .̂ u - o ; 

( A 2 , - l ) + ( n 2 - l ) + . . . ( A l ^ - l ) 

TABLE 2.3 

Example of calculation of pooled standard deviation. The data are results of moisture determinations in cheese 
products with the Karl Fischer method (adapted from ref. [5]). The result for type 8 is artificial. 

No (/•) Type of cheese product Xj{%) Sj rij dfy df/ sj 

1 
2 
3 
4 
5 
6 
7 

8 

Processed cheese food 
Processed cheese food 
Monterey jack 
Cheddar 
Processed American 
Swiss 
Mozzarella 

1 = 

si = 4.6460/54 = 0.0860 

Type 8 

43.36 
43.45 
41.20 
34.96 
40.41 
38.52 
52.68 

•V = 0.29 

51.00 

0.29 
0.31 
0.35 
0.24 
0.30 
0.31 
0.24 

1.12 

10 
10 
8 
8 
8 
8 
9 

61 

8 

9 
9 
7 
7 
7 
7 
8 

54 

0.7569 
0.8649 
0.8575 
0.4032 
0.6300 
0.6727 
0.4608 

4.6460 
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where H], ... nk3.VQ the number of replicates in the first, ..., kth type of cheese and 
^i,... Sk are the corresponding standard deviations. The notation can be simplified, 
since n\- \, ..., rik - I are the degrees of freedom dfi, ..., df̂ t for each type. We can 
then write: 

2 _ df 1 ^1 + df2 S2 + 
Spooled ~ 

dfyt sl _!, dfj Sj 
(2.7) 

Idf, Zdf, 
fory = 1, ..., k. 

The computations are performed in Table 2.3. The pooled standard deviation is 
0.29. Suppose now that we add an 8th type of cheese as in the last line of the table. 
Would we be able to make the computations in the same way? At first sight, we 
could use eq. (2.7) with the 8 categories instead of 7. However, the standard 
deviation from type 8 is clearly very different from that of the 7 others. The pooled 
standard deviation would be (too) heavily influenced by the type 8 cheese, so that 
the resulting value would not be representative. This example shows that only 
similar variances should be pooled. Stated in a more scientific way, we can pool 
variances provided that they are homogeneous. 

For the special case of paired replicates (i.e. each determination was carried out 
in duplicate, all /ly = 2), we can also use eq. (2.7). However, we often find the 
following equation: 

^d^ 
(^^h /k (2.8) 

where d, = Xj\ - x/2, i.e. the difference between the two replicate values for theyth 
sample and k the number of pairs. An example is given in Table 2.4. 

This useful result can be derived as follows. Let us first consider the standard 
deviation computed for a single pair of results, x\ and X2, with mean x. It is equal to 

-4 ~Z\2 {X\ - X) -h {X2 - X) 

2 - 1 

As in this special case \x-x\\=-\x- X2I, it follows that 

s^- = 2{x-x\f' 

or 

s^ = 2 
(X\ + X 2 Y ^ -̂ 1 +-^2 

V V 

(xi - x^y-

' X\ -\- X\ 
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TABLE 2.4 

Example of calculation of .v using paired data. The data concern moisture in American Cheese measured on 20 
successive days (adapted from ref. [6]). 

Day) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Xj\ 

42.68 
42.08 
43.39 
42.87 
42.70 
42.93 
42.78 
42.92 
43.34 
43.12 
42.43 
43.05 
42.99 
43.04 
43.41 
43.12 
42.25 
42.96 
42.83 
42.83 

^/2 

42.77 
42.38 
43.33 
42.98 
42.95 
42.95 
42.97 
43.20 
42.89 
43.26 
42.54 
43.15 
42.86 
42.78 
43.14 
43.23 
42.53 
42.78 
42.72 
43.04 

d, 

-0.09 
-O.30 

0.06 
-0.11 
-0.25 
-0.02 
-0.19 
-0.28 

0.45 
-0.14 
-0.11 
-0.10 
0.13 
0.26 
0.27 

-0.11 
-0.28 
0.18 
0.11 

-0.21 
1 = 

d/ 

0.0081 
0.0900 
0.0036 
0O121 
0.0625 
0.0004 
0.0361 
0.0784 
0.2025 
0O196 
0O121 
OOIOO 
0O169 
0.0676 
0.0729 
00121 
0.0784 
0.0324 
0O121 
0.0441 
0.8719 

.v3 = 0.8719/(2x20) = 0.0218. 

.9d = 0.148. 

Using eq. (2.7) for pooling the variances of the k pairs, we then obtain eq. (2.8). 
Since this is a pooled standard deviation it is subject to the same assumptions, 
namely that the variance is the same for all samples analyzed. It should be noted 
that the number of degrees of freedom on which d̂ is based is not equal to 2k as 
might be thought at first, but to k. 

2.1.4.5 Range and its relation to the standard deviation 
The range, /?, of a set of measurements is the difference between the highest and 

the lowest value. Taking the lowest and highest value means that one implicitly 
orders the data in order of numerical value. Statistics applied to ordered data are 
called order statistics and the range is therefore such an order statistic. Another 
application of order statistics is shown in Chapter 3 where data are ordered to apply 
the graphical test for a normal distribution. A good approximation of s and 
therefore an estimation of a can be obtained by dividing the range by a constant d„ 
or di (the habitual symbols in the statistical process and the quality control 
literature). 
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TABLE 2.5 

The coefficient d2 (or d«) (adapted from [9]) 

No. of se 

1 
3 
5 
10 

CX3 

R 

ts (t) 

R 
~dn 

Number of replicates in a set («) 

2 

1.41 
1.23 
1.19 
1.16 
1.13 

3 

1.91 
1.77 
1.74 
1.72 
1.69 

4 

2.24 
2.12 
2.10 
2.08 
2.06 

5 

2.48 
2.38 
2.36 
2.34 
2.33 

6 

2.67 
2.58 
2.56 
2.55 
2.53 

7 

2.82 
2.75 
2.73 
2.72 
2.70 

8 

2.95 
2.89 
2.87 
2.86 
2.85 

10 

3.16 
3.11 
3.10 
3.09 
3.08 

(2.9) 

The values of di [7] are given in Table 2.5. The value of d2 depends on the 
number k of sets of data used to determine the range and on the number of replicates 
in the set, n. The value for /: = oo is sometimes called d« or Hartley's constant. 

Let us suppose that the following results have been obtained in chronological 
order: 2.3, 2.8, 2.2, 2.9, 2.7, 2.4. The lowest value is 2.2 and the highest 2.9 and a 
single set of data was obtained. The range is therefore 0.7 and s estimated from the 
range, using eq. (2.9) is therefore 0.7/2.67 = 0.26. The estimation with eq. (2.2) 
would have yielded s = 0.29. 

The range is rarely used forn > 15. It is useful to note that forn = 3 to 10, d„ is 
very close to Vn so that a rapid approximation of s can be obtained by 

s = R/^ (3<A2<10) (2.10) 

In the same way as we can pool variances to obtain a common estimate of the 
standard deviation from a set of the standard deviations, we can pool ranges. When 
there are k sets of n data, then: 
_ A: 

R = (l/k)lRj 

where Rj is the range of thejth set of data. R is called the average range and a, the 
pooled standard deviation, can be estimated from 

5-:^d2 = ^ d , (2.11) 

An example of this calculation is given in Table 2.6. Since R = 0.565 and n = 4, 
it follows that s = 0.565/2.06 = 0.27. 

R is used less often than s, because it is more vulnerable to extreme values. 
However, in routine work, for instance in quality control, and for small samples it 
is used rather often. 
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TABLE 2.6 

Computation of the average range for a characteristic of a product. Four replicates of each sample are measured. 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Concentration 

(1) 

9.6 
10.0 
9.3 
9.4 

10.3 
9.9 

10.3 
10.0 
9.9 

10.4 
10.1 
10.2 
9.6 

10.2 
10.3 
9.7 

10.1 
9.6 
9.9 
9.8 

(2) 

9.8 
10.2 
10.1 
9.9 
9.8 

10.4 
10.4 
9.7 
9.7 
9.5 

10.4 
9.9 
9.8 

10.1 
9.9 
9.9 
9.6 
9.5 
9.8 

10.1 

(3) 

10.2 
10.0 
9.6 
9.9 

10.1 
10.0 
10.4 
10.0 
9.3 

10.0 
10.2 
10.3 
10.2 
10.0 
10.2 
9.9 

10.1 
10.3 
10.2 
10.2 

(4) 

9.9 
10.4 
9.9 
9.5 

10.2 
9.9 

10.1 
9.8 

10.0 
9.3 

10.0 
9.9 

10.2 
9.9 
9.5 

10.2 
9.6 

10.4 
10.4 
10.4 

Grand mean 

Mean 

9.875 
10.15 
9.725 
9.675 

10.1 
10.05 
10.3 
9.875 
9.725 
9.8 

10.175 
10.075 
9.95 

10.05 
9.975 
9.925 
9.85 
9.95 

10.075 
10.125 

= 9.97 R = 

Range 

(^./) 

0.6 
0.4 
0.8 
0.5 
0.5 
0.5 
0.3 
0.3 
0.7 
1.1 
0.4 
0.4 
0.6 
0.3 
0.8 
0.5 
0.5 
0.9 
0.6 
06 

: 0.565 

2.2 Measurement of quality 

2.2.1 Quality and errors 

Quality assurance has been defined [8] as a system of activities whose 
purpose is to provide the producer or user of a product or service with the 
assurance that it meets defined standards of quality with a stated level of 
confidence. A process must yield a product with certain characteristics within 
certain error margins and quality in measurement is obtained if the stated result 
approaches the true result closely enough, i.e. is not subject to an error larger 
than that considered acceptable. 

A negative definition would therefore be that process quality is to avoid process 
and measurement errors larger than a given and accepted level and to do that all the 
time. Clearly, therefore, we must study errors and types of errors. 
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TABLE 2.7 

Types of errors as illustrated by a set of simulated data 

A 
B 
C 
D 
E 

Xi 

102 
103 
112 
102 
103 

X2 

98 
97 
108 
98 
102 

X3 

101 
101.5 
111 
101 
101 

X4 

99 
98.5 
109 
99 
100 

^5 

100 
100 
110 
100 
99 

xe 

103 
104.5 
113 
103 
98 

X-j 

97 
95.5 
107 
125 
97 

X 

100 
100 
110 
104 
100 

2.2.2 Systematic versus random errors 

Suppose the correct value for the result of a process or a measurement is known 
to be 100. In Table 2.7 several possible sets of replicate results are given. Situations 
A and B yield the correct mean but the individual results show a dispersion around 
that mean. One says that the individual results are subject to random error. In 
situation A the dispersion is less than in situation B. Process or measurement A 
shows more quality. In statistical process control (see Section 2.3.1) one would say 
that the process capability index for dispersion is better for A than for B, in 
chemical analysis and in measurement science in general one would say that 
precision (or one of its components, repeatability or reproducibility; see Chapter 
13) is better. In situation C all results are clearly too high. There is a systematic 
error. This systematic error is accompanied by some dispersion around the ob­
served mean: there is at the same time a random error. Systematic error is always 
combined with random error. Much of statistical hypothesis testing is basically 
needed to make a difference between systematic and random effects: is the 
observed difference between categories systematic or due to random effects? In 
statistical process control one describes systematic errors with the capability index 
for setting (see Section 2.3.2) and in metrology one says that there is a bias (see 
Section 2.5) in the measurement result. The term bias is also used in statistical 
process control. Situations D and E will be discussed in Section 2.6. 

2.3 Quality of processes and statistical process control 

Statistical process control or SPC is concerned with the situation of the prob­
ability distribution of a parameter describing a product relative to the tolerance 
limits. Industry tries to develop processes that produce products within the toler­
ance limits all the time and preferably with a large margin. Such processes are 
called capable. The population of the objects produced should ideally be centered 
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Fig. 2.3. Tolerance limits around a target value (NORM). 

around the norm or target and have a dispersion such that a negligible part of the 
production falls outside the tolerance limits and must be rejected. 

Suppose one produces a bottled product, the concentration of which should be 
10.0 (for ease of notation, we will not specify the concentration units), but accepts 
that it may have values as low as 9.0 and as high as 11.0, i.e. a tolerance 7 of 1.0 
on either side. The lower tolerance limit (LTL) is 9.0 and the upper tolerance limit 
(UTL) is 11.0 (see Fig. 2.3). Batches with contents outside those limits must be 
rejected: 10.0 is then the norm and 9.0 and 11.0 the tolerance levels. The difference 
between the norm and the actual average of the population is a systematic error and 
should be as small as possible. The dispersion of the population (i.e. the variation 
due to random error) should be as small as possible. In SPC performance criteria 
called process capability indexes are used to measure both types of errors and to 
relate them to the tolerance interval (2.0 in our example). This interval goes from 
LTL = NORM - r to UTL = NORM + T, so that it is 2 7 wide. In the following 
sections we will describe the process capability indexes that are used most often. 
We will follow the terminology as used by Oakland [9] to do this. 

2,3,1 Process capability indexes for dispersion 

Suppose the probability distribution of a process is normal. The normal distri­
bution is described in more detail in Chapter 3. Suppose also that it is exactly 
centered around the NORM, then if 

2T>6o (2.12) 

only a very small amount of batches (<0.26%) will need to be rejected (see Fig. 
2.4). In SPC, we often use the quantity Cp (process capability index) or CI to 
characterize the magnitude of a compared to T 

Cp = 2T/6a (2.13) 

If c is not known, it must be estimated and in SPC we usually apply R for this 
purpose (see eq. (2.11)) 

Cp = 2Tdn/6R (2.14) 
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LTL UTL 

Fig. 2.4. A process with Cp = 1. 

When Cp > 1, at least 3 standard deviations on either side of the mean fall within 
the tolerance limits (at least when the setting of the process, see Section 2.3.2, is 
correct). For a normally distributed population this means (see Chapter 3) that at 
least 99.74% of the objects fall inside the tolerance intervals. It is customary to 
evaluate Cp as follows: 

- Q? > 1.33: reliable or stable situation. However, some companies require Cp 
to approach 2. By requiring such strict control on variability shifts in setting 
may occur without immediately causing values to fall outside the tolerance 
intervals (see further). 

- 1.33 > C/7 > 1: control of setting required. Small changes in the setting may 
lead to a rapid increase of proportion outside the tolerance interval 

- \ > Cp> 0.67: unreliable situation 
- Cp < 0.67: unacceptable. 
In the example of Table 2.6, for 7 = 1.0, Cp = 2x 2.06/6 x 0.565 = 1.22. This 

process would be qualified as requiring control. 
Another index of dispersion is the relative precision index (RPI). Equation 

(2.14) can be rewritten for Cp>\, i.e. 3 a limits: 

2r>6^/d«or 

2T/R>6/dn (2.15) 

2T/R is the RPI. For the example of Table 2.6 with n = 4, the RPI is 2 x 1.0/0.565 
= 3.54. 

Since 3.54 > 6/2.06, the condition is met to ensure that 3 a units on either side 
of the mean fall within the tolerance interval, at least when there is no systematic 
error or bias. 

2.3.2 Process capability index for setting 

This index describes how different the measured mean 'x is from the required 
mean (= NORM), x estimates the true mean |Li and x - NORM is the estimated bias 
(see Fig. 2.5) 
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LTL V .UTL 

Fig. 2.5. Effect of bias on a process with Cp= \ (2T= 6a). 

c,jm^^_,oo (2.16) 

CA is sometimes called the index of accuracy. The term accuracy requires some 
comment. In this context accuracy measures the systematic error. For a long time, 
metrologists and analytical chemists have used the term with that same meaning. 
However, ambiguity was introduced by the ISO definition of the term. According 
to ISO, accuracy describes the sum of systematic and random errors. For this 
reason, we no longer use this term when describing systematic errors and prefer the 
term capability index for setting. 

When CA < 12.5 the setting of the process is considered reliable, for 12.5 < CA < 
25 control is required, for 25 < CA < 50 the process is considered unreliable and for 
CA > 50 it is unacceptable. In the case of Table 2.6: 

^ 110.0-9.971 , _ , 

CA = — Y o — x i o o = 3 

and the setting of the process is reliable. 

2.33 Process capability indexes for dispersion and setting 
The overall quality index Cpk is given by 

distance of x to the nearest tolerance limit 
Cpk 

Also 

Cpk-

3a 

r - IJC - NORM T-\x- NORMI T_ 
T 3a 

(2.17) 

• Cp 1 -

3a 

U-NORM 

or 
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Cpk = Cp\ 
100 

(2.18) 

When C^ = 0, Cpk = Cp. Cpk is also called the corrected process capability index 
(Cp corrected with CA). We can show that if Cpk = 1 the number of defectives is 
between 0.13% (when objects falling outside the tolerance levels, all have either 
too large or else all too small values) and 0.26% in the improbable case that exactly 
as many bad objects have too low and too high values. For Cpk > 1.33 the number 
of defectives is < 0.006%. When Cpk < 1 the number of defectives is > 0.13%, 
which is deemed too much and the process is not considered capable of achieving 
the tolerance specifications. 

2,3.4 Some other statistical process control tools and concepts 

There are seven basic graphical tools [10] in SPC or SQC (statistical quality 
control), namely the flow chart describing the process, histograms (see Section 
2.1.3) to describe the distribution of occurrences, correlation charts (also known as 
scatter diagrams) (see Chapter 8), run and control charts (see Chapter 7), the 
cause-effect diagram and the Pareto diagram. The latter two will be discussed here 
in somewhat more detail. 

The cause-effect diagram is also called the fishbone diagram or Ishikawa 
diagram. Ishikawa is the inventor of this diagram, which he used to introduce 
process control, i.e. the control of all factors that have an influence on the 
quality of the product. It often takes the form of Fig. 2.6, and then includes 

Policies People 

Effect 

Procedures Plant 

Causes 

Materials Machines 

Methods Manpower 

Fig. 2.6. Ishikawa diagrams: the four P and four M versions. 
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pAg 
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Fig. 2.7. Ishikawa diagram showing process steps and critical parameters for a photographic emulsion 
manufacturing process (from [11]). 

technical, organizational and human factors, but can also be devoted to entirely 
technical aspects such as in Fig. 2.7 [11]. One identifies major groups of causes 
that can introduce variation in a process or produce a problem (the effect). Around 
these major causes one identifies more detailed causes that relate to the major 
groups. 

The Pareto diagram (Fig. 2.8) is also called after its inventor, Vilfredo Pareto, 
an economist who formulated the 80/20 rule. This Pareto diagram should not be 
confused with the Pareto optimality diagram or plot described in Chapter 26. 
Pareto concluded that 20% of the population owns 80% of the wealth and in the 
same way quality control researchers concluded that 20% of the causes that 
influence a process often produce 80% of the variation in that process. The chart 
consists of a histogram listing in order of importance the causes of variation or 
non-compliance to the requirements and is used as a tool to focus attention on the 
priority problems. The Pareto chart is sometimes used, too, in connection with 
latent variable methods (see Chapters 17, 35-36, etc.). Latent variables describe 
decreasing amounts of variance present in the original data and it is often found 
that the variance present in a data set characterized by many (hundreds or even 
more than one thousand) variables can be explained by very few latent variables 
(much less than 20% in many cases). The amount of variance explained by the 
so-called first latent variables can then be depicted with a Pareto chart. An example 
is given in Section 36.2.4. 
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Cumulative relaf-jve 
frequency 

Reasons 

Fig. 2.8. A Pareto diagram. The bar diagram lists reasons for rejection of a batch of dyestuff and the 
relative frequency of these reasons. The line is the cumulative relative frequency (adapted from [9]). 

2.4 Quality of measurements in relation to quality of processes 

When we measure the quality of a process, the dispersion of the results is due to 
two sources, namely, the dispersion due to the process and the dispersion due to 
the errors in the measurement. We would like to be able to state that the latter 
source is comparatively small, so that we can conclude with little error that the 
dispersion observed is due only to the process. Let us therefore try to relate the 
quality of the measurement to the quality of the process and to the required quality. 

Before we do so, we should note that there are two different problems. The one 
we will discuss here is how good the quality of the measurement should be to 
control the specifications of a product. The second problem, which will be treated 
in Chapter 20 is what the characteristics of a measurement process should be to 
allow control of the process. This characteristic, called measurability, includes also 
time aspects. 

Variances from independent sources are additive (see further Section 2.7) and 
therefore: 
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where a? is the total variance, Gp the variance due to the process and Gm the variance 
due to the measurement. 

If, for instance Gm = 0.1 Gp, then Gt = 1.005 Gp or, in other words, the contribution 
of the measurement in the total dispersion is 0.5%. Let us now relate this to 
tolerance limits in the same way as we did for Cp and call this the measurement 
index [12], M/. 

. . . 27 ^ 27 
MI = Cp = 

6Gni 6Gp 
MI for Gm = 0.1 Gp would be equal to 10 for an acceptable process with Cp= \. 

For such acceptable processes Mh of 5 to 3 are usually required. MI = 3 for Cp = 
1 means that Gm = 0.33 Gp and Gt = 1.053 Gp, so that the contribution of the 
measurement to total dispersion is about 5%. As an example, let us suppose that 
we have to develop a measurement method to follow a process. The relative 
tolerance interval of the process is specified to be 2% and we envisage the use of 
a titration method with relative standard deviation 0.15%. Does this reach the MI 
= 3 standard? Since MI = 2/0.9 = 2.22, the answer is that since MI <3 the method 
is not sufficiently precise. We should use another method or else carry out each 
titration in duplicate. Indeed, in that case the mean of the two determinations would 
be used and the standard deviation on that mean would be 0.15%/V2^= 0.106% and 
M/ = 3.14. 

2.5 Precision and bias of measurements 

The purpose of chemical measurement is in principle to find the true value of a 
chemical quantity parameter, such as concentration. ISO [4] defines true value as: 
"The value which characterizes a quantity perfectly defined in the conditions 
which exist at the moment when that quantity is observed (or the subject of a 
determination). It is an ideal value which could be arrived at only if all causes of 
measurement error were eliminated and the population was infinite". 

As explained in Section 2.2.2, there are two reasons why an analytical result 
should deviate from the true value, namely the occurrence of either random or 
systematic errors. When a single analytical result JC/ is obtained it differs from the 
true value |io- The difference is the error: 

e, = x,-|Lio (2.19) 

If more measurements are made, i.e. a sample from the population of measure­
ments is obtained, then a mean 3c can be computed for that sample of measurements. 



This X estimates |Li, the mean of the population of measurements and, if the sample 
is large enough, one can state that x = |LL. One can then split up eq. (2.19) as 

e. = (x,-|Li) + (|a-^o) (2.20) 

The first part, x/ - |Li, is the random error of X/ and |Lt - |LLo is the systematic error 
which will be present in all measurements and therefore also in xi. Systematic 
errors lead to inaccuracy and bias, random errors to imprecision. The accuracy of 
the mean is defined by ISO [4] as: "The closeness of agreement between the true 
value and the mean result which would be obtained by applying the experimental 
procedure a very large number of times. The smaller the systematic part of the 
experimental errors which affect the results, the more accurate is the procedure". 

A lUPAC document [14] defines at the same time the bias as follows: "A 
measure of the accuracy (or inaccuracy) of the limiting mean is the bias" and "The 
difference between the population mean and the true value, paying regard to sign". 
In other words accuracy is the concept, bias the measure. 

The latter term can be further specified and in this context laboratory bias and 
method bias [15] are of importance. They are discussed further in Chapter 13. 

Tht precision is defined as follows [13]: "The closeness of agreement between 
the results obtained by applying the experimental procedure several times under 
prescribed conditions. The smaller the random part of the experimental errors 
which affect the results, the more precise is the procedure". 

The measure of precision in analytical chemistry is the standard deviation. 
Results are often expressed as a relative standard deviation. It should be noted that 
the experimental standard deviation s estimates a, the true value of the precision. 
When the number n of replicate measurements is large enough one can consider 
that s = a. When n is "large enough" it is customary to replace 5* by a in equations. 
What is meant by "large enough" is somewhat subjective. lUPAC [14] stated that 
one can use a for n> 10, but in most textbooks the limit is situated at n > 25 or 
n > 30. According to the exact conditions used, two types of precision are distin­
guished. They are called repeatability and reproducibility and are discussed in 
detail in Chapters 13 and 14. 

2.6 Some other types of error 

In the previous sections we have focused on systematic and random errors. 
There are some other sources of error which must be considered, namely: 

- Spurious errors, leading to outliers or aberrant values. It may happen that 
through a wrong operation, going from a wrong setting of an instrument to 
transcription errors, an atypical value is obtained. This error is clearly neither 
random nor systematic in nature. In Table 2.7 value 125 in series D is clearly 
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an outlier. Outliers would falsify the estimation of parameters such as the 
mean and the standard deviation, and at the same time lead to non-useful 
descriptions of random and systematic error. From a statistical point of view, 
outliers must be detected (see Section 5.5), removed and/or one must work 
with methods resistant to outliers (robust methods, see Chapter 12). From the 
quality management point of view outliers must be prevented. When an 
outlier is found, it should be flagged and, when possible, the reason should 
be ascertained. 

- Drift, indicative of a process that is not under (statistical) control. This is 
exemplified in situation E of Table 2.7. If these data were obtained in 
chronological order then one would conclude that there is a downwards drift. 
It is an unstated, but always present, hypothesis that processes described in a 
statistical way, are under statistical control. This means that the mean setting 
and the dispersion of the result are assumed to be constant. The process 
yielding the data of E would therefore not be under control. When this is the 
case, it makes no sense to compute statistical parameters. As quality manage­
ment to a large extent consists of restricting variation, it is evident that drift must 
be avoided. Drift is not the only type of error occurring when a process is not 
under control. How to detect them is described in Chapter 7 on quality control. 

- Baseline noise. While all the other sources of errors are equally relevant for 
processes and for measurements, this source of error affects only chemical 
analysis results. Measurements often result from a difference between a 
signal obtained when the analyte is measured and a signal obtained for a 
blank. There are different types of blank (see Section 13.7.4), but for the 
moment we can define the blank as consisting of the same material but 
without the analyte. Both signals show variation due to random error. The 
variation for the blank signal is also called the baseline or background noise. 
The measured signal is due to the analyte plus the baseline noise and, when 
the signal due to the analyte becomes very small, its contribution cannot be 
distinguished from that of the baseline. It is then no longer possible to state a 
result for the analyte. One says that its concentration is below the detection 
limit (and should never say that it is equal to 0). The detection and related 
limits are discussed in Chapter 13. 

2.7 Propagation of errors 

When the final result is obtained from more than one independent measurement, 
or when it is influenced by two or more independent sources of error (for instance 
measurement and process — see Section 2.4), these errors can accumulate or 
compensate. This is called the propagation of errors. 
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Random errors accumulate according to the law of propagation of errors given 

by: 

C5l = 
(dz V 

dx\ 
o? + 

dz V 

0X2 
(2.21) 

where z =/(JCi^2) and x\ and X2 must be independent variables. 
For instance, for the sum of two variables, z = xi + xi, eq. (2.21) can be written 

as: 

^ j c , + j , — 
'3(jCi+X2)Y 

dx\ 
cji + d{Xl +JC2)Y 

dxi 

= lol + la? or 

ol^x, = ol-\-al 

One can verify that: 

ol = cl + al 

(a,, /x, /{xx /X2)f = (â c. /xxf + (â ,_ /x2)̂  

a^a log X = ( a Gx/x)^ 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

In other words, variances are additive as such when the operation is addition or 
substraction or as squared relative standard deviations when the operation is 
multiplication or division. It must be stressed that these equations are correct only 
when the variables are independent, i.e. not correlated. This is often not the case in 
practical situations. 

Systematic errors are propagated with their signs. If Az is the systematic error 
affecting z, then for an additive/substractive relationship: 

z = a-\-bx\ + CJC2 - djC3 

Az = /7AX1 + cAx:2 - dAx3 (2.28) 

where Axi, etc. are the systematic errors affecting x\, etc. While random errors do 
not compensate but accumulate, systematic errors can compensate. 

For a multiplicative relationship: 

z = ax\X2lx^ 

bzlz = Axi/x] + AX2/X2 - Axs/xs (2.29) 
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In eq. (2.29) we observe that for this type of relationship relative systematic 
errors are transmitted. 

Equations of the type described in this section have assumed a large importance 
in metrology, because they allow us to describe individual sources of error and to 
combine them to describe what is called in metrology language the uncertainty. 
This is defined as a range within which the true value should be found. When the 
uncertainty is expressed as a standard deviation, it is then called a standard 
uncertainty. When there are several sources of error the combined standard 
uncertainty is obtained using the law of propagation of errors (for metrologists: of 
uncertainties). Eurachem [15], which aims to introduce this terminology in analyti­
cal chemistry, states that in analytical chemistry in most cases the expanded 
uncertainty should be used. This defines an interval within which the value of the 
concentration of an analyte (the measurand) is believed to lie with a particular level 
of confidence (see Chapter 3). It is obtained by multiplying the combined standard 
uncertainty by a coverage factor, k. The choice of the factor k is based on the level 
of confidence desired. For an approximate level of confidence of 95%, k is 2. The 
uncertainty concept will not be used further in this book. 

2.8 Rounding and rounding errors 

Because of the existence of error, not all computed figures are significant and, 
in principle, they should be rounded. A frequent question is how many figures 
should be retained. According to the significant figure convention [16], results 
should be stated so that they contain the figures known with certainty and the first 
uncertain figure. When carrying out a measurement, such as reading a value on a 
pH display graduated in tenths of pH, one would write 7.16, because the needle on 
the display is between 7.1 and 7.2 and the best guess at the next figure is 6. 

When the number is the result of a computation, the following rules may be 
useful [16]: 

- After adding or substraction, the results should have the same number of 
significant numbers after the decimal point as the number being added or 
subtracted which has the fewest significant figures after the decimal point. 

- After multiplication or division, the number of significant figures should 
equal the smallest number carried by the contributing values. 

- When taking a logarithm of a number, we should give as many figures after 
the decimal point as there are significant figures in the original number. 

These rules should be applied in a sensible way. For instance, if in a set of data 
a certain number is correctly rounded to 99.4 and one has to multiply it with 1.01, 
yielding 100.394, it should be rounded to 100.4 and not to 100 as one of the above 
rules would require. 
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These are the rules that should be applied for the numbers as they are reported. 
However, during the computations one should not round numbers, because this can 
lead to rounding errors. Ellison et al. [17], who studied the effect of calculator or 
computer precision and dynamic range concluded that even today finite numerical 
precision, aggravated by poor choice of algorithm, can cause significant errors. 
This is one of the reasons why, in this book, we sometimes report more significant 
figures then we should really do. These numbers are often intermediate results, 
which are used for further computations, sometimes in another chapter. Rounding 
them correctly would lead to small discrepancies in the result, when the whole 
computation is checked with a computer. 
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Chapter 3 

The Normal Distribution 

3.1 Population parameters and their estimators 

Before discussing the normal distribution as such, we need to enlarge somewhat 
on the discussion in Chapter 2. Suppose we analyze the concentration of Na"̂  in a 
certain sample. Due to random error, there will be some dispersion of the results 
of replicate determinations. If we were able to carry out a very large number of 
such determinations, the results would constitute a population. We would like to 
know the mean \x and the standard deviation a of that population, the former to 
know the true content of Na"*̂  (assuming there is no systematic error) and the latter 
to know the precision of the determination. However, it is not possible to carry out 
so many determinations: let us suppose that n = 4 replicate determinations are 
carried out. The four results constitute a sample in the statistical sense. The mean 

x = {I;Ci)/n (3.1) 

and the standard deviation 

- , 2 ^ (3.2) 

of the four replicates are the sample parameters. Sample parameters are estimators 
of the population parameters: jc estimates \x and s estimates a. 

We distinguish the population parameters from the sample parameters, also 
called sample statistics, by writing them as Greek letters (|i, a). The latter are then 
written as the corresponding Latin letters (m, s). In most statistical texts, there is 
one exception, namely the sample mean, which is written as x. The ISO norms [2] 
use m instead of |LI. We will follow the general practice and use |Li. This convention 
is followed as much as possible in all instances where we want to distinguish 
between the population parameter and the sample parameters. For instance (see 
further Chapter 8), a straight-line regression equation is written as: 

r| = Po + pix 
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where r| is the true response and po and Pi are respectively the true intercept and 
slope of the regression line. When we do not know po and pi but estimate them 
from a finite number of points, the estimated parameters are given as 

y^bo + b\X 

where bo and b], the sample parameters, are the estimators of po and pi, the 
population parameters; y is the estimator of the true response r|. Notice that y 
(y-hat) is used here as the symbol for the estimator of the true response to distin­
guish it from y which in regression represents the observed responses (see further 
Chapter 8). 

By considering many random samples of size n from a population and comput­
ing a statistic for it, we obtain a distribution of that statistic, called the sample 
distribution. If we carry out many series of four replicate measurements, the means 
of those sets of four measurements lead to a sample distribution of means for n = 
4, characterized by its own mean and standard deviation. In this section we are 
concerned with the mean of such distributions. The standard deviation of this and 
other sample distributions will be discussed further in Section 3.5. 

If the mean of the sampling distribution of a statistical parameter used to 
estimate a population parameter is equal to that population parameter, then that 
estimator is called an unbiased estimator. The mean x is an unbiased estimator of 
|Li. The mean of the sample distribution of the x values for sets of ^ = 4 replicate 
measurements is equal to the population parameter |i. The situation is not so simple 
for s and a. As noted in Chapter 2, we divide here by n- I instead of by n where 
Ai - 1 is called the number of degrees of freedom (df). The population variance a^ 
is in fact the mean of the squared deviations from |Li. At first sight, we should 
therefore divide by n instead of by n - 1 to obtain s^, the sample variance, and s, 
the sample standard deviation. However, it can be shown that in this case s^ would 
be a biased estimator of a~. In other words, the mean of the sample distribution of 
the s^ values for sets of n = 4 replicate measurements would not be equal to the 
population parameter a^. It is to obtain an unbiased estimator of the variance that 
the term n - 1 was introduced in eq. (3.2), although (see further) eq. (3.5) would 
suggest the use of n. Although s^ = (X(^/ - x)^)/(n - 1) is an unbiased estimator of 
a ,̂ s is not an unbiased estimator of a. It has been shown [1] that s from eq. (3.2) 
underestimates a and that the underestimation is a function of n. It is serious only 
for small sample sizes. The correction factor is 1.253 for n = 2, but only 1.064 for 
n = 5 and 1.009 for n = 30. Except sometimes when using quality-control charts, it 
is unusual to correct s to obtain the unbiased estimate. In many application fields, 
such as in analytical chemistry, it is often stated that n = 5 to 8 is needed for a 
sufficiently good (i.e. precise and unbiased) estimation of s. 
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3.2 Moments of a distribution: mean, variance, skewness 

To summarize the characteristics of a distribution, we can use its moments. The 
rth moment of a set of data Xu ...x/, ...Xn is equal to 

m? = 
^ n ^ 

14 M or, more briefly: m? = (Z x') /n (3.3) 

The moment about the mean is defined in the same way with Xi being replaced 
by Xi - X. The rth moment about the mean or rth central moment is therefore: 

mr={X{xi-xy)/n (3.4) 

It is equal to the average of the deviations of each of the data from the mean to the 
power r. 

The dimensionless moment (about the mean) is defined as 

ar = mr/s\ with s as defined in eq. (3.5) 

The first moment of the data, m?, is equal to the mean, while the first central 
moment, mi, is zero. The mean is one of the descriptors of central location. 

The second moment about the mean of any distribution (and not only of the 
normal distribution, as is sometimes thought) is the variance. It describes the 
dispersion within the data and its square root is equal to the standard deviation, s. 

m2 = S(^/ - xY /n = s^ (3.5) 

The variance is therefore the mean of the squared deviations of the data from the 
mean. It should be noted here that in this definition the sum of the squared 
deviations from the mean is divided by n instead of the more usual n-l. The reason 
for this discrepancy is explained in Section 3.1. 

The third moment about the mean is a measure of skewness, i.e. the departure of 
the distribution from symmetry. Distributions such as those in Figs. 3.1a and b, are 
said to be skewed. The third central moment is used in a dimensionless form by 
referring it to the standard deviation. 

Expressing 5" as a moment, and since the standard deviation is equal to the square 
root of variance, we can write 

ar = —=- (3.6) 

(3.7) 

mi 

The {moment) coefficient of skewness is then given by: 

m 1 ^ 
«3 = - 7== = - 2. 

fxi - jc) 

nA ^ 

\3 

s 
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(a) Ibl 

(cl 

Fig. 3.1. Non-normal distributions: (a) positive skewness, (b) negative skewness, (c) negative kurtosis. 

It is also sometimes written as 

When the curve is perfectly symmetric, a^ = 0. 
The fourth central moment is used to measure kurtosis (also called peakedness; 

see Fig. 3.1). We often compute 

^4 = ^2 = /^4 / (^2) 

For a normal distribution Z72 = 3. For this reason kurtosis is often defined as 

3 = 
n 

Xi-X 4A 
I- 3 SO that kurtosis is then 0 for a normal distribution, 

positive for a peaked curve (also called leptokurtic) and negative for a flat peak 
(also called platykurtic). 

The equations given in this section are those for a sample distribution. It is also 
possible to write down the equations for a population distribution. 

3.3 The normal distribution: description and notation 

The best known probability distribution is the normal distribution. In shorthand 
notation: 

X ~ yV(|Li, a^) 
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fix) 

F(X)1 

Fig. 3.2. Normal distribution (a) and cumulative normal distribution (b). 

This means that the values of x are distributed normally with a mean \x and a 
variance a^. The normal distribution or, rather its probability density function, is 
given by: 

fW = 
I fr-wV 

aV27i 
exp 

|Lt (3.8) 

and is shown in Fig. 3.2. The factor 1 
(5^2% 

is a normalization factor. It standardizes 

the area under the curve, so that it is always equal to 1. 
The cumulative normal probability distribution is given by 

F(xo)-J 1 
exp 

(x-\Ji\ 
dx (3.9) 

and is also shown in Fig. 3.2. 
The mean and the standard deviation of such a population are values in a certain 

scale. For instance, if we were to describe titration results in ml NaOH, the mean 
would be equal to a certain number of ml NaOH and the standard deviation, too, 
would have to be described in the same units. To avoid this scale effect, the concept 
of a standardized normal distribution has been developed. The original distribution 
is transformed by computing 

z = {x-\Ji)lo (3.10) 

This means that now the original data are described as their deviations from the 
mean divided by the standard deviation. In other words, the scale used is now a 
scale in standard deviation units. If a certain number has a z = 1.5, this means that 
its value is higher than that of the mean because it has a plus sign and that its 
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distance from the mean is equal to 1.5 standard deviation units. This process is 
often called standardization, scaling or autoscaling. It is also called the z-transfor-
mation and z itself is called the reduced variable of x or the standardized deviate 
or standard deviate. It should be noted that the ISO norms [2] use u instead of z, 
but because such a large number of statistical texts use z, we have preferred to 
follow this custom. Since z is normally distributed with as its mean 0 and standard 
deviation 1, the variance is also 1 and we can write 

z-yV(0,l) 

The probability function for the standardized normal distribution is given by 

cp(z) = ^ e x p ' 
2^ (3.11) 

and the corresponding cumulative frequency distribution by 

O(zo) = j 
1 

exp 2^ 
V J 

dz (3.12) 

3.4 Tables for the standardized normal distribution 

All statistical handbooks contain tables of the standardized normal distribution. 
The principal reason why the z-distribution is used so often is that, because of the 
standardization, it is possible to use scale independent tables. The main reason for 
using the tables is that they allow to calculate what proportion of a population has 
a value smaller or larger than a certain value or is comprised between two 
boundaries. Since we are interested in areas under parts of the curve and in a 
probability at a precise point on the z-axis, the tables do not describe the normal 
distribution as such, but are based on the cumulative distribution. 

One of the problems confronting the inexperienced user of statistics is that these 
tables can be presented in several ways. Let us first note that there are one-sided or 
one-tailed and two-sided or two-tailed tables. The latter tables show what part of 
the total area falls inside or outside the interval (-z, 4-z) and usually how much of 
it falls outside. Such a table is Table 3.1. The table gives the z-value corresponding 
with certain areas of the sum of the two tails of Fig. 3.3.a. For instance, we can ask 
what the z-value is such that 5% of all data of a normal distribution will fall outside 
the range (-z, +z), i.e. 2.5% on each side. In the table we find that foxp - 0.05, z = 
1.96. The reason that this is printed in italics is that this value of z will be needed 
very frequently. 

In the same way, we can ask between what values can we find 90% of all values. 
Then p = 0.1 and z = 1.65. Suppose that we know that certain titration results are 
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TABLE 3.1 

Values of z and the two-tailed probability that its absolute value will be exceeded in a normal population (see also 
Fig. 3.3a) 

p 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

P 
7. 

Second decimal in 

0.00 
D O 

1.645 
1.231 
1.036 
0.842 
0.674 
0.524 
0.385 
0.253 
0.126 

0.002 
3.090 

0.01 
2.576 
1.598 
1.254 
1.015 
0.824 
0.659 
0.510 
0.372 
0.240 
0.113 

P 

0.02 
2.326 
1.555 
1.226 
0.994 
0.806 
0.643 
0.496 
0.358 
0.228 
0.100 

0.001 
3.290 

0.03 
2.170 
1.514 
1.200 
0.974 
0.789 
0.623 
0.482 
0.345 
0.215 
0.088 

0.0001 
3.890 

0.04 
2.054 
1.476 
1.175 
0.954 
0.772 
0.613 
0.468 
0.332 
0.202 
0.075 

0.00001 
4.417 

0.05 
1.960 
1.439 
1.150 
0.935 
0.755 
0.598 
0.454 
0.319 
0.189 
0.063 

0.000001 
4.891 

0.06 
1.881 
1.405 
1.126 
0.915 
0.739 
0.583 
0.440 
0.305 
0.176 
0.050 

0.07 
1.812 
1.372 
1.103 
0.896 
0.722 
0.568 
0.436 
0.292 
0.164 
0.038 

0.0000001 
5.326 

0.08 
1.750 
1.340 
1.080 
0.878 
0.706 
0.553 
0.412 
0.279 
0.151 
0.025 

0.09 
1.695 
1.311 
1.058 
0.860 
0.690 
0.539 
0.399 
0.266 
0.138 
0.013 

0.00000001 
5.730 

0 

a) 

Fig. 3.3. The shaded areas are described by (a) Table 3.1; (b) Table 3.2; (c) Table 3.3; (d) Table 3.4. 

normally distributed with |Li = 5.0 ml and a = 0.05 ml and would like to know in what 
range 95% of all results will be found. This range is then given by 5.0 ± 1.960.05. In 
view of what will be discussed in Chapter 4, it is of interest to rephrase the question 
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TABLE 3.2 

Probability p to find a value between 0 and z (see also Fig. 3.3b) 

Second decimal of z 

7. 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

z = 
F{7) = 

z = 
F{7) 

0.00 

0.000 
0.040 
0.079 
0.118 
0.155 
0.191 
0.226 
0.258 
0.288 
0.316 

0.341 
0.364 
0.385 
0.403 
0.419 
0.433 
0.445 
0.455 
0.464 
0.471 

2.0 
0.477 
3.0 
0.4987 

0.01 

0.004 
0.044 
0.083 
0.122 
0.159 
0.195 
0.229 
0.261 
0.291 
0.319 

0.344 
0.366 
0.387 
0.405 
0.421 
0.434 
0.446 
0.456 
0.465 
0.472 

2.1 
0.482 
3.1 
0.4990 

0.02 

0.008 
0.048 
0.087 
0.125 
0.163 
0.198 
0.232 
0.264 
0.294 
0.321 

0.346 
0.369 
0.389 
0.407 
0.422 
0.436 
0.447 
0.457 
0.466 
0.473 

2.2 
0.486 
3.2 
0.4993 

0.03 

0.012 
0.052 
0.091 
0.129 
0.166 
0.202 
0.236 
0.267 
0.297 
0.324 

0.348 
0.371 
0.391 
0.408 
0.424 
0.437 
0.448 
0.458 
0.466 
0.473 

2.3 
0.489 
3.3 
0.4995 

0.04 

0.016 
0.056 
0.095 
0.133 
0.170 
0.205 
0.239 
0.270 
0.299 
0.326 

0.351 
0.373 
0.392 
0.410 
0.425 
0.438 
0.449 
0.459 
0.467 
0.474 

2.4 
0.492 
34 
0.4997 

0.05 

0.020 
0.060 
0.099 
0.137 
0.174 
0.209 
0.242 
0.273 
0.302 
0.329 

0.353 
0.375 
0.394 
0.411 
0.426 
0.439 
0.450 
0.460 
0.468 
0.474 

2.5 
0.494 
3.5 
0.4998 

0.06 

0.024 
0.064 
0.103 
0.144 
0.177 
0.212 
0.245 
0.276 
0.305 
0.331 

0.355 
0.377 
0.396 
0.413 
0.428 
0.441 
0.451 
0.461 
0.469 
0.475 

2.6 
0.495 
3.6 
0.4998 

0.07 

0.028 
0.067 
0.106 
0.141 
0.181 
0.216 
0.249 
0.279 
0.308 
0.334 

0.358 
0.379 
0.398 
0.415 
0.429 
0.442 
0.452 
0.462 
0.469 
0.476 

2.7 
0.496 
3.7 
0.4998 

0.08 

0.032 
0.071 
0.110 
0.148 
0.184 
0.219 
0.252 
0.282 
0.311 
0.336 

0.360 
0.381 
0.400 
0.416 
0.431 
0.443 
0.453 
0.462 
0.470 
0.476 

2.8 
0.497 
3.8 
0.4999 

0.09 

0.036 
0.075 
0.114 
0.152 
0.188 
0.222 
0.255 
0.285 
0.313 
0.339 

0.362 
0.383 
0.401 
0.418 
0.432 
0.444 
0.454 
0.463 
0.471 
0.477 

2.9 
0.498 
3.9 4.0 
0.49995 0.49997 

as follows: determine decision limits, beyond which results will be rejected, such 
that 5% of all values fall outside, half on each side. The answer of course remains 
the same. 

Two other examples of z tables are given in Table 3.2 and 3.3. Because of the 
symmetry of the normal distribution, these two tables give /7-values only for 
positive z-values. Table 3.2 gives the areas between two boundaries. One boundary 
is z = 0 and the table gives the area between this value of z and the chosen value 
(see Fig. 3.3b). Example: a large number of determinations was carried out on the 
same sample and the results are known to be normally distributed with |i = 215 and 
a = 35. What percentage of determinations will fall between the boundaries 200 
and 250? First we compute the corresponding z-values. 
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TABLE 3.3 

Probability to find a value lower than z (see also Fig. 3.3c) 

z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

0.00 

0.500 
0.540 
0.579 
0.618 
0.655 
0.691 
0.726 
0.758 
0.788 
0.816 

0.841 
0.864 
0.885 
0.903 
0.919 
0.933 
0.945 
0.955 
0.964 
0.971 

0.01 

0.504 
0.544 
0.583 
0.622 
0.659 
0.695 
0.729 
0.761 
0.791 
0.819 

0.844 
0.866 
0.887 
0.905 
0.921 
0.934 
0.946 
0.956 
0.965 
0.972 

0.02 

0.508 
0.548 
0.587 
0.625 
0.663 
0.698 
0.732 
0.764 
0.794 
0.821 

0.846 
0.869 
0.889 
0.907 
0.922 
0.936 
0.947 
0.957 
0.966 
0.973 

0.03 

0.512 
0.552 
0.591 
0.629 
0.666 
0.702 
0.736 
0.767 
0.797 
0.824 

0.848 
0.871 
0.891 
0.908 
0.924 
0.937 
0.948 
0.958 
0.966 
0.973 

0.04 

0.516 
0.556 
0.595 
0.633 
0.670 
0.705 
0.739 
0.770 
0.799 
0.826 

0.851 
0.873 
0.892 
0.910 
0.925 
0.938 
0.949 
0.960 
0.967 
0.974 

0.05 

0.520 
0.560 
0.599 
0.637 
0.674 
0.709 
0.742 
0.773 
0.802 
0.829 

0.853 
0.875 
0.894 
0.911 
0.926 
0.939 
0.950 
0.961 
0.968 
0.974 

0.06 

0.524 
0.564 
0.603 
0.641 
0.677 
0.712 
0.745 
0.776 
0.805 
0.831 

0.855 
0.877 
0.896 
0.913 
0.928 
0.941 
0.951 
0.962 
0.969 
0.975 

0.07 

0.528 
0.567 
0.606 
0.644 
0.681 
0.716 
0.749 
0.779 
0.808 
0.834 

0.858 
0.879 
0.898 
0.915 
0.929 
0.942 
0.952 
0.962 
0.969 
0.976 

0.08 

0.532 
0.571 
0.610 
0.648 
0.684 
0.719 
0.752 
0.782 
0.811 
0.836 

0.860 
0.881 
0.900 
0.916 
0.931 
0.943 
0.953 
0.962 
0.970 
0.976 

0.09 

0.536 
0.575 
0.614 
0.652 
0.688 
0.722 
0.755 
0.785 
0.813 
0.839 

0.862 
0.883 
0.901 
0.918 
0.932 
0.944 
0.954 
0.963 
0.971 
0.977 

Z]= (200-215)735 = -0.43 

Z2 = (250-215)735 = 1 

The area between z = 0 and z = 0.43 is 0.166 or nearly 17% and between z = 0 
and z = 1 it is 34%. We can conclude that 51% of all data are comprised between 
200 and 250. 

Table 3.3 is a one-sided table, also called cumulative table. It gives the area 
below a certain value of z (see also Fig. 3.3c). Suppose that for the same data as 
given above, we want to know how large the probability is of finding a result above 
250. Since z for that value is equal to 1, consultation of the table shows that p = 
0.84. This is the probability of finding a value lower than z = 1. It follows that the 
probability for values above z = 1, (i.e. in this case, values higher than 250) is 1 -
0.84 = 0.16 or 16%. 

Tables 3.1, 3.2 and 3.3 contain the same information and therefore we should be 
able to use any of them for each of the different examples discussed. For example, 
let us consider the titration example, with which we illustrated the use of Table 3.1. 
Table 3.2 covers only half of the normal distribution, i.e. 50% of the values that 
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occur, so that when all those values are included p = 0.5. In this half distribution, 
it gives the area between the apex of the distribution (z = 0) and the decision 
boundary that delimits the higher tail. Since the area for both tails together is 5%, 
that for the higher one will include 2.5%. The boundary is thus situated so that 50% 
- 2.5% = 47.5% (p = 0.475) is included between z = 0 and the boundary. For p = 
0.475, one finds z = 1.96 as with Table 3.1. 

In Table 3.3 we include the whole distribution up to the higher tail. This means 
that we should determine the z-value that bounds the higher tail. The area up to the 
higher tail includes 97.5%. The z for which Table 3.3 gives p = 0.975 is again 1.96. 

3.5 Standard errors 

If we take random samples of size n from a population with mean |LL and standard 
deviation a, then the sample distribution of the means, jc, will be close to normal 
with mean |Li and standard deviation 

a-, = oMn (3.13) 

a^ is the standard deviation of the means for samples with size n. It is also called 
the standard error on the mean or SEM. It follows that we can also write: 

1^ {Xj-xf 
S~x= ylL— -

n(n- 1) 

where 5̂  estimates Cx- The approximation of normality will be better when n 
increases, but the approximation is quite good, even for small n. It should be 
emphasized that the population from which the samples are taken to obtain the 
means need not be normal. In Fig. 3.4, two clearly non-normal distributions are 
given. Taking samples of size n from these distributions will lead to the normal 
distributions of the means of the n results shown in the figure. The distribution of 
means of n individual non-normally distributed data will approach the normal 
distribution better when the sample size n increases. When rigorously stated, this 
is known as the central limit theorem. 

The distribution of the sample means becomes progressively sharper when the 
sample size n is increased: the means of samples conform more to the mean (i.e. 
estimate better the mean) for larger n. This is shown in Fig. 3.5 where the distribution 
of samples of n = 1 (i.e. individual measurements), n = 4 and n = 9 from the same 
population Â  (|i, o^) are compared. The mean of the three distributions is |i. The 
standard deviation for AZ = 4 and n = 9 is respectively a/N/4 = a/2 and aA/9 = a/3. 

It should be noted that 5̂  or a^ should not be used as measures of dispersion to 
evaluate the precision of a measurement or the capability of a process. We must then 
use s or a, since we are interested in the dispersion of individual results; s^c gives an 
idea, however, about the confidence we can have in the mean result (see Section 3.6). 
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Fig. 3.4. Means of samples taken from the non-normal triangular (a) and rectangular (b) distributions 
are normally distributed. 

x(a) or x(b,c) 

Fig. 3.5. The sharpness of a distribution of means depends on the sample size. Distribution (a) is the 
population distribution; (b) samples of n = 4 from (a); (c) samples ofn = 9 from (a). 

The standard deviation of a sample distribution is often called a standard error. 
In this section we have studied the sample distribution of means and the standard 
deviation of that distribution is the standard error of the mean. This can be applied 
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to other sample distributions. For instance, we could have determined the sample 
distribution of the standard deviation of samples with size n. For a normal distri­
bution of the original population, this would then have yielded a standard error of 
the standard deviations, a, = o/^^l2n. 

3.6 Confidence intervals for the mean 

In Section 3.4, it was computed that for a normal distribution, 95% of the data 
(or 95% of the area under the curve) fall within the limits z = -1.96 to z = +1.96. 
This can be rephrased to state that 95% of the data fall within the limits |Li ± 1.96o. 
This is true for all normal distributions and, since sample means are normally 
distributed, it is true also for the distribution of means. We can state, therefore, that 
95% of all sample means of size n must fall within the limits 

|Li±1.96aW^ 

Suppose we take a sample of size n from a population, we carry out the n 
measurements and compute x. This x is an estimator of |i, the population mean. 
Suppose also that the standard deviation, o, is known (how to proceed when c is 
not known is explained in Section 3.7). There is then a probability of 95% that x 
will fall in the range |LL ± 1.96 aWn^(see Fig. 3.6). The statement 

|Li-1 .96o/V^<x<|Li+1.96a/V^ (3.14) 

is therefore correct in 95% of cases. This type of statement will be written in future 
as X = |i ± 1.96 G/VAT. It should be noted that this is considered to mean that x lies 
in the interval |Li - 1.96 a / V̂T to |Li + 1.96 a / VAT and not that it is equal to one or 
both of these boundaries. It follows from (3.14) that 

Fig. 3.6. There is 5% probability (the shaded area) that x, the mean of a sample of n results, has a 
value more than 1.96- a WAT distant from |LI. 
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|Li-Jc±1.96a/A/^ (3.15) 

is also correct in 95% of cases. This means that we can estimate |Li, which is 
unknown, by determining x for n measurements and at the same time describe the 
uncertainty of that estimate by writing eq. (3.15). In 95% of all cases the resulting 
statement will be correct. In general: 

[i = x±zo/^ (3.16) 

with 100 - a% probability or confidence, where a is derived from a z-table. For 
instance, 

\x-x±l.645aWn^with 90% confidence. 

The limits in eq. (3.16) are called the confidence limits (for instance, with z = 
1.96, the 95% confidence limits). The range between the limits is called the 
confidence interval. Confidence limits or intervals can be stated in %, or as 
fractions. A confidence of 90% is equivalent to one of 0.90. 

Suppose now that a certain material has been analyzed and that a result has been 
obtained of 10.10 ± 0.10, where the ± 0.10 describes the 95% confidence interval. 
In other words, 10.10 is an estimate of the unknown \x and there is 95% probability 
that the interval 10.00 to 10.20 contains |Li. It is possible that the analyst is not happy 
with this result because he wants the 95% confidence interval to be smaller, say 
±0.05. How can this be achieved? The 0.10 was computed as 

1.96-^ = 0.10 
^n 

The standard deviation a is typical of the measurement process. It is the 
population standard deviation and therefore a constant for that population. The 
only thing which can be changed is n. Let us call the sample size to obtain the 
smaller confidence limits, N. Then 

1 .96-^ = 0.05 

It follows that Â  = 4 A2. 
By increasing the sample size, we can narrow the confidence limits. Because of 

the dependence on 4n, the n required to obtain certain confidence limits may of 
course be impractical in some experimental situations. Nevertheless, this simple 
example demonstrates that by choosing a correct sample size, the confidence 
interval can, at least in theory, be restricted to what is considered an acceptable 
range. This is a very important notion. Indeed, hypothesis tests (see Chapter 4) such 
as the r-test and many others can be linked to considerations of confidence limits. 



60 

•a/2 '^«/2 
Fig. 3.7. A standardized normal distribution curve with the parameter a. 

It follows that sample size will also be important in hypothesis tests and, more 
precisely, it will be shown that the sample size determines what kind of difference 
(for instance between a mean and a given value) a test can detect (see Section 4.8). 

The notation used until now can be generalized by writing that the (l-a)100% 
confidence interval around the mean is given by 

X±Za/2(0/^) (3.17) 

The meaning of parameter a for a standardized normal distribution is illustrated 
in Fig. 3.7. The fact that cx/2 is used means that the interval is two-sided. If a = 5%, 
then the limits are made such that they exclude 2.5% on each side. There is a 
probability of 2.5% that |Li will be situated outside the limits and lower than x and, 
equally, there is a probability of 2.5% of finding a value outside the confidence 
limits but higher than 3c. Using our notation of eq. (3.17), we would write 

xtzoms (a/Vn~) 

3.7 Small samples and the t-distribution 

Equation (3.17) contains a, the population standard deviation. This is a problem 
because this equation tries to estimate the unknown population parameter |Li and its 
confidence limits from the sample parameter x using a population (and therefore 
also usually unknown) parameter a. When n>30 (some practitioners put the limit 
at 25), then s as defined by eq. (3.2) is considered a sufficiently good estimator of 
a and one may write for the (1 - a)-100% confidence interval 

\x = x±Zan.(s/in)(n> 30) (3.18) 
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For n < 30, s is an uncertain estimate of a. A correction is required and this is 
obtained by replacing z by t, so that: 

^ = x±tan(s/m) (n<30) (3.19) 

is the ( l -a)100% confidence interval for sample sizes n < 30. The r-values are 
derived from tables of the t-distribution. 

The notation of eq. (3.19) is found in many statistics books. Again it should be 
noted that, although an ISO norm [3] exists, there is no standardization in practice. 
ISO, for instance, writes (3.19) as: 

^ - (̂ .975 / V^) s <m<x + {to.9i5 / vn) s 

Often, and we will follow this practice when we consider it useful, we write 
down the number of degrees of freedom, for which t is determined 

\X = X±ta/2,(n-\)(s/^) 

As for the z-tables, there are many different Ntables available. One possible 
layout is shown in Table 3.4. For the confidence interval for the mean the number 
of degrees of freedom (df) is n - 1. For instance, to obtain the 95% confidence 
interval for a sample size of n = 10, one consults the table at df = 9 and ^025 = 2.262, 
so that \x = x± 2262(s/^). One notes that for df = 00, ̂ 0025 = Zo.025 = 1.96. Also, at 
n = 30, 0̂.025 = 2.04, which is considered close enough to 1.96. The ^distribution is 
broader at the base and more peaked around the centre than the z-distribution (see 
Fig. 3.8). The higher the number of degrees of freedom, k, is, the closer it comes 
to the z distribution. The ^-distribution is also known as Student's distribution. 
Thus, for small sample sizes the confidence interval is broader than when a large 
(n > 30) sample size is used or than when one knows a, for instance, from prior 

• f{x) 

0 1 2 3 4 X 

Fig. 3.8. The r-distribution for 3 degrees of freedom compared with the z-distribution. 
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TABLE 3.4 

One-sided r-table (see 

df 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
40 
60 
120 

o o 

Area in 

0.10 

3.078 
1.886 
1.638 
1.533 
1.476 
1.440 
1.415 
1.397 
1.383 

1.372 
1.363 
1.356 
1.350 
1.345 
1.341 
1.337 
1.333 
1.330 
1.328 

1.325 
1.323 
1.321 
1.319 
1.318 
1.316 
1.315 
1.314 
1.313 
1.311 

1.310 
1.303 
1.296 
1.289 
1.282 

also Fig. 3.3d) 

upper tail of r-distribution 

0.05 

6.314 
2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 

1.812 
1.796 
1.782 
1.771 
1.761 
1.753 
1.746 
1.740 
1.734 
1.729 

1.725 
1.721 
1.717 
1.714 
1.711 
1.708 
1.706 
1.703 
1.701 
1.699 

1.697 
1.684 
1.671 
1.658 
1.645 

0.025 

12.706 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 

2.228 
2.201 
2.179 
2.160 
2.145 
2.131 
2.120 
2.110 
2.101 
2.093 

2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 

2.042 
2.021 
2.000 
1.980 
1.960 

0.01 

31.821 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 

2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 

2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 

2.457 
2.423 
2.390 
2.358 
2.326 

0.005 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 

3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 

2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 

2.750 
2.704 
2.660 
2.617 
2.576 

0.0025 

127.32 
14.089 
7.453 
5.598 
4.773 
4.317 
4.029 
3.832 
3.690 

3.581 
3.497 
3.428 
3.372 
3.326 
3.286 
3.252 
3.222 
3.197 
3.174 

3.153 
3.135 
3.119 
3.104 
3.090 
3.078 
3.067 
3.056 
3.047 
3.038 

3.030 
2.971 
2.915 
2.860 
2.807 

0.001 

318.310 
22.327 
10.215 
7.173 
5.893 
5.208 
4.785 
4.501 
4.297 

4.144 
4.025 
3.930 
3.852 
3.787 
3.733 
3.686 
3.646 
3.610 
3.579 

3.552 
3.527 
3.505 
3.485 
3.467 
3.450 
3.435 
3.421 
3.408 
3.396 

3.385 
3.307 
3.232 
3.160 
3.090 

experimentation. When using smaller sample sizes, we pay a double price: the 
confidence in the estimate of the population mean is less precise (the confidence 
interval is larger), because we use the broader r-distribution and because we divide 
by a smaller /2 in eq. (3.19). 
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It is also useful to note that confidence intervals for the mean can be obtained 
by using the range. The procedure is described, for instance, in the annex to the 
ISO-norm [3]. 

3.8 Normality tests: a graphical procedure 

As we will see in later chapters, many statistical tests are based on the assump­
tion that the data follow a normal distribution. It is far from evident that this should 
be true. Distributions can be non-normal and procedures or tests are needed to 
detect this departure from normality. Also, when we consider that a distribution is 
normal, we can make predictions of how many individual results out of a given 
number should fall within certain boundaries, but, again, we then need to be sure 
that the data are indeed normally distributed. Sometimes one will determine 
whether a set of data is normally distributed because this indicates that an effect 
occurs that cannot be explained by random measurement errors. This is the case 
for instance in Chapters 22 and 23, where the existence of a real effect will be 
derived from the non-normality of a set of computed effects. In this section a 
graphical procedure is described that permits us to indicate whether a distribution 
is normal or not. A second graphical procedure, the box plot, will be described in 
Chapter 12. Graphical procedures permit us to visually observe whether the 
distribution is normal. If we want to make a formal decision, a hypothesis test is 
needed. Such tests are described in Chapter 5. 

The graphical procedure applied here is called the rankit procedure. It is 
recommended by ISO [2] and we shall consider the numerical examples given in 
that international norm to explain how the method works. The example concerns 
the measurement of breaking points of threads. Twelve threads are tested and the 
following results are obtained: 

2.286; 2.327; 2.388; 3.172; 3.158; 2.751; 2.222; 2.367; 2.247; 2.512; 2.104; 2.707. 

We can reason that a result such as 2.104 must be representative of the lower tail 
of the distribution, 3.172 the higher tail, and results such as 2.367 and 2.388 the 
central part of the distribution. To have a better look, it seems logical to rank the 
data, yielding the following series: 

2.104; 2.222; 2.247; 2.286; 2.327; 2.367; 2.388; 2.512; 2.707; 2.751; 3.158; 3.172. 

To determine for which part of the distribution each number is representative, 
let us first look at a simpler example and suppose that only three numbers were 
given, 2.104, 2.367 and 3.172. We would then split up the range in four subranges, 
namely <2.104, 2.104-2.367, 2.367-3.172 and >3.172, and would consider that 
2.104 is therefore located such that 25% of all data that could be obtained from the 
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distribution would fall below it, that 2.367 is located such that 50% fall below it, 
etc. In other words, the cumulative frequency of 2.104 would be equal to 25%, i.e. 
100/(n+l)%, for 2.367 it would be (100-2)/(n+l)%, etc. 

Let us now turn back to the thread data and discuss this using a more statistical 
vocabulary. We can now state that the cumulative frequency of data is equal to or 
lower than 2.104, in short the cumulative frequency of 2.104, is equal to 1 (since there 
is one observation <2.104) and that its cumulative relative frequency is given by 

cumulative % frequency = (100 x cumulative frequency) / (n + 1) or 

(1001)/(12+ 1) = 7.7%. 

The cumulative frequency of 2.222 is 2 and the cumulative relative frequency is 
15.4% and for 3.172 the respective values are 12 and 92.3%. 

The following step is to assume that the data indeed come from a normal 
distribution. The value with a cumulative relative frequency of 7.7% is equivalent 
to the value that delimits a lower tail of a normal distribution with an area of 7.7%. 
Expressed in z-values by using one of the Tables 3.1, 3.2 or 3.3, this is equal to 
-1.43. By proceeding in this way for all the data, one obtains ranked z-values, also 
called ranked normal deviates or rankits. This yields Table 3.5. 

It can now be shown that, when the data are indeed normally distributed, a graph 
of jc against z yields a straight line. The result for the example is shown in Fig. 3.9. 
This figure also illustrates the weakness of this graphical method. It is sometimes 
(as is the case here) difficult to decide whether the points fall on a straight line or 
not. Nevertheless, it is a useful way of looking at the data, and in many cases, as 
illustrated further, it leads to clear conclusions. 

TABLE 3.5 

Computation of normal deviates from a set of ranked data. The measurements are strengths of threads in Newton 

Measurement (x) 

2.104 
2.222 
2.247 
2.286 
2.327 
2.367 
2.388 
2.512 
2.707 
2.751 
3.158 
3.172 

Cumulative frequency 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Cum 

7.7 
15.4 
23.1 
30.8 
38.5 
46.1 
53.8 
61.5 
69.2 
76.9 
84.6 
92.3 

Cumulative % frequency 

-1.43 
-1.02 
-0.74 
-0.50 
-0.28 
-0.10 
+0.10 
+0.28 
+0.50 
+0.74 
+ 1.02 
+ 1.43 
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• 1 1 1 1 1 1 — - 1 1 ] 

-2.0 -1.0 0.0 1.0 2.0 

Fig. 3.9. Rankit method applied to the data of Table 3.5. 

To make the procedure outlined above easier to carry out in practice, we can also 
use normal probability paper. The z-axis is then replaced by a cumulative prob­
ability axis. Fundamentally, this type of paper uses the straight-line relationship 
between z and x for a normal distribution, but it skips a step in the calculations by 
giving the axis the values of the percent cumulative frequency corresponding with 
the z-values. Applying this to the data we are examining here, leads to Fig. 3.10 
and, of course, the interpretation is the same as for Fig. 3.9. When a straight line is 
obtained, we conclude that the distribution is normal. 

There may be several reasons why an experimentally obtained set of data is 
found to be not normally distributed. This is illustrated with two examples de­
scribed by Feinberg and Ducauze [4]. The first concerns a set of Pb measurement 
by AAS on the same portion of beef liver. The results are given in Table 3.6 and 
the rankit-line is shown in Fig. 3.11a. The line is clearly not straight. Closer 
inspection reveals that this may be due to the two highest results. After elimination 
of these two points, we obtain Fig. 3.11b. Now a straight line can be drawn 
through the points. The effect was due to two outlying points. The underlying 
distribution is normal, but outliers distort it. The presence of outliers can be seen 

TABLE 3.6 

Results of Pb determinations (in mg/kg) in the same portion of beef liver (from Feinberg and Ducauze [4]) 

0.965 
1.135 
1.200 
1.242 

0.975 
1.135 
1.210 
1.300 

1.040 
1.165 
1.210 
1.362 

1.095 
1.167 
1.232 
1.945 

1.105 
1.180 
1.232 
2.185 
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Fig, 3.10. Rankit method: use of probability paper for the data of Fig. 3.9 and Table 3.5. 
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Fig. 3.11. (a) Rankit method for the AAS data of Table 3.6; (b) Rankit method for the AAS data after 
elimination of the two highest data. 

as a source of non-normality. In fact, we will treat these data again in Chapter 5 
with outlier tests and a formal test for normality (the Kolmogorov-Smirnov test) 
and the evaluation of all these approaches together confirms that the two results 
may be considered to be outliers. 

The second example concerns bacterial counts on ground meat. The data are 
given in Table 3.7 and the rankit-line is shown in Fig. 3.12a. It is known that this 
type of data follows a lognormal distribution. This means that the In (x/) or log (x/) 
are normally distributed. In Fig. 3.12b the rankit-line for the natural logarithms of 
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(a) 

(b) 

cumulative % 
i 

cumulative % 
i 

Fig. 3.12. (a) Rankit method for the bacteriological data of Table 3.7; (b) Rankit method for the log 
of the same data. 

the counts is shown and the graph indeed indicates that they can be considered to 
be normally distributed. 

When larger numbers of data are available, it is convenient to first group them 
into classes. This can be demonstrated again with the data on fluoride in the enamel 
of teeth of young children of Table 2.1. The cumulative frequencies (on probability 
paper) or the equivalent z-values (on the usual linear graph paper) are plotted 
against the class marks. The result on probability paper is shown in Fig. 3.13. We 
can conclude that the fluoride data are normally distributed. 
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TABLE 3.7 

Bacteriological counts of 50 samples of ground meat (from Feinberg and Ducauze, [4]). 

0.035 
0.164 

0.327 
0.840 
2.440 
3.300 
3.760 
12.000 
28.200 
66.000 

0.035 
0.171 

0.380 

0.860 
2.600 
3.340 
8.500 

15.000 
57.000 
80.000 

0.036 
0.222 

0.560 
1.010 
2.600 
3.500 
9.400 

16.230 
61.000 

105.000 

0.069 
0.226 

0.780 
1.050 
3.000 
3.600 
9.500 

23.700 
61.000 

112.000 

0.136 
0.258 

0.800 
2.020 
3.230 
3.600 

10.100 
24.100 
62.000 

174.000 

All data were divided by 10̂  
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Fig. 3.13. Rankit method for the fluoride data of Table 2.1. 
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3.9 How to convert a non-normal distribution into a normal one 

The bacteriological example already provides a clue to how to make non-normal 
distributions normal, namely by transformation. The transformation we carried out 
in the previous section is called the log-transformation. Log-normal distributions 
are frequently found in nature, particularly when the variable studied has a natural 
zero (such as weight, length, etc.). In this case simple normality around the mean 
could include negative values. The log-transformation is however not the only 
transformation one can think of. Other often used transformations are the square 
root transformation {y = Vx), the inverse transformation (y = 1/x), the square 
transformation y = x~. A special type of transformation, mainly useful when one 
studies proportions, is the arcsine transformation [5]. 

A procedure to find the transformation that best approaches normality has been 
described by Box and Cox [6]. Its approach is very similar to that used for finding 
a transformation to straighten a line (see Chapter 8). They propose the following 
general equation: 

V, = for A :?t 0 
^ (3.20) 

V, = log {xi + k[) for X = 0 

This procedure requires us to find optimal values for the three parameters X, k\ 
and ki and therefore an optimization procedure such as the Simplex (Chapter 26) 
would be needed. For this reason, we usually simplify this to 

V, =x} for ?i ^ 0 
(3.21) 

y, = log Xi for A, = 0 

We then select a criterion that describes similarity to (or distance from) normal­
ity. This can be the Kolmogorov-Smirnov J-value (see Chapter 5), but other 
criteria are also possible, such as skewness. The latter is chosen here. We will use 
a^. As explained in Section 3.2, for a perfectly symmetric distribution ^3 should be 
close to 0. The procedure consists in computing yi = x} in function of X (and if 
V, = log Xi for X = 0). For each X, the skewness of the distribution of the yi is then 
obtained. This yields Table 3.8. and Fig. 3.14. The optimal X (i.e. yielding the 
lowest a^) = 0, so that we should indeed choose the log transformation. 



TABLE 3.8 

Moment coefficient of skewness, «3, in function of X in eq. (3.21) for the data of Table 3.7 

-2 
-1.9 
-1.8 
-1.7 
-1.6 
-1.5 
-1.4 
-1.3 
-1.2 
-1.1 
-1 
-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0 

0.505 
0.502 
0.498 
0.494 
0.489 
0.483 
0.476 
0.468 
0.457 
0.445 
0.429 
0.409 
0.386 
0.357 
0.323 
0.283 
0.237 
0.185 
0.130 
0.073 
0.017 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
l.l 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
2 

0.035 
0.083 
0.125 
0.163 
0.197 
0.229 
0.259 
0.288 
0.318 
0.347 
0.377 
0.407 
0.437 
0.468 
0.498 
0.527 
0.555 
0.583 
0.635 

0.5 

— r -
• 1 -1 

Fig. 3.14. Selection of transformation equation to normality. Skewness, as measured by a^, against X 
in eq. (3.20). 
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Chapter 4 

An Introduction to Hypothesis Testing 

4.1 Comparison of the mean with a given value 

Let us consider the following situation which is described in more detail in 
Chapter 13 on Method Validation. To investigate possible bias we have prepared 
a powder containing all the ingredients of a formulated drug in known amounts. 
Suppose that the amount of drug added is 100.0 mg. 

Example 1: Four determinations are carried out (n = 4). The mean, x = 98.2 and 
the standard deviation is known to be 0.80 from prior experience (a = 0.80). 

Example 2: Six replicate determinations are carried out with the following 
results: 

98.9 - 100.3 - 99.7 - 99.0 - 100.6 - 98.6 {n = 6,x = 99.5, s = 0.81) 

Note that in this case the standard deviation is not known, but estimated from the 
6 replicate results. 

We now need to decide whether the mean obtained, x = 98.2 (Example 1) or 99.5 
(Example 2), is really different from the amount, |Lio = 100, we should find. Notice 
that X is only an estimate of the true result, \x, the population mean, that would be 
found if we were to carry out an infinite number of replicate determinations. 
Therefore, we conjecture whether it is true that |i, as estimated by x, is equal to |Lio. 
This is an example of a hypothesis. To ascertain whether one can accept the 
hypothesis to be true, a hypothesis test is carried out. 

Hypothesis testing is a very important part of statistics. Here, we will apply it to 
test whether the mean of observed results should be considered equal to a given 
value. Hypothesis testing can also be used to investigate whether the means or 
standard deviations of two or more series of results are equal, whether the slope of 
a regression line is really 0 (or 1, according to the context), etc. Many of the 
following chapters will be devoted to developing appropriate hypothesis tests. In 
this chapter our aim is to introduce the subject of hypothesis testing. We will do 
this by considering the following hypothesis: 

Hypothesis: the mean, |LI, of a population of measurement results estimated from 
a relatively small set of observed results, x, is equal to a given value |Lio. 
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The test needed to test this hypothesis is the easiest to understand and we will 
use it to explain how a hypothesis test is carried out in general and to consider some 
questions common to all hypothesis tests. 

We should make here an important note. Statistical significance means that a 
difference between two numbers (here 100 and 98.2 or 100 and 99.5) is considered 
real. It does not necessarily mean that the difference is relevant to the problem 
under study. For instance, if the test were to conclude that the difference between 
100 and 99.5 is significant, this does not necessarily mean that the method studied 
is declared incorrect. In fact, the method developer probably will be quite pleased 
with the outcome and use the method, because a difference of 0.5% is in this 
application of no consequence, even if it is statistically significant. Decision-mak­
ing should therefore be a two-step process. One should first ask whether a differ­
ence is practically relevant and then whether it is also statistically significant. The 
concept of relevant difference is introduced from Section 4.7 onwards. 

4.2 Null and alternative hypotheses 

The hypothesis as formulated above is that there is no difference between |LL and 
|Lio. This is called a null hypothesis and the customary short hand notation for it is: 

Ho: ILI = lOo 

or, since [IQ in both examples is equal to 100.0, 

Ho:|Li= 100.0 

For the case that the null hypothesis is not true, we need to formulate an 
alternative. This is referred to as the alternative hypothesis. Hi. Here we will 
formulate it simply as: 

W^\\llt 100.0 

It must be noted that this choice is not evident. In Section 4.9, we will see that 
instead of Hi: "is different from", there are situations where it is preferable to state 
Hi: "is greater than" or, of course. Hi: "is smaller than". 

When carrying out a hypothesis test, it is good practice to state clearly at the 
outset what both hypotheses are. In our example, 

Ho:|Li= 100.0 

H,:|Li^ 100.0 
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4.3 Using confldence intervals 

Let us first consider Example 1. The 95% confidence interval around x is given 
by: 

98.2 ± 1.96 (a/Vn) = 98.2 ± 1.96 • 0.40 = 98.2 ± 0.78 

When the target value (here 100.0) is inside the confidence interval, then we 
consider it as compatible with x. We would then conclude that x = 98.2 is not an 
improbable value for |Li = 100.0 and that therefore 

|Li = |i^ = 100.0 

and we would accept HQ. Accepting the null hypothesis does not imply that we have 
proven that the hypothesis is true. The only thing we can conclude is that the data 
are compatible with Ho and that there is not enough evidence to reject HQ. 

When the confidence interval around jc does not contain |Lio, then we would reject 
the null hypothesis because the value of x is improbable for a |Li = 100.0. Indeed, 
there is only a 5% probability that |Li has a value situated outside the confidence 
interval. 

In the case of Example 1, since |Lio is outside the confidence interval around x, 
we would reject the null hypothesis and our conclusion would be to accept Hj: 
|Li 9̂  |Lio. In Example 2, a is not known. We therefore have to use a ^value to 
construct the confidence interval (see Section 3.7): 

99.5±^.025,5^/V^ 

or 99.5 ± 2.57 ^ = 99.5 ± 0.85 
V6 

|LLo = 100.0 falls inside this interval and therefore we consider that x = 99.5 is 
consistent with |Li = 100.0 and accept 

Ho: |a = 100= 100.0 

Let us now summarize how we have carried out the hypothesis test. We have 
carried out the following steps: 

1. We have stated the null and alternative hypothesis. For both examples: 

Ho: ILL = |Lio= 100.0 

H,:|Li 9^100.0 

2. We have decided that a = 5%. 
3. We have defined a confidence interval around JC at the 100 - a = 95% level. 

X ± 1.96(a/V^(n > 25 or a known) (4. la) 
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or 

X ± t{s/^lri (otherwise) (4.1 b) 

4. We investigated whether |Lio falls within the confidence interval. 
5. If the answer to our question was "yes" we accepted Ho, if it was "no" then we 

rejected HQ (and accepted Hi). 
6. Presentation of results (see Section 4.5). 

It is very important to understand that the same decision scheme can always be 
followed: it is valid for all hypothesis tests. In other words, when we have a 
confidence interval we can carry out a hypothesis test. Let us consider an example. 
In Chapter 8, we will learn how to estimate a regression line. The estimate of the 
intercept of such a line is given by bo. This estimates po, the true intercept. In 
Chapter 13, we will see circumstances where we would like to know whether we 
can accept that Po = 0. Let us see how we would carry out the hypothesis test for a 
situation where bo = 0.10. We would comply with the following reasoning. 

LHo:po = 0.0 

H,:Po^O.O 

2. a = 5% 
3. We have not learned yet how to determine a confidence interval around bo, but 

suppose it is found to be /7o ± 0.15. The confidence interval is then Ẑo - 0.15 to 
/7o +0.15 or [-0.05, 0.25]. 

4. Does 0.0 fall within [-0.05, 0.25]? 
5. The answer is "yes". Therefore we accept Ho: po = 0.0 
6. Presentation of results (see Section 4.5). 

4.4 Comparing a test value with a critical value 

There is a second way in which hypothesis tests can be carried out. Fundamen­
tally, it is exactly the same as the method described in the previous section, but it 
looks somewhat different. As we saw in Chapter 3.6, we can state that 95% of all 
sample means x of size n fall within the limits |i ± 1.96 a/yn. If we suppose that 
HQ: |Li = |io is true, then this statement is correct for all x falling within the interval 
|Lio ± 1.96 G/VAT. In Fig. 4.1 the distribution of the x around |LIO for the first example 
is given, once in the original units (mg) (Fig. 4.1a) and once in z units (Fig. 4.1b). 
We know that 95% of all means compatible with Ho: |LI = |LIO are situated within z = 
-1.96 and z = +1.96 of the standardized normal distribution of means. The 95% 
acceptance interval for Ho: |Li = |LIO in z-units is therefore given by -1.96 < z < +1.96 
or Izl < 1.96. We can also express the distance of the observed x from |io in z-units. 
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X in mg Q 

98.20 100.78 

-4.50 -1.96 1.96 

Fig. 4.1. The distribution of x-values for Example 1 (see text) that would be obtained if |i{) = |i: (a) in 
original units, (b) in standard deviate units. 

If this experimental z is larger in absolute value than 1.96, the x being tested falls 
outside the acceptance interval for Ho and Hi will be accepted. Otherwise, if 
be- ]1O\/(G/^) < 1.96, we will accept HQ. 

This way of presenting a hypothesis test is different because it does not explic­
itly apply confidence limits. It is, however, very important to realize that both ways 
of presenting a hypothesis test lead to exactly the same conclusion. 

Let us summarize the second way of presenting a hypothesis test for both 
examples used in this chapter and, first, for Example 1 

1. State the hypotheses 

Ho:|a = lLio= 100.0 

H, :^ 7̂  100.0 

2. a = 5% 
3. What is the critical z-value? It is Zcnt = 1 -96 
4. What is the z-value for the x being tested? It is computed with eq. (4.2) 

\z\ = 
IA:-|LIOI 

and this is in this case equal to 

198.2-100.01 

(4.2) 

Iz l - - :4.50 
0.8/V^ 

5. If Izl < IzcritI, then accept HQ. In this case Izl = 4.5 > 1.96, so that Ho is rejected 
(and H] accepted). We conclude that |Lt ^ 100.0 

6. Presentation of results (see Section 4.5). 
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For the second example, steps 1 and 2 are exactly the same, so that we give only 
the following steps. 

3. What is the critical r-value? Since in this example, a is not known and n < 25 to 
30, one uses s and t. For 5 degrees of freedom, 

kcritl = 2.57 

4. What is the r-value corresponding to 99.5? The equation used is: 

\t\J^^^ (4.3) 

In this case: 
,, 199.5-100.01 , ^, 
\t\= r=^= 1.51 

0.813/V6^ 

5. Since Irl = 1.51 < 2.57, Ho is accepted and one concludes that 

|Li= 100.0 

6. Presentation of results (see Section 4.5). 

We have seen now two ways of testing a hypothesis: 
1. Determining the confidence interval around x and observing whether |Llo falls in it. 
2. Determining a critical z or r-value and observing whether this is exceeded or not. 

We have a preference for method 1, because it does not only yield a decision on 
accepting Ho or Hi, but also gives a compact and informative summary of the 
measurement result: it is more data oriented. On the other hand, method 2 allows 
us to give /7-values (see next section). 

Significance testing should not be applied as a "yes" or "no" procedure, except 
perhaps in a regulatory context where rules have to be followed. Scientifically, 
there is no reason to make entirely opposite conclusions when p = 0.048 and 
p = 0.052. As noted by Box, Hunter and Hunter 11] "significance testing in general 
has been a greatly overworked procedure". 

4.5 Presentation of results of a hypothesis test 

The experimental or calculated z-value of Example 1 (z = ^ . 5 ) coincides with 
an a = 0.000005 and the experimental r-value of Example 2 (r = -1.51, df = 5) with 
an a = 0.19. To make a distinction between the a priori a-value (usually a = 0.05) 
and the one actually obtained, it is customary to write that/? = 0.000005 (Example 
1) and p = 0A9 (Example 2) instead of a. 

If/:> > a, as is the case for Example 2, then the probability of making an error by 
stating that there is an effect (i.e. a difference between |i and |LIO) is too large and it 
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is preferable to state that there is no significant effect (shorthand notation NS). This 
also means that we will find that |io is inside the confidence interval or that \z\ < Zcrit-
We can now fill in point 6 of Sections 4.3 and 4.4 for Example 2 to read: 

6./7 = 0.19(NS) 

For the first example, p < a, which means that |io is outside the 100 (1 - a)% 
confidence interval. We write the/? value and, to give an idea of the confidence we 
have in the result, add p < 0.05, p < 0.01, p < 0.001, etc. as happens to be the case. 
Writing/? < 0.05 also implies in such a case that/? > 0.01. For Example 1, we would 
fill in point 6. to read: 

e.p- 0.000005 (p < 0.00001). 

4.6 Level of significance and type I error 

Let us return to Section 4.3 where it was decided to use confidence intervals as 
decision criteria. For the example introduced in that section it was decided to reject 
all values outside the limits 97.42-98.98 as not belonging to the probability 
distribution around x and to conclude that all values of |Lio outside that interval are 
not compatible with |i = |Lio. The confidence intervals were chosen so as to include 
95% of the probability distribution. 

We should now focus on the other 5% and to do this we must turn the argument 
around. Let us suppose that |LI = |LLO = 100. For any value of x within the range 
99.22-100.78, we would conclude that |Li = |io- Indeed, in all these cases, the 
confidence interval around x would include |Lio = 100.0. However, there is 5% 
probability that a value of x outside the range 99.22-100.78 would be obtained 
when |Li = |Lio = 100.0. Nevertheless, we have decided that we would consider such 
values as inconsistent with |LL = |Lio and would consider jc's with such values as 
indicating that |Li ?t |Lio. In these 5% of cases, we would therefore make an error. The 
5% is called the level of significance and is equal to the probability of (incorrectly) 
rejecting the null hypothesis when it is true. The error we make in this way is called 
a type I error or also the a error. 

4.7 Power and type II Errors 

There is also a type II error. To understand this we should consider Fig. 4.2. Let 
us again consider the situation where the null hypothesis is true: |i = |LIO = 100.0. 
The X-values that would be obtained would be situated with 95% probability in the 
range 99.22-100.78. The value of 98.20 is outside this range and the confidence 
interval around 98.20 (97.42-98.98) would not include 100.0. Therefore, we would 
reject Ho on finding a value of 98.20 and would also do so for any other value below 
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98.20 99.22 100.0 100.78 

Fig. 4.2. Type I (a) and II (p) errors for Example 1. Distribution A is the distribution of x-values that 
would be obtained if the measurement were biased (|i = 98.20). Distribution B is the distribution of 
x-values that would be obtained if the measurement were unbiased (̂ i = î<) = 100.0). 

99.22. The limits are chosen such that there is a 5% probability that we would make 
an a or type I error (a = 0.05 or 5%). This is so because in 5% of all cases a set of 
4 determinations with an unbiased method (|i = Ho) for which a = 0.80 will yield a 
value outside the limits. 

Let us now suppose that the method is indeed biased with a bias -1.80 and that 
the population mean \i of the determinations is therefore 98.20. We might wonder 
whether that bias could go undetected. If we were to find a value of jc higher than 
99.22, we would conclude that there is no bias because the confidence interval 
around 99.22 would include 100.0. We would accept the Ho hypothesis, i.e. 
conclude that |Ll = |Lio, while in fact this is not true. We have now made a type II 
error or ^-error, which consists in (incorrectly) accepting that Ho is true, while in 
fact it is not. 

There is a relationship between the two types of error. Let us compute how large 
the p-error would be for our example. Knowing that there is a bias of -1.80 and 
that therefore |Li = 98.20, what is the probability of finding a value higher than 
99.22? The z-value for 99.22 on the distribution centred around 98.20 is given by: 

99.22 - 98.20 ^ ^^ 
z = —— = 2.55 

0.8 W4̂  
Using Table 3.2 we see that the fraction of values with z > 2.55 is 0.006. The 

P-error is 0.006 or 0.6%. For this example, we can summarize that when we accept 
an a-error of 5%, we incur a risk of P = 0.6% of falsely accepting Ho, when there 
is a true bias of-1.8. 

Let us now suppose that a = 5% is considered too large, i.e. having a 1 out of 20 
probability to decide that Ho must be rejected when it should not. We would like 
to reduce the risk and therefore set a = 1 %. The lower decision limit around 100.00 
within which jc-values would lead to the conclusion |LI = |LIO = 100 would now be 

100.00-2.57 ^•«^= 98.97 
^ 
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The probability that an x higher than this decision limit would be obtained out 
of the population centred around |Li = 98.20 has now grown larger. Since 

98.97 - 98.20 , ^^ 
z = 1=—=1.92 

0.8/V4 

the probability of finding a higher value than 98.97 is 2.6%. There is a probability 
of 2.6% that one would not detect the bias. 

Let us suppose that there is a somewhat smaller bias, \x = 98.40. As before, we 
can compute the z-value for 99.22 for a distribution centred around 98.40. This 
would then be 2.04, resulting in a p-error of 2.1 % for a = 5%; for a = 1 %, z = 1.43 
and P = 7.6%. Clearly, decreasing a increases the p-error. For this reason, we 
would not reduce a to very low values. Very often, a = 0.05 and, in fact, this has 
become so standard that a good reason is needed to replace it by a = 0.01 in step 2 
of the hypothesis testing process as explained in Sections 3 and 4. 

Incidentally, we can now define what is called the power of a test. This is the 
probability of correctly rejecting Ho when it is false or, in other words, how likely 
the test is to detect a statistically significant difference. Since P is the probability 
of accepting Ho under those circumstances, the power of a test is given by 1 - p. 
For a = 5% and [i = 98.4, P = 0.021 and the power of the test = 1 - 0.021 = 0.979 
or 97.9%. 

The comparison of the p-error for |Li = 98.2 and |i = 98.4 shows that, all 
circumstances being equal, p grows as the difference between 100 and |Li becomes 
smaller. This is common sense. We are more likely not to detect a bias when that 
bias is small. It is also common sense that p will be larger when a is larger and n 
smaller. The two distributions of Fig. 4.2 then overlap to a larger extent. In 
summary, for a given a, p grows as ||Lio - |Li| decreases, a increases or n decreases. 

The effect of n will be investigated further in Section 4.8. Let us return to the 
difference |io - |Li. The effect of this difference is often described with a power 
curve. This is a plot of 1 - p (the power) as a function of the ||U- - |iio|. When ||Li - |Lio| 
is small the probability that Ho will be rejected is also small or P is large and the 
power, 1 - P, again small. The larger ||i - |LAO| becomes the larger the power 
becomes. When ||LI - |Uo| is sufficiently large, the power becomes virtually 1. This 
is shown in Fig. 4.3 together with the so-called operating characteristic curve (OC 
curve). This is the curve relating p and ||i - |Lio| for a given a, a and n. The two 
curves, of course, give the same information. 

The power of a test is sometimes called its sensitivity. This is for instance the 
case when one carries out clinical tests. In this context, a and p considerations are 
very important; a represents then the probability of obtaining what is called a false 
positive and p that of obtaining a false negative conclusion, the conclusion being 
that a patient suffers from some disease. This is discussed at greater length in 
Section 16.1.3. 
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Fig. 4.3. (a) Power curve, (b) Operating characteristic curve. 

4.8 Sample size 

So far, we have set an a-level and a sample size n, and, for a given |^o - ^1 and 
a or 5 we were then able to compute p. Another question is to determine what 
sample size n is large enough to achieve the purpose of our test with sufficient 
confidence. To express it in terms of our examples, p is the probability that we will 
not detect a certain bias although it exists. Stated in this way p clearly is important 
and we should ask the question: how large should the sample size n be to detect a 
given difference |Ho - \i\, which is considered relevant, with a given o or s, so that 
there is only a% probability of deciding that there is a difference when there is 
none, and p% probability of not detecting the difference when it does exist. Stated 
again in terms of our example: 

- how many replicates n should be analyzed to detect a bias of at least IM^ - ^i| 
in a procedure with a known precision, C, or a precision, s, estimated from 
the experiment, so that there is a probability of not more than a% to decide 
there is a bias, when there is in fact none and, at the same time a probability 
of not more than P% that a bias larger than iMo - [A will go undetected? 

If we call 5 the minimum difference that we want to detect, we can verify that 
(see Fig. 4.4): 
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/̂5 a/1 

Fig. 4.4. Derivation of equation for minimum sample size. 

for known a where â/2 and z^ are the value of z for the stated a and (3, respectively. 
Indeed from the example given above, it can be understood that the decision limit 
is situated at z^ii from |io and zp from |Li. If a certain difference 6 = ||i - |lol must be 
detected at a given a and p-level, for instance a = p = 5%, then, expressed in z units 
6 > Zoc/2 + zp = Z0 025 + 0̂.05- In the original units and still assuming a is known 

5>(za/2 + zp)aA/n" 

which yields eq. (4.4) by rearrangement. 
We can also make use of graphs published by ISO [2]. In Fig. 4.5a the required 

sample size n can be derived for a known a and in Fig. 4.5b for an s, estimated by 
the experiment. Let us consider first only Fig. 4.5a. The abscissa is A,, where 

\ ^ ^ ^ (4.5) 
a 

The parameter \ is in fact the effect or bias we want to detect expressed in 
standard deviation units. It may be that a smaller effect than \ exists, but this is 
considered of no practical interest by the experimenter. Let us return to Example 1. 
The known amount |LLO = 100 mg. A bias of 1.5 mg is judged to be relevant and 
should be detected with a (3 = 0.05. Since it is known that a = 0.8 mg, X = 1.5/0.8 
= 1.87 and, from Fig. 4.5a, n > [(1.96 + l.65)/1.87f = 3.73 is derived, then n = 4 
determinations need to be carried out. 

Suppose now that a had been 1.6 mg. Then X = 0.93 and n should then have been 
15. Equally, if the bias to be detected had been 1.0 instead of 1.5, then, for a = 0.8, 
X = 1.25 and n should have been larger than 8.33, i.e. 9. 

If we compare Fig. 4.5a with Fig. 4.5b, we observe that the two sets of lines are 
about the same for n > 25. This is the limit above which in Chapter 3 it was accepted 
that the experimental s may be equated with a and where probability calculations 
can be performed with z as a parameter. Below n = 25, the divergence increases. 
Below that limit, calculations are performed with ^values, which become 
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Fig. 4.5. Sample size required to detect a certain bias X=5/a (situation a, a known) or X, = 5/5 (situation 
b, s obtained from the experiment) at the a = 5% level of significance. Adapted from Ref. [1]. 

progressively larger compared with z-values as n decreases. For instance, for 5̂  
(instead of a) = 0.8 and ||io - Hi = 1.5, i.e. X = 1.87, we derive that n = 6 (instead of 4, i.e. 
1.5 times more). Incidentally, analytical chemists very often work with n = 6 replicates 
in studies concerning bias and usually do not know a, which means they determine s. 
At the a = 0.05, p = 0.05 level, they are therefore able to detect a bias of 1.87 s. 
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A philosophical point should be made here. As already stated above, the practice 
of hypothesis testing is biased towards the use of a over (3. The reason is that 
statisticians applying their methods in biology and the social sciences were conser­
vative and were mainly concerned to avoid jumping wrongly to the conclusion that 
there is an effect; they therefore stressed a low probability a of wrongly deciding 
there is an effect, when there is none. This is not necessarily always the best 
approach. In the example given in this section, it is just as important not to decide 
there is no effect (no bias) when in fact the effect exists. Not including considera­
tions about (3 encourages sloppy work. Indeed, the best way of achieving a low a 
is a high a (bad precision) and low n (few replicates). (3 then becomes high, i.e. the 
probability of missing an effect, although it exists, increases. Considerations about 
a and p depend strongly on the consequences of making a wrong decision. In the 
toxicological study of a drug, we should be as certain as possible not to conclude 
wrongly that there is no toxicological effect, since this would lead to undesirable 
side-effects in the drug. In pharmacological studies on the same drug, we would 
try to avoid wrongly concluding that there is an effect, since this would lead to the 
use of drugs that have no real therapeutic effect. The toxicologist needs a small 
p-error, the pharmacologist a small a-error. 

If we do not know a and determine s from the experiment in which we are 
investigating whether the bias or effect exists, there is of course a problem. If we 
do not know before the experiment how large s is, we cannot compute n. In this 
case, we can work as follows. If at the given a level an effect is detected, then we 
accept Hi and reject HQ. If no effect is detected, eq. (4.1b) is used to determine how 
large P is for the /i-value used, the s found and the observed 8. If this is smaller than 
a level set a priori, we accept Ho and reject Hi. Otherwise, we note that we cannot 
reject HQ and accept Hi, but reserve judgement because n was too low and p 
therefore too high. 

It should be noted, that although this is the correct procedure, it is often not 
applied. However, this depends on the field of study. For instance, in clinical trials 
P considerations are often included to determine minimal sample size; in analytical 
chemistry and in chemistry in general they are usually not. 

4.9 One- and two-sided tests 

In the preceding sections the hypotheses were 

Ho:|Li = |LLoandHi:|i;« |̂Ho 

or to write Hi in another way 

H,:|Li>|Uo or |Li< |Lio 
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In the context of the example given in these sections, it is just as bad to find that 
the analysis method yields too high (|i > |io) or too low (|i < |Lio) results. This is what 
is called a two-sided, two-tail or two-tailed hypothesis. The former term is pre­
ferred by ISO. 

There are situations where we are concerned only about "greater than" or 
"smaller than", and not both of them at the same time. For instance, suppose that 
ore is bought to produce metal A. The seller guarantees that there is 10 g/kg of A 
in the ore. The buyer is interested only in ascertaining that there is enough A in the 
product. If there is more, this will be all the better. The hypothesis test will be 
formulated by the buyer as follows: 

Ho: ^ > 10 g/kg 

H,:|Li<10g/kg 

The hypothesis |Li > 10 g/kg will not be tested as such by the buyer. The buyer 
(consumer) tests that the risk of having less metal A than expected does not exceed 
a given probability. The producer might decide to test that he does not deliver more 
metal A than needed, in other words that he does not run a higher risk than that 
acceptable to him of delivering too much A. This leads to the concept of con­
sumer/producer risk and the application of acceptance sampling techniques (see 
Chapter 20). Another example is the following. A laboratory is testing whether a 
substance remains stable on storage. The initial concentration is known to be 100.0 
mg/1. After a certain time, the sample is analyzed six times. The mean x is 94.0 
mg/1. It estimates a mean \x, and one is concerned whether |LL is lower than 100.0, 
taking into account that it is known that a = 8.0 (i.e. a relative standard deviation 
of 8%). The hypotheses are 

Ho:|Li> 100.0 

H,:|Li< 100.0 

These are examples of a one-sided, one-tail or one-tailed test. 
Let us consider the normal distribution of x around |Li of Fig. 4.6. The hypotheses 

are: 

Ho: |Li > |io 

H,:|Li<|Lio 

At the a = 0.05 level for a two-sided test, the interval in which Ho will be accepted 
is between z = -1.96 and z = +1.96. For a one-sided test with H]: |Lt< |Lio, we would 
accept an a = 0.05 probability to incorrectly reject Ho, i.e. conclude that \i is lower 
than |io when it is in fact at least equal. Therefore the decision limit must be set so 
that 5% of all cases fall below it, i.e. at z = -1.65. 
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Fig. 4.6. One-sided decision limit (at -1.65) compared to two-sided limits (between -1.96 and -t-1.96). 
(a) Interval in which Ho would be accepted for a one-sided test; (b) interval in which Ho would be 
accepted for a two-sided test. 

All X below |L1O- 1.65(a/Vn) will lead to rejection of HQ: |ii > |i<) and to acceptance 
of Hi: |Li < |Lio. Observe that an effect is more easily detected. For instance for a 
calculated z = -1.80, the two-sided test would have led to acceptance, while the 
one-sided test, thanks to the additional information about the type of Hi, would lead 
to rejection. 

In terms of confidence limits, we can reword the preceding paragraph as 
follows. All X such that x + 1.65(a/Vn) is smaller than jOo will lead to rejection of 
HQ. We have used a one-sided confidence interval. We observe that the upper limit 
of the one-sided interval is closer to JC than the same limit for the two-sided interval. 
The results between z = -1.65 and -1.96 now lead to rejection of Ho, while this 
would not have been the case for two-sided tests. We should also observe that the 
limit of a 95% one-sided interval is equal to that of the 90% two-sided confidence 
interval. The one-sided test detects more easily a difference and therefore it is more 
powerful than the two-sided test. 

When there is an a priori reason to carry out the one-sided test instead of the 
two-sided test, this should be preferred. In this context a warning should be given. 
Let us go back to Example 1 of Section 4.1. We might (incorrectly) reason as 
follows. Since x = 98.2, it is smaller than |Lio; therefore, the hypothesis |Li > |io should 
not be included. The original two-sided hypothesis test thus becomes a one-sided 
test and the test becomes more powerful. This reasoning is not acceptable. If there 
is no a priori reason to state a one-sided hypothesis test, then the hypothesis should 
be two-sided. 

Let us now apply this to the stability on storage example and go through the steps 
of Section 4.3. 

Step 1: 

Ho: |i > Mo 

Hi: |Li< |Lio with |io = 100.0 



Step 2: 

a = 0.05 

Step 3: The confidence interval around jc is a one-sided confidence limit given by 

9 4 . 0 + 1 . 6 5 - ^ = 99.4 

Step 4: |io = 100.0 is higher than the upper confidence limit. 

Step 5: Reject Ho, accept Hi. The amount found is significantly lower than 100.0 
mg/1. The substance is not stable on storage. 

Step 6: z = (100.0 - 94.0)/(8.0/V6") = 1.84. /7(one-sided) = 0.033. 

The report would therefore include the statement p < 0.05 and preferably also: 
{p = 0.033). 

It should be noted that we used z and the one-sided version of eq. (4.1a) because 
G is known in our example. As in Section 4.3, t should be used instead of z in cases 
where this is appropriate. 

We can also include p-considerations for a one-sided test. In this case the 
equation for the sample size n becomes 

A2 = [(za + zp)a/5]' (4.6) 

for known a. Since Za/2 (eq. (4.4)) is larger than Za (eq. (4.6)), n for a one-sided test 
may be smaller than for a two-sided one to have the same probability of not 
detecting the relevant difference 6. 

4.10 An alternative approach: interval hypotheses 

The hypotheses described so far are also called point hypotheses in contrast to 
the interval hypotheses we will shortly introduce in this section. We will do this 
with an example about the stability of drugs in biological fluids, which was 
described by Timm et al. [3]. The problem is to decide whether a drug in blood 
remains stable on storage. A certain amount of degradation (up to 10%) is consid­
ered acceptable. In statistical terminology, we want to exclude a degradation higher 
than 10% with 95% probability. Suppose that we add a known amount of 100.0 mg 
to the blood, then, following our procedures from Sections 4.1 to 4.9, we could only 
carry out a hypothesis test with as hypotheses: 

Ho: |Li> 100.0 H,: III < 100.0 

This is a one-sided test and therefore, to obtain the one-sided 95% confidence limit, 
we will compute the two-sided 90% confidence interval (see 4.9). Since the test is 
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Fig. 4.7. Different situations in a stability on storage test, x is the mean result obtained, UCL, the upper 
one-sided 95% confidence limit used in the point hypothesis test and LCL the lower one-sided 95% 
confidence limit used in the interval hypothesis test. The interval between UCL and LCL is the 90% 
two-sided confidence interval. 

one-sided, we will automatically accept Ho, when the mean result obtained by 
carrying out n replicate tests is higher than 100.0 (situation f) of Fig. 4.7. In 
situations a) and e) we would also conclude that there is no significant difference 
because 100.0 is situated in the confidence interval, in the one-sided case the 
interval (-oo) - UCL (upper confidence limit). In situations b) and c) we would find 
that the difference is significant, but we would probably add that since our best 
estimate, the mean, is higher than 90.0. the difference is acceptable. In d) we would 
conclude that there is a significant difference and that it is unacceptably high. This 
approach is not satisfying because we observe from Fig. 4.7 that in situations c) 
and e) there is a higher than 5% probability (one-sided) that the loss due to 
degradation exceeds 10.0, since the lower confidence limit is situated below 90.0. 
In other words, the p-error exceeds 5%. 

In interval hypothesis testing, one accepts as not different those cases where the 
confidence interval around the estimated value is completely inside the acceptance 
interval, here 90.0 - +oo. This confidence interval is now the interval LCL (lower 
confidence limit) - {-^<^). In statistical terms the interval hypothesis for the one­
sided example can be written as 

Ho: |Li < AL 

Hi! |Li> AL 

where AL is the acceptance limit 90.0. 
Let us again consider Fig. 4.7. Situations a) and f) are completely inside the 

acceptance interval. This is also the case for b). In this case, there is a significant 
degradation because 100.0 is not in the two-sided 90% confidence interval, but it 
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is not relevant since, with 95% probability, it does not exceed the 10% degradation 
limit. 

In cases c), d) and e), we would reject the conclusion that there is no relevant 
degradation. This was already so for the point interval hypothesis for d) but not for 
situations c) and e). The rejection in c) is due to the fact that it is a marginal case. 
It is more probable that the degradation is acceptable than that it is not, but the 
probability that it is not is too high. In situation e) the uncertainty on the results is 
too high. This is connected with the p-error for the point hypothesis test: if we had 
computed the p-error for the point hypothesis test, we would have concluded that 
the p-error for finding a difference of 10.0 would have been too high. We observe 
that the interval hypothesis test is more conservative in accepting Ho, but also that 
it must be more useful in certain cases since it takes into account considerations 
about which difference is relevant and avoids high p-errors. For a two-sided test, 
we would write: 

Ho: LAL > |LI or UAL < |ii 

H,:LAL<|Li<UAL 

where LAL and UAL are the lower acceptance limit and upper acceptance limit, 
respectively. 

Ho is rejected and therefore Hi accepted at the 95% level of confidence when the 
90% two-sided confidence interval around x is completely included in the accep­
tance interval. This 95-90 rule may appear strange, but it can be rationalized as 
follows. The interval hypothesis test can be described as consisting of two one­
sided point hypothesis tests: 

Ho,:|Li<LAL Ho2:|Li>UAL 

H,,:|Li>LAL H,2:^<UAL 

each being carried out at the 95% one-sided confidence level. Ho will be rejected 
when both Hoi and H02 fail and we should remember that the limit of a 95% 
one-sided confidence interval is equal to one of the limits of the 10% two-sided 
interval. When x < centre of the acceptance interval, one knows a priori that, when 
LAL < |Lt (Hii accepted). Hi2 will be accepted automatically since UAL must then 
be larger than |LI. In practice therefore, in this simple situation a single one-sided 
hypothesis test is required. This is, however, not always the case. 

This approach is not the more usual one. As explained, it has been proposed by 
Timm et al. [3] for stability studies of drugs in blood and also by Hartmann et al. 
[4] for method validation purposes, but it is not the standard approach in those two 
fields. It has been accepted, however, as the standard approach for bioequivalence 
studies [5]. Such studies are carried out to show that the bioavailability of a new 
drug formulation is comparable to that of an existing one. To avoid p-errors, i.e. 
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accepting bioavailability when it does not exist, one has come to apply the interval 
hypothesis testing approach. Although this approach is to be preferred in many 
cases, we will not apply it systematically in what follows because it is so unusual 
in most application fields. 
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Chapter 5 

Some Important Hypothesis Tests 

5.1 Comparison of two means 

In the previous chapter we learned how to carry out a hypothesis test. We applied 
it to compare a sample mean, 3c, with a known value, |Lio. Now the comparison of 
two independent sample means, X\ and X2, will be described. 

Depending on the experimental design two different approaches have to be 
considered. The first is for the comparison of the means of two independent 
samples. In this case we want to compare the means of two populations and to do 
this a sample from each population is taken independently. For example to com­
pare the nitrogen content in two different wheat flours replicate determinations in 
each flour are performed. Or, in the comparison of two digestion procedures prior 
to the determination of nitrogen in wheat flour, the same flour is analyzed inde­
pendently by means of the two procedures. 

The latter comparison could also be performed by means oi paired samples. In 
that case different flours are used. An aliquot of each flour is analyzed by means 
of both procedures. The two samples thus obtained are paired, each pair being 
composed of the same flour. Consequently there is a one-to-one correspondence 
between the members of the samples which implies that there are equal numbers 
of observations in both samples. Pairing in this example is interesting since 
different flours are included in the comparison of the two digestion procedures. 

5,1.1 Comparison of the means of two independent samples 

Two different approaches which depend on the sample size can be considered. 

5.1.1.1 Large samples 
X] andx2 are estimates of |Lii and |Li2, based on respectively n] and 2̂ observations. 

We have to test the hypothesis that there is no difference between |ai and |Li2. 
Therefore the null hypothesis is formulated as: 

Ho:|Lii=|Ll2 (or |Li, - |Ll2 = 0) 

and the alternative hypothesis, for a two-sided test: 
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For a one-sided test the alternative hypothesis is: 

Hi:|iii>|Li2 (or|Li,-|Li2>0) 

or 

H,:|ii<|Li2 (or |Lii - |Li2 < 0) 

depending on the problem that is considered. 
For large samples, (n\ and n2 > 30), taken from any distribution of x (i.e. even a 

distribution that is not normal), the mean jc, is normally distributed with a variance 
a^/n (see Section 3.5). Consequently Jci and X2 are normally distributed variables 
with variance Gi/ni and a2//i2, respectively. If the null hypothesis is true, x\ - xj is 
also normally distributed with a mean zero and variance {G\/n\ + di/ni), since the 
variance of the sum (or the difference) of two independent random variables is the 
sum of their variances. 

Therefore the statistic used in the comparison of Xi and X2 is: 

z= , ^ ' " ^^ (5.1) 

If Gi and 02 are not known, s\ and s\ calculated from eq. (3.2) are considered as 
good estimators of the population variances a? and a i In that case one calculates: 

z= , ^ ' " ^^ (5.2) 
^s]/nx +52/^2 

For a two-sided test Ho is accepted if Izl, the absolute value of z obtained from eq. 
(5.1) or eq. (5.2), is smaller than the critical z-value at the chosen significance level. 
For a one-sided test with Hi specified as |Lii > |Li2, Ho is accepted if z < Zcrit- If H| is 
specified as |Lii < |Li2, Ho is accepted if z > -Zcnt- At a = 5%, Zcrit = 1 96 for a two-sided 
test and Zcrit = 1 -645 for a one-sided test. 

The test can, of course, also be carried out by calculating the (1 - a) 100% 
confidence interval for |ii - |Li2. The 95% confidence interval for a two-sided test is 
given by: 

(jc, -X2) ± 1.96 ^s\/nx+sl/n2 (5.3) 

The null hypothesis is accepted if this interval contains the value 0. 
For a one-sided test the 95% confidence limit would be calculated as: 

(jci -X2)-\ .645 <s\/nx^sl/n2 (5.4) 

or 

{x\ - ;C2) + 1.645 ^siMi +5*2 7̂ 2 (5.5) 
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depending on whether the alternative hypothesis is HI:|LLI > \X2 or HI:|LII < |LL2, 

respectively. In the former situation the null hypothesis is accepted if the value 0 
exceeds the lower confidence limit, in the latter situation if the value 0 is smaller 
than the upper confidence limit. 

As an example, suppose that in the comparison of two digestion procedures prior 
to the determination of nitrogen in wheat flour, the following results are observed: 

Procedure 1: 3ci = 2.05 g/100 g ?̂ = 0.050 (ni = 30) 

Procedure 2: X2 = 2.21 g/100 g sl = 0.040 (̂ 2 = 32) 

Procedure 1 was suspected beforehand of resulting in some loss of nitrogen during 
the digestion. Consequently the hypothesis to be tested is Ho:|U,i = |i2 against the 
alternative Hi:|ii < |i2. The calculated z-value (eq. (5.2)) is obtained as: 

2 0 5 - 2 2 1 
: = -2.96 V0.050/30 +0.040/G2 

Since the test is one-sided, at the 5% level of significance, this value has to be 
compared with -1.645. The null hypothesis is rejected and it can be concluded that 
procedure 1 indeed yields lower results {p < 0.05). 

The calculation of the one-sided upper 95% confidence limit (eq. (5.5)) yields: 

- 0.16 + 1.645 V0.05/30 +0.04/32= - 0.071 

This is smaller than 0 and of course would lead to the same conclusion. 

5.1.1.2 Small samples 
As already mentioned in Chapter 3, if n is small and a is not known, s^ is not a 

precise estimator of the population variance. The tests described in the previous 
section, which are based on the normal distribution, cannot be applied if ni and/or 
^2 < 30. The ^distribution (see Section 3.7) should be used instead. The t-test is 
now based on the following assumptions: 

1. The samples with mean X[ and X2 are drawn from normally distributed 
populations with means |Lii and |Li2 and variances Gi and a i Tests described in 
Chapter 3 can be used to check this assumption. If normality cannot be shown or 
assumed (from previous knowledge) a non-parametric test (see Chapter 12) should 
be performed. 

2. The variances a? and al estimated by î and si are equal. In Section 5.4 it will 
be explained how this assumption can be tested. If the latter condition is fulfilled, 
a pooled variance s^ (see Chapter 2), which is an estimate of the common variance 
of the two populations can be obtained: 

2̂ ̂  ( ^ 1 - 1 ) ^ 1 + ( ^ 2 - 1 ) ^ 2 .5 g. 

(ni -\-n2-2) 
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It is necessary before the estimation of the mean and the standard deviation of 
both samples to check that the data do not contain outlying observations which may 
have a large influence on these parameters. As shown in Section 3.8 the presence 
of outliers is a source of non-normality. Tests for the detection of outliers are 
described in Section 5.5. 

The r-test is then performed by calculating the statistic: 

t= ; . ~"'~~"' (5.7) 

This calculated /-value is compared with the critical r-value at the chosen 
significance level, a, and n\ + ^2 - 2 degrees of freedom. For a two-sided test Ho 
is accepted if Irl < fcrit. For a one-sided test with Hi specified as |Lii > |Li2, Ho is 
accepted if r < rent- If Hi is specified as |Lii < |Li2, Ho is accepted '\ft> -rent. 

In a similar way as described earlier, the test could also be carried out by 
calculating the (1 - a) 100% confidence interval for |LLI - |LL2. 

The same example as in the previous section but with smaller sample sizes U] 
and Hi will be considered: 

Procedure 1: 3ci = 2.05 g/100 g s] = 0.050 (n, = 8) 

Procedure 2:3c2 = 2.21 g/100 g sl = 0.040 (̂ 2 = 7) 

It will be assumed that both populations from which the samples are drawn are 
normally distributed. From the F-test (see Section 5.4) it can be concluded that the 
hypothesis d\ - ol is acceptable. Consequently, at the 5% significance level, the 
null hypothesis Ho: |ii = |Li2 can be tested against the alternative Hi: |Lii < |Li2 by 
means of a r-test. First the pooled variance s^ (eq. (5.6)) is calculated: 

, 7x0.050 + 6x0.040 ^ ^ , , 
s- = — = 0.045 

The calculated t (eq. 5.7) is obtained as: 

-0.16 ^^^ 
t = . = -1.46 

V0.045(l/7 + l/8) 
The critical r-value for a one-sided test and 13 degrees of freedom is 1.771 (see 
Table 3.4). Since t > -tent the null hypothesis can be accepted. Consequently from 
these results no difference between the two digestion procedures can be detected. 

The calculation of the one-sided upper 95% confidence limit, which is obtained 
from 

(x, -X2) + ro.o5 ^s\l/ni + 1/̂ 2) 
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and yields 

- 0.16 + 1.771 V0.045(l/7 + l/8) = 0.034 

would lead to the same conclusion since this limit exceeds 0. 
If the condition of a homogeneous variance (a? - GI) is not fulfilled, the test 

cannot be applied as described earlier since a pooled variance cannot be obtained. 
The Cochran test can then be used. It is based on the comparison of 

t= , ^'~^' (5.8) 

with a critical value given by: 

ti{sUni) + t2{sl/n2) 

(sUni) + {sl/n2) ^'= 'ULl^ " (5.9) 
where, for a = 0.05, ti represents the critical ^value for rii-l degrees of freedom 
and t2 represents the critical ^value for 2̂ - 1 degrees of freedom. With ri] = nj, 
f -t\= t2. The test statistic in eq. (5.8) is obtained in the same way as in eq. (5.2) 
but it is tested differently. 

Consider for the previous example the following results: 

Procedure 1: JCi = 2.05 g/100 g 5? = 0.050 (rii = 9) 

Procedure 2: X2 = 2.21 g/100 g sl = 0.010 (̂ 2 = 8) 

The means have not changed but the variances and sample sizes are different. From 
the F-test (see Section 5.4) it is concluded that a? # ai. Therefore the Cochran test 
has to be used for the comparison of both means. The calculated f-value: 

"• '« =-1.94 
; 0.050 0.010 

^ 9 "̂  8 
has to be compared with -f. Since from 

, 1.860(0.050/9) + 1.895(0.010/8) 
(0.050/9)+ (0.010/8) 

it follows that t < -f it is concluded that procedure 1 yields lower values (p < 0.05). 

5.1.2 Comparison of the means of two paired samples 

As already mentioned earlier two samples are paired if there is a one-to-one 
correspondence between the members of the samples. An example will illustrate 
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this. The nitrogen amount is determined in 8 different flour samples. For the 
digestion of each of these samples two different procedures are used. The results 
are the following: 

Flour 

Procedure 1 

Procedure 2 

1 
2.0 
1.8 

2 
1.4 
1.5 

3 
2.3 
2.5 

4 
1.2 
1.0 

5 
2.1 
2.0 

6 
1.5 
1.3 

7 
2.4 
2.3 

8 
2.0 
2.1 

These are paired samples since each value obtained for the first procedure has 
to be compared with a specific value obtained for the second procedure. This 
situation obviously is different from that described in Section 5.1.1 where the 
samples are independent since there is no specific connection between the obser­
vations from the samples. This connection exists in the above example since what 
is important is the comparison of 2.0 and 1.8 which both are results for the first 
flour, 1.4 and 1.5 which are the results for the second flour and so on. That 
information is taken into account by considering the differences between the paired 
observations: 

d/ = -^1, — X2i 

The mean of these differences is: 

d = ^ (5.10) 
n 

where n represents the number of pairs, d is an estimate of the true but unknown 
mean difference 5. If there is no difference between the means obtained by both 
procedures 5 = 0. Therefore the null hypothesis can be formulated as: 

Ho: 6 = 0 

and the alternative hypothesis for a two-sided test: 

H,:5;^0 

For a one-sided test the alternative hypothesis is: 

H , : 6 > 0 

or 

H , : 8 < 0 

In this way the problem has been reduced to the comparison of a mean with a 
given value (here 0) and tests similar to those described in Chapter 4 can be 
performed. Depending on the sample size they are based on a normal distribution 
or on a r-distribution. 
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5.1.2.1 Large samples 
For large samples {n > 30) the statistic 

3 - 0 ..... 
z^—-f=- (5.11) 

is calculated; s^ is the standard deviation of the differences and consequently 
sj^'is the standard deviation of the mean difference. At the significance level a 
this calculated value has to be compared with the critical z-value which is 1.96 for 
a two-sided test and 1.645 for a one-sided test. For a two-sided test Ho is accepted 
if Izl < Zcrit- For a one sided test with Hj specified as 6 > 0, Ho is accepted if z < Zcrit-
If H] is specified as 6 < 0, Ho is accepted if z > -Zcrit-

5.1.2.2 Small samples 
For small samples (n < 30) a ^test is performed 

, - ^ (5.12) 

where t has (n- 1) degrees of freedom. The test is only valid if the differences d/ 
are normally distributed and have the same variance. 

If for our example of paired samples mentioned earlier, we want to know 
whether the two digestion procedures yield the same results (two-sided test; 
a = 0.05) the calculations proceed as described in Table 5.1. Since 

d = 

• ^ d ^ 

Id, 
— U 

n 

/S(d,-
V n -

TABLE 5.1 

.05 

1 

Comparison of the means 

Flour 

1 
2 
3 
4 
5 
6 
7 
8 

:0.16 

of two paired 

Procedure I 

2.0 
1.4 
2.3 
1.2 
2.1 
1.5 
2.4 
2.0 

samples 

Procedure 2 

1.8 
1.5 
2.5 
1.0 
2.0 
1.3 
2.3 
2.1 

d, 

0.2 
-0.1 
-0.2 

0.2 
0.1 
0.2 
0.1 

-0.1 
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r = ^ = - i ^ = 0.88 
5d/Vn 0.16/V8 

The critical r-value for a two-sided test and 7 degrees of freedom is 2.365 (see 
Table 3.4). Since Irl < rent there is no significant difference between both digestion 
procedures for the analysis of nitrogen in flour. 

5.2 Multiple comparisons 

If more than two means have to be compared we could reason that 2 by 2 
comparisons using a r-test will reveal which means are significantly different from 
each other. However in these comparisons the same mean is used several times and 
consequently the r-tests are not independent of each other. As a result, when all 
population means are equal, the probability that at least one comparison will be 
found to be significant increases. Even if all population means are equal, the more 
comparisons are made the more probable it is that one or more pairs of means are 
found to be statistically different. One way to overcome this problem is by 
adjusting the a value of the individual comparisons, a' such that the overall or joint 
probability corresponds to the desired value, a ' is then obtained from: 

a ' = l - ( l - a ) ' ^ ^ (5.13) 

with a ' the significance level for the individual comparisons; a the overall signifi­
cance level; k the number of comparisons. 

This adjustment is sometimes referred to as BonferronVs adjustment and the 
overall significance level, a, is calfed the experimentwise error rate. If a is small 
a ' can also be approximated by oJk. 

For example in the comparison of 5 means, 10 r-tests have to be performed 
{k = 10). If, when the null hypothesis is true, we want an overall probability of at 
least 95% (a = 0.05) that all the observed means are equal, we have to take 
a ' = 0.005. Therefore the individual comparisons have to be performed at a signifi­
cance level of 0.005. Critical r-values at a significance level of 0.005 have then to 
be used in the comparisons to ensure an overall significance level a = 0.05. 

It follows that, the more comparisons are made, the larger the differences 
between the pairs of means must be in order to decide, from a multiple comparison, 
that they are significant. In the following example 5 different digestion procedures 
for the determination of N in flour have been applied. The results obtained are: 

Procedure 
/̂ 
9 

SI 

11 i 

1 
2.21 
0.04 
8 

2 
2.00 
0.05 
8 

3 
1.95 
0.05 
8 

4 
2.15 
0.03 
8 

5 
2.20 
0.04 
8 
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TABLE 5.2 

Calculated r-values for the comparison of 5 different digestion procedures to determine N in flour. 

Comparison 

1-2 
1-3 
1-4 
1-5 
2-3 
2-A 
2-5 
3-^ 
3-5 
4-5 

2 
"Spooled 

0.045 
0.045 
0.035 
0.040 
0.050 
0.040 
0.045 
0.040 
0.045 
0.035 

\xi - JC2I 

0.21 
0.26 
0.06 
0.01 
0.05 
0.15 
0.20 
0.20 
0.25 
0.05 

l̂ call 

1.98 
2.45 
0.64 
0.10 
0.45 
1.50 
1.89 
2.00 
2.36 
0.53 

Do some of the procedures yield significantly different results? 
The calculated r-values (rcai) for the 10 different possible comparisons, as 

calculated for two independent samples from eq. (5.7), are summarized in Table 5.2. 
In order to ensure an overall significance level a = 0.05, the individual compari­

sons have to be performed at a significance level a ' = 0.005. Since in our example 
the means obtained for the different digestion procedures are based on the same 
number of observations {rii = 8) all calculated ^values must be compared with the 
same (two-sided) critical r-value, ro.oo5,i4 = 3.326. Consequently no differences 
between the digestion procedures can be detected since all calculated ^values are 
lower than this critical ^value. Note that if the individual comparisons were 
incorrectly performed at a significance level a = 0.05, two significant tests would 
result since .̂05,i4 = 2.145. 

The Bonferroni adjustment, as given in eq. (5.13) is also necessary for r-tests 
that do not involve computations from the same data. Such independent r-tests are 
for example computed in the following situation. To validate a method (see also 
Section 13.5.4) the whole range of concentrations for which the method is intended 
to be used must be considered. Therefore recovery experiments at different con­
centration levels, covering the range to be determined can be performed. The 
validation involves r-tests, at each concentration level, to compare the mean 
concentration found with the known concentration added (see Chapter 4). These 
r-tests are independent since each of them uses different data. To make a joint 
confidence statement that e.g. with 95% probability all found and added concen­
trations are equal, each individual r-test has to be performed at a significance level 
a ' as given by eq. (5.13). 

Other multiple comparison procedures are described in Section 6.3 where the 
analysis of variance (ANOVA) is introduced. An analysis of variance reveals 
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whether several means can be considered to be equal. However if they are found 
not to be equal ANOVA does not indicate which mean (or means) are different 
from the others. If this information is wanted multiple comparison procedures have 
also to be used. 

5.3 Beta error and sample size 

The p error has been defined in Section 4.7 as the probability of incorrectly 
accepting the null hypothesis when, in fact, the alternative hypothesis is true. Here 
it corresponds to the probability that for given sample sizes (ri] and ^2) and 
variances (a^ or s^) and for a specified significance level a, a certain difference 
between the two means will not be revealed by the test used although it exists. 
Alternatively, it is possible to determine the sample size (n\ =n2 = n) necessary to 
detect a certain difference between the two means so that there is 100 a% 
probability of detecting a difference when in fact there is none and 100 (3% 
probability of not detecting a difference when it does exist. 

Both these problems can be solved by using graphs published by ISO [1], which 
for the first kind of problem allow us to determine p and for the second kind of 
problem allow us to determine the sample size, n. Such a graph has already been 
introduced in Section 4.7 with respect to a test of the difference between a mean 
and a given value. It is impossible here to explain all the different graphs necessary 
to determine the P error and the sample size for the different tests previously 
described (z and r-tests, one and two-sided tests, a = 0.5 and a = 0.1). One example 
will illustrate how to use them here. The data are those from Section 5.1.1.2. 
Suppose that we wish to know the probability that a real difference between the 
means of the two digestion procedures equal to 0.15, will not be detected. Accord­
ing to ISO [1], the following value has to be calculated: 

l|̂ i - fel X = 
M l / n , + l/Al2) 

where s~ is the pooled variance which for our example equals 0.045. Consequently 
^ = 0.15/V0.045(l/8-h 1/7) = 1.4. Figure 5.1 shows the value of p as a function of 
X for a one-sided test and a = 0.05. For 13 degrees of freedom one finds (by 
interpolation) p to be about 0.6. Consequently, using the r-test with a significance 
level a = 0.05, the probability of not detecting a real difference between the two 
means equal to 0.15 (s^ being equal to 0.045) is about 60%. This value can be 
reduced by increasing the sample size and this can be derived from Fig. 5.2 
which shows the value of n {= ri] = n^) as a function of X. The latter is now 
calculated as: 
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Fig. 5.1. Operating characteristic curve for the one-sided r-test (a = 0.05). For the meaning of X see 
text. Adapted from Ref. [1] 

0.2 0.3 0.4 0.5 0.7 1.0 1.5 2 

Fig. 5.2. Sample size required to detect a certain bias with the one-sided r-test (a = 0.05). For the 
meaning of X see text. Adapted from Ref. [1]. 



104 

If we decide that we do not want a probability of more than 0.10 of accepting the 
hypothesis that [i] = |Li2 when actually |Lii - |Li2 = 0.15 it follows from Fig. 5.2 that n 
should be at least 36. 

5.4 Comparison of variances 

5.4.1 Comparison of two variances 

The comparison of two variances af and ai, estimated by s^\ and si is performed 
by means of an F-test: 

F = sVsl (5.14) 

in which si; is the larger of the two variances. By dividing the largest variance by 
the smallest variance an F-value equal to or larger than unity is obtained. This 
calculated F is compared with the critical F-value at the chosen significance level. 
This critical value is derived from tables of the F distribution such as the one shown 
in Table 5.3. The critical value, which depends on the two sample sizes, is found 
at the intersection of the column df] (= ni - 1 = the degrees of freedom correspond­
ing to s^) and the row df2 (= n? - 1 = the degrees of freedom corresponding to si)-
The F-test performed can again be two-sided (HQ: O} = cl;ll\: c^^cl) or one­
sided (Ho: a? = a2;Hi =cli> al). 

For the first example treated in Section 5.1.1.2 where two procedures for the 
determination of nitrogen were compared it was concluded that the two variances 
af, estimated by s] = 0.05 {n\ = 8), and ol, estimated by si = 0.04 (̂ 2 = 7), are equal 
(a = 0.05). This conclusion was reached as follows: 

F = 0.05/0.04= 1.25 

Since the alternative hypothesis is Hi: (5]^(52 a two-sided test has to be 
performed. Therefore the critical F-value is obtained from Table 5.3.a (the critical 
F-value for a one-sided test at a = 0.025 corresponds to the critical F value for a 
two-sided test at a = 0.05). Since dfi = 7 and df2 = 6, Foo5;7.6 = 5.70. The calculated 
F-value (1.25) being smaller than the critical value (5.70), the null hypothesis that 
both variances are equal is accepted. 

For the F-test ISO [1] also gives graphs that allow us, for the particular case 
where the two samples are of the same size, to determine the p error or for a given 
P to determine the common size n of the samples. 
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5.4.2 Comparison of a variance with a given value 

To compare a variance, s^ , with a known value Go the following test statistic is 
generally calculated: 

(5.15) 

Since T is distributed as y^ with n-\ degrees of freedom [2] the test consists in 
comparing the calculated T with the tabulated y^ given in Table 5.4. For a 
two-sided test at the 5% significance level (HQ: a^ = ao; Hi: a^^ol) the null 
hypothesis is rejected if r > %oo25;n-i or if r < Xo.975;«-i- For the one-sided test, HQ: 
G^-oh Hi: a^>ao, Ho is rejected if 7 > %o.o5 while for the one-sided test, HQ: 
a^ - Go; Hi: a^<ao, the null hypothesis is rejected if r < Xo.95. 

TABLE 5.4 

Critical values of Chi-square (the a-values represent the area to the right of the critical y} in one tail of the 
distribution) 

dA« 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.990 

0.000 2 
0.02 
0.12 
0.30 
0.55 
0.87 
1.24 
1.65 
2.09 
2.56 
3.05 
3.5:7 
4 J 1 
4.66 
5.23 
5.81 
6.41 
7.01 
7.63 
8.26 
8.90 
9.54 

10.20 
10.86 
11.52 
12.20 
12.88 
13.57 
14.26 
14.95 

0.975 

0.001 0 
0.05 
0.22 
0.48 
0.83 
1.24 
1.69 
2.18 
2.70 
3.25 
3.82 
4.40 
5.01 
5.63 
6.26 
6.91 
7.56 
8.23 
8.91 
9.59 

10.28 
10.98 
11.69 
12.40 
13.12 
13.84 
14.57 
15.31 
16.05 
16.79 

0.950 

0.003 9 
0.10 
0.35 
0.71 
1.15 
1.64 
2.17 
2.73 
3.33 
3.94 
4.57 
5.23 
5.89 
6.5? 
7.26 
7.96 
8.67 
9.39 

10.12 
10.85 
11.59 
12.34 
13.09 
13.85 
14.61 
15.38 
16.15 
16.93 
17.71 
18.49 

0.900 

0.015 8 
0.21 
0.58 
1.06 
1.61 
2.20 
283 
3.49 
4.17 
4.87 
5.58 
6.30 
7.04 
7.79 
8.55 
9.31 

10.08 
10.86 
11.65 
12.44 
13.24 
14.04 
14.85 
15.66 
16.47 
17.29 
18.11 
18.94 
19.77 
20.60 

0.100 

2.71 
4.61 
6.25 
7.78 
9.24 

10.64 
12.02 
13.36 
14.68 
15.99 
17.27 
18.55 
19.81 
21.06 
22.31 
23.54 
24.77 
25.99 
27.20 
28.41 
29.61 
30.81 
32.01 
33.20 
34.38 
35.56 
36.74 
37.92 
39.09 
40.26 

0.050 

3.84 
5.99 
7.81 
9.49 

11.07 
12.59 
14.07 
15.51 
16.92 
18.31 
19.67 
21.03 
22.36 
23.68 
25.00 
26.30 
27.59 
28.87 
30.14 
31.41 
32.67 
33.92 
35.17 
36.41 
37.65 
38.88 
40.11 
41.34 
42.56 
43.77 

0.025 

5.02 
7.38 
9.35 

11.14 
12.83 
14.45 
16.01 
17.53 
19.02 
20.48 
21.92 
23.34 
24.74 
26.12 
27.49 
28.84 
30.19 
31.53 
32.85 
34.17 
35.48 
36.78 
38.08 
39.37 
40.65 
41.92 
43.19 
44.46 
45.72 
46.98 

0.010 

6.63 
921 

11.34 
13.28 
15.09 
16.81 
18.47 
20.09 
21.67 
23.21 
24.72 
26.22 
27.69 
29.14 
30.58 
32.00 
33.41 
34.80 
36.19 
37.57 
38.93 
40.29 
41.64 
42.98 
44.31 
45.64 
46.96 
48.28 
49.59 
50.89 

0.001 

10.83 
13.82 
16.27 
18.47 
20.52 
22.46 
24.32 
26.13 
27.88 
29.59 
31.26 
32.91 
34.53 
3612 
37.70 
39.25 
40.79 
42.31 
43.82 
45.32 
46.80 
48.27 
49.73 
51.18 
52.62 
54.05 
55.48 
56.89 
58.30 
59.70 
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For example, we want to test if the variance, s^ = 1.24, obtained from 11 
observations has a true known value. Go = 1 (HQ: O^ = l^lli: O^ ^ 1). 7calculated 
from eq. (5.15) equals 12.4. Since Xo.o25;io = 20.48 and Xo.975;io = 3.25 the null 
hypothesis is accepted that a ,̂ estimated by s^, equals 1. 

It can be verified from Tables 5.3 and 5.4 that Xa;n-i = (n - 1) Fa-n-\,^ and 
X\-aM-] =(n- l)/Fa;oo,n-i. Therefore an F-test could also be applied by computing: 

F = s-/cl if s^>ol 

or 

F = al/s^ if cl>s^ 

The former F-value is compared with Fa:n-],oo and the latter with Foc;oo,„-i in the usual 
way. 

The test can also be performed by considering the 95% confidence interval for 
o~ which for our example is obtained as: 

< a^ < -^ (5.16) 
2 2 

Xo.025;n-l Xo.975;n-l 

or also as: 

s 
2 

< O < S Fo.025;oo,n-I 
FO.025;AI-1,< 

For our example this yields: 

12.4 2 12.4 

20.48 3.25 

or also: 

1 24 
y g < a ' < 1.24x3.08 

Therefore: 

0.61 <a'< 3.82 and 0.78 < a < 1.95 

The known true variance, Oo = 1, being contained in this interval, the null hypothe­
sis that o^ = 1 is accepted. Notice that, since the x^ distribution is not symmetrical 
the confidence interval cannot be written in the form s^ ± e. 
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5.5 Outliers 

Several of the hypothesis tests described up to now assume that the data are 
normally distributed. From what we learned in Chapter 3 we know that the normal 
distribution is completely characterized by the mean and the standard deviation. 
However the presence of an outlier, a value which is not representative for the rest 
of the data, can have a great influence on these parameters. Different outlier tests 
have been described but the problem is that they do not always yield the same 
result. Rechenberg [3] compared eight different procedures to test 4 suspect values 
in a series of 21 observations. Depending on the test used, zero or up to four outliers 
were detected. This shows that outlier rejection by statistical tests should not be 
carried out as a routine matter. They should rather be performed to identify 
problem samples. It is important to carefully examine whether an assignable cause 
for the outlier(s) can be found (e.g. a clerical error, a computational error, an error 
in the analysis). If this is the case, the outlier can be corrected or removed from the 
data. The occurrence of multiple outliers can be an indication that the analysis 
method is not under control and that corrective actions have to be taken. 

As indicated by the Analytical Methods Committee of the Royal Chemical 
Society [4], rejection of outliers on a statistical basis from data aimed at defining 
the variability of an analytical method, can result in an important underestimation 
of the variance. This is also illustrated by Goetsch and coworkers [5] who evalu­
ated some outlier problems in collaborative studies. 

If outliers are removed from a data set it should always be reported that outlying 
observations were present. 

5,5.1 Dixon^s test 

Dixon's test is one of the most popular tests for the detection of an outlier 
because it is easy to calculate. It is based on a comparison of the difference between 
the suspect value and its direct or a close neighbour with the overall range or a 
modified range. Consider a set of n data x/(/ = \,2,...n) arranged in order of 
increasing magnitude. Depending on the sample size the following test statistics 
are calculated: 
for A2 = 3 to 7: 

or 

GlO = (Xn —Xn-\) I {Xn — X\) 

depending on whether jci or Xn is the suspect value 



no 

for n = 8 to 12: 

Qw ^{X2-X\)l {Xn-\ - X i ) 

or 

Q\ \-{Xn- Xn-\) I {Xn - X2) 

forAi> 13 

or 

Q12 = {Xn - Xn-2) I {Xn - X3) 

In the literature sometimes another statistic (22i = fe - JCI)/(X„_I -X\)) or ((22i = 
{Xn - Xn-2)l{xn - x^) and Other critical values are found for n = 11 to 13. 

The calculated Q-value is compared in the usual way with the critical value at 
the chosen significance level. An outlier is detected if the calculated Q exceeds the 
critical Q. Critical Q-vdAuts are given in Table 5.5. The one-sided values in the 
table apply to test an observation at a predesigned end of the data set while for an 
observation that seems suspect after an inspection of the data the two-sided values 
have to be used. 

As an example consider the following data arranged in increasing order: 22.1, 
22.4, 22.9, 23.0, 23.5, 23.7, 23.9, 26.5. If, after the inspection of these data, we 
suspect the value 26.5 of being too high the following statistic is calculated 
{n = 8): 

Q\ 1 = {Xn— Xn-\) I {Xn — X2) 

= (26.5-23.9) 7(26.5-22.4) 

= 0.634 

From Table 5.5 the critical 2-value forn = 8 and a = 0.05 is 0.608. The calculated 
value is larger and therefore 26.5 is considered to be an outlier at the 0.05 level of 
significance. 

Problems can arise when the test is repeatedly used for the detection of multiple 
outliers since these can mask each other. It can be checked that if in the above 
example the value 23.9 is changed to 26.0, yielding a data set with two suspect 
values, no outlier is detected since Qu = (26.5 - 26.0) / (26.5 - 22.4) = 0.122. 
Multiple outlier tests such as described further are then more appropriate. 

The Dixon test is the outlier test originally recommended by ISO [7] for 
inter-laboratory tests. A table of 2-sided critical values is used here since in 
collaborative studies outliers at both ends of the data set are equally likely. In its 
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TABLE 5.5 

Critical Q-values for testing outliers (extracted from a more extensive table by Beyer [6]) 

3 (2i() 
4 

5 

6 

7 

8 (2ii 

9 

10 

11 

12 

13 (222 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

One-sided 
a 

0.05 

0.941 

0.765 
0.642 
0.560 
0.507 

0.554 

0.512 
0.477 
0.450 
0.428 

0.570 
0.546 

0.525 
0.507 
0.490 
0.475 
0.462 
0.450 
0.440 
0.430 
0.421 

0.413 
0.406 
0.399 
0.393 
0.387 
0.381 
0.376 

O.Ol 

0.988 
0.889 
0.780 
0.698 
0.637 

0.683 

0.635 
0.597 
0.566 
0.541 

0.670 
0.641 

0.616 
0.595 
0.577 
0.561 
0.547 
0.535 
0.524 
0.514 

0.505 
0.497 
0.489 
0.486 
0.475 
0.469 
0.463 
0.457 

Two-sided 

a 

0.05 

0.970 
0.829 
0.710 
0.628 
0.569 

0.608 
0.564 

0.530 
0.502 
0.479 

0.611 
0.586 

0.565 
0.546 
0.529 
0.514 
0.501 
0.489 
0.478 

0.468 
0.459 
0.451 
0.443 
0.436 
0.429 
0.423 
0.417 
0.412 

0.01 

0.994 
0.926 
0.821 
0.740 
0.680 

0.717 
0.672 

0.635 
0.605 
0.579 

0.697 
0.670 

0.647 
0.627 
0.610 
0.594 
0.580 
0.567 
0.555 
0.544 

0.535 
0.526 
0.517 
0.510 
0.502 
0.495 
0.489 
0.483 

latest draft document however ISO [8] prefers the single and double Grubbs' test 
explained in the next section. ISO also gives a procedure for the treatment of 
outliers which is described in Chapter 14. The test is repeatedly performed until no 
more extreme values are detected. Outlying observations, which are significant at 
the 1 % level are called outliers and are always removed. If the outlying observa­
tions are significant at the 5% level they are called stragglers and are only 
discarded if they can be explained. 
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5.5,2 Grubbs^ test 

The maximum normalized deviation test described by Grubbs and Beck [9] is 
based on the calculation of: 

G^{Xi-x)l s (5.17) 

with Xi the suspected outlier (either the highest or the lowest result), x the sample 
mean and s the sample standard deviation. The absolute value of G is compared 
with the critical values for one largest or one smallest value given in Table 5.6. 

The Grubbs' statistic for the detection of two outliers (either the two highest or 
the two lowest results) is obtained as: 

G-SS,_,.,/SSo or G = SS,,2/SSo (5.18) 

with SSo the sum of squared deviations from the mean for the original sample 
(= Y.{xi-x)-) and SS^_i,;, and SSi,2 the sum of squared deviations obtained after 
removal of the two highest or the two lowest values, respectively. Critical values 
for the double-Grubbs' test (two largest or two smallest values) are also given in 
Table 5.6. Notice that here outliers are detected if the test statistic of eq. (5.18) is 
smaller than the critical value. 

The single-Grubbs' test can also be performed by calculating the percentage 
reduction in the standard deviation when the suspect point is rejected: 

/?= 100(1-5, / 5) (5.19) 

with s the original sample standard deviation and s\ the standard deviation obtained 
after removal of the suspect value. This test is equivalent with the one of eq. (5.17) 
because their critical values are related [10]. The latter (eq. (5.19)) is recommended 
for the detection of a single outlier in collaborative studies by the AOAC [11]. 

The Grubbs' pair statistic for the detection of 2 oudiers, which is also part of the 
AOAC procedure is calculated in the same way but in this test s\ is the standard 
deviation obtained after removal of a pair of suspect values (either situated at the 
same or different ends of the data sets). Critical values for two-sided single value 
and pair value tests performed in this way can be found in references [ 10] and [11]. 

Application of the single outlier test (eq. (5.17)) to our example yields the 
following G-value 

G = (26.5-23.5)71.36 = 2.206 

which is larger than the two-sided critical value forn = 8 and a = 0.05 (2.126). 
For the data set with two suspect values (22.1; 22.4; 22.9; 23.0; 23.5; 23.7; 26.0; 

26.5) application of the double-Grubbs' test yields: 
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TABLE 5.6 

Two-sided critical values for the Grubbs' test. (For the single Grubbs' test oudiers give rise to values which are 
larger than the critical values while for the double Grubbs' test they give rise to values which are smaller than the 
critical values). 

f^ One largest or One smallest Two largest or Two smallest 
a a 

3 
4 

5 
6 

7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

37 
38 
39 
40 

1.155 
1.481 
1.715 
1.887 
2.020 
2.126 
2.215 
2.290 
2.355 
2.412 
2.462 
2.507 
2.549 
2.585 
2.620 
2.651 
2.681 
2.709 
2.733 
2.758 
2.781 
2.802 
2.822 
2.841 
2.859 
2.876 
2.893 
2.908 
2.924 
2.938 
2.952 
2.965 
2.979 
2.991 
3.003 
3.014 
3.025 
3.036 

1.155 
1.496 
1.764 
1.973 
2.139 
2.274 
2.387 
2.482 
2.564 
2.636 
2.699 
2.755 
2.806 
2.852 
2.894 
2.932 
2.968 
3.001 
3.031 
3.060 
3.087 
3.112 
3.135 
3.157 
3.178 
3.199 
3.218 
3.236 
3.253 
3.270 
3.286 
3.301 
3.316 
3.330 
3.343 
3.356 
3.369 
3.381 

0.05 0.01 0.05 0.01 

0.0002 
0.0090 
0.0349 
0.0708 
0.1101 
0.1492 
0.1864 
0.2213 
0.2537 
0.2836 
0.3112 
0.3367 
0.3603 
0.3822 
0.4025 
0.4214 
0.4391 
0.4556 
0.4711 
0.4857 
0.4994 
0.5123 
0.5245 
0.5360 
0.5470 
0.5574 
0.5672 
0.5766 
0.5856 
0.5941 
0.6023 
0.6101 
0.6175 
0.6247 
0.6316 
0.6382 
0.6445 

0.0000 
0.0018 
0.0116 
0.0308 
0.0563 
0.0851 
0.1150 
0.1448 
0.1738 
0.2016 
0.2280 
0.2530 
0.2767 
0.2990 
0.3200 
0.3398 
0.3585 
0.3761 
0.3927 
0.4085 
0.4234 
0.4376 
0.4510 
0.4638 
0.4759 
0.4875 
0.4985 
0.5091 
0.5192 
0.5288 
0.5381 
0.5469 
0.5554 
0.5636 
0.5714 
0.5789 
0.5862 
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G = SSn-i,n/SSo = 1.89 / 18.52 = 0.1021 

where 

SS,_,,, = (22.1 - 22.9)' + (22.4 - 22.9)' + ... + (23.7 - 22.9)' 

SSo = (22.1 - 23.8)' + (22.4 - 23.8)' + ... + (26.5 - 23.8)' 

Since the G-value is smaller than the two-sided critical value for the double-
Grubbs' test (0.1101 for AZ = 8 and a = 0.05) the two highest values are considered 
to be outliers. We come to the same conclusion if we consider the data set 
introduced in Section 3.8 (Table 3.6). The non-normality of the data was ascribed 
to the two highest values. The double-Grubbs' test reveals that these values indeed 
are outliers since: 

G = SSn-i,n I SSo = 0.179 / 1.670 =0.1072 

which is smaller than the two-sided critical value for /i = 20 and a = 0.05 (0.4391). 
As already mentioned ISO [8] now recommends the use of the single and double 

Grubbs' test as just described. 

5.6 Distribution tests 

Distribution tests or goodness-of-fit tests allow us to test whether our data follow 
a particular probability distribution. They are based on the comparison of an 
observed distribution with an expected or theoretical distribution. In this section 
the Chi-square and the Kolmogorov-Smirnov test are introduced to test normality. 
This is an important application since most statistical tests are based on the 
assumption that the data follow a normal distribution. Both tests are appropriate for 
the following situations: 

- when the theoretical distribution is completely specified. For the normal 
distribution this means that a and |i are known. The observed distribution is 
then compared with a particular normal distribution with known a and |LI. 

- when the theoretical distribution is derived from the data themselves. In that 
case o and |i are estimated by the sample standard deviation, s, and mean, x, 
respectively, and the question is whether the distribution can be considered 
to be normal. 

Since most often it is required to test whether the data are normally distributed 
and not whether they follow a particular normal distribution only the last situation 
will be considered. 
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5.6.1 ChUsquare test 

The test will be illustrated by means of an example. The Chi-square test applied 
to the fluoride data of Table 2.1 is given in Table 5.7. The observed frequencies for 
these data (column (6)), grouped into classes, are obtained from Table 2.2. To test 
whether these observations are normally distributed we proceed as follows: 

1. The distribution mean and standard deviation are estimated from the 63 meas­
urements yielding jc = 2092.3 and 5 = 591.7. 

2. The upper class limits are transformed into standardized deviates (column(2)) 
by applying eq. (3.10). 

3. From Table 3.3 the cumulative probabilities to find a value smaller than z 
(column (3)) are obtained. They represent the cumulative relative expected 
frequencies. Notice that for negative z-values the probability is: /7 (< - z) = 1 -
P{<z). 

4. The relative expected frequency for each class (column(4)) is derived from 
column (3). 

5. The expected frequencies (column (5)) are obtained by multiplying the relative 
expected frequencies by n = 63. 

6. The test requires that the expected frequencies are not too small. The accepted 
convention is that they should at least be equal to 5. Therefore the data are 
regrouped as shown in Table 5.7 in order to have an expected frequency of at 
least 5 in each class. Of course the corresponding observed frequencies also 
have to be regrouped. 

7. The following test statistic is calculated (column (7)): 

X2 = X(0,-£,) ' /£/ 

with Oi and Ei the observed and expected frequency, respectively, for each class. 

8. If the null hypothesis that the data are normally distributed holds, X^ is approxi­
mately distributed as y^. Therefore X^ is compared with tabulated %^-values at 
/: - 3 degrees of freedom, k being the number of classes used in the calculation. 
In the comparison of an observed frequency distribution with a particular 
normal distribution (i.e. |LI and a known) there are /: - 1 degrees of freedom. For 
our example the tabulated value of y^ with 5 degrees of freedom at the 5% 
significance level, obtained from Table 5.4, equals 11.07. Since X^ (= 9.293) is 
smaller, the null hypothesis that the fluoride data are drawn from a normal 
distribution is accepted. This confirms the indication of normality already 
obtained from the graphical rankit method given in Fig. 3.13. 
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TABLE 5.8 

The Kolmogorov-Smimov test applied to the measurement of breaking points of threads introduced in Section 3.8 

(1) 

2.104 
2.222 
2.247 
2.286 
2.327 
2.367 
2.388 
2.512 
2.707 
2.751 
3.158 
3.172 

(2) 
z 

-1.17 
-0.84 
-0.77 
-0.66 
-0.54 
-0.43 
-0.37 
-0.02 

0.53 
0.65 
1.79 
1.83 

(3) 

^£, 

0.121 
0.201 
0.221 
0.255 
0.295 
0.334 
0.356 
0.492 
0.702 
0.742 
0.963 
0.966 

(4) 
Fo^ 

0.083 
0.167 
0.250 
0.333 
0.417 
0.500 
0.583 
0.667 
0.750 
0.833 
0.917 
1.000 

(5) 
di = \Fo.-FE. 

0.038 
0.034 
0.029 
0.078 
0.122 
0.166 
0.227 
0.175 
0.048 
0.091 
0.046 
0.034 

(6) 
1 cl- = IFo,._,-F£,l 

0.121 
0.118 
0.054 
0.005 
0.038 
0.083 
0.144 
0.091 
0.035 
0.008 
0.130 
0.049 

5,6.2 Kolmogorov-Smimov test 

The x^-test requires the data to be presented as frequencies by grouping them 
into classes and is therefore not appHcable for small samples. Generally the test is not 
used with n < 50. Since, the Kolmogorov--Smimov test treats all observations sepa­
rately it is suitable for small samples. The test, which is applicable only to continuous 
distributions, consists in determining the largest difference between two cumulative 
relative frequency distributions: the observed distribution, here denoted FQ, and the 
expected distribution, here denoted FE. It will be illustrated by means of the example 
conceming the measurement of breaking points of threads, introduced in Section 3.8. 
The Kolmogorov-Smimov test applied to these data, with mean x = 2.5201 and s = 
0.3554, is summarized in Table 5.8. The second column gives the standardized 
deviation for each observation from the mean. The cumulative relative expected 
frequencies, F^, in column (3) are then obtained from these standardized deviates as 
in the previous section by consulting Table 3.3. Since there are twelve observations, 
the relative observed frequency for each observation is 1/12 = 0.0833, from which the 
cumulative relative observed frequencies, Fo,, of column (4) are obtained. 

Both the distribution FE and FQ are represented in Fig. 5.3. The test consists in 
determining the largest difference between the two curves. The expected distribution, 
FE, being a continuous distribution, the differences between the two distributions are 
computed as shown in columns (5) and (6). The differences d/ are obtained as 
\Fo, - FE\ and the differences d7 as IFo_, - F^ I. These are illustrated for the second and 
the seventh observation in Fig. 5.3. The reason why d7 has to be taken into account 
becomes obvious if we consider the difference between both distributions around the 
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Fig. 5.3. Expected (smooth curve) and observed (stepped curve) cumulative frequency distribution 
of breaking points of threads (data from Table 5.8). 

second observation. The largest difference around that point is obtained just below 
2.222 and is calculated as d2 . 

An inspection of all d, and d7 values in Table 5.8 reveals that the maximum 
difference between the two distributions is dy = 0.227. This value being smaller 
than the critical value at n = 12 and a = 0.05 of Table 5.9 (= 0.242) the data can be 
considered to be normally distributed. 

Critical values for the Kolmogorov-Smimov test in the case of comparison with 
a completely specified expected distribution (|LI and a known) can be found in 
SokalandRohlf[2]. 

The test as previously described can only be applied to continuous distributions 
and in the absence of tied values. Therefore it is for example not applicable to the 
Pb data of Table 3.6 in which several ties occur. Sokal and Rohlf [2] describe an 
approximate test in which, by grouping the data, frequencies instead of the individ­
ual observations are used. The test applied to the Pb data is summarized in Table 
5.10. The data were grouped into 7 classes and the cumulative relative expected 
frequencies, F^, are obtained as described in Section 5.6.1 and Table 5.7. The 
cumulative relative observed frequencies, Fo,, are calculated by dividing the 
cumulative observed frequencies in the 5th column of Table 5.10 by n = 20. 

The largest difference between both distributions FQ and FE is 0.209. From Table 
5.9 it follows that the 5% critical value for n = 20 is 0.192. Therefore the conclusion 
from Fig. 3.11a that the data are not normally distributed is confirmed. It can be 
verified that after elimination of the two highest results, which are suspected of being 
outliers, the data fit a normal distribution as is also indicated by Fig. 3.11b. 



TABLE 5.9 

Critical values for the Kolmogorov-Smimov test (expected distribution derived from the data) 
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0.10 0.05 0.01 

0.346 0.376 0.413 

0.319 
0.297 
0.280 
0.265 
0.252 

0.343 
0.323 
0.304 
0.288 
0.274 

0.397 
0.371 
0.351 
0.333 
0.317 

10 
11 
12 
13 
14 

0.241 
0.231 
0.222 
0.215 
0.208 

0.262 
0.251 
0.242 
0.234 
0.226 

0.304 
0.291 
0.281 
0.271 
0.262 

15 
16 
17 
18 
19 

0.201 
0.195 
0.190 
0.185 
0.181 

0.219 
0.213 
0.207 
0.202 
0.197 

0.254 
0.247 
0.240 
0.234 
0.228 

20 
25 
30 
40 
100 

0.176 
0.159 
0.146 
0.128 
0.082 

0.192 
0.173 
0.159 
0.139 
0.089 

0.223 
0.201 
0.185 
0.162 
0.104 

400 
900 

>30 

0.041 
0.028 

0.84/V^ 

0.045 
0.030 

0.90/<n 

0.052 
0.035 

1.05/Vrt" 

TABLE 5.10 

Kolmogorov-Smimov test applied to the Pb data of Table 3.6 which contain tied values 

Class z for upper F^. Observed Cumulative observed FQ. d, = IFQ. - F^l 
interval limit frequencies frequencies 

0.960-1.160 
1.160-1.360 
1.360-1.560 
1.560-1.760 
1.760-1.960 
1.960-2.160 
2.160-2.360 

-0.32 
0.36 
1.03 
1.71 
2.38 
3.06 
3.73 

0.375 
0.641 
0.848 
0.956 
0.992 
0.999 
0.9999 

7 
10 
1 
0 
1 
0 
1 

7 
17 
18 
18 
19 
19 
20 

0.35 
0.85 
0.90 
0.90 
0.95 
0.95 
1.00 

0.025 
0.209 
0.052 
0.056 
0.042 
0.049 
0.0001 
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Chapter 6 

Analysis of Variance 

6.1 One-way analysis of variance 

6,1.1 Terminology — examples 

In Chapter 5 hypothesis tests for the comparison of two means were discussed. 
It is sometimes necessary to compare more means as shown in Table 6. la. The data 
of Table 6.1a were taken from a study carried out to determine whether dissolution 
methods have an effect on the result obtained for the determination of Fe in a 
multivitamin/trace element formulation [1]. Each column gives the results ob­
tained on 6 separate samples pretreated according to a certain procedure. The first 
applied dry ashing, a second microwave digestion, another consisted in using a 
strong acid, filtration and determination of Fe in the filtrate, etc. The question is 
whether there is an effect of the pretreatment on the result obtained. The results of 
method SZC are clearly different from the rest, as shown in Fig. 6.1. However, how 
can we arrive at this conclusion in a statistical way? The data given are real, but 
not all applications are so easy to decide. One way of doing this would be to 
compare each column mean with each other using a ̂ test. How to do this correctly 
was described in Chapter 5.2 (the Bonferroni correction). We should note in 
passing that the computations were carried out on data which were later rounded 
to obtain Tables 6.1a and b. For this reason small differences are possible if the 
computations are carried out starting with the data in these tables. 

Instead of immediately asking the question: which means are different, we can 
first ask a more general question: does the factor differing between the columns 
have an effect on the means of those columns? In other words, do all the dissolution 
methods yield the same result, or do one or more affect the results in a different 
way from the others? If the latter were the case this would have an influence on the 
total variance of all the data of Table 6.1a. In the case that all the methods really 
give the same result, that variance would be determined exclusively by the preci­
sion of the methods. Each separate result xij could then be written as follows 

Xij = ^ + eij (6.1) 

where Xy is the iih result in theyth column, |Li the true mean and e^ the deviation of 
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Dry Micro 2ZC SZC LTA ZZF SZF 

5.50 h 

5.00 

4.50 

Fig. 6.1. Visual representation of the data of Tables 6. la and b. 

Xij from |LL. The e^ are assumed to be normally distributed with mean = 0 and 
variance ol = c^. 

When there is an effect of the methods, we can write 

Xij = |LH- ay + eij YjUj = 0 (6.2) 

where Uj is the ejfect of the 7th pretreatment method relative to the overall mean. 
The variance of xij airound |i would now no longer be determined solely by eij and 
thus not be equal to o^. The term Uj introduces additional variance in the data, so 
that it would be larger than a?. We may thus expect that analyzing the variance will 
be a way of finding out whether certain factors have an effect. 

Only one single possible effect is studied in Table 6.1a: the pretreatment 
procedure. This table is then called a one-way layout and the hypothesis test 
applied to test whether the treatment has an effect is called a one-way analysis of 
variance or one-way AN OVA. 

Before looking at the statistical computations, let us consider some other 
examples of situations that could lead to data such as those given in Table 6.1a. The 
same type of data could, for instance, also be the result of an interlaboratory study 
(see Chapter 14), carried out to investigate a specific analytical procedure. Suppos­
ing that this is carried out on the same formulation described above, and supposing 
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TABLE 6. la 

Concentrations of Fe (in mg/100 g) in a vitamin/mineral formulation determined by A AS using different 
dissolution methods [1] 

Dry Micro ZZC SZC LTA ZZF SZF 
/• 1 2 3 4 5 6 7 

5.59 
5.59 
5.37 
5.54 
5.37 
5.42 

Xj 5.48 
,v; 0.11 

TABLE 6. lb 

5.67 
5.67 
5.55 
5.57 
5.43 
5.57 
5.57 
0.093 

5.75 
5.47 
5.43 
5.45 
5.24 
5.47 
5.47 
0.16 

4.74 
4.45 
4.65 
4.94 
4.95 
5.06 
4.80 
0.23 

5.52 
5.47 
5.66 
5.52 
5.62 
5.76 
5.59 
0.11 

5.52 
5.62 
5.47 
5.18 
5.43 
5.33 
5.43 
0.15 

5.43 
5.52 
5.43 
5.43 
5.52 
5.52 
5.48 
0.05 

Concentrations of Fe (in mg/lOO g) in a vitamin/mineral formulation in different samples from the same lot. The 
data are synthetic and are the same as in Table 6.1a. 

Sample 

5.59 5.67 5.75 4.74 5.52 5.52 5.43 

^i 
-y 

5.59 
5.37 
5.54 
5.37 
5.42 
5.48 
0.11 

5.67 
5.55 
5.57 
5.43 
5.57 
5.57 
0.093 

5.47 
5.43 
5.45 
5.24 
5.47 
5.47 
0.16 

4.45 
4.65 
4.94 
4.95 
5.06 
4.80 
0.23 

5.47 
5.66 
5.52 
5.62 
5.76 
5.59 
0.11 

5.62 
5.47 
5.18 
5.43 
5.33 
5.43 
0.15 

5.52 
5.43 
5.43 
5.52 
5.52 
5.48 
0.05 

supposing also that we know that the formulation is homogeneous, we would then 
send a sample to each of the participating laboratories and ask them to carry out 6 
replicate measurements with the procedure under investigation. Column 1 would 
then give the results of laboratory 1, and so on. 

It is not necessarily evident that the formulation is homogeneous and to test this 
we could then carry out an experiment that could yield exactly the same type data 
as in Table 6.1b. This would consist of taking samples from the lot at different 
locations (top, bottom, etc.) and analyzing each of them 6 times. Each column 
would then give the replicate determinations for one sample. If the total variance 
were significantly larger than the variance in one column, this could be attributed 
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to sample inhomogeneity. Thus the factor studied would be the effect of the 
sample. In the next section we will use this example to introduce the theory and 
some computational details. 

In both cases there are 7 columns, i.e., the factor is studied at 7 levels. 

6.1.2 Estimating sources of variance and their significance 

The data shown in Table 6.1 are presented in a more general fashion in Table 
6.2. Since it is our intention to investigate effects on the variance in this data table, 
we should first estimate the variance. Let us start by supposing that the lot 
investigated is homogeneous, so that the only source of variation is that due to 
measurement uncertainties. In other words, the precision of the analytical determi­
nation is the sole factor that determines the variance in the table. In this case, we 
can reason that the variance can, for example, be estimated from the first column 

5? = I (jCn-x,)V(n,-l) (6.3) 

This means that the variance is determined using the replicate analysis of sample 
1. This can also be done using the data of the second column (sample 2), etc. 
Eventually, this would yield k estimates of the variance of the data. This is not very 
satisfying: we would really want to obtain a single estimate and use all the data to 
do so. Supposing still that the batch is homogeneous and that therefore the variance 
is not affected by analyzing portions from different samples, the columns should 
have the same population mean, |LI, and variance, a .̂ The column means Xk and 
variances sj are then separate estimates of these population parameters. To obtain 
one estimate of the mean, we can use the grand mean x, i.e. the mean of all results, 
and pool the variances to obtain one single estimate of a^ (see Section 2.1.4.4). 

TABLE 6.2 

One-way ANOVA layout 

Mean 

Variance 

Sample 1 

^11 

xii 

^/ • i 

Sample 2 

Xl2 

^22 

Xi2 

... Sample; ... 

^\i 
^2j 

^ij 

Sample k 

x\k 

^2k 

^ik 

Xn,k 

Grand mean: x. 
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This implies the assumption that all variances come from the same population. 

c^ = a2 = of... al = a^ 

This should be noted, because it is far from evident that this assumption is always 
true in practical situations (see also Section 6.2). 

The pooled variance Sp can then be used to estimate a^; because of the larger 
number of data used, it is a better estimate than the separate estimates sj 

2^ {nx -\)s\+ ...-\-{nk- \)sl 
n\ + ... +nk-k 

k k 

= 1 (nj-l)sj/l (nj-l) (6.4) 

In this section we will consider that all n, are equal, ^i = ^2 = ... n .̂ This is done 
here for ease of computation and is not a requirement of the technique. From 
Section 6.1.3 on, we will no longer include this restriction. 

A second possibility to estimate a^ is to obtain it from the variance of the column 
means, Sj, which is given by: 

k 

sl = l (xj-xf/(k-l) (6.5) 

where x is the grand mean, which here is also the mean of the k column means xj. 
As usual, one considers that Sj estimates al and since there are rij data in each 
column a | = o^nj or a^ = rij a|. It follows that Uj si estimates a^. A second estimate 
of a^ is therefore given by: 

k 

rij si = rij I (x, - xf /{k-\) (6.6) 

The two estimates of a^, s^ of eq. (6.4) and rij sj of eq. (6.6) are equal only if the 
material is homogeneous. If it is heterogeneous then the two will estimate different 
quantities. 

The pooled variance s^ is not affected by heterogeneity, since it is determined 
exclusively by the precision of the analytical determination. Expressed in a more 
general way, it describes variance of the data within each column, i.e. the within-
column variance. Since this is not affected by heterogeneity, we must still consider 
that si estimates o^. 

The variance of the column means Sj describes the between-column variance. It no 
longer estimates only â /ny, but the additional component di must be added, where 
di estimates the additional variance due to heterogeneity. Therefore, njsl estimates 

a^ + nj Ga 
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These considerations allow us to write down a hypothesis and test it. Indeed, if 
the material is homogeneous, then sj, and rijsi both estimate a^, or 

Ho: cl = Hj (5\ or HQ: Ga = 0 

If the material is not homogeneous then rij si estimates a^ + rij ol while s^ 
estimates a^. In other words, rij Sj estimates a larger variance than si and 

Hi: ap<nyai or Hi :aa>0 

Variances can be compared by using an F-test (see Section 5.4) and, in view of 
the way Hi is formulated, this F-test must be one-sided. 

6.1.3 Breaking up total variance in its components 

The way ANOVA was explained above shows some of the basic assumptions 
of ANOVA, its philosophy, and the way the eventual hypothesis test (one-sided 
F-test) is carried out. The actual computations can be understood and carried out 
more easily by considering ANOVA as a splitting-up of the total variance in its 
components. The total variance is given by 

k nj 

s^T = l 1 (Xij-xf/(n-l) (6.7) 

k 

wheren = S rij 

In words, the total variance is the sum of the squared differences between each of 
the data jc,y and the grand mean x, divided by n - 1 degrees of freedom where n is 
the total number of data in the table. For reasons of computational convenience, let 
us first work with the sums of squares, SS 

SST = I l(Xij-x)^ (6.8) 
./ ' 

and introduce the degrees of freedom at a later stage of the computations. SSj is 
the sum of squared differences of each individual observation from the grand mean. 
In some texts SST is the sum of squares of the data and the SST, as used here, is then 
called the corrected sum of squares (where 'corrected' denotes corrected for the 
mean) and represented as SScorr. We will not follow this practice. 

Since 

Xij -X = (Xij - 'Xj) + (Xj - 3c) 

it follows that 
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(Xij - x) = (Xij - Xj) + {xj - x)^ + 2{xij - Xj) (Xj - x) (6.9) 

To obtain SST in eq. (6.8), we sum over rows (/) and columns (/). The last term 
of eq. (6.9) becomes zero, since differences from a mean cancel out when they are 
summed. The result is therefore 

SST = I Z (xij - Xjf +1 njixj - x)' (6.10) 
J i J 

or 

SST = SSR + SSA (6.11) 

where 

SSR = I l(xij-xjf (6.12) 
j i 

and 

SSA = 1 nj(xj-xf (6.13) 

SSR is called the residual sum of squares. The term "residual" is explained later 
in this section. SSA is the sum of squares due to the effect of the factor studied (this 
factor, called A, is here the composition heterogeneity among samples). It is also 
sometimes called SStreatment in general (ANOVA was frequently used first in 
agronomy, where the effects were agricultural treatments) or it refers in some way 
to the reason of the effect. Here we could write SSheterogendty Finally, SSwithin 
{within-column sum of squares) can be written for SSR, because it has to do with 
variance within columns and SSbetween (between-column sum of squares) for SSA 
because it is linked to variance between columns in the table. 

To obtain estimates of variance from the sums of squares we divide by the 
number of degrees of freedom. In general this is written as 

MS = SS/df 

where MS or mean square is a variance estimate and df is the number of degrees 
of freedom. Applied to SSR and SSA, this yields 

MSA = SSA/()t-l) (6.14) 

It estimates 

9 n n- (ZnfM) 
^ ^ ^ ^ k-X 

For equal n,, this can be shown to be equal to 

a^ + nj di 

Furthermore: 
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MSR = SSR/( / I - / : ) (6.15) 

This estimates a^. The number of degrees of freedom n - k can easily be 
understood by referring to Section 6.1.2. MSR is equal to s^ as given by eq. (6.4) 
and we can verify that the denominator is indeed equal toknj-k = n-k. In practice, 
we can derive the number of degrees of freedom also by reasoning that the number 
of degrees of freedom for SST is (n - 1), that (/: - 1) of these are used up by SSA 
and that the rest (n - I) - (k - \) = n - k is available for SSR. This helps us to 
understand the reason for the term "residual". The residual sum of squares is the 
total sum of squares minus the sum of squares due to a specific factor (SSR = SST 
- SSA) and the residual degrees of freedom are those that are not used up by this 
specific factor: dfR = dfj - dfA. 

Since MSR and MSA respectively estimate the a^ and a^ + rij aj of the preceding 
section, this also means that we can carry out the hypothesis test as described in 
that section, i.e., by an F test. 

MSR SS^/in-k) 
and this F ratio must then be compared with the tabulated F for k- I and n - k 
degrees of freedom (Table 5.3). It should be remembered (see Section 6.1.2) that 
this is a one-sided test. 

6.1.4 Random and fixed effect models 

When explaining ANOVA in Sections 6.1.2 and 6.1.3, we have applied a 
so-called random effect model. There is a second type of model called the fixed 
effect model. These two different models rarely have an effect on the set-up of the 
experiment or on the ANOVA table (see next section) and the first hypothesis test 
to be carried out, namely the F-test. The purpose, however, of the ANOVA is 
different as are some of the operations or tests carried out after the F-test. This 
requires some additional explanation. 

In eq. (6.2) an additive model — also called linear model — was defined, in 
which each single result can be divided in several components. One of these was 
described as the effect of the factor (in eq. (6.2) this was the pretreatment method). 
A more precise definition of the additive model is now required. There are, in fact, 
two definitions. 

The first possibility is to consider the effect of the factor as a fixed deviation of 
the mean of groups from the grand mean. This would be the case for the example 
given in Table 6.1a in which the effect of different pretreatments is studied. Each 
result for pretreatment method j would then consist oi \i •¥ aj, the mean and the 
effect of the pretreatment method on the one hand and the randomly distributed 
error or residual eij on the other. This is called Model I ANOVA or di fixed effect 
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model. Strictly speaking, this has an effect on the mathematics because M S A now 
estimates 

Z rij a/ 

k-\ 

and the hypothesis to be tested can be stated as: 

Ho: ai =a2=:... a^^^O 

Y{\\ ^j^O for a least oney 

This has no computational consequences for the ANOVA as such as the test is still 
performed as an F-test on the ratio MSA/MSR. 

In the case of a fixed effect model, it can be concluded that at least one column 
mean is different from the others (in the example, at least one pretreatment method is 
different from the others). We might then be interested in knowing which means are 
significantly different from the others. How this is done is described in Section 6.3. 

The model to be applied to the homogeneity problem of Table 6.1b is called a 
Model II ANOVA or a random effect model. We are not interested in a specific 
effect due to a certain column, but a general effect on all columns and that effect 
is considered to be normally distributed. To distinguish between model I and model 
II, we sometimes use different symbols for the effects. For instance, we could use 
the lower case letter a for model I and the capital letter A for model II. This yields 

Xii = |i + a/ + /̂/ (6.171) 

Xij = |LL + Ay + eij (6.1711) 

where a, is the fixed effect of model I and A, is the normally distributed variable 
with mean 0 and variance c\ of model II. As already explained in the preceding 
section, M S A estimates for model II 

9 9 n — Y^n}/n 
o+oi — 

k-\ 

or, for equal rij, a^ + rij a i 

Since the effect on the column means is random there is no sense in trying to 
determine which column mean is significantly different from another. We should 
consider that inhomogeneity of the samples adds variance to the variance due to 
the determination and, in this case, we might like to determine how large the added 
variance component is. This will be described under Section 6.4. 

The difference between the models is not always evident. In the example of the 
intercomparison of laboratories, we might focus on differences between the spe­
cific laboratories taking part (proficiency testing), which would then be a fixed 
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effect model. On the other hand, we could consider the laboratories as representative 
for a population of sufficiently proficient laboratories. The within-column variance 
describes repeatability, the overall variance the reproducibility and the between-col-
umn variance the added variance component due to between-laboratory variance (see 
also Chapters 13 and 14). This model would be a random effects model. 

This may seem complex to the first-time user. Fortunately the distinction is 
often important only from a philosophical point of view and may be disregarded at 
a first reading. As stated earlier, the ANOVA table and the hypothesis test with the 
F-tables is exactly the same in both cases. However, for a deeper understanding, 
the philosophy behind the statistics is important and the difference between the two 
models should therefore be included in a more thorough study. 

6.1.5 The ANOVA table 

The computational scheme of Section 6.1.3 can be summarized in an ANOVA 
table. These tables, whether they concern a one-way experiment as defined in the 
previous section or multi-way layouts (see e.g. Section 6.5) always have similar 
formats. They consist of up to five columns: the first column gives the source of 
the variation, the second and third the degrees of freedom and sums of squares (not 
necessarily in that order), the fourth the mean square and the fifth the F values. 
Under the table is often written the critical F-values that have to be compared with 
the experimental values in the fifth column and the conclusion (the effect is 
significant or not at a certain level). Sometimes /7-values are given in a sixth 
column. This then yields the general layout of an ANOVA Table (Table 6.3). 

For the data of Table 6.1 this yields Table 6.4. The between-group variance is 
significant at the level a < 0.001 since 22.97 > 4.92. If, as in Table 6.1b, we 
considered these data to be the data of a homogeneity experiment, i.e. a Model II 
ANOVA, then our first conclusion would be that the material is not homogeneous. 
We might then continue with the techniques described in Section 6.4 and try to 
determine how much of the variance in the data is due to this effect. If we 
considered the data to be those of Table 6.1a, i.e. a comparison of pretreatment 

TABLE 6.3 

One-way ANOVA table 

Source 

Between columns (A) 
Within columns (residual) 
Total 

Degrees of freedom 

n-k 

Sum of squares 

SSA 

SSR 

SST 

Mean square 

S S A / ( ^ - 1 ) 

SSR/(n-^) 

F 

MSA/MSR 

F()x)5:k-i.n-k - •••, conclusion about significance of A: . 
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TABLE 6.4 

ANOVA of the data of Table 6.1 

Source Degrees of freedom Sum of squares Mean square F 

Between columns 6 2.6765 0.4461 22.9709 
Within columns 35 0.6797 0.0194 
Total 41 3.3562 

/^().()5;(6,35) = 2 . 3 8 , F().(X)1;(6,35) = 4 . 9 2 . 

methods, we would now decide that at least one method gives results different from 
the others and turn to the methods described under Section 6.3 to obtain more 
detailed conclusions. 

6.2 Assumptions 

Because within-column variances are pooled to estimate MSR (Section 6.1.2), 
we assume that these variances are equal. In other words, we assume homogeneity 
of variance or homoscedasticity. When this assumption is violated and the vari­
ances are not equal, we conclude that there is heteroscedasticity. Wrongly assum­
ing homoscedasticity can lead to serious errors and therefore tests that allow us to 
verify this assumption are required. 

In some contexts (e.g., method validation, see Chapter 13), the emphasis is on 
deciding whether the variance in one of the columns is higher than in the other 
columns, rather than on investigating that all variances are equal. In other words, 
we suspect the column with highest variance to have a significantly higher variance 
than all the others. This is only another way of saying that there is heteroscedastic­
ity, and therefore tests for heteroscedasticity can also be applied for this type of 
application. 

In our view, ANOVA should always be preceded by visual inspection of the data 
before any test is carried out. Figure 6.1 provides such an analysis. Inspection of 
the plot immediately indicates that it is probable that SZC proves to be different 
from the other pretreatment methods. A particular powerful aid is the box plot 
(Chapter 12). This gives immediate visual indication of whether a violation of the 
assumptions is to be feared. At the same time it will permit us to assess the 
occurrence of differences between means (Section 6.3), violations of the normality 
assumption within columns and, in the case of two-way ANOVA, the occurrence 
of interaction (Section 6.6). 

Rapid tests can be carried out with the use of ranges [2]. One test is based on the 
comparison of the highest within-column range, Wmax, with the sum of all ranges. 
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Another is based on the comparison of the highest range to the lowest [3], 
Wmax/wmin. The idea of comparing largest to smallest dispersion is also used in 
Hartley*s test [4] which compares the highest variance within columns to the 
lowest, ^ L X A L . 

Cochran's criterion is based on comparing ^̂ ax with all the other variances. 
Because it is recommended by ISO [5], we will describe it here in somewhat more 
detail. It is given by: 

C-4H (6.18) 
j 

C is then compared to critical values (see Table 6.5). It should be noted that this 
criterion requires that all columns contain the same number of results (nj). If the nj 
do not differ too much, the test can still be carried out. ISO [5] then recommends 
the most frequent n, value is used. For nj = 2, we can replace s in eq. (6.18) by w, 
the range, so that 

C = Wmax 

Applied to the data of Table 6.1, Cochran's test would yield the following 
results: 

f̂ = 0.011 1̂ = 0.008 5̂  = 0.027 4 = 0.052 
si = 0.012 sl = 0.024 5? = 0.002 

Thus ^Lx = 0.052 and I^,^ = 0.135 so that C = 0.052/0.135 = 0.382. 
The critical value for C for nj = 6 and /: = 7 is 0.397. It follows that the data are 

considered to be homoscedastic. 
A test which is often found in books on applied statistics is Bartlett's test. It has 

been shown [6] that this test is very sensitive to departures from normality within 
columns, so that finding a significant result often indicates non-normality rather 
than heteroscedasticity. This test will therefore not be discussed here. Other 
possibilities are the log-ANOVA or Scheffe-Box test [6]. 

When differences in variance have been found, several possibilities exist. In 
some contexts (e.g. method-performance testing) we can decide that the data from 
laboratories with too high a variance should be eliminated (see further Chapter 14). 
In many cases, we cannot reject data and must resort to methods that allow us to 
restore homoscedasticity. There are two ways of doing this: one is by transforming 
the variables (appropriate transformations are discussed in Chapter 8 on regression 
where the same problem occurs); the other is to apply weights (weighted ANOVA). 

As seen in Section 6.1.1, a second assumption is that the e^ within a column are 
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TABLE 6.5 

Critical values for Cochran's Cat the 5% level of significance 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
30 

ni = 2 

0.967 
0.906 
0.841 
0.781 
0.727 
0.680 
0.638 
0.602 
0.570 
0.541 
0.515 
0.492 

0.471 
0.452 
0.434 
0.418 
0.403 
0.389 
0.377 
0.365 
0.354 
0.343 

0.334 
0.325 
0.316 
0.308 
0.300 
0.293 

nj = 3 

0.975 
0.871 
0.768 
0.684 
0.616 
0.561 
0.516 
0.478 
0.445 
0.417 
0.392 
0.371 
0.352 

0.335 
0.319 
0.305 
0.293 
0.281 
0.270 
0.261 
0.252 
0.243 
0.235 

0.228 
0.221 
0.215 
0.209 
0.203 
0.198 

nj = 4 

0.939 
0.798 
0.684 
0.598 
0.532 
0.480 
0.438 
0.403 
0.373 
0.348 
0.326 
0.307 
0.291 

0.276 
0.262 
0.250 
0.240 
0.230 
0.220 
0.212 
0.204 
0.197 
0.191 

0.185 
0.179 
0.173 
0.168 
0.164 
0.159 

nj = 5 

0.906 
0.746 
0.629 
0.544 
0.480 
0.431 
0.391 
0.358 
0.331 
0.308 
0.288 
0.271 
0.255 

0.242 
0.230 
0.219 
0.209 
0.200 
0.192 
0.185 
0.178 
0.172 
0.166 

0.160 
0.155 
0.150 
0.146 
0.142 
0.138 

rij = 6 

0.877 
0.707 
0.590 
0.506 
0.445 
0.397 
0.360 
0.329 
0.303 
0.281 
0.262 
0.243 
0.223 

0.220 
0.208 
0.198 
0.189 
0.181 
0.174 
0.167 
0.160 
0.155 
0.149 

0.144 
0.140 
0.135 
0.131 
0.127 
0.124 

normally distributed, which means that the data within one column should also be 
normally distributed. How to test normality is described in Chapter 3. In many 
cases, knowledge about the process investigated will give us a good reason to 
accept that the underlying distribution is normal and we will be concerned more 
about the occurrence of outliers, which can also be considered as a deviation from 
normality. Tests for outliers are discussed in Chapter 5. 

To avoid problems with the assumptions of normality and homoscedasticity, it 
is possible to carry out robust ANOVA. In Chapter 12 the best known such method 
for ANOVA — the ANOVA by ranks — will be described (Section 12.1.4.4) as 
well as a randomization method (Section 12.4). 
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A1 

B1 

A2 

82 

A3 

63 

AA 

B4 

A5 

B5 

A6 

86 

Fig. 6.2. Non-randomized layout of plots on a field for a fertilizer test. 

There is another assumption about the e^, namely that they are independent. This 
is written in all statistics books, but often not explained. Let us therefore give an 
example. 'Independent' means that the individual eij are randomly distributed and 
not influenced by an external factor. Suppose for instance that we want to compare 
two fertilizers, A and B, by treating small plots of a field with the fertilizers in a 
layout shown by Fig. 6.2. It may be that, due to some factor such as irrigation or 
exposure to the sun, the yield of the crop in series A and/or B changes in a specific 
order (for instance in the north-south direction A > B or in the east-west direction 
1 > 2 > 3 > 4 > 5 > 6 ) . The errors for A and for 1,2 and 3 will then probably be 
positive, and those for the others negative. They are not independent (they depend 
in this case on location). Usually we will not test for independence, but rather make 
sure that independence is achieved by proper randomization (see further). 

Conclusions can be biased by uncontrolled factors, i.e. factors that have not 
been taken into account. Suppose we need to compare several industrial extraction 
methods. At first sight, a logical experimental set-up could be the following. 
Extraction procedure A is first carried out six times on day 1, then the same for 
procedure B on day 2, etc. However, suppose that temperature is not controlled but 
that, unknown to the operator, it does influence the extraction yield. Then, if the 
temperature is different on the successive days, the effect of the extraction proce­
dure will be confused or confounded with that of the (uncontrolled) factor tempera­
ture (or days). How to avoid this depends on practical considerations, but in this 
instance and supposing there are only three extraction methods, we could carry out 
2 extractions with A, 2 with B and 2 with C on day 1, repeat this on days 2 and 3 
and analyze all samples in a random order afterwards. Indeed, it is always possible 
that some drift would occur during the analysis. If we were analysing first all A, 
then all B and finally all C samples, it could be that a difference in the results could 
be introduced by the order of analysis. For this reason, the order of the 18 
determinations should be randomized. 

In doing this we have applied the two main principles to avoid bias due to 
uncontrolled variables. We have applied planned grouping or blocking out to the 
extraction step and randomization to the measurement step. These are very impor­
tant principles for experimental design and will be discussed again in Section 6.9 
and Chapter 22. 

An assumption, which is important in the random effect models, is that the effect 
of the factor (if any) should indeed be random and normally distributed. This can 
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TABLE 6.6 

ANOV A of the data of Table 6.1 after deleting the SZC procedure or sample 4 

Source 

Between groups 
Within groups 
Total 

Degrees of freedom 

5 
30 
35 

Sum of squares 

0.1284 
0.4214 
0.5498 

Mean square 

0.0257 
0.0140 

F 

1.8285 

(̂).()5:5,3() = 2.53. 

be checked in the way described in Chapter 3. Applied to the sampling problem 
and the data of Table 6.1 b, this means we could check whether the Xk are normally 
distributed or we could apply an outlier test. The data for sample 4 are then found 
to be outliers. How to detect outliers is discussed in Chapter 5. If the experimenter 
feels justified in eliminating the outlier, he or she can then continue work with the 
other 6 samples. The result is described in Table 6.6. 

As in other hypothesis tests, the sample size determines whether it will be 
possible to demonstrate a certain difference (if it exists), which is considered 
important by the investigator. How to compute the sample size for a given one-way 
ANOVA problem is described for instance in Ref. [6]. 

6.3 Fixed effect models: testing differences between means of columns 

When the null hypothesis has been rejected, in the fixed effect model it is 
considered that at least one column has a mean value different from the others. We 
would then like to know which one(s). For instance, for the data of Table 6. la we 
would wonder which pretreatment methods give different (higher, lower) results 
compared with the other methods. 

As already stated in Section 6.2, ANOVA should always be accompanied by a 
visual analysis of the data such as that shown in Fig. 6.1. The box plot (see Chapter 
12) can also be recommended for such an analysis. It immediately singles out those 
columns for which it is most likely that differences exist and it may well be that 
further statistical analysis is no longer needed or can be considered as necessary 
only to confirm what one has seen. 

The first obvious way is to use the appropriate r-test to compare all means with 
each other. It was explained in Chapter 5 that this requires an adjustment of the 
probability levels (the Bonferroni procedure). We might try to avoid this by 
selecting the groups with the highest and lowest means and carrying out ^tests to 
compare them. However, although this involves explicitly only one or a few r-tests, 
it really means one has surveyed all means and compared them implicitly to each 
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Other. Therefore, the same Bonferroni correction should be applied, whether one 
actually carries out the tests only for a few pairs or for all of them. 

Many different methods have been described in the statistical literature that 
were specifically designed for the comparison of several means. Appealing be­
cause of its simplicity is the Least Significant Difference (LSD) method. One tries 
to define a difference between two means that, when exceeded, indicates that these 
two means are significantly different. Any pair of means for which xj -Xh> LSD 
is then considered different. 

In Chapter 5 it was seen that for the comparison of two means with an 
independent r-test and for small sample sizes, we apply 

_ IJCI - JC2I 

^s'[(\/n0 + (l/n2)] 

The denominator of this equation contains the pooled variance due to measurement 
error. In ANOVA, this is estimated by the MSR and we can therefore write 

_ \x\ - X2I 

VMSR[(1/A2,) + (1/A12)] 

For equal sample size n, this simplifies to 

\X\ — X2I 
t--

VMSR (2/n,) 

We can then test each x\ - xi against 

LSD = WMSRCZ/AI,) (6.19) 

t is obtained from a t table at the appropriate level of confidence a (usually 0.05) 
and degrees of freedom (that for MSR). 

Consider the example of Table 6. la for which the ANOVA was carried out in 
Table 6.4. Since the number of degrees of freedom for MSR is 35, we can consider 
that r = 1.96 at a = 0.05. LSD is then given by 

L S D - 1.96V0.0194(2/6) -0.158 

The only differences between two means larger than 0.158 are those between 
SZC and all the others. The difference between LTA and ZZF is also marginally 
larger (0.160), but because we know that the LSD method tends to select too many 
significant differences, this is not considered enough. This is due to the fact that 
we implicitly compare all means with each other without correction of a, i.e. we 
apply a non-simultaneous approach. As explained earlier in this section, this would 
really require an adjustment of the probabilities. 
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More rigorous, but also more cumbersome tests, have been described in the 
literature, e.g., the Scheffe method, the Student-Newman-Keuls method, the 
Tukey-Kramer method, the T-method. As the LSD, they are all based in some way 
on defining a minimum distance, which consists of a product of a critical value, 
based on a statistical distribution (e.g. a r or F distribution) and a standard 
deviation, derived from the MSR. Some of the tests are valid only for equal rij and 
for some of them a simultaneous approach is used, while for others it is a 
non-simultaneous one. Discussions can be found in several books and, more 
briefly, in a review article by Stahl [7]. 

A special purpose test is the Dunnett test, where one compares one mean 
(usually the first) with all the other means. It is applied, for instance, in the 
following situation. A control value of a certain variable has been determined at 
the beginning of the experiment. Some treatment is applied and at different points 
in time the values of the variable are measured again. The question is then: from 
which moment on is there a significant difference? 

Iterative procedures are also possible. We can eliminate the column which is 
considered to be the most probably different and carry out the ANOVA on the 
remaining data. As an example, SZC is eliminated from Table 6.1. The ANOVA 
on the remaining data is given in Table 6.6. No significant effect is obtained. 
Therefore, we conclude that the significant difference noted earlier was indeed due 
to SZC and only to SZC. 

6.4 Random effect models: variance components 

As pointed out in Section 6.1.4, when the effect of a factor is random it makes 
no sense to try and determine which column mean is responsible for the signifi­
cance of the effect as was done in the preceding section. However, the effect does 
add variance and we can determine how much. This is useful in, e.g., the study of 
the precision of analytical methods, since it is possible to determine how much of 
the total variance is due to each step. In the same way, it can be used in SPC to 
determine what could be the effect of better control of a certain step on the total 
variance. 

Let us consider again the example of Section 6.1.2. We know how to determine 
the variance due to the measurement, a^: it is estimated by MSR. For equal n,, MSA 
estimates a^ + rij ai, where a i is the variance due to the sample heterogeneity. We 
can estimate the variance due to heterogeneity, ^A, as 

sl = {MSf,-MSK)/nj (6.20) 

Since we concluded in Section 6.3 that sample 4 is an outlier, it was eliminated 
and the ANOVA of Table 6.6 on the remaining samples shows that the effect of 
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the samples is not significant. Since the effect of the samples is not significant, we 
would decide not to make the calculations of eq. (6.20). In some cases we have no 
interest in the test, but merely want the best estimate possible of the effect. This is 
provided by SA. Applied to the example of Table 6.6, this means that s\ = (0.0257 
- 0.0140)/6 = 0.00195 and s^ = 0.044 while si = 0.0140 and s^ = 0.1183. The 
standard deviation due to composition heterogeneity explains only a small part of 
the total standard deviation. 

It should be added here that the determination of variance components is often 
carried out in more complex cases by nested ANOVA (see Section 6.11). 

6.5 Two-way and multi-way ANOVA 

Let us return to the example of Table 6.1. Because matrix effects may occur, we 
should ask whether a matrix modifier should be added before the determination 
takes place. To investigate this we can set up an experiment with two factors. The 
first factor is the pretreatment and, to keep the example simple, 3 instead of 6 types 
of pretreatment are considered. In other words, the first factor is studied at three 
levels. The second factor is the matrix modifier. This is studied at two levels, 
namely with a certain amount of modifier and without modifier. This yields 
Table 6.7. 

TABLE 6.7 

Effect of pretreatment and matrix modification on the determination of Fe by A AS (hypothetical data derived from 
Table 6.1) 

Matrix modification 

Without 

With 

Pretreatment 

Dry 

5.59 
5.59 
5.37 
5.54 
5.37 
5.42 

5.90 
5.75 
6.07 
5.90 
6.01 
6.06 

Micro 

5.67 
5.67 
5.55 
5.57 
5.43 
5.57 

5.90 
6.01 
5.85 
5.54 
5.81 
5.70 

zzc 

5.75 
5.47 
5.43 
5.45 
5.24 
5.47 

5.81 
5.90 
5.81 
5.81 
5.90 
5.90 
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Two-way ANOVA design (without replication) 
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Factor B 

Factor A 
1 
2 

1 

• ^ 1 1 

^21 

2 

• ^ 1 2 

^22 

J 
Xij 

^2i 

k 

^Ik 

^Ik 

Means fac 

XL 

X2. 

tor A 

^hl Xh2 ^hj ^hk Xh. 

Means factor B jc, ^ jc. 2 
Xjj 

X.i 

Xjk 

X.k 

XI. 

Grand mean: x 

Tables such as Table 6.7 are called two-way tables or designs and the data 
analysis by ANOVA is a two-way ANOVA because the data are subject to a double 
classification. In this example the data are classified once according to the pretreat-
ment of the data and once according to the matrix modification. In general, this 
leads to a design such as that in Table 6.8. In the specific example of Table 6.7 
factor A would be the pretreatment and factor B the matrix modification. To 
simplify the description of the computation, we will first discuss the case where 
there is no replication. By 'replication' we mean that more than one result is 
obtained in each cell of the ANOVA table. For instance, in Table 6.7 there are 6 
replicates in each cell. 

The grand mean, the mean of all the data of Table 6.8, is given by: 

X = X X Xhj /Ik 
h j 

h= I to IJ = I to k 

There are / levels of factor A and the mean at each of those levels is given by 
-^1.5 -^2.?' • • ^h,9^i, ^ n d 

Xh, — z^Xhj/k 
./• 

Similarly, there are k levels of factor B and the mean at each level is given by 

h 

The total sum of squares, SST, is obtained in a similar way as described earlier 
in eq. (6.8) and it is broken down in a similar way as in Section 6.1.3 into 
components due to the different factors and the residual. 
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SST = I I (Xhj - xf = SSA + SSB + SSR (6.21) 
h j 

The sum of squares due to factor A, SSA, is given below, together with the 
number of degrees of freedom dfA and the mean square MSA = SSA/dfA. 

SSA = k'L(xh.-x)^ (6.22) 

h 

dfA = / - l 

MSA = S S A / ( / - I ) (6.23) 

The sum of squares due to factor B, SSB, is given by: 

SSB = / I ( X , - X ) ' (6.24) 
. / • 

dfB = ^ - l 

MSB = S S B / ( A : - 1 ) (6.25) 

The equations for SSR and MSR are less easy to understand and, in practice, they 
can always be determined as 

SSR = SST - SSA - SSR (6.26) 

and 

dfR = d f T - ( ^ - l ) - ( / - l ) (6.27) 

MSR = SSR /dfR (6.28) 

In words, the residual sum of squares is the total sum of squares minus the sum 
of squares for each of the factors and the number of degrees of freedom for the 
residual term is equal to the total number of degrees of freedom (i.e. the total 
number of data, kl, minus 1) minus the number of degrees of freedom used for the 
other sources of variance, factor A and factor B. 

It can be shown that this is equal to: 

SSR = YY.ix-Xh.- xj + x)^ 

dfR = ( / c - l ) ( / - l ) (6.29) 

and 

MSR = S S R / ( ^ - 1 ) ( / - 1 ) (6.30) 

It is useful at this stage to note that by breaking down the sum of squares as 
described above, one assumes the linear model: 
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Xhj = \i + ah + bj + ehj (6.31) 

where % is the value in cell hj, an is the effect of the /ith level of factor a and b, the 
effect of theyth level of factor b and ehj is the random error of the observation in 
cell hj. As for the one-way ANOVA, one can make a distinction between fixed 
effects and random effects. Our example is a fixed effects model. For two-way 
ANOVA it is possible that one factor, say a, is fixed and the other random. 
Following the convention of eqs. (6.17) we could then write 

Xhj = \i + ah + Bj + ehj 

This is then called a mixed effect model. 
Table 6.8 is constituted of a grid of data. Each of these data forms a cell. Until 

now we have assumed that each cell contains only one numerical result. It is 
however possible that there are more. In fact, in our example there are 3x2 cells 
each containing 6 replicates. We will see later that replicates are not required when 
one computes a two-way ANOVA with only the main effects but that they are 
required when one wants to estimate also interaction effects (see Section 6.6). 
When replicates are present, we should then write %, for the /th replicate in cell hj 
(i = 1 to Hj). It is, in fact, not necessary that all cells contain the same amount of 
replicates; large differences, however, should be avoided. The computations are 
summarized in a two-way ANOVA table (Table 6.9) similar in construction to the 
one-way Table 6.3. For the example of Table 6.7, this yields Table 6.10, We 
conclude that the pretreatment has no significant effect but that the effect of the 
modifier is very clear. 

It is possible to investigate more than two factors by ANOVA. In our AAS 
example we could ask if changing the atomization temperature from 2300 to 
2400°C has an effect. This could then lead us to carry out experiments at all 
combinations of the three types of pretreatment, the two types of modifier and the 
two levels of temperature. The table would be a three-way table and the ANOVA 
would be a three-way ANOVA. ANOVA applications for more than two factors 
are often called multi-way ANOVA. 

TABLE 6.9 

Two-way ANOVA table 

Source 

Main effects 
Factor 1 (A) 
Factor 2 (B) 

Residual 
Total 

Degrees of freedom 

dfA + dfB 
/ - I 
^ - 1 
t-[(k-l) + (l-[)] = r 
rijkl -{=t 

Sum of squares 

SSA + 

SSA 

SSB 

SSR 

SST 

SSB 

Mean square 

S S A / ( / - 1 ) 

S S B / ( / : - 1 ) 

SSft/r 

F 

MSA/MSR 

MSB/MSR 
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TABLE 6.10 

Two-way ANOVA table of the data of Table 6.7 

Source 

Main effects 
Pretreatment 
Modifier 

Residual 
Total 

Degrees 

3 
2 
1 
32 
35 

of freedom Sum of 

1.183 
0.016 
1.166 
0.542 
1.725 

squares Mean square 

0.008 
1.166 
0.017 
0.049 

F 

0.49 
68.85 

Significance: pretreatment, /? = 0.61 (NS); modifier, p < 0.001. 

6.6 Interaction 

In many experimental systems, the effect of one factor depends on the level of 
the other. This is called interaction. In the example given to explain the two-way 
ANOVA the effect of the modifier might depend on the medium in which the Fe 
is dissolved and therefore on the other factor we studied, namely the dissolution 
procedure. One would conclude that factor A (pretreatment) interacts with factor 
B (the modifier). 

The interaction influences the variation found in the data table. The way 
ANOVA treats this is to consider the interaction as an additional source of 
variance, next to the main effects of factor A and factor B. More precisely, in the 
linear model of eq. (6.31), one adds an additional term and takes into account 
replicates 

Xhji = |i + a/, + foy + (afc)hj + ehji (6.32) 

The cross term (ab)hj describes the interaction. The number of degrees of 
freedom for the interaction, dfAB, is equal to the product of the degrees of freedom 
for the interacting factors. For the two-way lay out of Table 6.8 one would then 
obtain: 

dfAB = dfAdfB = ( / c - l ) ( / - l ) (6.33) 

Equation (6.33) yields exactly the same number of degrees of freedom for the 
residual in eq. (6.29) which was obtained without replication. As dfR is always 
equal to dfj minus the degrees of freedom used up for the other sources of variance, 
dfR would then be given by: 

dfR = dfx - ()t - 1) - (/ - 1) - (it - 1) (/ - 1) = 0 (6.34) 

There are no degrees of freedom for the residual left when there is no replication. 
Therefore, to test all effects, including the interaction effect, it is necessary to 
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TABLE 6.11 

Two-way ANOVA table with interaction for the data of Table 6.7 

Source 

Main effects 
Pretreatment 
Modifier 

Interaction 
Residual 
Total 

Degrees of freedom 

3 
2 
1 
2 
30 
35 

Sum of squares 

1.183 
0.016 
1.166 
0.092 
0.450 
1.725 

Mean square 

0.008 
1.166 
0.046 
0.015 

F 

0.55 
77.74 
3.07 

Significance: pretreatment, p = 0.474 (NS); modifier, p = 0.000; interaction, p = 0.076 (NS). 

replicate measurements. As 6 replicates were obtained in Table 6.7, we can esti­
mate and test the interaction effect between pretreatment and modifier. 

We will not go further into the details of the computation. The principles, 
however, are the same. One computes a total sum of squares and breaks it up in 
sums of squares for each source of variance. The same SS-terms as in Tables 6.9 
and 6.10 are then included with, additionally, an SSinteraction. In the ANOVA table 
with interaction (Table 6.11), one writes down first the effects due specifically and 
solely to a certain factor (the main effects). This is then followed with the interac­
tion term. The SSR is, as always, equal to SST minus all SS-terms due to the effects, 
i.e. the main and the interaction effects. 

To obtain the mean square, we again divide SS by df. For the interaction: 

M S A B = SSAfi/dfAB 

By applying this to the data of Table 6.7, Table 6.11 is obtained. There is a very 
significant effect of the modifier, the pretreatment is not significant and neither is 
the interaction. One would be tempted to add "of course", because, since there is 
only one significant factor, one could reason that there can be no interaction 
between two factors. In fact, it is possible that an interaction exists and that the pure 
effects on their own are not significant. However, this is rare and such a result 
should be viewed with suspicion. A possible artefact when the significant factor is 
very significant is that some of the variance due to it may be partitioned into the 
interaction which may then be computed as significant. 

It should be stressed that in two-way ANOVA the same assumptions are made 
as in one-way ANOVA (normality and homoscedasticity of all cells, etc.). Because 
the number of data in each cell is often small and the number of cells to be 
investigated relatively large, one often is not able (or willing) to test these assump­
tions. One should, however, be aware that these assumptions are made and that 
large deviations can invalidate the data analysis. In particular much attention 
should be paid to randomization and blocking issues (see Section 6.2). 
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Again, as in the preceding section, the considerations about two-way ANOVA 
can be generalized to multi-way ANOVA. 

6.7 Incorporation of interaction in the residual 

When the interaction is not significant it can be concluded that there was no 
reason to include the interaction term in the linear model as is the case in eq. (6.32), 
so that one should fall back on the linear model of eq. (6.31). This also means that 
the computation of the interaction SS is no longer required, nor the degrees of 
freedom reserved for it. Of course, we could then start the ANOVA all over again 
using Table 6.9 as a model ANOVA. However, there is a much easier way. The 
calculation of SSA, SSR, dfA and dfe in Table 6.11 is unaffected by whether we take 
interaction into account or not. Without interaction, we would write 

SSR(without) = SST - SSA - SSB (6.35) 

With interaction 

SSR(with) = SST — SSA — SSB — SSAB (6.36) 

Therefore 

SSR(without) = SSR(with) + SSAB (6.37) 

In practice, this means the following. Suppose we have computed an ANOVA 
table with interaction and concluded that the interaction is not significant. We 
decide therefore to compute the ANOVA table without interaction. Then we can 
obtain the SSR by simply summing the SSR of the previous table (i.e. the one in 
which interaction was taken into account) with the sum of squares of the interaction 
term SSAB- In the same way, it is easy to demonstrate that 

dfR( without) = dfR(with) + dfAB (6.38) 

In other words, having computed an ANOVA table with interaction and having 
found that the interaction was not significant, we can obtain the residual sum of 
squares that would have been obtained if interaction had not been considered by 
pooling the sums of squares and the degrees of freedom as described above. Having 
obtained in this way the results that would have been obtained if no interaction had 
been included, we can then proceed to obtain the MS without having to compute 
everything again. 

Let us apply this to Table 6.11. The sum of squares without interaction is 
obtained by adding 0.450 (residual sum of squares when interaction taken into 
account) + 0.092 (sum of squares due to interaction) and the degrees of freedom 
by adding 30 and 2. The result was already given in Table 6.10. Because the 
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conclusions were very clear in this case, this has no real influence on the results. 
In some cases, particularly when the number of degrees of freedom is small, this 
incorporation is useful. Most computer programs include the possibility of doing 
this as a matter of course and will even propose it automatically. It should be noted 
that some statisticians disagree on whether pooling is indeed always acceptable. 
For more guidance on this matter the reader should refer to Ref. [8]. 

6.8 Experimental design and modelling 

ANOVA is one of the most important statistical techniques in chemometrics. 
We will apply it repeatedly in later chapters. In Chapters 20 to 25, for instance, 
techniques of experimental design are discussed. One of the main applications is 
to decide which factors have an influence on the properties of a process or a 
product. In Chapter 22 we will discuss an example in which the effect of four main 
factors and the interactions between each pair of main factors is investigated. 
Multi-way ANOVA is one of the main tools that is used to decide which factors 
and which interactions are significant. 

Starting with Chapter 8, we will discuss the very important subject of modelling. 
Suppose we have developed a simple model y = bo + b\ x. To do this we have 
applied regression on a set of replicate _y-values, i.e. for certain levels of x we have 
measured y a few times and obtained the straight-line regression model for these 
data. We can then predict for each x the value ofy we should have obtained. The 
measured y values will not be exactly equal to the predicted y values. We will then 
wonder whether we can interpret the variance around the regression line in terms 
of the model and the variance due to replicate measurements. If this is not the case, 
an additional source of variance must be present. This will then be due to the fact 
that the model is not correct (for instance, it is quadratic instead of linear) so that 
the variance around the straight-line model is larger than could be expected on 
random variation alone. ANOVA is applied to decide whether this is indeed the 
case (see Section 8.2.2.2). 

6.9 Blocking 

Let us go back to the extraction example of Section 6.2. It was decided there that 
three extraction procedures A, B and C would be carried out twice each on days 1, 
2 and 3. The reason was that an inter-day effect was feared. If the ANOVA is 
carried out, one will therefore consider not only an SS(extraction) and an SS(resid-
ual), but also an SS(blocks) (or SS(days) in this case). In general, blocking will 
therefore lead to an additional factor or factors in the analysis. The block effect is 
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rarely tested, but the variance due to it — for reasons similar to those explained in 
the following section — must be filtered away. The construction of the blocks and 
designs such as Latin squares, which apply the blocking principle, are discussed 
further in Chapter 24. 

6.10 Repeated testing by ANOVA 

Let us suppose that we test a treatment for high blood pressure on a group of 10 
patients. The blood pressure is measured at the start of the treatment, after 3 weeks 
and after 6 months. If only two measurements were carried out on each patient (e.g. 
start and 6 months), then we would be able to carry out a paired r-test (one-sided 
because the alternative hypothesis Hi would be that the blood pressure at the start 
is higher than after 6 months). Since there are more than two measurements we 
must carry out an ANOVA in the case that we want to carry out a single hypothesis 
test. This is sometimes called repeated testing by ANOVA. Repeated testing is the 
ANOVA equivalent of a paired r-test. In the same way that a paired r-test would be 
applied if we had obtained two measurements (at different times or with different 
techniques) for a set of individuals, samples, etc., we apply repeated testing by 
ANOVA when there are three or more such measurements for each individual. 
Conceptually, the experiment is one-way (we want to test one factor, the times, 
techniques, etc.), but statistically it is a two-way ANOVA. 

At first sight, it may appear strange that this should be a two-way ANOVA since 
we are really interested in only one factor — the effects of time of treatment. 
However, the total variance in the data is made up by the following components: 
the measurement error, the effect of time, and also the difference between persons 
since the persons in the study will not have the same blood pressure. The measure­
ment error is estimated by MSR and the other two by MStime and MSperson- The test 
is an F-test, comparing MStime to MSR. We could carry out a test on the effect of 
persons by looking at MSperson/MSR but that would not be useful, since we know 
that this effect must exist. However, it is necessary to isolate SSperson, so that SSR = 
SST - SStime - SSperson- Not doiug this would bc equivalent to writing 

SSR = SST — SStime 

and would result in a gross overestimation of the SSR. 
This type of ANOVA is often applied without replication. In this case the effect 

of interaction cannot be measured. Let us again suppose that we are interested in 
comparing k pretreatment methods; to do this we now select six homogeneous 
samples with different (but unknown) concentration (instead of six replicates of the 
same sample as in Table 6.1) and analyze a portion of it once with each of the 
methods. As we will see in Chapter 13 such a set-up could be applied when the 
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expected concentration range of the analyte is larger than a few percent. The six 
samples are analyzed only once according to each pretreatment procedure. Since 
they have different concentrations, we will need a two-way ANOVA, with pre­
treatment and sample as factors. Only the pretreatment will be tested, since we 
know that the concentration adds to the variance. We might ask here the following 
additional question: is the effect of the pretreatment the same for all samples (at all 
levels of concentration)? This can be restated as: is there an interaction between 
samples and pretreatment? Because there was no replication, it is not possible to 
carry out the test on the interaction. One necessarily assumes there is no interaction. 

6.11 Nested ANOVA 

Let us suppose we want to analyze the effect of using different instruments and 
different analysts on the variance of the data obtained. We could make a design, 
where each analyst performs a few replicate determinations on each of the instru­
ments. In the simplest case (only two instruments and two analysts), we could make 
the following combinations: 

Instrument A — Analyst 1 
Instrument A — Analyst 2 
Instrument B — Analyst 1 
Instrument B — Analyst 2 

By carrying out replicated experiments of each combination, we could estimate the 
effect of the analysts, of the instruments and of the interaction analyst x instrument 
using two-way ANOVA. This would be a simple example of the ANOVA methods 
described in Section 6.6. 

Now let us suppose that we would like to do something similar with laboratories 
and analysts as factors. It would not be practical to move analysts from laboratory 
1 to laboratory 2: we need another design. This could be the following: 

Analyst 1 
Laboratory A 

Analyst 2 

Analyst 3 
Laboratory B 

Analyst 4 

This design is constructed in a hierarchical way. The first effect to be considered 
is the laboratory and, within each laboratory, the analysts. One of the consequences 
is that we now cannot determine an interaction between analysts and laboratories. 



ANALYST I ANALYST 2 ANALYST 1 ANALYST 2 ANALYST I ANALYST 2 

DAY I DAY 2 DAY 3 

REPLICATE 1 REPLICATE 2 

Fig. 6.3. Nested design to trace sources of variability in an interlaboratory study of an analytical 
method. 

TABLE 6.12 

ANOVA table for a nested design 

Source of variation df SS MS 

Laboratories (A) 7 
Analysts within laboratories (B) 8 
Days within analysts (C) 32 
Replicates within days (D) 48 

Total 95 

5.4248 

6.2351 

0.7750 42.82 
0.1450 

0.4426 

0.2227 

0.0181 

0.0138 

0.0046 

1.31 

3.00 

Indeed, the analysts in laboratory A are not the same as in laboratory B. This type 
of ANOVA is called hierarchical or nested in contrast with the usual design as 
described above for instruments-analysts, which is called crossed. 

A typical example of a hierarchical plan is given by Wemimont [9]. In eight 
laboratories (a = 8) two different analysts {b = 2) determined on three days (c = 3) 
the acetyl content of cellulose acetate in two replicates (n = 2). This yields the 
nested design of Fig. 6.3 and the ANOVA Table 6.12. 

The sum of squares and the corresponding degrees of freedom in the latter table 
are obtained as: 

SSA = ben X {Xi - x)^ 

S S B = CAl X S {Xij - Xi)^ 

a h c 

/ = l . / = l A:=l 

df = a-\ 

df = a{b-l) 

df = ab(c-\) 

(6.39) 

(6.40) 

(6.41) 
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SSD = I I I I (Xijki-Xijkf df = abc(n- 1) (6.42) 
/=1 i=\ lc=l 1=1 

where: 
Xijki is the value obtained in the ith laboratory by theyth analyst on the kth day for 
the /th replicate; 
Xijk is the mean value for the ith laboratory by theyth analyst on the kth day; 
Xij is the mean value for the ith laboratory by theyth analyst; 
Xi is the mean value for the ith laboratory; 
X is the grand mean. 

It should be noted that in this case the F-value is obtained by dividing the MS 
of a factor with the one exactly below. Thus F for laboratories = 0.7750/0.0181 = 
42.82 with 7 and 8 degrees of freedom. 

The factor laboratories and the factor days are significant. However, this is not 
the main interest: we would like to know the extent to which each of the factors 
contributes to the total precision. With GD the variance due to the replicates, Gc that 
due to the days, al the contribution of the analysts and a\ that of the laboratories, 
the mean squares MS A, MSB, MSC and MSD may be shown to estimate: 

MSD = SSD/(abc{n - 1)) estimates oh 

MSc = SSc/(ab{c - 1)) estimates ch + nac 

MSB = SSB/{a(b - 1)) estimates GD + n Gc + en d 

MSA = SSA/C^ - 1) estimates GD +/t Gc + en GB + ^cn GA 

Therefore 

0.0046 = sh 

0.0138 = sh-\-2sl 

0.0181 =^^4-2^^ + 6 4 

0.7750 = ^^ + 25^ + 65^ + 12:̂ 1 

This can be solved to yield 

5D = 0.068 sc = 0.068 SB = 0.027 SA = 0.251 

The contribution of the laboratories is by far the largest and that of the analysts 
the smallest. If we want to obtain better overall reproducibility, the reason for the 
large variance due to the laboratories must be investigated. 
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Chapter? 

Control Charts 

7.1 Quality control 

The control chart for industrial product control was developed by Shewhart in 
1931 [1] and is the basis of quality control (QC) in statistical process control (SPC) 
(Chapter 2). The main objective of SPC is to investigate whether a process is in a state 
of statistical control. This requires that characteristics such as central location and 
dispersion (or in other words, systematic and random errors) do not change percepti­
bly. Sometimes this requirement is relaxed in order to make sure that tolerance limits 
are respected. To achieve this purpose, one selects sets of n individual objects or 
samples from the product line and measures them. Statistics describing the set of n 
measurements such as the mean for central location and the range for dispersion are 
plotted as a function of time. One can then observe changes or trends in those statistics. 

In analytical chemical QC the purpose is to monitor the performance of a 
measurement method. The practical question is then whether the method still 
yields the same result for some (reference) sample (often called check or QC 
sample). "The same" can then be translated as estimating the same mean value with 
the same precision. Essentially, this also means that one verifies that the method is 
in a state of statistical control. It should be noted that the term quality control in 
analytical chemistry is sometimes used in a wider sense as "all activities under­
taken to ensure the required freedom from error of analytical results" [2]. In this 
chapter, we will take the more restricted view of verifying that the method is in a 
state of statistical control. The QC is then carried out to ascertain that the method 
is still sufficiently precise and free of bias. 

7.2 Mean and range charts 

7.2.1 Mean charts 

7.2.1.1 Setting up a mean chart 
The principle of the mean chart is shown in Fig. 7.1. The solid line depicts the 

mean value, XT, which is often called the centre line, CL and the broken lines are 
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Fig. 7.1. Mean chart. UCL: upper control (or action) limit, UWL: upper warning limit, LWL: lower 
warning limit, LCL: lower control (or action) limit. 

limits at 1.96 S and 3.09 5 around the mean. 5 is a standard deviation. As explained 
later, there are different ways to define it and therefore we have preferred not to 
use 5" as a symbol. The lines at ±1.96 S are called warning lines or also the lower 
warning limit (LWL) and upper warning limit (UWL) and those at ±3.09 5 action 
lines or the lower control limit (LCL) and upper control limit (UCL). If the process 
is under control then the warning lines include 95% of all values and the action 
lines 99.8%. Finding values outside the warning lines is interpreted as a warning 
that the process may be getting out of control and outside the action lines as a sign 
for immediate action to bring the process back under control. This is only a rough 
indication of how QC charts are interpreted. We will consider this interpretation in 
more detail later, but let us first study how a QC chart is set up. The first step is the 
determination of xj and 5. They are determined on Â  sets of n individuals (Table 7.1) 
before the control procedure starts. Such a set is sometimes called a training set. 

xj is the estimate of the mean value of the process (or measurement) and is 
computed as follows 

XT = lxi/N (7.1) 

where Xi is the mean of the ith set of n individual measurements (/ = 1,A0. 
There is much more variation in the computation of 5. The simplest situation, 

which often occurs in analytical QC, is the one where n= I. This means that one 
obtains Â  individual results for a QC material, with Â  at least equal to 10, but 
preferably more (20 is usually considered the acceptable number). 5 is then simply 
the standard deviation, s, on individual results of eq. (2.2). 
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TABLE 7.1 

Composition of training set for QC 

Measurement y within set Number of set i 

1 

1 jcn xi2 xi3 xii xi^ 
2 

Xji Xj2 Xj2 Xjj Xjj^ 

n 
Mean of set 
Standard deviation of set 

• ^ A j l 

^1 

^^1 

Xnl 

^2 

^X2 

• ^ / J 3 

^3 

^x. 

^ni 

Xi 

^̂,-

XnN 

^N 

%̂ 

V N-\ 

When n > 1, one obtains 5 by averaging in some way the standard deviations of 
the Â  groups of/i data. The most evident procedure (see for instance Ref. [3]) is to 
obtain first the standard error on the mean in each group 

2^ \Xij Xj) 

(n- I) n 

and to average the variances (since variances are additive). 

^ i ^ (7-3) 

Another procedure simply averages the 5̂  and then divides the average by a 
factor, which is often called C4, and can be found in tables [4] (see Table 7.2). 

S = —^ (7.4) 

Another variant uses ranges instead of standard deviations to compute the lines, 
using eq. (2.9): 

S^R/dn 

where dn is Hartley's constant (Section 2.1.4.5). Taking into account that 
5̂  = sAfnthis yields the following limits: 
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TABLE 7.2 

Constants for the determination of S in function of n (for the meaning of the constants, see text). Adapted from 
Ref. [4] 

n CA 

2 0.798 
3 0.886 
4 0.921 
5 0.940 
6 0.951 
7 0.959 
8 0.965 
9 0.969 
10 0.973 

1 96 -
warning lines at xj ± —f=- • R 

dn^n 
(7.5) 

. . . - .3 .09 -
action lines at xj ± — F = • R 

dnin 

This is often rewritten as 

warning lines at xj ± A'0025 R 
(7.6) 

action lines at xj ± A'o 001 R 

where A'oois andAVooi are the constants (see Table 7.3) needed to compute the 
warning lines and action lines, respectively, from ^. The 0.001 and 0.025 refer to 
the probabilities that a point of a process under control would be higher than the 
upper lines. They can be understood as follows. If the process is under control and 
the process errors are normally distributed, then the ±1.96 S lines include 95% of 
all values that can be expected, 5% should fall outside, i.e. 2.5% should exceed the 
upper warning limit and 2.5% should be lower than the lower warning limit. In the 
same way, there is a probability of 0.2% to find a point outside the action limits, 
i.e. 0.1 % to find it higher than the upper action limit and 0.1 % lower than the lower 
action limit. The occurrence of such a point is sufficiently rare to stop the process 
and reset it. 

There are different variants of these mean charts. For instance, instead of 
drawing lines at 1.96 5 and 3.09 5, one often draws them at 2 5 and 3 5, so that 
95.5% and 99.7% are then included within the warning and action lines respectively. 
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TABLE 7.3 

Constants for the determination of warning and action limits in the mean chart in function of n (for the meaning 
of the constants, see text). Adapted from Ref. [4] 

^'().()25 

2 1.229 1.937 
3 0.668 1.054 
4 0.476 0.750 
5 0.377 0.594 
6 0.316 0.498 
7 0.274 0.432 
8 0.244 0.384 

10 0.202 0.317 

One should note that these charts are based on the assumption of normality. 
Since we work with means of sets of data, it is probable that the means are normally 
distributed. Still, it is to be preferred to check this hypothesis. The most frequently 
occurring problem is that of outliers in the training set. One can verify whether 
certain of the A'̂  groups have an outlying variance using the Cochran test, explained 
in Section 6.2, and outlying 3c/ can be detected, using for instance the Grubbs test 
(Section 5.5.2). The reader should remember that, as stated in Section 5.5, when 
outliers are detected they should not simply be removed, but one should investigate 
why they occur. In a QC context, this is certainly needed, since they can indicate 
an instability of the process. 

In all cases the estimates 3CT and 5 should be representative for the source of error 
monitored. For instance, when the measurement will be monitored in the routine 
phase with one measurement/day, then the AZ = 20 training values should be 
obtained over 20 days, so that the random error includes the between-day component. 

Control charts can be updated by incorporating new results in the estimation of 
XT and S. A typical procedure is as follows. Each time after having plotted e.g. 30 
new points on the QC chart, test whether the i'new, ie. the S value for the set of 30 
new points is consistent with the S value used until then. One often considers S as 
a given value, so that one applies the x^ test of Section 5.4.2. 

7.2.1.2 Application of the mean chart 
The occurrence of a point outside the warning limits is by itself not enough to 

declare the process out of control. However, since the probability of finding a point 
outside one of two warning limits is only 2.5%, that of two successive points 
outside the same warning limit is 1/1600, so that when this occurs it is an indication 
that the process should be inspected and brought under control (reset). 
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Fig. 7.2. Effects that can be detected with a mean chart: (a) shift or bias; (b) drift; (c) cyclical change. 

Mean charts can help to detect the following effects (see Fig. 7.2): 
- occurrence of a bias: when consecutive values distribute themselves on one 

side of the mean value, but remain at a constant level, the trend is called a 
shift (of the mean) (Fig. 7.2a); 

- occurrence of a progressively decreasing or increasing trend {drift — see also 
Section 2.6) (Fig. 7.2b); 

- cyclical or periodical changes (Fig. 7.2c). 
So far, we have seen two rules for taking action based on a mean chart. They 

are: 
1. One point is outside the action limits 
2. Two consecutive points are outside the warning limits. 
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Used in this way the mean charts are very good at detecting either large biases 
or strongly increased random fluctuations. They are not very good at finding small 
shifts or slow drifts. For this reason one sometimes adds additional rules such as 
the following: 

3. Seven consecutive points are situated on the same side of the CL or 10 out of 
11 consecutive points are found on the same side. 

4. Seven consecutive points show an increase (or a decrease). 
Rules such as 3 and 4 are based on probability considerations. If the process is 

under control the probability that a point is situated above or below the line is 0.5 
for each of the two possibilities. The probability that 2 consecutive points are on 
the same side (say, above the Une) is p = (0.5)^ = 0.25. Seven consecutive points 
above the line has a probability p = (0.5)^ = 0.007. 

To have exactly 10 points out of 11 above the line,p = 11(0.5)^^0.5 = 0.0054 
and for 11 points out of 11, /? = (0.5)̂ ^ = 0.00049. For at least 10 points out of 11 
on either side of the line p is given by 2(0.0054 + 0.00049) = 0.0118 or 1/85. 

A well known set of rules is known as the Western Electric rules [5]. These 
divide the chart in zones with 7 lines, the LCL and UCL at ±3 5, the warning lines 
at ±2 5, additional lines at ±1 S which we will call the 1 S lines and the CL. The 
process is considered out of control or the process has changed when there are: 

1. One point outside UCL or LCL. 
2. Nine points in a row on one side of the CL. 
3. Six decreasing (or six increasing) points in a row. 
4. Fourteen points in a row, alternating down and up. 
5. Two out of three points outside UWL or LWL. 
6. Four out of five points outside the 1 S line on the same side of the CL. 
7. Fifteen points in a row within the two 1 S lines. 
8. Eight points in a row beyond either of the two 1 S lines. 
Let us investigate how good a control chart is at detecting a certain shift. This is 

determined by the average run length, ARL. This is the average number of sets of 
measurements to be carried out before one detects a given shift (Li) or the average 
number of sets of measurements to be carried out before a false alarm is given, i.e. a 
waming or an action alarm when in fact the process is still under control (Lo). Clearly 
Li is connected to the p-error (Chapter 4) and should be as small as possible, LQ is 
related to the a-error and should be large. The probability that a set of n data will fall 
outside the action limits when the true mean of the process is unchanged is 0.002. It 
can be shown [6] that if the probability that any sample will fall outside any limits 
considered is p, that the average number of such samples that will be measured 
before this happens once, is equal to l/p. Therefore, for the above situation 
Lo = 500. On average, it takes a run of 500 samples before a false alarm will occur. 

It is slightly more complex to compute L]. It must be computed for a change that 
is considered significant. Again, we can refer to the p-error. In Section 4.8 we 
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defined p-errors for a given 5 (a bias that was considered sufficiently important to 
necessitate its detection). The same applies here: we must specify what change we 
want to detect. Let us start by taking a simple example. We suppose that the mean 
has changed by ScAln. Instead of |Li, it has become |Li + SaW^T. What is the 
probability that we will fmd a value above the action limit when such a shift 
occurs? It is now equally probable that values below and above the action limit will 
be obtained. For this situation p = 0.5 and L\ = 2. It will take us on average 2 
samples to detect that the mean has increased by 3cNri. Let us now carry out the 
same calculations for a shift of -^cr^. The mean has become |LL + GVAI , meaning 
that the upper action limit is 20/^/^7away, i.e. 2 standard deviate units. The tail area 
above z = 2 contains 2.28% of all cases ovp = 0.0228 and Li = l/p = 44. This means 
that we will have to wait on average for 44 time units before the shift is detected. 
This illustrates that the mean chart is not very sensitive to small shifts. 

The situation can be improved by combining rules. Let us consider the "two 
consecutive points outside warning limits" rule for the same shift (of-\-CYn). This 
limit is z = 1 away from the new mean corresponding to/? = 0.159. Two consecutive 
points have a/7 = (0.159)^ = 0.0253. For a shift ofcrlnihe Li for the "two consecutive 
points outside warning limits" is therefore 1/0.0253 ~ 40. The combination of the two 
rules (i.e. "one point outside action limits" and "two consecutive points outside 
warning limits") yields Li = 24 [6]. One should not forget that, at the same time, Lo 
decreases. As is usual with a and p errors, one has to look for a good compromise. 

Small biases or drifts can be detected more easily with methods such as the 
CUSUM chart (see Section 7.4.2) and periodical changes with autocorrelation 
charts (see Section 7.5 and Chapter 20). 

7.2.2 Range charts 

Although some information about the spread of the process can be obtained 
from the mean chart, it is preferable to control a direct measure of it, such as the 
range. The range is plotted in function of time in the same way as the mean in the 
mean chart and, in SPC, one often combines the two plots on the same page using 
the same time axis. The range chart is shown in Fig. 7.3 for the data of Table 2.6. 
As for the mean chart, one determines warning and action limits. The distribution 
of R is skewed [4], so that one needs different constants for the upper and lower 
lines. Since a decreasing spread is no problem for the process, one often uses only 
the upper limits. When all lines are drawn, this then requires four constants: 

Upper action line at Do ooi ^ 
Upper warning line at Do 025 ^ 
Lower warning line at D0.975 R 
Lower action line at D0.999 R 
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Fig. 7.3. Range chart for the data from Table 2.6. It is assumed that one knows from the training period 
that ^ = 0.5. 

As for the constant A' of eq. (7.6), D depends on the sample size n. Some values 
are given in Table 7.4. For n = 4 and supposing that in the training period a value 
of ^ = 0.5 was obtained, one derives UCL = 1.28, UWL = 0.96. 

TABLE 7.4 

Constants for the determination of warning and action limits in the range chart in function of n (meaning of 
symbols, see text). Adapted from Ref [4] 

// 

2 
3 
4 
5 
6 
7 
8 

10 

A).()()i 

4.12 
2.98 
2.57 
2.34 
2.21 
2.11 
2.04 
1.93 

A).()25 

2.81 
2.17 
1.93 
1.81 
1.72 
1.66 
1.62 
1.56 

A).975 

0.04 
0.18 
0.29 
0.37 
0.42 
0.46 
0.50 
0.54 

D{).999 

0.00 
0.04 
0.10 
0.16 
0.21 
0.26 
0.29 
0.35 
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7.23 Other charts for central location and spread 

The mean chart is by far the most often used one. A variant is the mean chart for 
unequal sample sizes (i.e. n varies). An alternative that is sometimes used is the 
median chart. It is obtained by plotting all data for each time point and ringing the 
middle one. Tables for warning and action lines can be found in the specialized 
literature (e.g., Ref. [4]). In Chapter 12 it is shown that the median is a robust 
measure of central location and that this is sometimes an advantage. Here it is 
rather a disadvantage, because it means that the median is not sensitive towards 
extreme values. For instance the following two sets of data have the same median 

2,3,4,5, 6 
2,3,4,5, 16 

The occurrence of the value 16 would indicate a problem in the process. It would 
be detected by the mean, but not with the median. 

An alternative for the range chart is the standard deviation chart. If a large 
enough training set is used for that purpose, we can consider that the standard 
deviation a of the process is known. During control, sets of/t measurements will 
be obtained and for each of these sets, the sample standard deviations, can be 
obtained. The question will then be to determine whether s is still compatible with 
a. The upper warning line will then be drawn at a value of 

such that if the process is still under control it will be exceeded only in 2.5% of 
all cases. Therefore the upper warning line must be drawn at F = Foo25;n-i,oo 
(see Chapter 5). In the same way the upper action line will be at F = Foooi;n-i,oo. 
For instance, for n = 5, Foo25;4.oo = 2.79. If a were 0.1, then any s > 0.167 
(= V2.79 X 0.01) would be outside the warning lines. Again, it is unusual to draw 
lower warning and action lines. 

7.2.4 Charts for the analytical laboratory 

In the analytical laboratory, one often uses quality control only to detect biases. 
These biases are due to changes in the way in which the laboratory performs the 
method, or to changes in instruments or reagents. In other words, one tries to detect 
changes in lab bias (see Chapter 13). When a change in bias is detected the first 
step is often to check the calibration step. In those cases, for instance where one 
does not calibrate frequently, the first action will be to re-calibrate and investigate 
whether this corrects the problem. Charts for precision (and more specifically, 
repeatability — see Chapter 13) are often restricted to duplicates. 
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Different types of quality-control samples can be analyzed, such as standard 
solutions, synthetic materials obtained for instance by spiking the matrix with 
known amounts of analyte, reference materials and certified reference materials. 
Reference materials are real analytical test materials, that are homogeneous and 
stable and certified reference materials (CRMs) are reference materials that are 
accompanied by a certificate usually giving an estimate of the concentration of the 
analyte and the confidence in that estimate [7]. 

Mean and range charts have been described in Sections 7.2.1 and 7.2.2. The data 
are expressed as concentrations which means that for methods that require calibra­
tion, the errors due to the calibration step have been incorporated. However, there 
are some special applications: 

- The blank chart. This is a special case of the mean chart. The data are now 
measurements of blanks and the mean is often the mean of one blank, measured at 
the beginning of a run, and a second blank, measured at the end of the run. 

- The recovery chart. This is used when matrix effects are considered possible. 
The reference material is then usually a spiked matrix material and results are 
expressed as percentage recoveries. 

7.3 Charts for attributes 

So far, we have made charts for continuous variables. It is possible to do this 
also for discrete variables, usually for the number of defects. Discrete variables are 
described by other probability distributions than the normal distribution and, since 
the charts we have applied so far are based on the latter distribution, we cannot use 
these charts for discrete variables. The distributions needed will be described in 
Chapter 15 as will the related control charts. For now, we will only note that we 
will make a distinction between two types of situations: 

(a) A certain number of objects, e.g. one hundred stoppers, are sampled to 
determine how many are defective towards a given response (e.g. do not fit on a 
certain bottle). The result is a ratio: number defectives/number sampled. This is 
described by the binomial distribution (see Section 15.2). 

(b) A certain domain (e.g. 1 m^ of paint sprayed on a car) is investigated and the 
number of defects over that area are counted. This is not a ratio and is described by 
the Poisson distribution (see Section 15.4). 

7.4 Moving average and related charts 

7.4.1 Moving average and range charts 

When observations are made at regular time intervals, the resulting series of 
observations is called a time series. The analysis of time series is discussed further 
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in Chapter 20 in the context of the characterization of processes, and in Chapter 40 
where its use for signal processing is described. Time series are applied in general 
to separate long-term effects (in signal processing, the signal) from random effects 
(in signal processing, the noise). In quality control, too, we want to separate 
systematic effects, such as a shift of the mean, from random effects due to the 
imprecision of the production and/or measurement. One of the simplest techniques 
applied in the analysis of time series is the use of moving averages. For a series of 
control measurements define the moving averages as 

X\ -\- X2 ~^ ' " Xfi X2~^ X-} -h ... Xn-\-\ X3 + Â4 + . . . + -̂ n+2 

n ' n ' n 

In signal processing it is usual to select an odd value for n and replace the central 
point in the window of n values by the moving average (see Chapter 40). In QC we 
plot the moving average at the ends of the window, i.e. at point n, n+l, n+2, 
successively. We can then easily use even values of n if we want to do so. Consider 
for example Table 7.5: the moving average for n = 4 is computed. The first value 
is plotted at time r = 4. As can be seen from Fig. 7.4, moving averages have the 
effect of reducing random variations, so that systematic effects can be more easily 
observed. The action and warning lines are determined in the conventional way, 
described by eqs. (7.2) and (7.3), i.e. mean and standard deviation or range are 
determined from historical data or from a training set. 

Some of the rules for detecting the out-of-control situations of Section 7.2.1 
cannot be applied. For instance, one cannot apply rules such as "two consecutive 
points outside the warning limits". Indeed, when one point has been found outside 
the warning limits, it is quite probable that the next one will also be, because the 
points are not independent: they use in part the same values. 

TABLE 7.5 

Moving averages of order n = 4 

t Measured value Moving average 

1 12 

2 6 
3 18 
4 11 11.75 
5 4 9.75 
6 16 12.25 
7 22 13.25 
8 17 14.75 
9 28 20.75 
10 18 21.25 
11 30 23.25 
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Fig. 7.4. Moving average. Chart displaying the results of Table 7.5. 

The principle for the moving average of the observations has been explained, 
and the same principle can be applied to the ranges. 

7,4.2 The cumulative sum (CUSUM) chart 

For a series of measurements Xu...^t we determine the cumulative sum of 
differences (CUSUM) between the observed value and the target value xj 

C1 = Xi — xj 

C2 = {X2 - XJ) + (Xi - XJ) = Ci + fe - Xj) 
V 

Cv = X (Xi - XJ) = Cv-i + (Xy - XJ) (7.7) 

These values are displayed on a chart such as that in Fig. 7.5 for the data of Table 
7.6. The data describe a process for which, during the training phase, values of Ĵ T 
= 100, 5 = 4 were derived with /i = 1. If the deviations fromxx are random, then the 
C values oscillate around the zero line. If a trend occurs, the distance from zero will 
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Fig. 7.5. CUSUM chart for the data of Table 7.6. 
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TABLE 7.6 

Example of a CUSUM and an EWMA 

Data point 

3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 

A'/ 

91 
104 
96 

106 
100 
108 
99 

103 
98 
99 
99 

105 
105 
99 

106 
108 
105 
111 
110 
105 

-9 
+4 
-4 
+6 
0 
+8 
-I 
+3 
-2 
-1 
-1 
+5 
+5 
-I 
+6 
+8 
+5 
+ 11 
+ 10 
+5 

Ci 

-9 

-5 

-9 

-3 

-3 

+5 

+4 

+7 

+5 

+4 

+3 

+8 

+ 13 

+ 12 

+ 18 

+26 

+31 

+42 

+52 

+57 

95.5 
99.75 
97.87 

101.94 
100.97 
104.48 
101.74 
102.37 
100.19 
99.59 
99.30 

102.15 
103.57 
101.29 
103.64 
105.82 
105.41 
108.21 
109.10 
107.05 
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Fig. 7.6. The V-mask method applied to the data of Table 7.6. 

gradually increase. Using simple visual observation we would reach this conclu­
sion at around point 15. With the classical mean chart we would detect the shift at 
time 19 (two points in a row outside warning limits) or with rule 6 of Western 
Electric (see Section 7.2.1.2) at time 18. 

To be able to use the so-called V-mask method (see Fig. 7.6) for the interpreta­
tion of the CUSUM chart, it is necessary to decide on the scaling of the axes and 
in particular of the C-axis. The recommended scaling factor is 2 Slyn. This means 
that 1 unit on the 3c-axis is equal to 2 /̂Vn̂  units on the C-axis. When we wish to 
evaluate a possible trend at time t, we place the mask so that C coincides with the 
point 0. This point is placed at a distance d of the apex A of the Vmask- This is called 
the lead distance. When the CUSUM line cuts one of the limits of the mask, then 
the trend is considered significant and it starts where the mask cuts the line 
connecting the C values. This is considered equivalent to crossing an action line. 

Of course, the detection of the trend depends on the selection of d and of 6, the 
angle of the V. For the selection of these parameters, we refer to the specialized 
literature [4,8]. We can base this selection on the average run length ARL (see 
Section 7.2.1.2), i.e. we can require an Lpvalue smaller than a given number (e.g. 
5) for a specified shift (e.g. ± 5/VAO and an LQ-value larger than another number 
(e.g. 300). Typical values are (i = 2, 9 = 30°; (i = 8, 9 = 15°. The former is used in 
Fig. 7.6 for time 20. This means that the apex of the mask is at time 22. The line of 
points crosses the V-mask, so that point 20 is considered to be out of control. In 
fact, the earliest indication would be received at point 18. In that case point 14 is 
just outside the mask as the reader can verify by putting the mask at the height of 
point 18 with its apex at 20. 

The V-mask is useful for rapid visual decision making. However, we can also 
base decisions on a confidence interval. Let us define a gradient or slope in the 
CUSUM plot. From time v to time v -f m the average gradient G is given by 
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G = (Cv+,„-Cv)/m: 2w (-̂ v+z ~ -^T) 
7=1 

/m (7.8) 

Xx v+/ 

J 

/m - Xj (wherey is the number of points starting from v) (7.9) 

= mean value in time interval - mean value to be controlled. 

Reformulated in this way, we can see that the CUSUM chart is really a variant 
of the moving average method. The CUSUM chart detects no drift when the 
gradient is equal to zero or, in statistical terminology, when it is not significantly 
different from zero. We now see that this is equivalent to stating that the mean 
value in the interval should not differ significantly from the mean value to be 
controlled. The confidence interval 

/ /;/ N 

Xx v+/ 

./=1 J 

/m±z^m5SAU (7.10) 

is constructed and we verify if jcj is inside it. If the result at each time point is itself 
the average of n measurements, then the square root term becomes Vmn. Let us 
apply this to the data of Table 7.6. The confidence interval from point 10 (v =10) 
to point 20 (j = 10) is given by 

1053/10 ± 1.96X4N10 = 105.3 ±2.5 

The value of JCT is not inside the confidence interval. This confirms that there was 
a meaningful gradient and that, in this interval, the process was out of control. 

7,4,3 Exponentially weighted moving average charts 

In signal processing (see Chapter 40), we will see weighted moving averages, 
where less weight is given to the extreme values in the window moving over the 
data (i.e. the values closest to the boundaries of the window) than to the central 
point, with the philosophy that the extreme points are less important to the value 
of the average of the window. In QC weighted moving averages are also used, but 
the philosophy is different: it is the last point in the window which is the most 
important as this describes best the actual state of the process. Weights must 
therefore be given such that they diminish as they are more distant from the last 
point. This is what is done with the exponentially weighted average charts [9]. 

Suppose a certain process has jcj = 100 and the observed successive values are 
for r = 1, ..., 5 respectively 102, 97, 103, 98, 101, then one computes the exponen­
tially weighted moving average (EWMA) as follows 



167 

= X* + X{xt - X*) (7.11) 

This estimate can be re-written as a weighted mean of the last observed x-value and 
the previous estimate 

Xt+\ = Xxt-\-{I - X) x'^ (7.12) 

In eq. (7.11) Xt is the value observed at time t and x*+i the value at time t + 1 
predicted from Xj. To make the prediction one needs X, a constant (0 <X< 1) and 
et the difference of the observed value Xt and x*, the value predicted from Xt-i. 

Suppose A. = 0.5. To initiate the EWMA we put x^(t = 1) = XT, so that 

x5= 100+ 0.5 (102-100) = 101 

JC3= 101+0.5(97-101) =99 

x: = 99+ 0.5 (103-99) =101 

4= 101+0.5 (98-101) = 99.5 

4 = 99.5 + 0.5 (101 - 99.5) = 100.25 

The value of ?i is chosen by the experimenter. Its value is often chosen to be 0.1 
or 0.2 and is sometimes optimized experimentally. Least squares procedures have 
been described. It has been shown (see Chapter 40) that the eq. (7.11) can be 
re-written as 

t 

4+1 = S w/X/ (7.13) 

/=o 

where w/ are weights (Zw/ = 1) given by 

w, = X(\-X)'-' (7.14) 
We can see that the nearest point has the highest weight. For instance, for X -

0.1 ŵ  = 0.1 and Wt-\o = 0.035. The most recent x, x^ has a weight of 0.1, while x̂ _io 
has a weight of 0.035, i.e. 3 times less than Xf. For X = 0.3 it would be about 35 
times less. In practice, the value of X should be optimized and experience shows 
that it is often situated between 0.1 and 0.3. For ease of calculation, we will 
compute the EWMA for the data of Table 7.6 with X = 0.5. 

The procedure consists of plotting on the same charts* andx^ If there is no trend 
or random variation, then x*+\ can be forecast perfectly from x* and x^ Since random 
variation occurs, usually x*+i ̂ Xt+\ and et+\ ^ 0. There is an error in the forecast of 
xi+\ from Xu so that e is called the forecast error. When there is no trend, e will 
oscillate around zero, so that jc* and Xf do not differ much and the difference will 
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Fig. 7.7. Comparison of weights given to historical data in the control process for the Shewhart, 
CUSUM, Moving Average and EWMA charts (adapted from Ref. [9]). 

not be systematic. When a trend occurs, this will no longer be the case. Suppose 
the trend is positive, then ,̂ will also usually be positive and the EWMA will 
increase. The control limits are given by Hunter [9] as 

XT±3[X/{2-X)f^S (7.15) 

For our example, this becomes jcj ± 1.73 S, so that UCL = 106.92. Point 18 crosses 
the UCL line (see Table 7.6) so that a trend is detected in this point with the (not 
optimized) ?i = 0.5. 

In Fig. 7.7 the difference between the approaches of different charts are shown. 
In the Shewhart chart a decision is based on the past point: if that point exceeds an 
action limit, the process is considered out of control whatever happened before. In 
the CUSUM methods all the points up to the last one are taken into account, since 
they all influence the CUSUM and have equal weight. As Hunter puts it, the 
CUSUM has an elephant-like memory. In the moving average, an intermediate 
solution is adopted: the last k points are used with equal weights, k being the 
number of points that are used to obtain the moving average. The EWMA is 
another intermediate solution: the last point is most important, but use is also made 
of the points before that. 

The EWMA is the basis of what is called iht proportional, integral, differential 
(PID) control equation. It is given by 

"^t+i • X* -\-X\et-\- A-2 Y.et + ^3 A ̂ ^ (7.16) 

The two first terms are the EWMA of eq. (7.11). The third term takes into account 
the sum of ^rvalues and will detect steady drifts away from the target value. The 
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fourth one is given by the difference between the two last obtained values, et and 

t^Ct = et- et-\ 

The three terms are weighted to obtain optimal prediction. The name PID is due 
to the fact that term two is proportional to Ct, term three is related to the sum of et s 
{integral) and term four to a difference. This development of EWMA is more than 
a quality control equation: it can be considered as a tool for dynamic control and 
is a member of a class of time series called ARIMA models (Autoregressive, 
integrated, moving average models) [10] (see also Chapter 20). 

7.5 Further developments 

In Section 7.2.3 we introduced the median chart. We stated that the median is 
robust towards extreme signal values and that it will be introduced further in 
Chapter 12 on robust methods. Other methods of this type have been described for 
QC purposes and the runs test is given in Chapter 12 as an example. 

In this chapter, we have discussed situations where only one characteristic is 
controlled. Suppose that we carry out a quality control of a chromatographic 
measurement and the quantities of two substances are monitored. With what we 
have seen so far, we would need two charts, one for each substance. However, the 
results of the two charts may be related. If something goes wrong with the 
injection, e.g. a smaller amount is injected, then the results for both substances will 
be affected in the same way. In other words, the observations in the two charts can 
be (cor)related. To take this into account we would like a chart which monitors the 
results as a whole, i.e. in a single chart. How to do this with multivariate control 
charts is explained in Chapter 20. 

Another special situation is when cyclical variations occur. In such a case, when 
point t is for instance high, it is more probable that points t - 1 and t + 1 are also 
high than that they are low. Points close to each other have (cor)related values, i.e. 
they are autocorrelated. This can be taken into account with the use of autocorre­
lation charts (see Chapter 20). 
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Chapter 8 

Straight Line Regression and Calibration 

8.1 Introduction 

In many situations information about two or more associated variables is 
obtained in order to study their relationship. Depending on the nature of the 
variables, the investigation is carried out either by regression analysis or by 
correlation analysis. 

Regression analysis is used to study the relationship between two or more 
variables. This relationship is expressed as a mathematical function which can also 
be used for predicting one variable from knowledge of the other(s). To study the 
dependence of a random variable (the dependent variable or the response variable) 
on a variable which is controlled by the experimenter, either because its values are 
exactly known or can be preselected (the independent or the prediction variable). 
Model I regression techniques are appropriate. They assume that the independent 
variable is not subject to error. An important application of Model I regression 
analysis is calibration where an instrumental response is related to the known concen­
tration of the analyte in calibration standards. The final aim of the regression analysis 
is then to use the mathematical expression, relating the response and the concentration, 
to predict the concentration of unknown samples. If both variables are subject to error, 
Model II regression techniques, which take into account the error associated with 
both variables, must be applied. This is the case, for example, in method-compari­
son studies where there are measurement errors in both methods. 

In other applications regression analysis provides a means of simplifying experi­
mental data in order to facilitate their interpretation. The data are represented by 
an appropriate mathematical model. In the process of model building, emphasis is 
then placed on discovering those independent variables that best explain the 
variation in the random variable. As an example, consider a chromatographic 
system. To understand the retention behaviour of the system the retention time (the 
random variable) can be studied as a function of different system variables (e.g. 
pH, methanol content of the eluent). 

A good theoretical knowledge of the system under study is necessary to con­
struct a model in which the regression parameters have a physical meaning. 
Empirical models, which do not have a clearly interpretable scientific meaning, are 
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most often used. Nevertheless such models are very useful, e.g. for prediction 
purposes, if they provide an adequate description of the data. 

The process under study might be understood so well that information about the 
form of the relationship is available beforehand. The primary goal of regression 
analysis is then to estimate the regression coefficients which have a well-defined 
meaning. 

In the following sections we will deal only with straight line regression between 
two variables. Different applications from measurement science are used to intro­
duce and illustrate the method. Multiple and polynomial regression in which 
several independent variables are involved are discussed in Chapter 10 and non­
linear regression in Chapter 11. Robust regression is explained in Chapter 12 and 
fuzzy regression in Chapter 19. In Chapter 35 multivariate regression, which 
studies the association of several response variables with several independent 
variables, is described. 

Correlation analysis is appropriate for studying the degree of association be­
tween two random variables: for example, the concentrations of As and Sb in 
rainwater samples collected at different locations near a copper smelter. The 
problem here is to find a quantitative measure for the relationship between both 
concentrations. Correlation analysis is discussed in Section 8.3 of this chapter. 

8.2 Straight line regression 

8,2.1 Estimation of the regression parameters 

The use of a calibration line for determining the concentration of an analyte in 
a sample is an important application of straight line regression. The variable y then 
represents the response measurements and the x variable the concentration of the 
standard solutions. The errors made in preparing the standards are most often 
negligible in comparison with the measuring errors. Therefore, the assumption that 
the X variable is exactly known and consequently has no error is justified in 
calibration. The x variable is then the independent and y the dependent variable. 
The calibration function can be obtained by fitting an adequate mathematical 
model through the experimental data. 

If we assume that the true relationship between the response and the concentra­
tion is a straight line, the model which describes this relationship is: 

r| = po + p ,x (8.1) 

r\ represents the true response; Po and pi are the model parameters, they are the 
intercept and the slope of the true but unknown regression line, respectively (see 
Fig. 8.1a). 
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(a) 

// = ^o * /5 i x 

(b) 

y = b Q * b ^ x 

Fig. 8.1. Straight line regression, (a) The true regression line; (b) the estimated regression line. 

For any given concentration the true response value is unknown but we have 
measurement values, yi, which, due to the fact that these measurements are subject 
to error, will differ from the true response. Each measurement can therefore be 
represented as: 

.V. = r|, + 8, 

or 

yi = po + pix, + 8/ 

This means that each observation is composed of a component which is determined 
by the model and a component 8/ which represents the difference between the 
observed response yi and the true response r|/. 

The model parameters, po and pi, are unknown. However, one can use the 
information provided by the measurements to obtain estimates, bo and b], of Po and 
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pi, respectively. These estimates, bo and b\, are calculated in such a way that the 
estimated line (Fig. 8.1b) 

y = bo + bxx (8.2) 

fits the n experimental points as well as possible. The estimated line, which is an 
estimate of the true but unknown line, is also called the least-squares line when the 
estimation is performed by the least-squares method. The line fitted by least 
squares is the one that minimizes the sum of squares of the residuals. The residual 
ei is the deviation of the measurement y, from its value predicted by the regression 
line}'/ : 

ei^yi-yi (8.3) 

Therefore the least-squares method minimizes /?, the sum of the squared residuals: 

R = le} = I^iy, - yd' = liyi -bo- b,xd' 
n 

where X in this and all subsequent expressions is the reduced notation of X , unless 
i=\ 

Otherwise stated and n is the total number of observation pairs. Differentiating this 
expression with respect to bo and bi and setting the results equal to zero provides 
two simultaneous equations which can be solved for intercept bo and slope b\: 

go 
— = l2(yi-bo-b,xd{-l) = 0 
obo 

go 
T - = l2(yi -bo-bi Xi) {-xd = 0 
ob] 

This is equivalent to: 

l.yi-nbo-b\ X^/ = 0 

X xiyi -bol.Xi-b]l,xj = 0 

which are the normal equations from which the following expressions for the 
least-squares estimates, bo and b], can be obtained: 

^ ^ ^ ^ ^ v ^ ^ _ v ^ ^ ^ (8.4) 
Kx/ - x) (yi - y) 

TiXi - xf 

bo^y-bix (8.5) 

with >̂  = (X yi)/n the mean of all y,, and Jc = (X Xi)/n the mean of all Xi. 
An important statistic in regression analysis is the residual variance s\ ,2. 
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^J^^l^ (8.6) 
n- 1 n- I 

For the calculation of this variance we divide by n - 2 and not as usual by AI - 1, 
because the residuals result from a fitted straight line for which two parameters, /̂ o 
and h\, need to be estimated. This is a measure of the spread of the measurements 
around the fitted regression line. Consequently it represents the variance in the 
response which cannot be accounted for by the regression line. Since it is the 
variance which remains unexplained after x has been taken into account, it is also 
called the variance of y given x and the symbol {Sy.^ is sometimes used. If the 
model is correct, s], is an estimate of the variance of the measurements a^, also 
called pure experimental error. 

For hand calculations the sum of the squared residuals, X(y/ - yi)^, in eq. (8.6) 
can be obtained from: 

a.{x.-x)(yr-y)f 
Z (Xi - 'xf 

Example 1: 
As an example consider the following calibration data (see also Fig. 8.2) for the 

determination of quinine, according due to Miller and Miller [1]. The response yi 
represents the fluorescence intensity (/) in arbitrary units. 
i \ 2 3 4 5 6 
jc,(ng/ml) 0 10 20 30 40 50 
yil) 4.0 21.2 44.6 61.8 78.0 105.2 

n = 6 

Lx,= 150 x = 25 

I> ,̂ = 314.8 y = 52.4667 

X(jc, - xf = (0 - 25)' + (10 - 25)2 + ... + (50 - 25)' = 1750 

I(x/ - x) iyi - y) = (0 - 25) (4.0 - 52.4667) + (10 - 25) (21.2 - 52.4667) 
+ ... + (50 - 25) ( 105.2 - 52.4667) 

= 3468 

, J.{x.-x){y,-y) 3468 . ^ , . -

^'^ l{x^-xf -mo = ^'^^^^ 
bo = y-bix = 52.4661 - (1.9817 x 25) = 2.9242 

Therefore: 

i) = 2.924+1.982JC 
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Fig. 8.2. Calibration line for the fluorimetric determination of quinine. 

From this fitted line the residual variance si can be calculated as follows: 
Xi 

0 
10 
20 
30 
40 
50 

yi 
4.0 
21.2 

44.6 

61.8 

78.0 

105.2 

yt 
2.92 

22.74 

42.56 

62.38 

82.19 

102.01 

e, = (yi - yd 
1.08 

-1.54 

2.04 

-0.58 

^.19 

3.19 

le, = 0 

ei = 0 

ef 
1.1664 

2.3716 

4.1616 

0.3364 

17.5561 

10.1761 

lej = 35.7682 

, ^ M z M . 312682 3̂_̂ 4 

In the least-squares method the following assumptions concerning the residuals 
are made: 

(i) for each jc, the residuals ei are from a population that is normally distributed 
with mean zero; 

(ii) the ei are independent (see Section 6.2); 
(iii) they all have the same variance a .̂ Consequently it is assumed that for each 

specific Xi the responses yi are normally distributed with a mean r|/ = po + pix, and 
a constant variance a^. This is shown in Fig. 8.3. For a calibration experiment, the 
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Fig. 8.3. Assumptions concerning the residuals. 

X 

latter condition means that the precision of the measurements is independent of the 
concentration. This condition of uniform variance is called the condition of homo-
scedasticity (see also Chapter 6). 

In many situations it is reasonable to assume that the distribution of measure­
ment errors is normal. Very often, the overall error is a sum of several smaller 
independently distributed errors. For example the error in flame atomic absorption 
spectrometry is caused by noise from several sources: the photomultiplier detector, 
fluctuations in the light source, the instrument electronics, the flame, etc. Whatever 
the probability distribution of these component errors is, their sum tends to be 
approximately normal. This is an illustration of the central limit theorem. 

On the other hand, the condition of homoscedasticity is certainly not always 
fulfilled. It is frequently observed that the standard deviation of y, Sy, depends on 
the value of y or x. In calibration, for example, heteroscedasticity (non-constant 
variance) may occur with lines that cover a large concentration range. Land et al. 
[2] illustrate this with several examples from HPLC. In a plasma assay of a 
haemoglobin-02 affinity modifier the variance changed by a factor of 700 over the 
0.2-80.0 |Lig/ml range. Often Sy is proportional to 3; or x resulting in a constant 
relative standard deviation (RSD). An example from inductively coupled plasma 
(ICP) calibration is given in Table 8.1. 

To check homoscedasticity, replicate measurements are necessary. Past experi­
ence of similar measurements can however be used. In the example given in Table 
8.1 the information necessary to check homoscedasticity was obtained from single 
calibration experiments performed once a week for 14 consecutive weeks. This 
explains the relatively high RSD value but it indicates that the ICP-Pb measure­
ments are heteroscedastic and that they show a constant relative standard deviation. 
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TABLE 8.1 

ICP-Pb calibration data [3]. Heteroscedasticity with constant relative standard deviation (RSD) 

n 

14 
14 
14 
14 
14 

X 

{\ig ml-') 

0.5 
I.O 
5.0 

10.0 
50.0 

y 
(I) 

0.75 
1.49 
7.24 

14.39 
72.17 

Sy 

0.164 
0.263 
1.533 
3.096 

17.350 

RSD 

(%) 

22 
18 
21 
22 
24 

Knowledge of the variance function — the way the variance varies with y ox x — 
is useful to find solutions for the heteroscedasticity problem (see Section 8.2.3). 

It is important to note that these assumptions are especially important for 
prediction purposes to establish confidence intervals for, or tests of hypothesis 
about, estimated parameters (see Section 8.2.4 and 8.2.5). These intervals, being 
based on t- and F-distributions, assume that the condition of normality is fulfilled. 
Moreover, the way they are constructed also assumes the condition of homoscedas-
ticity to be fulfilled. 

The regression procedure involves several steps: 
y. Selection of a model Here we have selected the straight line model r| = Po + Pix. 
2. Establishment of the experimental design which means the choice of the 

experimental domain (in Example 1, this ranges from 0 to 50 ng/ml), the repartition 
of the X variable over that domain, the number of measurements, etc. The influence 
of the design of the experiments on the precision of the estimated regression 
parameters is discussed in Section 8.2.4, and is also treated in Chapter 24 on 
experimental design. 

3. Estimation of the parameters of the model. Here this means estimation of po 
and pi by computing b^ and b\ by means of the least-squares method. Other 
regression methods, which may be useful if departures from the assumption of 
normality or homoscedasticity occur, are described in Chapter 12. 

More complex regression methods for estimating regression parameters when 
both variables y and x are subject to error are illustrated in Section 8.2.11. 

4. Validation of the model. Validation of the model is important to verify that 
the model selected is the correct one (for instance, is the model really a straight line 
or are the data better described by a curved line) and to check the assumptions. In 
the next section it is shown that analysis of the residuals and analysis of variance 
(ANOVA) are useful for validation purposes. 

5. Computation of confidence intervals. In Sections 8.2.4 and 8.2.5 confidence 
intervals for the regression parameters po and pi and for the true line as well as 
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confidence intervals for the true values of y and x predicted from the regression 
equation are calculated. 

8.2.2 Validation of the model 

As already mentioned, validation is necessary (i) to verify that the chosen model 
adequately describes the relationship between the two variables x and y, or in other 
words that there is no lack of fit, and (ii) to check the assumptions of normality and 
constant variance of the residuals. The assumption of independence is generally 
not tested since this can most often be controlled by a proper experimental set-up. 
It will be shown how an examination of the residuals and the analysis of variance 
can be used for validation purposes. 

8.2.2.1 Analysis of the residuals 
The residuals {Ci = yi - yi) can provide valuable information concerning the 

assumptions made as well as concerning the goodness (or lack) of fit of the model. 
To check the normality of the distribution of the residuals (or also the distribu­

tion of the responses y for each specific jc/, see Fig. 8.3) one could apply the 
techniques to check the normality of data described in Section 3.8. Usually, 
however, one does not have enough replicate measurements to do this. However, 
as explained earlier, it can generally be assumed that measurement errors are 
approximately normally distributed. 

Section 6.2 describes how to investigate homoscedasticity. These tests require 
replicate measurements (to estimate the variance of the response at the different Xi 
values) which are not always available. As mentioned in the previous section, past 
experience of similar experiments can then be useful. 

Useful information can also be obtained from a residuals plot where the residu­
als Ci are plotted against j / or against jc,. It is recommended that such a plot is 
obtained whenever one needs to validate the model. Since no tests are involved, 
some experience may be necessary for the interpretation of these plots. Some 
examples are given in Fig. 8.4. Figure 8.4a indicates no abnormality: the residuals 
are randomly scattered within a horizontal band with a number of positive residuals 
which is approximately equal to the number of negative residuals. Moreover, a 
random sequence of positive and negative residuals is obtained. Figure 8.4b 
indicates that the condition of homoscedasticity is not fulfilled: the scatter of the 
residuals increases with y. This indicates that the precision of the measurements 
over the concentration range considered is not constant. The U-shaped residuals 
plot in Fig. 8.4c is the result of fitting a straight line to data which are better 
represented by a curve. There is a lack of fit with the straight line model. 

As an example, consider the Ca calibration line obtained from flame atomic 
absorption spectrometry shown in Fig. 8.5a. An unusual pattern of positive and 
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Fig. 8.4. Examples of residual plots. 

negative residuals is observed from the residuals plot in Fig. 8.5b: the 19 residuals 
are arranged in 5 groups (called runs) of respectively 6 negative, 9 positive, 1 
negative, 1 positive and 2 negative residuals. The probability that such an arrange­
ment of 19 residuals in 5 runs of positive and negative residuals is random can be 
shown to be less than 5% (see Section 12.1.4.6). Therefore a non-random arrange­
ment has been detected which has to be attributed here to a (small) deviation of 
linearity of the Ca calibration line in the low concentration range. 

8.2.2.2 Analysis of variance 
Analysis of variance (ANOVA) can be used to detect lack of fit in a regression, 

in order to verify whether the model chosen is the correct one. Therefore replicate 
measurements are needed. 
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Fig. 8.5. (a) A Ca calibration line obtained from flame atomic absorption spectrometry; (b) The 
corresponding residual plot. 

The total variation of the y values about the mean value, y, as described by the 
total sum of squares, SST, is then given by: 

k n, 

(8.8) 

with: 
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yij one of the n, replicate measurements at jc,, 
Hi, the number of replicate measurements made at xi, 
k 

X rii = n, the total number of observations, including all replicate measurements, 

k, the number of levels, i.e. different x values, 
'y, the mean of all the observations (grand mean). 

By an analysis of variance this total sum of squares is split into different sources 
of variation. Consider first the deviation of theyth response value at JC/, yij, from the 
grand mean, ̂ . This can also be written as: 

iyij-y) = (yij-yd + (yt-yd + iyi-y) 
^ (8.9) 

residual 

with: yi the mean value of the replicates y^ at JC,, 
5̂/ the value ofy at JC/ estimated by the regression function. All replicates at xi have 
the same estimated value y, . 

In this way the deviation has been decomposed into three parts which are 
represented graphically in Fig. 8.6 and which can be interpreted as follows: 

(ji - y): the deviation of the estimated response at Xi from the grand mean. This 
quantity depends on the existence of a regression between x and y. It becomes zero 
if y does not change with x. It is therefore useful to test the significance of the 
regression (see further). 

CV/> - yi)'- the residual which can be written as (ytj - yi) + (yi - yi) with 
(yij-yi)'- the deviation of an individual observation at xi from the mean of the 

observations atx,. This quantity is independent of the mathematical model chosen; 

residual 

Fig. 8.6. Decomposition of the deviation of >',) from the grand mean y into different components. 



183 

it only depends on the measurement error. It is important for the estimation of the 
pure experimental error. 

(y, - yi): the deviation of the mean response at jc, from the estimated response at 
Xi. This quantity depends on the mathematical model chosen. If the model chosen 
is not the correct one this deviation contains the bias (lack of fit). On the other hand, 
if the model is adequate, this deviation can be explained in terms of the experimen­
tal error. It can then also be used for the estimation of the measurement error (see 
further). 

Squaring both sides of eq. (8.9) and summation over / and j , to include all 
measurements, yields the total sum of squares SST of eq. (8.8): 

k «/ 

SST = I I (yij-yf 
I J 

k n, k k 
TT\2 Z Z (yij - yif + X rii (yi - yif + 1 Hi (yi - y) (8.10) 

SSR SS REG 

SSpE SSLOF 

The sums of cross products cancelled out by summation over; and /. 

• F = 
MS,. 

MSp 

• estimates or if the 
model is correct 

* estimates a^ + (bias)^ 
if a wrong model is 
used 

Fig. 8.7. Analysis of variance. Breakdown of sum of squares. 
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In this way the total variation of the y values about 'y has been separated into two 
main components (see also Fig. 8.7) namely: 

SSREG^ the variation which can be ascribed to the regression line i.e. to the fact 
that y changes with x. It is called the sum of squares due to regression. The term 
sum of squares due to slope is also used. 

SSR! the residual variation which measures the variation which cannot be 
explained by the regression line. This is called the residual sum of squares or the 
about line sum of squares. When replicate measurements are available SSR can be 
separated into: 

- a component which measures the variation due to pure experimental uncer­
tainty. This is the pure error sum of squares, SSPE. 

- a component which measures the variation of the group means, 'yi, about the 
regression line. This is called SSLOF, the sum of squares due to lack-of-fit. 

All this can be arranged in an ANOVA table (Table 8.2) in which the mean 
squares, MS, are as always obtained by dividing the sums of squares, SS, by their 
corresponding degrees of freedom (df). MSPE is an estimate of a ,̂ the pure error 
and MSLOF is an estimate of c^ if the model chosen is the correct one. It estimates 
a^ -f (the bias)^ if the model is inadequate. 

The lack-of-fit test is a one-sided test that is performed by comparing the ratio 
F = MSLOF/MSPE with the F-distribution at (k - 2) and (n - k) degrees of freedom. 
If this ratio is significant at the chosen significance level (MSLOF significantly 
larger than MSRE) one concludes that the model is inadequate since the variation of 
the group means about the line cannot be explained in terms of the pure experimen­
tal uncertainty. In this case an examination of the residuals plot can be helpful to 
adapt the model. If MSLOF and MSPE are comparable, the model is justified and both 
mean squares are independent estimates of a^. Consequently the pooled estimate 
of a^, MSR = s], is used in all subsequent calculations. 

The ANOVA table as represented here also allows us to check the significance 
of the regression, in other words to check whether a significant amount of the 
variation of y can be explained by the variation in the independent variable x. For 

TABLE 8.2 

Analysis of variance of simple regression model with replicate observations 

Source of variation 

Regression 

Residual 

Lack of fit 

Pure error 

Total 

ss 

SSREG 

S S R 

S S L O F 

SSpE 

S S T 

df 

1 

n-
k-

n -

n -

2 
-2 

-k 

-1 

MS 

M S R E G 

M S R 

M S L O F 

MSpE 

F 

M S R E G / M S R 

M S L O F / M S P E 
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example, is there a significant effect of the amount of fertilizer (= x) on the yield 
of wheat (= y)l This is tested by comparing the mean square due to regression, 
MSREG, with the residual mean square MSR by means of an F-test. This yields the 
same conclusion as testing the hypothesis HQ: pi = 0 by means of the confidence 
interval for the slope or by means of a ^test which will be discussed in Section 
8.2.4.1. In a calibration experiment, testing the significance of regression is not 
relevant because calibration is, by definition, based on the fact that the response of 
the instrument changes with the concentration of the standard solutions, and thus 
that there is regression between response and concentration. 

Example 2: 
As an example of testing lack of fit, consider the data of Table 8.3 which could 

be the result of a calibration experiment. They are also represented in Fig. 8.8. The 
different sums of squares necessary to construct the ANOVA table are: 

TABLE 8.3 

Calibration data for testing lack of fit 

Xi 

yij 

0 
0.00 

1 
0.98 
0.90 

2 
2.10 
2.20 

3 
3.16 
3.22 

4 
3.68 
3.72 

5 
4.15 
4.27 

&//• 
yi 

yi 

k = 6 

0.00 
0.00 
0.265 

n = J^rij = 11 

1.88 
0.94 
1.114 

4.30 6.38 
2.15 3.19 
1.963 2.812 

>' = 0.265 + 0.849JC 

7.40 
3.70 
3.661 

y = 2.5S 

8.42 
4.21 
4.509 

2 

1 

. . : L-

1 2 3 4 5 X 

Fig. 8.8. Calibration data of Table 8.3. 
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TABLE 8.4 

ANOVA table 

Source of variation SS df MS F 

Due to regression 20.31 1 20.31 
Residual 0.680 9 

Means about line = lack of fit 0.662 4 0.166 46.11 
Within group = pure error 0.018 5 0.0036 

Total 20.99 10 

= (0 - 2.58)^ + (0.98 - 2.58)2 + ... + (4.27 - 2.58)^ 

= 20.99 

sSpE = XZCv(/-j/)2 

= (0.98 - 0.94)2 + (0.90 - 0.94)^ + (2.10 - 2.15)2 ^ ^ ^4 27 _ 4 21)^ 

= 0.018 

SSREG = S rii iyi - yf 

= (0.265 - 2.58)2 + 2( 1.114 - 2.58)2 + ... + 2 (4.509 - 2.58)2 

= 20.31 

SSLOF = 20.99 - 0.018 - 20.31 = 0.662 

This yields the ANOVA Table 8.4. Since F = MSLOF/MSPE = 46.11 is much larger 
than Foo5;4,5 = 5.19, the lack of fit term is highly significant and consequently the 
straight line model is not adequate to describe the relationship between y and x. If 
it were necessary to test the significance of the regression, this would not be done 
until an improved regression model had been found. Note that a residuals plot can 
be useful to adapt the model. For our example the plot of Fig. 8.8 suggests that the 
addition of a quadratic term in x might improve the model. 

8,2,3 Heteroscedasticity 

If the condition of homoscedasticity is violated, the simple least-squares proce­
dure cannot be used without reducing the reliability of the estimations. The 
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problem of non-constant variance (heteroscedasticity) can be solved either by a 
transformation of the variables or by using a weighted least-squares procedure. 

8.2.3.1 Transformation 
The transformation to be used depends on the variance function, i.e. the way the 

variance of the 3; values, Sy, changes as a function of the response. If the variance 
is proportional to y, a square root transformation will give a constant variance. 

If the variance is proportional to y^, which means that Sy is proportional to y, i.e. the 

relative standard deviation (RSD) is constant, a log transformation can be used: 

log y = bo + bi log X 

In our ICP example from Table 8.1 the RSD was found to be constant and indeed 
the standard deviation of the log transformed responses becomes constant: 

Xi 

yi 

H 
^log V, 

0.5 
0.75 
0.164 
0.098 

1.0 
1.49 
0.263 
0.078 

5.0 
7.24 
1.533 
0.092 

10.0 
14.39 
3.096 
0.093 

50.0 
72.17 
17.350 
0.103 

Both the y and x variables are transformed to avoid straight line graphs becom­
ing curved after square root or logarithmic transformation. It should be realized 
that the transformation carried out to stabilize the variance does not necessarily 
preserve the straight line relationship. Log-log transformation leads to a straight 
line only when the intercept is zero or near to zero, which is usually true in 
calibration. A log transformation has also been recommended for bioanalytical 
methods using chromatographic procedures [4]. 

8.2.3.2 Weighted least squares 
In weighted least-squares regression the problem of heteroscedasticity is over­

come by introducing weighting factors inversely proportional to the variance: 

Wi = 1/4 

In this way the most importance is given to the most precise observations. This 
means that we want the calculated line to pass more closely to these points than to 
the less precise points. The slope and the intercept are then given by: 

, I Wi{Xi - Xy,) (yi -y^) 

L Wi (xi - Xy,y 

bo = y^-biXy, (8.12) 
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with x^ = — 

yw = -̂ ;̂ 

The use of weighted least squares requires information on the errors occurring 
at different concentration levels. This information must be gained experimentally 
from a large number of replicate measurements or can be obtained from the 
variance function relating the variance of the measurements, Sy, to y. If the latter is 
known, the variances sj can be estimated from this functional relationship. All this 
is cumbersome and probably explains why the weighted least-squares procedure is 
less used than it should be. 

Example 3: 
The data are the same as in Example 1 but here information concerning the 

precision of the measurements is available, since for each concentration 5 re­
sponses have been obtained. 

Xi 

yi 

yi 
Si 

5? 

0 
4 
3 
4 
5 
4 
4.0 
0.71 
0.50 

10 
22 
20 
21 
22 
21 
21.2 
0.84 
0.70 

20 
44 
46 
45 
44 
44 
44.6 
0.89 
0.80 

30 
60 
63 
60 
63 
63 
61.8 
1.64 
2.69 

40 
75 
81 
79 
78 
77 
78.0 
2.24 
5.02 

50 
104 
109 
107 
101 
105 
105.2 
3.03 
9.18 

Application of the Cochran test (see Section 6.2.1) to compare the different vari­
ances, sj, confirms the presumption of non-constant variance. The computations 
needed to obtain the weighted regression line are summarized in Table 8.5. 

The weighted regression equation isy = 3.481 + 1.964JC. This is very similar to 
the unweighted regression equation from Example 1, indicating that both lines will 
yield similar results when used to predict a concentration. However, as will be 
shown in Section 8.2.5.2 the differences become evident in the prediction errors. 

Davidian and Haaland [5] describe an approach to dealing with heteroscedastic 
data when the variance function is not exactly known. The generalized least 
squares and variance function estimation (GLS-VFE) method allows the user to 
postulate a variance model, to estimate the unknown parameters and to use this 
information to provide more efficient estimates of the regression parameters. 
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TABLE 8.5 

Computations for the weighted regression line of Example 3 

Xj 

0 
10 
20 
30 
40 
50 

•^w -

b\ = 

yi Si 

4.0 0.71 
21.2 0.84 
44.6 0.89 
61.8 1.64 
78.0 2.24 

105.2 3.03 

I yviXi 63.980 
" Iwi 5.343 

lwiixi-Xyv)(yi-yw) 

lwi(Xi-Xw) 

1582.808 , ^., 
• - - , ^ ,^ = 1.964 

Wi=l/Sj 

1.984 
1.417 
1.262 
0.372 
0.199 
0.109 

yw 

bo = 

{Xi-xj 

-11.97 
-1.97 

8.03 
18.03 
28.03 
38.03 

•yw-b\xw 

(yi-yw) 

-22.99 
-5.79 
17.61 
34.81 
51.01 
78.21 

1 4 « 4 0 . 26.99 
5.343 

= 3.481 

yvi{xi-xj^ 

284.269 
5.499 

81.375 
120.930 
156.350 
157.645 
I = 806.069 

Wi(Xi-xJ(yi-yJ 

545.978 
16.163 

178.457 
233.476 
284.532 
324.202 
1=1582.808 

806.069 

8.2.4 Confidence intervals and hypothesis tests 

Once it has been established that the estimated straight line, y = bo + b]X, 
adequately describes the experimental points, it is important to know how precise 
the estimated parameters (est. par.) bi, bo and y are. This is necessary to compute 
confidence intervals (CI) for the true slope, Pi, intercept, po, and response, r|. These 
100 (1 - a)% confidence intervals take the following general form: 

100 (1 - a)% CI for the true parameter = est. par. ± ̂ (x/2;n-2'5'est.par. 

with i-est-par. the Standard deviation of the estimated parameter. 
The difference with the confidence interval around the mean calculated in 

Chapter 3 is in the r-value used. In straight line regression analysis a value of t with 
n-2, instead of n - 1, degrees of freedom is used because the fitted line is based 
on the estimation of two parameters. As explained in Section 4.3 these confidence 
intervals can be used to carry out hypothesis tests. 

8.2.4.1 Confidence interval for the intercept and the slope 
To determine the confidence intervals for the slope and the intercept we need 

the standard deviations of bo and bi. It can be shown [6] that these can be estimated 
by: 
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S^ = Se^l^^^ ="2 (8.13) 

s,^=-~^z= (8.14) 
V l (x , - ^2 

The 95% two-sided confidence intervals for intercept and slope respectively are 
then calculated as follows: 

95% CI for Po: bo ± kms^n-i s^^ 

9 5 % C I f o r p , : Z 7 , ±ro.o25;«-2^/,, 

with ro O25;M-2 thc valuc of t with n-2 degrees of freedom (see Section 3.7 and Table 
3.4). This means that there is 95% probability that the true intercept and slope fall 
within the limits specified by the confidence interval for po and pi, respectively. 

As an alternative to answer tests of significance concerning Po and pi, ^tests can 
be applied. To test the hypothesis that the intercept is equal to a specified value, 
po e.g. zero, (Ho: po = Po versus Hp Po ^ po), the following t is calculated: 

4-
V n 

Ix} Ixf 
Z (Xi -x)^ V /I X (Xi - xf 

The latter expression is used to test whether the true line might pass through the 
origin. The calculated r-value is compared with the value of the distribution with 
n-2 degrees of freedom at the chosen significance level. If Irl exceeds the tabulated 
t we conclude that the intercept is significantly different from zero. 

In a similar way the hypothesis that the slope is equal to a specified value, pt, is 
tested by calculating: 

\t\= ' t - P y , (8.16) 

Testing the hypothesis that the slope is zero (HQ: PI = PI = 0 versus Hi: pi ^ 0) 
is an alternative to testing the significance of the regression by an F-test in the 
analysis of variance (see end of Section 8.2.2.2). 

Example 4: 
The following results were obtained for a Tl calibration line by means of 

graphite furnace AAS. The evaluation of the absorbance signals was in peak area 
(As). Each measurement was blank-corrected which means that the absorbance 
measured for the blank has been substracted from each absorbance measurement. 
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(a) Calculate the confidence limits for the slope and the intercept. 

(b) Was the blank correction performed correctly? 

Xi (ng/ml) 20 40 
yi (As) 0.038 0.089 

The least squares line is: 

y = -0.0093 + 0.002425X 

Further: 

x = 60 !>? = 22000 
I(jc,-x)2 = 4000 

60 
0.136 

n = 5 
Se = 0.00145 

80 100 
0.186 0.232 

.̂025,3 = 3.18 

(a) The confidence interval for the intercept po is given by: 

-0.009313.18x0.00145 
^ 2 2 0 0 0 

5x4000 

-0.0093 ±0.0048 

Thus CI = [-0.0141; -0.0045]. We can state with 95% confidence that the true 
intercept, po, lies in the interval -0.0141 to -0.0045. 

The confidence interval for the slope pi is given by: 

0.002425 ± 3.18 X 0.00145 / V4000 

0.002425 ±0.000073 

Thus CI = [0.002352; 0.002498]. We can state with 95% confidence that the true 
slope, pi, lies in the interval 0.002352 to 0.002498. 

(b) Since the measurements were blank-corrected the intercept should be zero. 
Therefore the hypothesis to be tested is: 

Ho:po = 0 versus Hi:po ?̂  0 

This hypothesis can be tested by means of the confidence interval for the 
intercept or by means of a ^test. Since the confidence interval for po, calculated in 
(a) does not include zero, the null hypothesis has to be rejected and consequently 
one concludes that the intercept is significantly different from zero. This means 
that the blank value used to correct the absorbances is not representative for the 
standard solutions and/or the measurement process. Since the blank correction 
results in a negative intercept the blank absorbance was overestimated. 
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Of course we come to the same conclusion when the null hypothesis that po = 0 
is tested by means of a ^test (eq. (8.15)): 

• I 1-0.00931 ^^^ 
\t\ = =6.11 

0.00145 A p ^ ^ ^ ^ 5x4000 

Since at the 5% level of significance the calculated absolute value of t (6.11) is 
larger than the tabulated t with 3 degrees of freedom (3.18) we again conclude that 
the intercept is not equal to zero. 

An important application of these confidence intervals is as follows: when an 
analytical chemist develops a new method for the determination of a particular 
analyte he can validate his method by analyzing spiked blank samples (see Section 
13.5.4). If the validation has to be performed at different analyte concentrations, 
regression analysis can be used. By considering the measured concentration as the 
y variable and the a^(i^(i concentration as the jc variable, the slope and the intercept 
of the regression line can be calculated. In an ideal situation where exactly the same 
results are obtained, the slope of the regression line should be 1 and the intercept 
should be 0. This will never occur in practice: even if systematic errors are absent, the 
presence of r2indom error leads to a scatter of the points around the least-squares line 
and to small deviations of the estimated slope and intercept from 1 and 0, respectively. 
A calculated slope that is significantly different from 1 indicates that a proportional 
systematic error (for instance a matrix effect) is present. A calculated intercept that is 
significantly different from 0 reveals the presence of a constant systematic error 
(for instance an incorrect blank correction). The confidence intervals for slope and 
intercept can serve to carry out these tests of significance. 

Example 5: 
Consider the data from Table 8.6 which have been adapted from Mannino [7]. 

In the original article x represents the concentration of Pb in fruit juices measured 
by flameless AAS and y represents the concentration of Pb measured by a poten-
tiometric method. This situation in which both the x and y variable are subject to 
error will be treated in Section 8.2.11. In this example we use the same data but 
consider x as being the concentration of an analyte added and y the concentration 
of the analyte measured. Consequently x is supposed to be known without error. 

From>; = 3.87 + 0.963JC, Se = 10.56, s^^ = 6.64, SH, = 0.0357 and roo25;8 = 2.31, the 
95% confidence intervals for the slope and the intercept can be calculated: 

95% CI for Po: 3.87 ± 15.34 (-11.47, 19.21) 

Since 0 is included in that interval we have no reason to reject the null hypothesis 
that the intercept is 0; this means that there is no evidence for a constant systematic 
error. 
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TABLE 8.6 

Concentration of an analyte added to a sample versus the concentrations measured (adapted from Manino [7]) 

Sample Added Found 
X y 

1 35 35 
2 75 70 
3 75 80 
4 80 80 
5 125 120 
6 205 200 
7 205 220 
8 215 200 
9 240 250 
10 350 330 

95% CI for Pi: 0.963 ± 0.083 (0.880, 1.046) 

Since 1 is included in that interval we have no reason to reject the null hypothesis 
that the slope is 1; this means that there is no evidence for a proportional systematic 
error. 

8.2.4.2 Joint confidence region for slope and intercept 
In the above example the confidence intervals are computed separately for po 

and Pi. They specify ranges for the individual parameters irrespective of the value 
of the other parameter. However, the estimated slope and intercept, bi and bo, are 
related: if for example in Fig. 8.1 another set of measurement points taken from the 
same population gives rise to an increased value of bu it is likely that this will lead 
to a decreased value of bo. The estimates of slope and intercept are not independent 
and a value for one of the parameters automatically influences that for the other. 
Therefore, from the individual 100(1 - a)% intervals, we cannot say with the same 
degree of confidence that the null hypotheses Po = 0 and pi = 1 are simultaneously 
acceptable. This is comparable with the multiple comparison problem discussed in 
Section 5.2. 

If we wish to test the joint hypothesis that Po = 0 and pi = 1, the use of a. joint 
hypothesis test or a joint confidence region for slope and intercept is required. 
These take into account the correlation between the estimates (bo, b\). 

The joint confidence region takes the form of an ellipse with as centre (bo, b\). 
All sets of {bo, b\) that fall within the ellipse are considered to be included in the 
joint confidence interval. The equation for this 95% joint ellipse is given by: 

(Po - bof + 2 (̂Po - ^o) (Pi - b,) + ( I x}M) (pi -b,f = 2Fa;2,n-2 sl M (8.17) 
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-11.47 

Fig. 8.9. Joint confidence region for Po and pi from Example 5. The individual confidence limits for 
po and pi are also displayed. 

with Fa-2,n-2 the tabulated F with 2 and n-2 degrees of freedom and a = 0.05. 
This is shown in Fig. 8.9 for Example 5 of Section 8.2.4.1. The tilt of the ellipse 

with respect to the axes is a result of the negative correlation between &o and b\. 
Since the point (0,1) lies within the joint 95% confidence region for po and pi we 
can accept simultaneously the slope to be 1 and the intercept to be 0. The individual 
confidence limits for po and pi are also displayed. From this figure it is obvious 
that individual and joint tests can differ in their results. For instance, the joint 
values po = -1 and pi = 0.89 would be accepted as within the confidence interval 
if they are tested separately, but not if the joint interval is used. 

The simultaneous hypothesis concerning slope and intercept can also be tested 
by an F-test which is a rearrangement of eq. (8.17): 

^ (Po - bof + 2^(po ~ bo) (pi - Ẑ i) + ( I X?/n) (Pi - b^f 

This F value is compared with the F-distribution with 2 and n-2 degrees of 
freedom at the chosen significance level. For example, to test the hypothesis that 
simultaneously the intercept is zero and the slope is one (Ho: po = 0 and pi = 1 
versus Hi: po ̂  0 or pi ^\) in our previous example, po and Pi are replaced in eq. 
(8.18) by 0 and 1, respectively. Since for our example bo = 3.87, b\ = 0.963, Se = 
10.57, n=lO,x= 160.5 and fx? = 344875: 

(-3.87)' + 2 X 160.5(-3.87) (1 - 0.963) + (344875/10) (1 - 0.963)' 

2(111.72/10) 

= 0.73 

Since F is much smaller than the tabulated Fo o5;2,8 (= 4.46) the null hypothesis that 
Po = 0 and Pi = 1 is accepted. 
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8.2.4.3 Confidence interval for the true response at a given value ofx 
To know within what limits the true response r|o, at a particular value XQ of jc, 

may be expected to lie we need the confidence interval of a point on the true 
regression line. If jc = xo 

yo^bo^ bixo 

Using eq. (8.5) this can also be written as 

yo = y-\-bi{xo-x) 

and it can be shown [6] that the standard deviation of jo is given by: 

where n again represents the total number of experimental points used to calculate 
the regression line. 

The 95% confidence interval for a point on the true regression line is then given by: 

yo ± tom5;n-2 ̂ . A/ " + ^ ^T^ (8-20) 
1 ^ {Xp-Xf 

^ I (X/ -X)^ 

This expression should not be used repeatedly to calculate confidence intervals 
at several different x values in order to find confidence limits that apply to the 
whole regression line. The latter are obtained by replacing .̂025;AZ-2 by V2Fo.o5;2,n-2 
in eq. (8.20). Thus, one takes into account the fact that the true line may have all 
combinations of values of Po and pi that lie within the joint confidence region 
described above. The confidence curves that apply to the whole regression line are 
two branches of a hyperbola, as represented in Fig. 8.10. The area between these 
two branches is called the Working-Hotelling confidence band. 

From eq. (8.20) it can be seen that important terms affecting the width of the 
confidence band are {XQ - 'xf and X(^/ - 3c)̂ . The first term reduces to zero when 
XQ- X and increases as XQ moves away from x. Therefore, as can be seen in Fig. 
8.10, the confidence intervals are smallest at the mean of the x values and increase 
away from x. This means that the best predictions are made in the middle of the 
regression line. Consequently, extrapolation outside the experimental x-range 
should certainly be avoided. The term X(x/ - 'xf depends on the design of the 
experiment, i.e. the repartition of the Xi with respect to x. Theoretically, in a 
calibration experiment the smallest confidence intervals are therefore obtained if 
all standards are situated at both extremes of the calibration range. Then 
X(JC/ - 'xf- is a maximum and the confidence interval becomes smaller. Unfortu­
nately with such a repartition of the standards, checking linearity is impossible. 
Unless a straight line relationship between response and concentration has been 
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y t 

Fig. 8.10. A regression line with confidence limits. 

shown the cahbration points are therefore usually distributed over more than two 
X values. The fact that confidence intervals are smaller when the measurement 
points are situated at the extremes is also used in experimental design (see Chapter 
22). The number of experimental points of course also has an effect because r, \ln 
and S te - xf- all depend on n. 

8,2.5 Predictions made on the basis of the fitted line 

The confidence intervals described in the previous section are based on meas­
urements recorded to calculate the fitted line. However, estimation of the parame­
ters and calculation of the confidence intervals for the true regression parameters 
is generally not the ultimate object of a regression analysis. Often the estimated 
line will be used in further experiments to predict the value of the y variable (and 
its associated error) corresponding to a particular value of the x variable or to 
predict the value of the x variable (and its associated error) from the value 
measured for the y variable. The corresponding confidence intervals are often 
called prediction intervals. 

8,2.5.1 Prediction of new responses 
A new individual observation yo at JCQ is distributed about r|o with a variance a^. 

Therefore the uncertainty in yo, predicted at XQ, is not only composed of the uncertainty 
of the regression line atxo (measured from eq. (8.19) by si {\ln -\- {xQ-xYlY.{Xi-xY)) 
but also of a ,̂ the variability of the observation (estimated by sl)\ these variances 
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being independent they may be added. Consequently the standard deviation of jo 
predicted atxo is: 

si-s.^ 1-,1 + ̂ ^pi^ (8.21) 

More generally for the prediction ofyo = yo, the mean of m observations performed 
at xo, the standard deviation is: 

v̂„ = ̂ . il ~ + - + ̂  % (8.22) 
1 ^ 1 ^ (xo-xf 

m n Y, {Xi - 'xf 

and the 95% confidence interval: 

1 ^ 1 ^ {xp-xf 
m n Y^ (x, - 'xf 

yQ±tQm5,n~2Sei — + " + ^^^7- =7^ (8.23) 

where m = 1 the confidence interval for a single observation predicted at xo is 
obtained since eq. (8.22) reduces to eq. (8.21). If m = ©o, the true mean and 
consequently a point on the true regression line is obtained: eq. (8.22) reduces to 
eq. (8.19). 

Example 6: 
Consider the calibration line calculated in example 1. The 95% confidence 

limits within which the intensity for a single blank sample (m = 1 and xo = 0) may 
be expected to lie are: 

1 1 2 5 ^ 
2.92412.78x2.99, 1 + ^ + -

6 1750 

2.924110.261 

This yields a confidence interval of-7.34 to 13.18. 
The upper confidence limit at xo = 0 will play a role in the discussion of the 

detection limit in Section 13.2.5. 

8,2,5,2 Prediction of x from y 
In analytical chemistry this is the most important application of the calibration 

experiment. Indeed the calibration line is used to predict the concentration of an 
analyte in a sample, x^, from measurements performed on the sample, y^: 

x. = '-^ (8.24) 

with Xs the predicted concentration and js the mean of m determinations performed 
on the sample. 
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The precision of the estimate depends on the reliability of the fitted line (bo and 
b\) but also on the precision of js. The determination of the error in the predicted 
concentration is complex and generally [1,8] the following approximation is used: 

b\ \ m n b\Y,{Xi-xy 

A different precision for the measurement of the sample and standard solutions 
can be taken into account in the following way: 

(8.26) 
y m I n oi Z.[Xi - xy I 

with si an estimate of the variance of the sample measurement. 
The 95% confidence interval for the true concentration is then: 

h ± km5:n-2 S^ (8.27) 

which means that there is 95% probability that the true concentration in the sample 
falls within the limits specified by the confidence interval. 

The same calibration line is generally used to predict the concentration in 
several samples (repeated use of the calibration line). If eq. (8.27) is used to 
construct confidence intervals about different predicted x-values the probability 
that all intervals cover the true concentration would be smaller than 95%. This is 
due to the fact that the individual confidence statements are not independent since 
they are based on the same regression line. The problem is similar to the multiple 
comparison problem discussed in Section 5.3. If it is important to control the 
probability that all confidence intervals include the true concentration, the Bonfer-
roni adjustment described in Section 5.3 can be used. 

The factors that have an influence on the confidence limits and thus on the 
quality of the prediction are the same as those mentioned in Section 8.2.4.3. In 
addition the confidence limits can be narrowed by increasing the number of 
measurements, m, performed on the sample. 

Example 7: 
From the data in Example 1, calculate the confidence limits for the concentration 

of: 

(a) a sample giving a response of 15 units in a single determination; 

(b) a sample giving a response of 90 units in a single determination; 

(c) a sample giving a mean response of 90 units from 5 separate determinations. 
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With the following data: 

3) = 2.924+1.982JC;^= 52.5 

Xs= 15 yields Xs = 6.1 

and (y, -yf = {l5- 52.5)^ = 1406.25; 

Xs = 90 yields Xs = 43.9 

and (js - y ? = (90 - 52.5)^ = 1406.25. 

Furthermore: Se = 2.99,1(jc/ - xf = 1750, ro.o5;4 = 2.78, m = 1 and n = 6. 
The confidence limits can be calculated as follows: 

(a) 95% confidence limits for the concentration of a sample giving a response 
of 15 units in a single determination: 

^ . . ^ ^^ 2.99 1 1 1406.25 . . ^ . n 
6.1 ±2.78---rrJ T + 7 + ; =6.1 ±4.9 

1.982^ 1 6 1.982^x1750 

(b) 95% confidence limits for the concentration of a sample giving a response 
of 90 units in a single determination: 

1.982^ 1 6 1.982^x1750 

(c) 95% confidence limits for the concentration of a sample giving a mean 
response of 90 units from 5 separate analyses: 

4 3 . 9 ± 2 . 7 8 ^ i ^ ^ - ^ ^ P ^ .43 .9±3.2 
1.982 U 6 1.982^x1750 

Comparison of (a) and (b) confirms, as follows also from Fig. 8.10, that the 
uncertainty in the prediction of concentrations which are at a comparable distance 
from the mean concentration is similar. Comparison of (b) and (c) shows how 
increasing the number of measurements increases the precision of the prediction. 

All confidence limits constructed up to now apply to homoscedastic data. As 
discussed in Section 8.2.3.2, a solution to the problem of heteroscedasticity is to 
introduce weighting factors which are inversely proportional to the corresponding 
variance. From Example 3 it was concluded that the weighting process does not 
have a large influence on the estimated regression equation. In fact, both with 
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weighted and unweighted regression, unbiased estimates of the regression coeffi­
cients are obtained but the variance of these estimates is smaller for the weighted 
regression procedure [6]. Consequently, in a calibration experiment the sample 
concentrations predicted by the weighted and unweighted regression line will be 
very similar. Let us now look at the effect of weighting on the uncertainty in the 
predicted concentration. The standard error of the predicted concentration is: 

,. ^ i i 1 , 1 , (y.-y.flwt 

with 

s. = ^l 
n-2 

Ws the weighting factor applied for the sample measurement; y^ the weighted mean 
as defined for eqs. (8.11) and (8.12). 

For the homoscedastic situation s^ is an estimate of the common variance a^. 
This of course is not the case here. 

Example 8: 
From the weighted regression problem in Example 3 calculate the 95% confi­

dence limits for a concentration of: 
(a) a sample giving a response of 15 units in a single determination; 
(b) a sample giving a response of 90 units in a single determination. 
The weighting factors to be applied for both measurements can be obtained from 

a plot that relates y, to sj for the standard solutions. From this plot, shown in Fig. 
8.11, appropriate values for the variances at yi= 15 and 90 seem to be 0.6 and 6.9 
from which weighting factors respectively equal to 1.67 and 0.145 can be calcu­
lated. With the following data (see Table 8.5): 

ŷ = 3.481+ 1.964JC; JW = 26.99 

>̂s = 15 yields Xs = 5.9 

and (ys - y^f = (15 - 26.99)^ = 143.76 

ws= 1.67; 

ŷ  = 90 yields x^ = 44.1 

and (ys - >̂ w)- = (90 - 26.99)^ = 3970.26 

Ws = 0.145 

Furthermore, ^, = 1.921, m = 1, Iw/ = 5.343, IwixJ = 1572.2 and (IwiXif = 63.981 
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Fig. 8.11. Relation between y, and sj for the data of Example 3. From this plot appropriate values for 
the variances at y, = 15 and yi = 90 are found to be 0.6 and 6.9, respectively. 

The confidence limits can be calculated as follows: 
(a) 95% confidence limits for the concentration of a sample giving a response 

of 15 units in a single determination: 

5.912.78 4 ^ J T ^ - . ^ + 
143.76 X 5.343 

1.964 V 1.67 5.343 1.964^ (5.343 x 1572.2 - 63.98^) 

5.912.5 

(b) 95% confidence limits for the concentration of a sample giving a response 
of 90 units in a single determination: 

44.112.78 44?l ,yTTiT4:Tf 
3970.26 X 5.343 

1.964 V 0.145 5.343 1.964^(5.343 x 1572.2 - 63.98') 

44.117.9 

We should compare these results with those obtained in Example 7 in which the 
same data were treated by means of unweighted regression. Similar predicted 
concentrations are obtained but the difference between the unweighted and 
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weighted regression analysis becomes evident if the uncertainty of these predic­
tions are compared. In the weighted regression situation the confidence interval 
increases with the concentration and this reflects the heteroscedasticity shown by 
the data. The fact that the confidence interval for the lowest concentration is 
smaller than with the unweighted regression procedure is a result of the higher 
weights given to the smallest concentration. The opposite holds for the highest 
concentration. 

8.2,6 Outliers 

Since least squares regression consists of minimizing the sum of the squared 
residuals, the presence of oudiers (i.e. observations which are atypical for the rest 
of the data) can have a large influence on the least squares estimates. 

Figures 8.12a-c illustrate different regression data sets with an outlier. Two 
regression outliers are present in Fig. 8.12d. In both Figs. 8.12a and 8.12b the 
outlying point is not representative for the linear model fitted by the rest of the data, 
while in Fig. 8.12c it is atypical because it is remote from the other observations. 

According to Rousseeuw [9] the former are called regression outliers or influ­
ential points since they have a large influence on the regression parameters while 
the latter is a leverage point. This is a point for which the x-value is outlying with 
respect to the other jc-values in the data set. Although leverage points can have a 
substantial impact on the regression coefficients. Fig. 8.i2c shows that this is not 
necessarily always the case. In fact, in our example the outlying observation can 
be considered as a good leverage point since it fits the model described by the other 
data quite well. Moreover, it will have a beneficial effect on the confidence 
intervals of the different estimated parameters described in Sections 8.2.4 and 
8.2.5. A bad leverage point is an outlier in the jc-direction that has an influence on 
the regression parameters. 

Several diagnostics have been proposed for the identification of regression 
outliers [9]. Some of these diagnostics will be discussed here. How to apply them 
in the multiple regression situation is shown in Section 10.9. The simplest one 
consists in a comparison of the absolute value of the standardized residual {\eilse\) 
with a cut-off value which is generally equal to 2 or 3. It is based on the fact that 
the probability for a residual to have a value as large as 2 or 3 times the residual 
standard deviation is very small (actually for a normal distribution this probability 
is 2.3 or 0.13%, respectively). For the different data sets illustrated in Fig. 8.12, 
Table 8.7 gives the standardized residuals for all data points. It is obvious that, 
based on the least-squares residuals, this diagnostic fails since for none of the 
outliers does \eilse\ exceed the value 2 used as cut-off value. The regression outliers 
are not detected because in order to minimize Y.e}, they attract the regression line 
and inflate the residual standard deviation. 
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TABLE 8.7 

Illustration of different outlier diagnostics 

Data set 1 (Fig. 8.12a) 
X y 
0 0.0 
1 1.1 
2 2.0 
3 3.1 
4 3.8 
5 10.0 

Data set 2 (Fig. 8.12b) 
X y 
0 0.0 
1 1.1 
2 2.0 
3 10.0 
4 3.8 
5 5.1 

ei 

0.90 
0.30 

-0.49 
-1.08 
-2.07 

2.44 

-0.70 
-0.78 
-1.07 

5.74 
-1.65 
-1.54 

\ei/se\ 
(2)* 

0.51 
0.17 
0.28 
0.61 
1.17 
1.38 

0.22 
0.25 
0.34 
1.81 
0.52 
0.48 

CD^) 

(D* 

0.30 
0.01 
0.01 
0.05 
0.41 
2.19 

0.06 
0.02 
0.02 
0.44 
0.08 
0.27 

MDJ 
(3.84)* 

1.79 
0.64 
0.07 
0.07 
0.64 
1.79 

1.79 
0.64 
0.07 
0.07 
0.64 
1.79 

ha 
(0.67)* 

0.52 
0.30 
0.18 
0.18 
0.30 
0.52 

0.52 
0.30 
0.18 
0.18 
0.30 
0.52 

Data set 3 (Fig. 8.12c) 
X y 

0 0.0 -0.03 0.25 
1 1.1 0.08 0.68 
2 2.0 -0.01 0.08 
3 3.1 0.10 0.84 
4 3.8 -0.19 1.61 
8 8.0 0.05 0.42 

0.03 
0.11 
0.00 
0.09 
0.38 
1.63 

1.12 
0.50 
0.12 
0.00 
0.12 
3.12 

0.39 
0.27 
0.19 
0.17 
0.19 
0.79 

Data set 4 (Fig. 8.12d) 
X y 

0 0.0 
1 1.1 
2 2.0 
3 3.1 
4 10.0 
5 10.0 

*Cut-off value. 

1.19 
0.07 

-1.26 
-2.38 

2.30 
0.08 

0.64 
0.04 
0.67 
1.27 
1.23 
0.04 

0.47 
0.00 
0.06 
0.22 
0.45 
0.00 

1.79 
0.64 
0.07 
0.07 
0.64 
1.79 

0.52 
0.30 
0.18 
0.18 
0.30 
0.52 

Cook's squared distance, CD /̂) , measures the change in the regression coeffi­
cients that occurs if the /th observation is omitted from the data. It can be obtained 
as: 

l(yj-yP) 

CD )̂ = 
./=i 

PSe 
(8.29) 
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Fig. 8.12. Outliers in regression: a regression outlier (a) and (b); a leverage point (c); two regression 
outliers (d). The full line represents the regression line based on all data points, the broken line is the 
regression line obtained without the outlier(s) or leverage point. Data from Table 8.7. 

with p the number of regression coefficients to be estimated (for a straight line with 
an intercept p = 2); y^ the predicted y-values from the regression equation obtained 
with all data points; s\ the residual variance for the regression equation based on 
all data points; and yf the predicted y-values from the regression equation ob­
tained with observation / excluded from the data set. 
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Fig. 8.12 continued. 

A large value of CD(i) indicates that the /th observation has a large influence on 
the least squares estimators. Most authors indicate that a CD )̂ = 1 can be considered 
large. CD )̂ values for all observations of the different data sets of Fig. 8.12 are 
also listed in Table 8.7. Cook's squared distance seems to be very sensitive for 
outliers at the extreme of the data range, but is insensitive to outliers situated in the 
middle of the range. Indeed, the outlier in data set 1 is detected whereas the one in 
data set 2 is not. As will be shown later in this section, this is due to the fact that 
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CD /̂) also measures how far an jc-value is from the rest of the x-values. Moreover, 
as illustrated with data set 4, it is much more difficult to diagnose more than one 
outlying observation because the influence of one point can be masked by another. 
Detection of one of the outliers hardly affects the regression line since there is 
another outlier with a similar effect. 

Two related diagnostics for leverage points are the squared Mahalanobis dis­
tance, MD} , and the leverage, ha, which are given by 

MDr = (x,-x)-A? (8.30) 

/ ? „ - f + ; ^ . ; 2 ^ f + — r (8.31) 
1 {Xi-xf 1 MD? 
n {n-\)s] n n - 1 

with si;- the variance of the jc-values. Both these diagnostics are most often applied 
for multivariate regression situations (see Section 10.9). The MD?-values, which 
here are the square of the standardized value of jc/, are generally compared with 
tabulated chi-squared values with p - 1 degrees of freedom at the 5% significance 
level (see Table 5.4) while for the leverage a cut-off value equal to 2 p/n {p 
representing the number of regression coefficients to be estimated and n the num­
ber of observations) is often used [9]. The leverage point in data set 3 has a high 
MD,--value (without reaching significance) and because of eq. (8.31) also a high 
/7,,-value (exceeding the cut-off value 0.67). Since the squared Mahalanobis dis­
tance and the leverage are only based on the x-values (j^-values are not taken into 
account) the same MD? and /z,, are obtained for the other data sets. Consequently 
the regression outliers are not detected by these diagnostics. 

Let us now come back to the Cook's squared distance which is also equal to [9]: 

1 ej hji 

ps;{\-huf 

From this expression it follows that CD ,̂) not only reflects how well the model fits 
y„ as indicated by /̂, but also how farx, is from the rest of thex-values, as indicated 
by /?„. The outlier in data set 2 has a relatively small CD ,̂) , despite its considerable 
influence on the regression line, because with jc = 3 it is near the mean of the 
X-values (x = 2.5). On the other hand, the large CDf,) for the leverage point in data 
set 3, which fits the model described by the other data quite well, can be ascribed 
to the fact that with JC = 8 it is far away from the mean jc-value (JC = 3.16). 

From the above discussion it follows that different diagnostics must be consid­
ered to identify outlying observations. However, their interpretation is not straight­
forward. Another approach is to use robust regression methods which are less 
easily affected by outliers. These methods are introduced in Chapter 12. 

CD^)-4 . . : . • > (8.32) 
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8,2,7Inverse regression 

The main purpose of a calibration experiment is to predict the concentration, x, 
of a sample from some measurement, y, performed on that sample. Since x has to 
be inferred from y it is sometimes proposed to regress x directly on y since this is 
the way the regression equation will be used. Thus: 

x = hQ + bxy 

This inverse regression is included in some commercial analytical instruments 
because it facilitates the calculation of the concentration, especially from polyno­
mial models. There has been considerable controversy about this method since the 
error-free x variable is fitted to the y variable which is subject to error. However, in 
multivariate calibration (see Chapter 36) inverse least squares is generally preferred to 
the classical approach. 

8.2,8 Standard addition method 

In analytical chemistry a calibration line cannot be used to determine an analyte 
in a sample when the sample matrix is known to interfere with the determination 
and matrix-matched standards (i.e., standards which have a composition similar to 
that of the sample) cannot be prepared. A possible solution to this problem is to 
apply the method of standard additions in which the sample is used for performing 
the calibration. 

In the standard addition method small known concentrations of the analyte to be 
determined are added to aliquots of the unknown sample. These spiked samples as 
well as the unknown are measured. A typical plot of the added concentration as a 
function of the measured response is shown in Fig. 8.13. The least-squares regres­
sion line is obtained in the usual way and the amount of the analyte present in the 
sample, Xs, is estimated by extrapolating the line to the abscissa (y = 0). In the 
absence of absolute systematic errors the negative intercept on the concentration 
axis corresponds to -x^ . Consequently x^ = bo/b]. 

For the homoscedastic situation the standard error of the predicted concentra­
tion, which depends on the reliabihty of bo/bu can be approximated by [1]: 

bn n b^iZ(Xi-xf 

from which the confidence interval for the concentration is obtained as in eq. (8.27). 
For the weighted case the approximation of the standard error is as follows: 

SI = j ^ J — ^ + -— ^f-——— (8.34) 
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added concentration 
Fig. 8.13. Standard addition line. 

in which si = (Xw/(j/ - yif')l{n - 2), ~y^ = Zw/>̂ //Xw/, Xw = Xw/^/Ew, and b\ is given 
by eq. (8.11). 

Since in the standard addition method calibration is performed in the sample 
matrix the technique can be applied in the presence of matrix interferences that 
introduce relative systematic errors. A major drawback of the method, however, is 
that it is based on an extrapolation and, as explained in Section 8.2.4.3, this 
adversely affects the precision. However, a useful application of the method is in 
the detection of matrix interferences that result in a relative systematic error. These 
can be revealed by a comparison of the slopes of the standard addition line and an 
aqueous calibration line. If the matrix does not interfere, we expect both lines to 
have the same slope. How to check this is explained in Section 8.2.9. 

8.2.9 Comparison of the slopes of two regression lines 

The comparison of the slopes of two regression lines (represented as b\\ and b\2, 
respectively) can be performed by means of a r-test: 

^ ^ ' ' " ^ ' ^ (8.35) 

It follows from eq. (8.14) that: 

e2 -
e2 

Kx/i -xif 
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2 ^el 
Shn-—_ 

X {xa - X2) 

with n\ and n2 the total number of data points in each regression line. 
If the residual variances, a? and aj, estimated by s'^i and 5^2, are equal (compari­

son can be performed by means of an F-test), the pooled estimated variance is 
calculated as: 

2 (/ti - 2) sli + (n2 - 2) 5^2 .Q ^.. 
Sep = (o-36) 

ni + ^2 - 4 

The test is then performed by calculating 

^ " " ^ ' ^ (8.37) 

^ep 
f 1 1 

Xfcl -Xxf Y.{Xi2-X2f 

which should be compared with the tabulated ^value with n\ + n2 - 4 degrees of 
freedom at the chosen significance level. 

If the residual variances are not equal, an approach similar to the Cochran test 
for the comparison of two means with unequal variances as described in Section 
5.1.1.2 can be used. If â ,̂ ^ a ,̂,, the theoretical t values, t\ and 2̂, at the chosen level 
of significance and n\-2 and ^2 - 2 degrees of freedom, respectively, are obtained 
from a r-table. The following f is then calculated: 

r' = ̂ l4^ii^ (8.38) 

and the calculated t as obtained from eq. (8.35) is then compared with t' in the usual 
way. It is not necessary to calculate t' if both regression lines are based on the same 
number of data points {n\ = ^2). Then f = ti = t2. 

The comparison of the slopes of two regression lines is a useful tool in the 
validation of some analytical methods (see Chapter 13). 

Example 9: 
As an example, consider the analysis of Al in serum by means of graphite 

furnace atomic absorption spectrometry. To validate a new method an aqueous 
calibration line and a standard addition line from a serum sample are compared. 
Signal evaluation was by means of the integrated absorbances (A.s). The following 
results are obtained: 
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Calibration line (1) 
xn (|Xg/l) 

0 
41 
81 

162 
244 
325 

/ii = 6 

ji = 8.629 10-̂ x + 

yn (A.s) 
0 
0.039 
0.073 
0.149 
0.215 
0.280 

0.0033 

l U i - 1 1 ) 2 = 78379 

sli = 1.532 10"' 

Standard addition (2) 
Xi2 (|a.g/l added) 

0 
41 
81 

122 
162 
203 
325 
rt2 = 7 

y2 =8.026 10-̂ Jc+ 

ya (A.s) 
0.050 
0.083 
0.122 
0.161 
0.179 
0.215 
0.313 

0.0533 

I f e - ^ 2 ) ^ = 71582 

5?2 = 3.039 10-̂  

As judged from an F-test, the residual variances can be considered to be similar 
since F = 3.039 lO'Vl .532 10"̂  = 1.98 which is smaller than Foo5;6.5 = 4.95. 

Consequently the pooled estimated variance is calculated: 

, 4x1.532 10-5 + 5x3.039 10-' 
^ep • 

= 2.369 10"̂  

Therefore: 

6.03 10" 

2.369 10"̂  

= 2.40 

f 1 1 
78379 71582 

As the calculated t (= 2.40) is larger than the tabulated ro.o25;9 (= 2.26), it should be 
concluded that the slopes of the aqueous calibration line and the standard addition 
line are significantly different and that this indicates the presence of matrix effects. 

8.2.10 The intersection of two regression lines 

In some titrations (e.g., conductometric and photometric) the end point is 
obtained as the intersection of two straight lines. If 

y, =bo-\- b^X] 

and 

with H] data points 
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yi - b'o + b\ X2 with AZ2 data points 

are the two lines, their estimated point of intersection is 

,,= (^^Z^ = ^ (8.39) 

The limits of the 95% confidence interval for the true value of this estimate, 
i] , can be obtained as the roots of the following equation [8,10]: 

i? f(Ab,f - e- slh\- 2i, (A^o A^, - ^ s,^^} + UlSb^f - f sl,^= 0 

with t = ?o.o25;n,+n,-4, the tabulated t value at ni + n2 - 4 degrees of freedom 

sih, = sip (\ / 2 (xn - Xi)̂  + 1 /X {xa - ia)^! 

sih„ = sip fl/n] + \/n2 + xi/L (xn -x^f + ̂ /L fe -^2)^ j 

(8.40) 

S&h,M, — ^ep \M ^ (JC,1 -X\) + X2 / X (J î2 - -"̂ 2) 

(8.41) 

(8.42) 

(8.43) 

Notice that it is assumed here that the error variances s\\ and si^ are comparable 
since they are pooled into s\p (eq. (8.36)). 

Example 10: 
The following results are obtained for the conductometric titration of 0.1 M HCl 

with 0.1 M NaOH. They are also represented in Fig. 8.14. The end point of the 
titration is the point of intersection of the two lines. 

Line 1 
X 

ml NaOH 
3.0 
6.0 
9.0 

12.0 
15.0 
18.0 
21.0 

J, =474.00-
5?i = 1.314 
Sh, = 0.07222 
5„.' = 0.96890 
ni-1 

3̂  
arbitrary units 
430 
388 
343 
302 
259 
214 
170 

-14.43 X 

3^ =12^=144 
Z(X,|-X|)^ = 252.0 

Line 2 
X y 
ml NaOH arbitrary units 
25.5 129 
27.0 147 
30.0 181 
33.0 215 
36.0 251 

5-2 =-165.45+11.55 X 
4 = 0.4146 
V, = 0.07496 
v[ = 2.28934 
«2 = 5 
3^ = 30.3^ = 918.09 
I(;c,-2-X2)' = 73.8 
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Arbitrc^ry 
units 

400 

300 

200 

100 

3 6 9 12 15 18 21 24 27 30 33 36 ml NaOH 

Fig. 8.14. Conductometric titration of 0.1 M HCI with 0.1 M NaOH. Data from Example 10. 

This information is necessary to calculate X\ = 24.61 ml from eq. (8.39), s\h, = 
0.0171 from eq. (8.41), sit, = 13.043 from eq. (8.42), s^^^ = 0.4475 from eq. (8.43) 
and the pooled variance sip = 0.9767 from eq. (8.36). 

With ro.o25;8 = 2.306 the 95% confidence interval for the true end point, xu is 
obtained from eq. (8.40) which becomes 

674.8695 JC? - 2x,( 16610.5313) + 408826.9445 = 0 

Therefore the 95% confidence limits for the true end point, estimated by xi = 24.61 
ml, are [24.51 ml, 24.72 ml]. 
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8,2.11 Regression when both the predictor and the response variable are 
subject to error 

Up to now it has been assumed that only the response variable, y, is subject to 
error and that the predictor variable, x, is known without error (Model I regression). 
However, there are situations for which the assumption that x is error free is not 
justified. An example of the Model II regression case is the comparison of results 
obtained under different experimental conditions (e.g. different measurement or 
pretreatment techniques) where both the x and y variables are measured quantities 
which are subject to experimental error. In general, the study of the relationship 
between two variables that are measured quantities or that show natural variability 
(examples from the biological science are weights and lengths) require regression 
methods that take the error in both variables into account. They are called errors-
in-variables regression methods. 

If r|/ represents the true value of j / and /̂ the true value of JC/ then: 

yi = r\i + £/ (8.44) 

x^ = ^i + bi (8.45) 

with 8/ and 5/ the experimental errors. 
The model which describes the straight line relationship between r|/ and /̂ is 

Tl/ = Po + Pi^/ (8.46) 

Consequently the combination of eq. (8.46) with eq. (8.44) and eq. (8.45) yields: 

>̂/ = Po + Pi(x/-5,) + e/ 

or 

>̂/ = Po + Pix, + (e,-Pi60 (8.47) 

where (£/ - pi 5,) represents the error term. 
If the error in x is neglected and the regression coefficients are estimated as 

described in Section 8.2.1, by minimizing 

it can be shown [6] that the least-squares slope b\ is a biased estimator of pi. The 
error term and x, in eq. (8.47) are correlated since both depend on 5/. This invali­
dates the use of ordinary least squares, in which the error term is assumed to be 
independent of x/. 

Since both variables are affected by random measurement errors (here we 
assume aj = al) an unbiased estimation of the regression coefficients can be 
obtained by minimizing XJ?, i.e. the sum of the squares of the perpendicular 
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Fig. 8.15. (a) In the least squares method (LS) the residual, ej, is obtained parallel to the j-axis. (b) In 
the orthogonal distance regression method (ODR) the residual, J,, is obtained perpendicular to the 
estimated line. 

distances from the data points to the regression line. The meaning of both ei and di 
is compared in Fig. 8.15: while ei in the classical least-squares method is obtained 
parallel to the y-axis, di is determined perpendicular to the estimated line. 

The fitted line is then the one for which the least sum of squared rf/S is obtained 
and the method has been called orthogonal distance regression [11]. This is 
equivalent to finding the first principal component of a data set consisting of 2 
variables (p = 2) and n samples (see Chapters 17 and 31). 

The expressions for b] and bo are [12,13]: 

b,= 
?̂ - si + V(̂ ,̂  - s'yf + 4(cow(y^)f 

2cow{y^) 
(8.48) 

bo = y-b]X 

with v̂ and si the variance of the y variable and the x variable, respectively; cov(y^) 
= (Liyi - y)ixi - x))l{n - 1) the covariance of >' and x (see Section 8.3.1). 

Mandel [13] gives expressions for the standard deviation of the slope and the 
intercept. An approximate relationship between the least squares slope, /?i(LS), and 
the orthogonal distance slope, i>i(ODR), has been formulated [13]: 

Z?i(ODR) = Z7i(LS)/ 
o2 \ 

1 

with six the variance of a single x value (involves replicate observations of the same 
x)\ and si the variance of the x variable = X(Xi - 3c)̂ /(n - 1). The latter depends on 
the range of the jc, and their distribution. 

The ratio SeJsx has been proposed by Combleet [14] as an estimate of the effect 
of errors in the x variable. Significant errors in the least squares estimate of b\ can 
be expected if this ratio is large (for example >0.2). If this ratio is small, which 
means that the spread of the x values is large compared to the measurement error 
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of these x values, the latter can be ignored and the classical least squares analysis 
used. 

This is also the case if the X/S are subject to error but are set at fixed values by 
the experimenter (= Berkson Model). For example, consider regressions in which 
different doses of a drug or different concentrations of an analyte preassigned by 
the experimenter are involved. Although the actual doses or concentrations added 
may differ from their target values, the ordinary least squares method may be 
applied. It can be shown [13] that in this situation the error term is independent of 
Xi and consequently the assumptions of ordinary least squares are fulfilled. 

Example 11: 
Let us consider the results of Example 5 (Table 8.6) in their original context, 

namely the comparison of a new potentiometric method (= y variable) with a 
reference flameless AAS method (= x variable) for the determination of Pb in fruit 
juices. 

n = 1 0 x= 160.5 3^=158.5 
5;, = 98.4731 5, = 95.3954 
cov(jc,j) = 9342.5 
?̂ = 9697.0 5̂  = 9100.3 

Therefore, from eq. (8.48), 

9100.3 - 9697.0 + V(9697.0 - 9100.3)^ + 4(9342.5)^ 

' ~ 2 X 9342.5 

= 0.9686 

and 

foo = 158.5 - 160.5 X 0.9686 = 3.04 
It can be verified that the ODR line is very similar to the LS line calculated in 

Example 5: 

ODR Une: y = 3.04 + 0.969 x 

LSline: 5̂  = 3.87 + 0.963 jc 

This is due to the fact that for the comparison a large range of x values has been 
considered. Therefore si is large compared with the spread of errors likely to occur 
in thex's {sl^ 

Different comparisons of the least-squares regression and the orthogonal dis­
tance regression for method comparison [14,15] have shown that, depending on the 
experimental design, least squares can lead to wrong estimates of the regression 
coefficients and consequently invalidates the conclusion concerning the usefulness 
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of the method tested. Other methods that take errors in both the x and y variables 
into account have also been described. Some of these are critically examined by 
MacTaggart [16]. 

8.2.12 Straight line regression through a fixed point 

In some situations the fitted line may be constrained to pass through a fixed point 
{xo,yo)' Since this point must lie on the straight line we have: 

yo = bo-\- bx XQ 

and consequently y = bQ + b\X can be rewritten as: 

y = yo + b,{x-xo) (8.49) 

A model involving only one parameter b\ is obtained. Minimization of 

Y.e} = ZCV/ - yif = ZCV/ - >̂o - bi{Xi - Xo)f 

with respect to b\ now leads to the following expression for b\: 

^^^lix^-xo)(y^-^yo) ^^ ̂ ^^ 

LiXi-XoY 

The residual variance si which, as stated earlier, is an estimate of the pure 
experimental error a^ if the model is correct, is now given by: 

^,^Uel^l(yrzyl (8.51) 
n- \ n- I 

Notice that we divide here by n - 1 since the residuals are obtained from a fitted 
line for which only one parameter, bi, has to be estimated. If Xo = 0 and >;o = 0, which 
means that the regression line must pass through the origin, eq. (8.49) and eq. 
(8.50), respectively, simplify to: 

y = bix 

and 

The standard deviations to be used in the calculation of confidence intervals are 
then as follows [8]: 

- the standard deviation of the estimated slope: 

^,. = 5 , J ^ (8.52) 
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- the standard deviation of an estimated point of the true regression line at 
given value of x^o-

Sy^^ = Se Xo / V X 7 (8.53) 

- the standard deviation of a new mean response predicted from the regression 
line at a given value of x^o-

Sy^^ = Se/^l/m-\-xl/Lxi (8.54) 

- the standard deviation of Xs predicted from y^, the mean of m values ofy. 

Sx, = (se/b,) Vl/m4-y?/Z7?l4 (8.55) 

To calculate the confidence limits the appropriate ^value ain-l (and not n-2) 
degrees of freedom should of course be used. Moreover as opposed to the uncon­
strained model (see Section 8.2.4.3) these confidence limits will be valid over the 
whole range of x values since only one parameter b] is estimated here. 

It is necessary to use this model only if there are good a priori reasons to do so. 
For example it is not because the intercept is found not to be significantly different 
from zero in the unconstrained model that the model r| = pix should be used. 

8,2.13 Linearization of a curved line 

When the relationship between two variables cannot be represented by a straight 
line, polynomial (see Chapter 10) or non-linear (see Chapter 11) regression meth­
ods should be applied. However, by transformation of one or both variables, some 
of these models can be converted into a simpler straight line relationship. 

Well known linearizations are, for example: 
- the transformation of the exponential relation between radioactivity and time 

into 

1 . T . 0.301 logA.^logAo-— 1 

- the transformation of the Michaelis-Menten equation which defines the 
quantitative relationship between the initial rate of an enzyme reaction, v, and 
the substrate concentration [S] 

V„.ax[S] 
v = -

into 
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V y 
y ma 

"J_" 
[S] 

where l/V âx represents the intercept and KJV^^^ the slope of the straight line that 
gives the relationship between 1/v and 1/[S]. 

When the functional relationship between the variables is not known lineariza­
tion becomes much more difficult. Mosteller and Tukey [17] have proposed a 
general rule to find an appropriate re-expression to straighten hollow upward 
(concave) or hollow downward (convex) curved lines by using a transformation of 
the form: 

Y i l°» 

y 
6 I-

4 (b) 

Fig. 8.16. (a) An example of a hollow downward curve linearized by the transformation >;* = / with 
j7= 1.61. (b) An example of a hollow upward curve linearized by the transformation y* = / with 
p = 0.67. 



219 

where y represents the original variable and y* the transformed variable. 
The value ofp depends on the direction of the hollowness: for hollow downward 

curves that are either monotonically increasing or decreasing, /? should be larger 
than 1 while with values <1 hollow upward curves can be linearized. Examples are 
shown in Fig. 8.16. The linearization procedure has been used by Wang [18] to 
linearize curved atomic absorption calibration lines. The p value is determined itera-
tively and the quality of each transformation is measured in terms of the residuals. 

It is important to realize that the transformation is carried out to obtain a straight 
line relationship but that the condition of homoscedasticity might not be fulfilled 
for the transformed data. Kalantar [19] showed, with simulated data containing 
different error structures, the extent to which weighting can improve the precision 
of the estimated parameters of log linearized data. 

8.3 Correlation 

As pointed out in the introduction, correlation analysis is applied to study how 
strong the association between two random variables is. One variable is not 
expressed as a function of the other since both are equivalent. There is neither a 
dependent nor an independent variable. 

Consider, for example, the data from biomedical analysis in Table 8.8. They 
represent Cu, Mn and Zn concentrations determined in 12 different structures of 

TABLE 8.8 

Concentration of Cu, Zn and Mn in different brain structures 

Brain structure 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

ycu-
yun 
yzn-

= 19.18 
= 1.09 
= 54.75 

SCu-

^VMn 

SZn'-

[ig g Mry weight 

Cu 
25.8 
24.2 
27.3 
32.8 
27.3 
17.9 
14.0 
13.3 
10.0 
10.9 
10.7 
16.0 

= 7.89 
= 0.31 
= 18.59 

Mn 
1.03 
0.96 
1.05 
1.49 
1.84 
1.23 
1.09 
0.96 
0.80 
0.77 
0.80 
1.10 

Zn 
78.0 
81.8 
69.4 
76.1 
62.5 
60.1 
34.2 
35.5 
33.3 
38.9 
40.8 
46.4 
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Fig. 8.17. Scatter diagrams of random variables with different degrees of association. Data from 
Table 8.8. 

the human brain. The data for Cu and Zn, displayed graphically in a correlation or 
scatter diagram in Fig. 8.17a, indicate that high values of Cu are associated with 
high Zn concentrations, while low values of Cu are associated with low Zn 
concentrations. Knowledge of the concentration of Cu or Zn gives a priori infor­
mation concerning the concentration of the other element. Both variables are 
related in a positive sense. They are positively correlated. Relationships can of 
course also be negative: the higher the fluoride intake (within certain limits) the 
lower the incidence of tooth caries in children. Much less association is found 
between the Zn and Mn concentrations in the brain structures of our example. As 
a result of the large scatter shown in Fig. 8.17b, knowledge of the concentration of 
one of these elements does not give a priori information concerning the concentra­
tion of the other element. 
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The strength of the linear relationship between a pair of variables is quantified 
by the covariance and the correlation coefficient. They are both measures of the 
joint variation between two random variables. Correlation also plays an important 
role in clustering (see Chapter 30) where it can be used as a measure of similarity. 

8.3.1 The correlation coefficient 

Consider yu, yn, Ji3, .., Ji« and y2u J22, J23, ..., yin which are two sets of n 
corresponding measurements with respective means y\ and j2- The covariance of 
the variables yi and yz is given by: 

covCyija) = XCVi/ - yOiyn - yi) (8.56) 
n-\ 

It is a measure of the degree to which the two variables vary together. Coviyuyi) 
is an estimate of the population covariance 70^1,̂ 2)' 

liyuyi) = -^ liyu - \xi) (yn - M (8.57) 

obtained with all possible observation pairs and the true population means |Lii and 
ILL2 of the two sets. 

For our examples in Fig. 8.17 the covariance of the Cu and Zn concentrations 
is: 

,^ ^ , I(Cu,-19.18) (Zn,-54.75) 1448.17 
cov(Zn,Cu) = — = — - — 

= 131.65 

and the covariance of the Mn and Zn concentrations is 

,^, ^ , Z(Mn,-1.09) (Zn,-54.75) 27.361 
cov(Mn,Zn) = — = n 

= 2.49 

It should be noted that a covariance can take any value between -00 and +00. The 
covariance will be negative if the variables are negatively associated. In that case 
high values of yi are accompanied by low values of y2 and vice versa. Conse­
quently, when one of the deviations (yu - yi) or (y2i - yi) in eq. (8.56) is positive, 
the other is negative and the sum of their products is negative. The main disadvan­
tage of the use of the covariance as a measure of association between pairs of 
measurements is that it depends on the scale chosen. In our example the covari­
ances are increased by a factor of 10̂  if concentrations are given in ng g"̂  instead 
of|Ligg-M 
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A parameter which is independent of the measurement units used is obtained if 
the covariance is divided by the standard deviation of both sets of measurements. 
This quantity is the product-moment correlation coefficient or the Pearson corre­
lation coefficient, r. 

, . cov iyxyi) {J.iyu'-yx) {y2i-y2))/n-\ 

\ n-\ n-\ 

This is an estimate of the population correlation coefficient pCvi j i)- The correla­
tion coefficient is a dimensionless number between -1 and +1. Values of-1 or +1 
indicate a perfect linear relationship between the two variables. A correlation 
coefficient which is not significantly different from zero indicates that the variables 
are uncorrelated. This does not imply that there is no relationship between the 
variables but only indicates that there is no linear relationship. 

For our example the correlation coefficients between Cu and Zn and between 
Mn and Zn are respectively: 

r(Cu,Zn) = 131.65/(7.89 x 18.59) = 0.898 
r(Zn,Mn) = 2.49/(0.31 x 18.59) = 0.432 

It follows from a comparison of the correlation coefficients that Cu and Zn are 
indeed more correlated than Zn and Mn. 

The scatter plots in Fig. 8.18 illustrate how r behaves for data with a different 
degree of association. Compare Figs. 8.18d and 8.18e both with r = 0. In Fig. 8.18e 
there is an obvious relationship between the two variables but in this case, because 
the relationship is not linear, the correlation coefficient is zero. 

The linear relationship between two random variables can be described by two 
regression lines. The regression of yi on y2 is given by: 

yi=bo + bx y2 

and the regression of 3̂2 on y\ by: 

y2 = fe'o + b\ yx 

Both lines go through the point (yx^i) which is their point of intersection. If there 
is a perfect correlation between the two variables (r = +1 or r = -1) the two 
regression lines coincide. In the case of no correlation, which means r = 0, the two 
regression coefficients, pi and p'l are also zero (see Section 8.3.3) and the two lines 
are perpendicular. 
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Fig. 8.18. Scatter plots of random variables with various degrees of correlation: (a) r = 0.75; (b) r-
-0.32; (c) r = -0.95; (d) r = 0; (e) r = 0; (f) r = 1. 

5.3.2 Hypothesis tests and confidence limits 

Before discussing significance tests and confidence limits for the population 
regression coefficient, p, it is useful to have a closer look at the bivariate population 
from which the sample of observation pairs is drawn. A bivariate population 
provides the probability that the two variables jointly take particular values. 

We assume this population to have a bivariate normal distribution for which the 
probability function is given by: 

f(yiy2) = 
1 

r = = = e x p 
2naiC2^l - p 

1 
2(1-p2) 

>^ i - | ^ i 
\2 

a. 
+ 

^yi-jh] 
02 

2p yi-^A 
Oi 

>2- |L t2^ 

O2 
(8.59) 

where \Xi and aj are the mean and variance of yi {i = 1,2) and p is the correlation 
coefficient. This function can be represented as a bell-shaped probability surface 
(Fig. 8.19) with the following properties: 

(i) both variables ŷi and y2 taken separately are normally distributed (one says 
that the marginal distributions are normal); 

(ii) for a given yi the distribution ofy2 is normal and similarly for given y2 the 
distribution of j] is normal (one says that the conditional distributions ofy\ and j2 
are normal). The latter is shown in Fig. 8.19: cross sections of the bell-shaped 
surface at any value of 3̂1 ory2 yield Gauss curves; 
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fly.y^i 

Fig. 8.19. Bivariate normal distribution surface. 

-1 '^ 
Fig. 8.20. Isoprobability ellipses for a bivariate normal distribution with G\ =02, p = 0.6. 

(iii) cross-sections with planes parallel to the (y],y2) plane yield ellipses repre­
senting all y\,y2 combinations with the same probability density. They are called 
isoprobability ellipses. The bivariate normal distribution can be represented as a 
set of isoprobability ellipses (Fig. 8.20) with equations: 

a - • 

1-p^ 

(y^-\^^^ 
a i 

y2-\^2 

02 
2p (y\ - \^\ 

CTi 

^ 2 - ^ 2 

O2 
(8.60) 

a is a positive constant; the smaller the constant the higher up the hill the cross 
section is performed. For a = 5.99 an ellipse is obtained containing 95% of the data 
points. The centre of the ellipses is the point with coordinates (|Lii,|Li2); the major 
axis of the ellipse {d) and the minor axis perpendicular to it, are common to all 
isoprobability ellipses. These axes correspond with principal components to be 
discussed in Chapters 17 and 31. The shape of the ellipses and their position in the 
CVhVi) plane are determined by the values of (5\,(52 and p. If the variables are not 
associated, p is zero and the axes of the ellipses are parallel to the co-ordinate axes. 
If, in addition, (5\ = 02 the isoprobability contour is a circle. For p = 1, the ellipse 
as computed with eq. (8.60) is undefined and in fact it is found that all data points 
lie on a straight line. 
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Together with |Lii, |Li2 and Gi and O2, the correlation coefficient p is an important 
parameter of the bivariate normal distribution. The scatter plot of the data (as in 
Fig. 8.18) is a graphical representation of this distribution. The sample correlation 
coefficient r being an estimate of the population correlation coefficient p, infer­
ences about p can be made from r. The most common null hypothesis to be tested 
is whether p = 0 (HQ: p = 0; HI: p ?t 0). Accepting Ho means that the two variables 
are uncorrelated or more precisely that a non-zero correlation has not been de­
tected. One calculates t: 

t = Hn'-2/^l-r^ (8.61) 

and compares it with the tabulated value of t with n-2 degrees of freedom. 
For the correlation coefficients calculated in Section 8.3.1, this test yields the 

following results: 

r(Cu,Zn) = 0.898 t = 0.898VTO'A/1 - (0.898)^ 

= 6.45 > ro.025,10 = 2.23 

Therefore at the 5% significance level the correlation between Cu and Zn is 
significant. Also: 

r(Mn,Zn) = 0.432 t = 0.432VTo"/Vl - (0.432)^ 

= 1.51 < ̂ 0.025,10 = 2.23 

indicating that Mn and Zn are not significantly correlated. 
Table 8.9 tabulates significance levels of r that allow direct inspection of the 

correlation coefficient. The 5% level of r for 10 degrees of freedom, which inserted 
in eq. (8.61) would yield significance, is 0.576. This means that to be significant at 
the 5% confidence level the correlation coefficient between twelve pairs of meas­
urements should at least be 0.576. 

The r-test of eq. (8.61) can be applied only to test HQ: p = 0, since for p ^ 0 the 
frequency distribution of r is not normal but is asymmetrical. Therefore to calculate 
the 100(1 - a)% confidence interval of p the correlation coefficient is transformed 
to a new variable. 

z = 0.5 1n[(l + r ) / ( l - r ) ] (8.62) 

This new variable is distributed almost normally with an expected standard devia­
tion of approximately a^ = Vl/(n- 3). 

The calculation of the 95% confidence interval of the correlation coefficient 
between Cu and Zn is performed as follows: 

z = 0.5 ln[(l + 0.898)/(l - 0.898)] = 1.462 
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TABLE 8.9 

Critical levels of r (for/7 = 0). p is the two-sided significance level. 

df p = 0.1 p = 0.05 p = 0.0\ 

1 0.988 0.997 1.000 
2 0.900 0.950 0.990 
3 0.805 0.878 0.959 
4 0.729 0.811 0.917 
5 0.669 0.754 0.875 

6 0.621 0.707 0.834 
7 0.582 0.666 0.798 
8 0.549 0.632 0.765 
9 0.521 0.602 0.735 
10 0.497 0.576 0.708 

11 0.476 0.553 0.684 
12 0.457 0.532 0.661 
13 0.441 0.514 0.641 
14 0.426 0.497 0.623 
15 0.412 0.482 0.606 

16 0.400 0.468 0.590 
17 0.389 0.456 0.575 
18 0.378 0.444 0.561 
19 0.369 0.433 0.549 
20 0.360 0.423 0.537 

21 0.352 0.413 0.526 
22 0.344 0.404 0.515 
23 0.337 0.396 0.505 
24 0.330 0.388 0.496 
25 0.323 0.381 0.487 

26 0.317 0.374 0.478 
27 0.311 0.367 0.470 
28 0.306 0.361 0.463 
29 0.301 0.355 0.456 
30 0.296 0.349 0.449 

40 0.257 0.304 0.393 
50 0.231 0.273 0.354 
60 0.211 0.250 0.325 
80 0.183 0.217 0.283 
100 0.164 0.195 0.254 

The 95% confidence interval for z is therefore: 

z ± 1.96 X 1 /N/9'= 1.462 ± 1.96 x 0.333 = 1.462 ± 0.653 

0.809 <z<2.115 
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Retransforming these z-values to the corresponding r-values gives the 95% confi­
dence limits for p: 

0.669 <p(Cu,Zn)< 0.971 

Notice that due to the skewed distribution of r this confidence interval is not 
symmetrical around r = 0.898. Tables that allow the transformation of r to z and 
the back transformation of z to r are available in most books on statistics. 

In a similar way, the 95% confidence interval of the correlation coefficient 
between Mn and Zn is found to be: 

- 0.189 <p(Mn,Zn)< 0.806 

This also leads to the conclusion that the correlation coefficient is not significantly 
different from zero since zero is included in this very large interval. Notice that the 
confidence interval is much more informative. 

A two-sided test based on the z statistic defined above is used for the comparison 
of two correlation coefficients (Ho; pi = P2, Hi: pi ;«̂  pi). Both are converted to z 
(eq. (8.62)) and the significance of the difference between the two z's is tested as 
follows: 

Zi -Zi Z\ -Zi .g ^^. 

M^ol / 1 ^ 1 
\n\-'i ^2-3 

with All and n2 the sample size on which r\ and r2, respectively, are based. At the 
5% significance level this quantity can be compared to 1.96 (z-value from the 
standardized normal distribution) since it has been obtained from a population 
standard deviation. 

As an example, suppose that in our biomedical application another sample of 15 
brain structures was analyzed for Cu and Zn. The correlation coefficient was found 
to be 0.703. We want to know whether both correlation coefficients r\ =0.898 
{nx = 12) and r2 = 0.703 (n2 = 15) estimate the same parametric value of p. Since 

Zi = 1.462 and Z2 = 0.873 it follows that 

1.462-0.873 , , , , ^ , 
t= — = 1.34 < 1.96 

I J_ 
9^ 12 

Therefore, there is not enough evidence to conclude that both samples come from 
differently correlated populations. 
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8,3.3 Correlation and regression 

Although correlation and regression analysis are used for different purposes 
there are obvious mathematical relationships between the correlation coefficient 
and the regression coefficients. 

In Section 8.2.1 (eq. (8.4)) the expression for the slope of the least-squares line 
through n data points, b\ was derived. From eq. (8.58) the correlation coefficient 
between x and y, r(x,y), can be obtained. If b] is divided by r(x,y) we obtain: 

fci _ VX (x, - xf VI (J, - yf _ VI (yi - yf 

rix,y) I (Xi - xf ^lixi-xf 

Dividing both the numerator and the denominator by VAZ - 1 yields the following 
relationship between the estimated slope and the estimated correlation coefficient: 

bi ^ ^{yj-yf/n-l _ s^ 

r(x,y) V I ( X , - X ) V A I - 1 ^̂  

This expression which can be rewritten as 

b, = rix,y)^ (8.64) 

which indicates that if either b\ or r is zero the other is also zero (since neither Sy 
nor Sj( are zero): if there is no correlation between x and y, a significant linear 
regression between these variables cannot exist. Therefore, the test for the signifi­
cance of r (Ho: p = 0), described in Section 8.3.2, could also be answered by the 
test for the significance of bi (HQ: pi = 0), described in Section 8.2.4.1. Both are 
mathematically equivalent and the acceptance of pi = 0 implies acceptance of p = 0. 

Since bo = y-b]X (eq. (8.5)), substituting b\ by eq. (8.64) yields: 

bo = y- r(x,y) -^ x 
^x 

Combining this with y = bo -{• b\ x gives: 

y = ̂  - r(x,y) -^ X + r(x,y) -^ x 
^x ^x 

and 

iy-y) = {x-x)r{x,y)^ (8.65) 
^x 

This relationship will be applied in the discussion of autocorrelation and autore-
gression in Chapter 20. 

Finally, let us consider the square of the correlation coefficient between x and y, 
r. In eq. (8.7) (I(JC/ - jc) (yi -y))^ can be substituted by the equivalent expression 
r^lixi - xf iCv, - yf (see eq. (8.58)) which yields: 
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= {l-r^)l(yi-yf 

From this the following expression for r^ is obtained: 

^_l(yi-yf - I J y i - h f ^ I (y , -y) ' _ SSREG ^g^g^ 
I^iyi-yf 1(yi-y? ss. TOT 

The latter equality in eq. (8.66) follows from eq. (8.10). Therefore in regression 
analysis the square of the correlation coefficient between x and y, r^ which is called 
the coefficient of determination, expresses the proportion of the total variation that 
is explained by the regression. If r = 1 or r = -1 all observations perfectly fit a 
straight line and consequently the total variation in y can be explained in terms of 
the regression line (r^ = 1). If, on the other hand, r = 0 (r^ = 0) there is no regression 
at all between x and y. The regression line which parallels the x axis {b] = 0) cannot 
explain any variation of j . 

References 

1. J.C. Miller and J.N. Miller, Statistics for Analytical Chemistry. Ellis Horwood, Chichester, 3rd 
ed., 1993, pp. 140 and 211. 

2. G.S. Land, W.J. Leavens and B.C. Weatherley, Comparison of two Methods of Calibrating 
Linear HPLC Assays. E. Reid and I.D. Wilson (Editors), Bioanalytical Approaches for Drugs, 
including Anti-asthmatics and Metabolites — Methodological Surveys in Biochemistry and 
Analysis, Volume 22. Royal Society of Chemistry, Cambridge, 1992, pp. 103-110. 

3. G. Kornblum and L. de Galan, Personal communication. 
4. H.M. Hill, A.G. Causery, D. Lessard, K. SeHnger and J. Herman, Choice and Optimization of 

Calibration Functions. E. Reid and I.D. Wilson (Editors), Bioanalytical Approaches for Drugs, 
including Anti-asthmatics and MetaboHtes — Methodological Surveys in Biochemistry and 
Analysis, Volume 22. Royal Society of Chemistry, Cambridge, 1992, pp. 111-118. 

5. M. Davidian and P.D. Haaland, Regression and caUbration with nonconstant error variance. 
Chemometr. Intell. Lab. Systems, 9 (1990) 231-248. 

6. N.R. Draper and H. Smith, Applied Regression Analysis. Wiley, New York, 1981. 
7. S. Mannino, Determination of lead in fruit juices and soft drinks by potentiometric stripping 

analysis. Analyst, 107 (1982) 1466-1470. 
8. P.D. Lark, B.R. Crowen and R.L.L. Bosworth, The Handhng of Chemical Data. Pergamon 

Press, Oxford, 1968. 
9. P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection. Wiley, New York, 

1987. 
10. C. Liteanu and L. Rica, Statistical Theory and Methodology of Trace Analysis. Ellis Horwood, 

Chichester, 1980. 
11. P.T. Boggs, C.H. Spiegelman, J.R. Donaldson and R.B. Schnabel, A computational examina­

tion of orthogonal distance regression. J. Econometrics, 38 (1988) 169-201. 
12. W.E. Deming, Statistical Adjustment of Data. Wiley, New York, 1943. 



230 

13. J. Mandel, The Statistical Analysis of Experimental Data. Dover Publications, New York, 1964. 
14. P.J. Cornbleet and N. Gochman, Incorrect least-squares regression in method-comparison 

analysis. Clin. Chem., 25 (1979) 432^38. 
15. C. Hartmann, J. Smeyers-Verbeke and D.L. Massart, Problems in method-comparison studies. 

Analusis, 21 (1993) 125-132. 
16. D.L. MacTaggart and S.O. Farwell, Analytical use of linear regression. Part II: Statistical error 

in both variables. J. AOAC Int., 75 (1992) 608-614. 
17. F. Mosteller and J.W. Tukey, Data Analysis and Regression. Addison-Wesley, 1977, pp. 

84-87. 
18. X. Wang, J. Smeyers-Verbeke and D.L. Massart, Linearization of atomic absorption calibration 

curves. Analusis, 20 (1992) 209-215. 
19. A.H. Kalantar, Large inefficiencies of unweighted least-squares treatment of logarithmically 

transformed A exp(-kt) data. Int. J. Chem. Kinetics, 19 (1987) 923-927. 

Additional recommended reading 

Book 

R.R. Sokal and J. Rohlf, Biometry — The Principles and Practice of Statistics in Biological Research. 
W.H. Freeman, New York, 1981. 

Articles 

Analytical Methods Committee, Uses (proper and improper) of correlation coefficients. Analyst, 113 
(1988) 1469-1471. 

F.J. Anscombe, Graphs in statistical analysis. Am. Statistician, 27 (1973) 17-22. 
R.J. Carroll and C.H. Spiegelman, The effect of ignoring small measurement errors in precision 

instrument calibration. J. Qual. Technol., 18 (1986) 170-173. 
D.L. MacTaggart and S.O. Farwell, Analytical use of linear regression. Part I: Regression procedures 

for calibration and quantification. J. AOAC Int., 75 (1992) 594-608. 
J. Riu and F.X. Rius, Univariate regression models with errors in both axes. J. Chemometr., 9 (1995) 

343-362. 



231 

Chapter 9 

Vectors And Matrices 

9.1 The data table as data matrix 

Table 9.1 gives the results of the determination of Al, Si, Mn and Fe in five 
minerals. This collection of data can be considered as a matrix (see further Section 
9.3). It consists of sub-sets of data for the different metals (column-wise) and for 
the objects (row-wise). These sub-sets are called vectors (see further Section 9.2). 
The data matrix X is then given by: 

X = 

200 
380 
200 
500 
50 

300 
580 
320 
760 
70 

100 
420 
400 
250 
25 

360 
840 
380 

1060 
100 

(9.1) 

The use of matrices is particularly useful in multivariate analysis to simplify the 
notations that can otherwise become quite complex. Here we introduce only some 
elementary concepts which are essential to understand Chapters 10 and 11 on 
multivariate and non-linear regression and Chapter 17 on principal components. 
Some definitions and the rules relative to some simple vector and matrix operations 
will be given. A more systematic introduction is given in Part B (Chapter 29), 
because a deeper understanding of linear algebra is needed for many chapters of 
that volume. 

TABLE 9.1 

Concentration of Al, Si, Mn and Fe in 5 minerals (arbitrary measurement units) 

Object 

1 
2 
3 
4 
5 

Al 

200 
380 
200 
500 
50 

Si 

300 
580 
320 
760 
70 

Mn 

100 
420 
400 
250 
25 

Fe 

360 
840 
380 

1060 
100 
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9.2 Vectors 

9.2.1 Definitions 

The matrix shown in eq. (9.1) can be considered as a collection of 5 rows, 
representing the results for the 5 objects. These rows are called row vectors. For 
instance ri (the vector for object 1) is given by: 

ri = [200 300 100 360] 

Similarly, we can view the data matrix as a collection of 4 columns, each 
representing the results for one of the variables. This is called a column vector. The 
column vector for the Al results, Ci, is given by: 

^200" 
380 

ci = I 200 
500 
50 

When we use the word vector without specifying that it is a column or row 
vector, then, by convention, it is a column vector. This is written as: 

x = 

Xfi 

The results x\ to jc„ are called the elements of the vector. If there are p vectors, the 
yth one is written as: 

Xxj 

X2j 

In this convention the row vector is considered to be the transpose of a column 
vector. Consider the following vector: 

x = 
10] 
20 
30 
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then its transpose, x^, is written as: 

x^ = [10 20 30] 

In Section 9.2 there is no need to follow this convention yet and therefore we will not. 
A vector also has a geometrical meaning. It can be defined as a directed line 

segment. Consider first the results for Mn and Fe only: there are 5 row vectors each 
consisting of two elements and each representing one of the 5 objects. We can plot 
the results of Mn against those of Fe. In Fig. 9.1a this is done for object 1 and in 

100 

360 Cpg 

500H 

500 1000 Cpg 

500H 

500 

500 

500 

1000 Object U 

i^Mn 

1 , 5 

3 
• 

• l 
1 

.2 

•u 

1 ^ 
1000 C| Fe 

Fig. 9.1. Geometrical meaning of vectors, (a) Vector describing object 1 of Table 9.1 by its 
concentrations for Mn and Fe; (b) all five objects in the column space defined by variables Mn and 
Fe; (c) the variables in the row space defined by objects 3 and 4; (d) an alternative representation of (b). 
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Fig. 9. lb for the 5 objects. The arrow representation illustrates the fact that a vector 
should be viewed as a directed line segment. It is however more usual not to draw 
the arrow, but only the point in which the arrow ends. This then leads to the more 
usual scatterplot of Fig. 9. Id which contains the same information as Fig. 9.1b. 
Clearly, we can view the 5 objects of Fig. 9.1b as 5 row vectors in two-dimensional 
space. The axes are defined by the variables (here the concentrations of Fe and 
Mn). Since there is a column for each variable, we could say that the axes are 
associated with the columns and therefore the objects or rows are said to be 
represented in column space or variable space. In the same way, it would have been 
possible to represent the variables or columns in row space or object space. For 
two rows, this can be represented visually as in Fig. 9.1c. where the four variables 
are plotted in function of their values for objects 3 and 4. 

The column and row spaces represented in Fig. 9.1 are two-dimensional. The 
vectors consist of two elements. We can therefore state that the dimension of a 
vector is equal to the number of elements it contains. The row space for the 
complete set of vectors of Section 9.1 is therefore five-dimensional. This is 
symbolised as an 5^ space. 

Vectors and matrices, since they are collections of vectors, allow us to represent 
data sets or tables in multivariate space (objects in /?-variate column space and 
variables in n-variate row space). This duality of representing the same data in two 
different spaces is less important in Part A, but will become very important when 
studying subjects such as multivariate modelling and calibration. 

9.2.2 Operations on vectors 

9.2.2.1 Addition of vectors 
Vector addition is possible for vectors of the same dimension. The elements of the 

resulting vector are the sums of the corresponding elements of the summed vectors. 

x + y = 

~Xx 

Xfi 

+ 

'y\ 

> . 

= 

x\-^y\ 

Xn^yn 

Applying this for a two-dimensional example 

x = x + y: 

When representing this graphically, we observe that vector addition is equivalent 
to placing the added vectors head to tail (Fig. 9.2a). 
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b) 

Fig. 9.2. (a) Vector addition, (b) Scalar multiplication. 

Vector addition is commutative: 

x + y = y + x 

and associative: 

X + (y + z) = (x + y) + z 

9.2.2,2 Multiplication by a scalar 
A scalar is a single number and a vector can therefore also be defined as an 

ordered array of scalars. Multiplication of a vector x by a scalar c {scalar multipli­
cation) yields a new vector, the elements of which are obtained by multiplication 
of the elements of x by c 

\CX{ 

cx = \ • 

CXfi 

With a two-dimensional example 

c = 3; cx-\ 

we observe (Fig. 9.2b) that scalar multiplication consists of stretching x by a factor 
c. 

x = 
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Scalar multiplication is distributive with respect to addition: 

c(x + y) = ex + cy 

9.2.2.3 Vector multiplication 
There are two types of vector multiplication. The one which is of interest to us 

yields what is called the inner product, dot product, or scalar product. 
The inner product is obtained from vectors that have the same dimensions and 

consists of the sum of products of the corresponding elements. Thus, if one 
multiplies two row vectors consisting of the results for objects 1 and 2, one writes 

x = [200 300 100 360] 

y = [380 580 420 840] 

xy = 200.380 + 300.580 + 100.420 + 360.840 = 594400 

This way of writing the product explains why it is called the dot product. There 
is a second way which is consistent with the view that a vector is a 1-column or 
1 -row matrix. Matrix multiplication will be explained in Section 9.3. It will be seen 
there that elements of the matrix are obtained by summing the products of the ith 
element of a row with the /th element of a column. The product is then written as 

xy'^^pOO 300 100 360] 

380' 
580 
420 
840 

The name scalar product is due to the fact that the result is a single value, and 
therefore a scalar. Later, when we have learned how to norm vectors, we will see 
that the scalar product is related to the angle between the vectors. 

9.2.3 Length and distance 

Consider a point Xi in two dimensions (see Fig. 9.3a). We can represent it as a 
vector. 

Xi = [X\\ X\2] 

where x\ i and x^ are the values for object 1 on variables xi and xj. 
The square distance from the origin to the point Xi, ||xi|p, can be derived using 

the properties of the triangle to be: 

l|xi||- = xn -\-Xn 

This result would also be obtained as the scalar product of Xi with itself. 
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Fig. 9.3. (a) Distance of xi from the origin, (b) The distance between xi and xi is given by d(xi,X2). 
The value of d(xi,X2) is obtained by considering that it is the hypothenusa of triangle OQP. 

T 2 2 
X\Xl = X\X\ —-̂ 11 +-^12 

The non-negative square root, symbolized as ||xi|| is called the length or the norm 
of the vector and is equal to: 

IIXill = Vx?i4-X?2 (9.2) 

Note that we introduced the length of a vector as a distance and, in fact, the distance 
between the origin and the point of the arrow is called the Euclidean distance from 
the origin. Generalizing to n dimensions the length of a vector x is: 

iixiii = Vjc?+4+. . .4 

and 

(9.3) 

(9.4) llxill = Vxi • xi = VxiXi'̂  

Let us calculate as an example the length of the vectors for objects 1 and 2 of 
Table 9.1. They are equal to 

llxill = V2OO' + 300^ + 100^ + 360' =519 
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Ilx2ll - ^380^ + 580^ + 4202 + 840^ = 1167 

Let us now go back to two dimensions and ask the question what the distance is 
between (points or vectors) Xi and X2 (Fig. 9.3b). From the properties of the triangle 
OPQ, it is easy to derive the distance d(xuX2) as being given by 

^(Xl, X2) = V(x,i-X2i)2 + (X,2-X22)^ (9.5) 

This can be interpreted as the length of the vector starting in Xi and going to X2, or, 
in other words, the length of the new vector obtained by shifting the origin to Xi. 
This distance is also called the Euclidean distance between Xi and X2 and eq. (9.5) 
can also be generalized to n dimensions. 

J(Xi, X2) = V(Xi 1 - X2\f + (^12 - ^22)^ + . . . + (X,„ - X2n)^ 

4' 
The distance between Xi and X2 in the example is equal to 

(9.6) 

J(xi, X2) = V(380 - 200)2 + (580 - 300)^ + (420 - 100)̂  + (840 - 360)' = 666 

There is an interesting parallel between the length of a vector and the standard 
deviation. To understand this let us consider a 3-dimensional vector: 

5" 
1 
3 

We centre or mean-centre this column vector by subtracting the mean of the three 
numbers. 

Calling y = 

y = y - y = 

"3] 
3 
3 

|5 
1 
3 

-
3 
3 
3 

= 
2 

-2 
0 

The length of the new vector y* is given by: 

llyll - V(5-3)2+ (1-3)2+ (3 -3)2= 2.83 

If we had divided the sum of squares under the root by /i - 1 = 2, y* would have 
been the standard deviation of y. Therefore, we can conclude that the length of a 
centred vector is proportional to the standard deviation of its elements. 
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9.2.4 Normed vectors 

A normed or normalised vector is equal to the vector divided by its norm. Since 
the norm is a scalar, the elements of a normed vector are the original values each 
divided by the norm. Because the norm is related to the standard deviation, we can 
view the normed variables as related to standardized variables. Let us apply this 
again to the first two row vectors for the objects of Table 9.1. 

u = x/||x|| 

v = y/||y|| 

u = [200 300 100 360]/519 

= [0.3854 0.5780 0.1927 0.6936] 

V = [0.3256 0.4970 0.3599 0.7198] 

An inherent property is that a normed vector has length 1. One can verify that 

0.3854^ + 0.5780" + 0.1927" + 0.6936" = 1 

The sum of squared elements for such a vector is equal to 1. This is not the case for 
a vector consisting of standardised data where the sum of elements equals n-\. 

All the absolute values of the elements of the normed vector are < 111. In fact, we 
can show that the elements are the cosines of the angle with the coordinate axes. 
This can be demonstrated with a simple example 

x = [l 1] 

||x|| = Vl"+l"=V2r 

u = x/||x|| = [I/V2' I/V2'] = [ cos 45° cos 45°] 

For this reason the elements of a normed vector are also called direction cosines. 

9.2.5 Angle between vectors 

The angle 9 between column vectors x and y is given by 
X V X'V 

^os e = „ „,f „ = „ „ , „ (9.7) 
11x11 llyll 11x11 llyll 

If u and V are the normed vectors of x and y, this is equivalent to writing 

cos 9 = u^ V = u v (9.8) 

In other words, the cosine of the angle of two vectors is equal to the scalar 
product between the normed vectors. Since cos 90° = 0, it follows that vectors are 
orthogonal if 
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u-v = 0 (9.9) 

When the angle between two vectors is zero, then cos 6 = 1. The angle between 
two vectors is zero when the corresponding elements are equal, except for a 
proportionality constant. We would say that two such series of numbers show a 
correlation coefficient = 1. This leads us to suspect that there must be a relationship 
between the angle between two vectors and the correlation coefficient of the two 
arrays of numbers, treated as vectors. 

Rewriting eq. (8.58) for the correlation coefficient in terms of r(y, x), we obtain: 

,(,,^).(yziLfc^ (9.10) 
^ lly-yllllx-xll 

If y' = y - y and x' = X - X are the mean centred vectors of y and x, then 

r(y,x) = - ^ — = cos 0' 
llyllllx'll 

where 9' is the angle between the mean centred vectors. It follows that the correla­
tion coefficient of two sets of numbers is equal to the scalar product of the normed 
mean-centred vectors or to the cosine of the angle between the mean-centred 
vectors. One can also show that the covariance of two variables is equal to the 
scalar product of the two mean-centred vectors divided by n - 1. In Section 9.2.4 
we have already seen that standard deviation and therefore variance are related to 
the length of a vector. Since this relationship between statistical and vector con­
cepts is very important for our further understanding of the methods of multivariate 
data analysis, we will describe it in more detail later (Chapter 29). 

9,2.6 Orthogonal projection 

The orthogonal projection u of a vector x on another vector y is shown in Fig. 
9.4. It is a vector with the same direction as y multiplied by cos 6 and a scalar. It 
can be shown that this scalar is ||x|| / ||y||, so that: 

u = proj X = ||x|| -fj^cosG (9.11) 

or by replacing cos 9 by its value in eq. (9.7) 

proj X = (x-y) y/||y|p (9.12) 

The length of the projection is given by: 

||projx|| = (x-y)/||y|| (9.13) 

Consider the row vectors x = [2, - 1 , 3] and y = [4, - 1 , 2]. Then: 
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u y 
Fig. 9.4. Orthogonalization. Vector x is decomposed in two orthogonal vectors u and v; u is the 
orthogonal projection of x on y and v is the vector orthogonal to y. 

xy = 2.4 + ( - l ) ( - l ) + 3.2=15 

||y||2 = 42 + (_l)2 + 22 = 21 

projx = — [ 4 -1 2] = 
60 _ ^ 30 
21 21 21 

9.2.7 Orthogonalization 

In the preceding section, we saw how to project x on y. In Fig. 9.4 we have called 
this projection u. We would now also like to obtain v, the projection of x 
orthogonal to y. Since 

u + v = x 

it follows from eq. (9.12) that: 

V = X - (x-y)y / llytp 

u and V are orthogonal, which means that u v = 0. 
For the vectors x and y given in the preceding section 

(9.14) 

u = 

and 

60 
21 

15 
21 

30 
21 

2 - 1 3 ] -

- 18 6 
21 21 

-60 
21 

33-
21 

11 
21 

30 
21 

We can verify that 
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" ' ^ " 2 1 ' 21 ^ 21 "21 ^ 2 1 ' 2 1 

The procedure described can be generalized to more than two vectors. Suppose 
that one has a set of vectors (xi,X2,..., XR). HOW can we obtain from this set a set of 
k orthogonal vectors (vi,V2,..., Vk) describing the same space? It can be shown that 
this can be done by the so-called Gram-Schmidt orthogonalization. 

V i = X i 

V2 = X2 - (X2-Vi)Vi / | |Vi|p 

V3 = X3 - (X3-Vi)Vi /IIVilP - (X3.V2 )V2/||V2|P 

Vk = XK - (XkVi)Vi /IIVilP - (Xk-V2)V2 /||V2|P - ... " (Xk-Vk-l)Vk-l /||Vk-i|P (9.15) 

In other words, Vi is the difference between Xi and the sum of the projections of 
Xi on the vectors Vi,V2...Vi_i. Decomposing a set of vectors in a set of orthogonal 
vectors is an important operation in data handling. The Gram-Schmidt ortho­
gonalization is the simplest. Further orthogonalizations under additional con­
straints such as principal components are described in Chapter 17 and are used to 
a large extent in many of the chapters in Part B. 

The computation of v is useful, for instance in the detection of minor substances 
below a chromatographic peak in HPLC with a diode array detector. This instru­
ment is used to measure UV spectra in the eluate. At each time r, we obtain a set of 
absorbances at different wavelengths. This set is the spectrum and can be viewed 
as a row vector (see Fig. 9.5). To detect the impurity we compare each spectrum 
or vector to the same row vector, called base vector. Let us consider as base vector 
the spectrum obtained at the top of the chromatographic peak. We call this row 
vector Xt = [JCH,...JC,̂ ], where m is the number of wavelengths at which measure­
ments are made. At each other time ti a vector X\ - [x/],...X/;„] is obtained and we 

X\ A2 A3 i-m 

tn 

'̂ H ^12 

row vector 

Fig. 9,5. Data table obtained in HPLC-DAD. The spectra can be represented by row vectors. 
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want to compare vector Xj to Xt. There are many ways in which we could do that. 
We could, for instance, centre and normalize both Xt and Xi and obtain their product. 
This would yield the correlation coefficient r/ between Xt and each Xj. We could 
then observe r, in function of tt. In regions where the pure product is present this 
would yield a higher r, than in regions where the impurity influences the spectrum. 
It is also possible to determine the length of the orthogonal projection of Xj on Xt, 
as was shown by Cuesta et al. [1]. These authors proposed several variants of 
methods where this length is measured. We will consider one of them (not 
necessarily the best one, but the easiest to explain). 

In Fig. 9.6 the different steps are illustrated for the simplest possible example, 
namely two wavelengths (e.g. Xi = 244 nm and A.2 = 280 nm). The concentration 
of the impurity is about half that of the main compound (Fig. 9.6a) and the 
substances are rather well separated. It should be understood that for such a good 
separation, a method like this one makes no practical sense: the intention is 
didactical. In practice, this method is used to detect poorly resolved minor peaks, 
often with spectra that do not differ much from that of the major compound. 

0.01 

0.009 

0.008 H 

0.007 i 

I 0.005 H 

§ 0.004 H 

0.003 i 

0.002 J 

0.001 \ 

time t 

Fig. 9.6. (a) Chromatogram obtained by HPLC-DAD. 
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0.15 i 

E 
c 
oo 

0.1 

a 
c 
O </) 
< 0.05 -I 

04 

0.1 0.2 0.3 0.4 
Absorbance (244 nm) 

0.5 

Fig. 9.6. (b) Plot of absorbance at A. = 244 nm against absorbance at A. = 280 nm. The meaning of A, 
B, C, D, E and M is given in the text. 

In Fig. 9.6b we observe points such as M, the point representing the base vector 
Xt and A and B situated on a line with other points representing measurements of 
the pure main compound. Indeed the ratio of A;t244/A;L28o is constant so that all these 
points must fall on a line. Points C and D are on another line, and due to the pure 
"impurity". Point E is a mixture point. We then apply eq. (9.14) for each time r,. 

V| = Xi - (Xi-Xt)Xt/||Xt|P 

and measure the length of Vi,||Vi||. 
In Fig. 9.6c the plot of ||Vi|| in function of time is given. Points such as A and B 

will yield orthogonal vectors with length close to zero, since the angle with respect 
to the base vector is close to zero. Points such as C and D have the same angle with 
respect to the base vector, but the length of v-, is larger for C than for D, because X| 
is longer for C than for D. Therefore, the length of the Vj obtained from the 
projection of the points due to the impurity, follows the same evolution as the 
chromatographic profile of the impurity. 

Gram-Schmidt orthogonalization is applied for instance in high resolution gas 
chromatography-Fourier transform IR to extract information from interferograms [2]. 
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0.6 1 

10 20 30 40 
time tj 

50 

Fig. 9.6. (c) Plot of llVill in function of tj. 

9,2.8 Linear combinations, linear dependence and collinearity 

When two vectors Xi and Xi have the same direction, they are called collinear. 
This means that there is a scalar c, such that 

Xi = C X2 (9.16) 

From Section 9.2.2.2, we know that eq. (9.16) describes an operation whereby 
Xi is shrunk or expanded by a factor c. The scalar c may also be negative, in which 
case Xi and Xi point in exactly opposite directions. The term collinear is sometimes 
used in an approximate sense. When two variables, are strongly correlated this 
means that there is a very small angle between the vectors that represent them (see 
Section 9.2.5). It follows that they have nearly, although not exactly, the same 
direction in space. Nevertheless, in regression this situation is described as highly 
collinear. A corollary to definition eq. (9.16) is that two vectors are non-collinear 
when no c satisfying eq. (9.16) is found. 
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Collinearity is a special case of linear dependence. If one vector of a set of k 
vectors can be written as a linear combination of the other vectors in the set, then 
the vectors are called linearly dependent. If not, they are linearly independent. 

One calls linear combination of a set of vectors Xi,X2,...Xk a new vector of the 
form 

Ci Xi + C2X2 + . . . Q X k 

where Ci,C2,..., Q are scalars called the coefficients or weights of the linear combi­
nation. 

Another definition of linear dependence is that there exists at least one c ^ 0 for 
which their linear combination yields a 0 vector, i.e. a vector containing only 0 
values 

Ci Xi + C2 X2 + ... CkXy, = 0 (9.17) 

Definition (9.17) follows from the earlier definition. Let us take an example 

2 
3 ' 

1 
1 ? 

4 
5 

are linearly dependent because 

2 
3 

+ 2 
1 
1 = 

4 
5 

(first definition) 

or 
'2 
3 

+ 2 
"1" 
1 + (-1) 

"4" 
5 = 

' 0 ' 
0 (definition from (eq. 9.17)) 

The example can be generalized. Any vector from Ŝ  space can be written as a 
combination of two non-collinear vectors from that same space. For instance, in 
Fig. 9.2a X and y are linearly independent. Any other vector in that space can be 
represented as a linear combination of x and y. A set of only two non-collinear 
vectors in Ŝ  is necessarily linearly independent. Such a set of two linearly 
independent vectors for Ŝ  is said to constitute a basis for the vector space. From 
that set all other vectors in that space, here in the plane, can be obtained by linear 
combination. It is usual to use as basis the set of orthogonal vectors 

However, this is not necessary. It is not even necessary that the vectors should be 
orthogonal. This can be generalized to S'̂  space. 
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9.2.9 Dimensionality 

In Section 9.2.1 we defined the dimension of a vector (row or column) space as 
the number of elements in the vector. There are situations where the full number 
of dimensions is not needed. 

The simplest such situation, where this occurs, is when there are fewer points 
than dimensions. Suppose we measure a spectrum of 19 NIR wavelengths for 10 
objects. We can represent the data as 10 row vectors each with 19 elements and 
therefore we would define a 19-dimensional space. However, we really need only 
10 dimensions. To understand this, consider the simpler situation of two row 
vectors (objects) of three elements (wavelengths). This situation is shown in Fig. 
9.7a Xi and Xi together define a plane in the three-dimensional space. Thus only 
two dimensions are needed. The reduction of three to two dimensions means that 
we do not need the whole space, but only a subspace. 

A vector subspace is defined as the set of vectors containing all linear combina­
tions of Xi,...,Xk. This is also called the span of a set of vectors. Geometrically it is 
the smallest space (line, plane or hyperplane) that contains all these vectors. The 
vectors are represented in that subspace without error, i.e. lengths and angles are 
preserved. 

A special case occurs with closed data, such as data that describe mixtures. The 
components of a mixture always add up to 100% or, expressed as fractions, to 1. 
For instance, in two dimensions all mixtures must be situated on the line connect­
ing pure components (fraction = 1) and in three dimensions on a plane (see Fig. 
9.7b and c). 

In general, reduction of dimensionality occurs when vectors are linearly depend­
ent. Consider the following example: 

Xi 

3" 
4 
2 
-1 
5 

X2 = 

" 2 
5 
3 
0 

- 2 

X3 = 

1 
-1 
-1 
-1 

7 

Then Ixi + (-l)x2 + (-l)x3 = 0. We can plot the 5 objects described by Xi, X2 and 
X3, but observe that in fact all objects fall into a two-dimensional plane or 
subspace. It sometimes happens that all vectors fall near but not quite in a 
subspace. They are approximately linearly dependent. In that case the subspace 
can be used to represent with a small error the original vectors. This is the basis 
of dimensionality reduction in methods based on principal components (see 
Chapter 17). 
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i fraction of X-| 

fraction of X-j 

b) 

1 fraction of X^ 

fraction of X^ 

c) 

fraction of X3 

Fig. 9.7. Dimensionality reduction (a) due to fewer points than dimensions, (b) closure in two 
dimensions, and (c) closure in 3 dimensions. 
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9.3 Matrices 

9.3:1 Definitions 

A matrix is a rectangular arrangement of numbers and is represented by a capital 
letter in bold face: 

nxp 

•̂ 11 -^12 . . . Xlp 

•̂ 21 -^22 . . . -̂ 2/7 

-^nl ^n2 

(9.18) 

The matrix X has n rows and p columns and is called a nXp matrix. It is often 
represented as X . This matrix (see Section 9.1) can be viewed as a collection ofp 

nxp 

column vectors or n row vectors. The individual values of the vectors and the 
matrix are the elements of the matrix. They are denoted by the corresponding lower 
case letter: Xy represents the element in the ith row and theyth column of the matrix 
X. Thus the matrix X of eq. (9.1) can be represented as X and, e.g., X53 = 25. 

5x4 

A matrix for which the number of rows is equal to the number of columns (n = /?) 
is a square matrix: 

X 
2x2 

2 -1 
5 0 

A square matrix can also be: 

symmetric (Xij = Xji for all / and 7) 

X = 
3x3 

' 2 - 5 8 
-5 6 0 

8 0 3 

diagonal {xij = 0 for all / ^j) 

x= 
3x3 

"1 0 
0 7 
0 0 

0' 
0 
4 
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triangular (xij = 0 for all / >j or for all / <j) 

x = 
3x3 

' 4 
8 

-5 

0 0 
-1 0 

2 7 

A square matrix for which the elements of the principal diagonal (from top-left 
to bottom-right) are all equal to 1 with all other elements being zero is an identity 
matrix (xij = 1 for all / =j and Xy = 0 for all / ̂ j). An identity matrix is represented 
by the symbol I: 

1 = 
3x3 

'1 
0 
0 

0 
1 
0 

o' 
0 
1 

A matrix with all elements equal to zero is a null matrix represented by the 
symbol 0: 

0 = 
2x3 

0 0 0" 
0 0 0 

By the trace of a square matrix is meant the sum of the diagonal elements of the 
matrix. For example the trace of the triangular matrix X given higher is: 

tr^X^ = 4 - 1 + 7 = 10 

The transpose X^ of a matrix X is obtained by interchanging the rows and 
columns of X. The elements Xy of matrix X therefore become the elements x,, of 
matrix X^. If for example: 

X = 
3x4 

2 0 5 3 
1 3 8 2 
7 6 0 4 

then X'' = 
4x3 

"2 
0 
5 
3 

1 
3 
8 
2 

T 
6 
0 
4 

It should be evident that a symmetric matrix and its transpose are identical. 

9.3.2 Matrix operations 

9.3.2.1 Addition and subtraction 
The addition and subtraction of matrices is only possible if they have the same 

number of rows and columns. To add or subtract matrices the corresponding 
elements in the matrices are added or subtracted. The new matrix obtained has the 
same dimension as the original matrices. For example if: 
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"7 3 9 
4 8 6 

B = 
2x3 

"-1 2 6" 
3 5 0 

C = 
2x3 

'3 9 
5 3 

-7" 
1 2x3 

then: 

D = X - B + C = 11 10 -4 
6 6 7 

As for vector addition matrix addition is commutative and associative (see Section 
9.2.2.1) 

9.3.2.2 Multiplication by a scalar 
To multiply a matrix by a number k, each of the elements of the matrix is 

multiplied by that number: 

B = kA = Ak 

Therefore if 

A = "2 5 8" 
3 - 4 7 

, then B = 3A = "6 
9 

15 24' 
-12 21 

9.3.2.3 Matrix multiplication 
The product of two matrices only exists if the number of columns of the first 

matrix is equal to the number of rows of the second matrix. A new matrix is 
obtained with a number of rows equal to the number of rows of the first matrix and 
with a number of columns equal to the number of columns of the second matrix. 

For example the two matrices X and B can be multiplied to obtain: 

C = X B 
nxm nxp pxm 

(9.19) 

The product B X will therefore only be possible if n = m. The order in which the 
multiplication is performed is clearly important. One sometimes uses terms such 
as postmultiplication or premultiplication. For instance, when one states that X is 
postmultiplied by B, this means that one performs the operation X B and not B X. 
The elements of the matrix C are obtained as: 

X Xikhj (i= 1, ...,n'J= 1, ..., m) 
^=1 

If, for example. 

x = 
3x3 

"2 
0 
1 

3 
1 
2 

4" 
7 
5 

and B = 
3x2 

1 
-2 

4 

3' 
1 
5 
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C = X B = 
3x2 3x3 3x2 

'12 29' 
26 36 
17 30 

Since 

Cu ={X\i X fell)+ (Xi2X 6 2 1 ) + (^13X631) 

= i2x\) + f3x {-2)Y (4x4)= 12 

C12 = (Xii X ^12) + (X,2 X ^22) + (-̂ 13 X ^32) 

= (2x3 )+ (3x1)+ (4x5) = 29 

C21 = (X21 X fell) + (X22 X b2i) + (A:23 X ̂ 3,) 

= (0 X 1) + f 1 X (-2)y (7x4) = 26 

C32 = (^31 X ^12) + (X32 X ^22) + (^33 X Z732) 

= (1x3 )+ (2x1 )+ (5x5) = 30 

Matrix multiplication is distributive and associative. Therefore: 

B + C 1 X = B X + C X 
nx}) 

V 
nxp pxr nxp pxr nxp pxr 

nXj) \pxr 

X f D + E 
pxr 

= X D + X E 
nxp pxr nxp pxr 

X (¥ G\ = fX F^ G 
nxp \pxm mxr I I nxp pxm j mxr 

However in general it is not commutative. It is easily verified that the result of 
the multiplication of two square matrices depends, in general, on the order in 
which the multiplication is carried out. Therefore generally: 

X B ^ B X 
pxp pxp pxp pxp 

Useful properties are: 
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I X = X I = X 
nxn nxp nxp pxp nxp 

X X^ is a symmetric nXn matrix 
nxp pxn 

X^ X is a symmetric pXp matrix 
pxn nxp 

X X = X^ 
nxn nxn nxn 

0 X = O a n d X 0 = 0 
nxp pxq nxq nxp pxq nxq 

(9.20) 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

9.3.2.4 Examples of matrix multiplication 

9.3.2.4.1 Linear mixture models 
Let us consider some examples of matrix multiplication which are of special 

interest and will be required in later chapters. 
In many cases, the response of a mixture can be modelled as a weighted sum of 

responses of the individual components, the weights being proportional to the 
concentrations. For example, consider the absorbance at three wavelengths of a 
two-component mixture. This can be written as 

A\ — Z\\X\ + £i2^2 

^2 — £21-^1 + £22-^2 

A3 = 831X1 + £32^2 

(9.25) 

where A\ is the absorbance at X-i, En is the absorptivity at X\ for x\ and x\ is the 
concentration of component 1. Calling a the column vector of absorbances 

Ai 

A2 

A3 

X the column vector of concentrations 

x = 
Xi 

X2 

and E the matrix of 8-coefficients 
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E = 
Eu 

£21 

£31 

£12 

£22 

£32 

we can write: 

a = E x 

This yields the equations (9.25) (see Chapter 10). 

9.3.2.4.2 Weighting by multiplication with a diagonal matrix 
In some cases, it will be necessary to weight certain variables or objects, for 

instance for standardization or in weighted regression. This can be done with a 
weight matrix. This is a diagonal matrix. Suppose we have a matrix X and want to 
weight the first column by multiplying it by wi, the second column by W2, etc. We 
can then write 

X^ = X W 

where Xw is the weighted matrix and W the weight matrix 

Xw31 -̂ w32 

We can verify that, for instance 

^wll =^11 Wi +X12 0 = ^11 W\ and XH;32 =-^32 W2 

To weight rows, one pre-multiplies X with a diagonal weight matrix W, i.e. X^ 
= W X 

— 

Xi i 

X2\ 

-^31 

X\2 

^11 

•^32 

VVi 

0 
•-

0 " 
W2 

^ 

'wll 

'w21 

'w31 

^wl2 

•^w22 

-^w32 

W\ 

0 
0 

0 
W2 

0 

0 " 
0 

W3 

X\\ X\2 

-^21 -^22 

•^31 -^32 

For instance, now: 

Xwi\=w\ x\i-{-0X2\ + 0 JC31 = vvi jci 1 and^^32 = ^3-^32 

9.3.2.4.3 Regression models 
In multiple regression (Chapter 10), one needs equations of the type 

y = X b 
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where y is the column vector of responses, b the column vector of /7-parameters 
and X the matrix ofxi and X2 values. 

y = yi 

y3 
x = 

X\i X\2 

•̂ 21 -̂ 22 

^31 -̂ 32 

b = 
b2 

We can verify that 

yi =bxxu + b2Xn 

If we want to include a constant term, bo 

y = bo + b]Xi-\rb2 X2 

then this can be achieved by writing 

X = 
Xu X\2 

X21 X22 

X31 X32 

b = 
'bo' 
b, 
bi 

9.3.2.4.4 Variance-covariance matrix 
Looking back at Table 9.1, we would like to determine the standard deviations 

(or variances) of the four variables and the correlations (or covariances) between 
them. This information can be summarized in a 4x4 table which takes the following 
form: 

var(l) cov (1,2) cov (1,3) cov (1,4) 
cov(2,l) var(2) cov (2,3) cov (2,4) 
cov (3,1) cov (3,2) var(3) cov (3,4) 
cov (4,1) cov (4,2) cov (4,3) var(4) 

If we consider this table to be a matrix, then this is a variance-covariance matrix. 
Let us consider this more generally for X. 

Matrix X has column means Xi,jC2,.. JCp. We subtract the column means from the 
elements of the corresponding column (column-centring, see Section 9.2.3). This 
yields: 

= U 

X\\ — X\ 

X21 — X\ 

Xni — X] 

X 1 2 - X 2 . 

-^22 ~ ^2 • 

Xn2 - ^2 • 

. . X\p Xp 

.. X2p Xp 

.. Xfip Xp 

-

Un 

U21 

Un\ 

U\2 . 

U22 . 

Un2 

. U\p 

• U2p 

Unp 
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We now premultiply U with U^ and divide by (n - 1) 

n-l 
(U^U) = 

Wli W21 . . . W„i 

U12 U22 . . . W„2 

U\p U2p w np 

X u}\ E Ui\ Ui2 

HI Ui\ Ui2 £ Ui2 

Mil W12 

M2I W22 

M„l M„2 

Z w/1 M/p 

E M/2 Uip 

U\p 

U2p 

U. np 

/{n-\) 

^ujp 

An-I) 

E un Uip E M/2 W/> 

where X stands for X • The (U^U) matrix is called the dispersion matrix for U. 
i=\,n 

By dividing each element by n - 1, we obtain the variance-covariance matrix of 
X: 

COV (X) : 

e2 
COV (1,2) ... cov(l,/?) 

<^ow{2,\) ,2 cov(2,p) 

cov(/7,l) COV 0,2) ••• 

(9.26) 

where si; is the variance of the jc-values in column 1 and cov(l,2) = cov(2,l) is the 
covariance between the JC-values in columns 1 and 2. Often the shorter term covari-
ance matrix is used. This matrix and the derived correlation matrix will be used in 
several later chapters in this book, starting with Chapter 10. 

9.3,2.5 Inverse of a square matrix 
In analogy with the inverse of a non-zero number which multiplied by the initial 

number equals unity, the inverse X"' of a non-singular or regular square matrix X 
is such that 

XX^ = X X = I (9.27) 

where I is an identity matrix. If X is singular, X"' does not exist (see also Section 
9.3.5). Since multiplying with the inverse of a number is equivalent to dividing by 
that number, matrix inversion can be seen as the equivalent of division. The 



257 

computation of an inverse is tedious especially with large matrices and will not be 
discussed further here. Moreover, it is best to use available computer subroutines 
which ensure accurate calculations. This is important to avoid round-off errors. 
The following characteristics of the inverse matrix are useful for some of the 
following chapters: 

(x-'r' = X 
(x-'f = ( x v = x-T 
(X B)-' = B-' X-' 

(9.28) 

(9.29) 

(9.30) 

IfX = 
xi, 0 0 
0 JC22 0 

0 0 X33 

then X" 
1/x,, 0 0 

0 I/X22 0 
0 0 IA33 

(9.31) 

9.3.3 Regression modelling and projection 

Suppose we have measured the UV absorbance, y, of a substance with concen­
tration X at one wavelength. The following results are obtained: 

y^O.n x=10;3; = 0.19 ;c = 20;3; = 0.30 x = 30. 

We can also consider that the y results are elements of a column vector y and that 
the corresponding x values constitute a column vector x. 

"o.ir 
0.19 
0.30 

x = 
"10' 
20 
30 

y = 

As can be seen, the two vectors diverge slightly. To simplify, we suppose that the 
relation between y and jc is }; = ax, i.e. there is no intercept. In vector notation, 

y = ax 

If there were no random error, y and x would therefore have exactly the same 
direction in space (Fig. 9.8a). Because there is random error this is not true. To fit 
the model, one selects a vector that has the same direction as x and is as close as 
possible to y. This vector is given by the projection of y on x, proj y. The difference 
between y and proj y is e, the vector of model errors or residuals. One wants this 
as small as possible, i.e. one wants it to have the smallest length. The length is given 
by Hell = VSef. Since this needs to be as small as possible, this means one must 
minimize the sum of squared residuals, which is exactly what was done in Chapter 8. 
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a) 

b) 

Fig. 9.8 Regression of y on x (a) and on the plane defined by xi and xi (b). 

Let us now take a first look at multiple regression, the subject of the next chapter 
(Chapter 10). Instead of measuring at only one wavelength, we measure now at two 
wavelengths. We still measure only one substance. The results now can be written 
as a matrix with two columns 

y = 

10 
20 
30 

X = 
0.11 0.21 
0.19 0.40 
0.30 0.55 

In row space the two columns of X are column vectors Xi (the measurement results 
at ?ii) and X2 (at X.2). These two column vectors together define a plane (see Fig. 
9.8b). If there were no random errors, we could write 

y = ai Xi + ^2 X2 

In other words, y is a linear combination of Xi and X2 and y is therefore situated in 
the plane Xi,X2. When there is random error, y will not fit exactly into the plane. To 
estimate y we would then select a vector in the plane that is closest to y, in other 
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words we would project y on the plane. Again the difference is e, the length of 
which is given by the root of the sum of the squared residuals. 

It can be shown that the projection of any vector on the subspace spanned by 
linearly independent vectors (xi, ..., Xm), forming together matrix X, is obtained 
with the orthogonal projection operator X(X^X)"^X .̂ This result will be applied 
in Chapter 10 and 29 to obtain the coefficients in multiple regression. 

9.3.4 Determinant of a square matrix 

A square matrix X can be characterized by a number, called the determinant IXI. 
For a 2x2 matrix 

X -
2x2 

X\\ X\2 

^2\ -̂ 22 

the determinant is: 

IXI — X\ ] X22 ~ X\2 X2\ 

e.g. for 

(9.32) 

1X1 = 39 24 
24 21 

3 9 x 2 1 - 2 4 x 2 4 - 2 4 3 

Equation (9.32) is called the expanded form of the determinant. For a 3x3 matrix 

x = 
3x3 

X\\ 

-^21 

-^31 

•^12 

-^22 

•^32 

•^13 

-^23 

-^33 

the determinant can be obtained via the so-called minors, Mij, and cofactors, A//. 
The minor My is the determinant of X after deletion of the /th row and yth 

column. Suppose one deletes row 1 and column 1, then: 

Mu = 
•^22 -^23 

-^32 -^33 

The cofactor is given by 

A,,-(-l) '^M^ 

so that: 

Au={-iy''Mn=Mn 

The determinant of X is then obtained by selecting any column- or row-vector. 
The scalar products of the elements of this vector and the corresponding cofactors 
are then formed and summed 
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IXI = X aij Aij for any /andy 
I or/ 

In our example, we can for instance decide to delete the first row vector. The scalar 
product for the first element of the deleted vector and its cofactor is XuMw and IXI 
is obtained as: 

IXI =x\\ 

which is equal to: 

X\ 1 X22 ^33 — X\ 1 Z23 ^32 + -^12 -^23 -^31 " -^12 -^21 -^33 + -^13 -^21 -^32 ~ -^13 -^31 -^22 

Instead of passing through the minors, we can apply the following equation: 

-^22 -^23 

•^32 ^33 
— X\2 

-^21 

-^31 

•^23 

-^33 
4 -^13 

X2\ -^22 

X31 X32 

x = 
nxn 

X\\ X\2 

X2\ -^22 X2n 

\Xfi 1 Xn2 * • • Xfi 

IXI = 2l(—iy X\k^ X2k, '' • Xnk„ 

The symbol Z indicates the sum of all terms for the n\ (n-factorial) possible 
permutations {k\, k2, ... kn) of the numbers 1, 2, ... n. The integer r represents the 
number of inversions in the permutation (ku k2,... kn). In the permutation (ki, k2,... 
kn) the numbers kf and kk (J < k) form an inversion if kj > kk. For example in the 
permutation (3,1,5,4,2) of the numbers 1,2,3,4,5 each of the pairs (3,1), (3,2), (5,4), 
(5,2) and (4,2) is an inversion. Consequently this permutation possesses 5 inver­
sions. The number n is the order of the determinant. 

For a 3x3 matrix the determinant is: 

IXI = (-1)^ Xii X22 ^33 + ( -1) ' -̂ 11 -̂ 23 -̂ 32 + 

(—1) Xi2^23-^31 + ( ~ I ) -^12-^21 -^33 + 

(—1) X]2 X2\ X32-^ (—i) X\3X22X3] 

— X\ 1 X22 -^33 — M 1 -^23 -^32 + -^12 -^23 -^31 "" 

-^12-^21 -^33 +-^13-^21 -^32--^13-^22-^31 

If for example 

2 3 4 
0 - 1 7 
1 2 5 
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then IXI = (2x(-l)x5) - (2x7x2) + (3x7x1) -

(3x0x5) + (4x0x2) - (4x(-l)xl) 

= -10 - 28 + 21 - 0 + 0 + 4 = -13 

Determinants are used among others to solve sets of simultaneous equations, for 
which we refer the reader to introductory books on algebra. The geometrical 
interpretation of determinants will be discussed in Chapter 29. 

9,3.5 Rank of a square matrix 

A square matrix is said to be singular if there is at least one linear dependency 
among the rows or columns of the matrix. As a result the determinant will be zero. 

In the following matrix: 

X = 
3x3 

1 0 -2 
4 8 0 
3 7 1 

the elements of the second column are equal to twice the elements of the first 
column added to the elements of the third column. It can be verified that IXI = 0. 
Matrices that have a very small determinant are close to being singular. They are 
called /// conditioned and are known to be difficult to invert correctly. In spectros­
copy, matrices are often ill conditioned because the vectors that constitute it are 
highly collinear in the sense described in Section 9.2.8. 

The rank, r(X), of a matrix X is the maximum number of linearly independent 
columns or, equivalently, rows. When two rows are linearly dependent or collinear 
the determinant is zero. It follows that the rank can also be defined as the order of 
the non-zero determinant of the largest order that it contains. 

The last mentioned square matrix X is only of rank 2 (r = 2) 

since IXI = 0, but for instance L ^ = 8 ;«̂  0. 
4 o 

Therefore a square X matrix is regular or non-singular if its rank r(X) = n, which 
means that IXI ̂  0. The concept of rank for a non-square matrix will be discussed 
in Chapter 29. 

References 

1. F. Cuesta Sanchez, M.S. Khots, D.L. Massart and J.O. De Beer, Algorithm for the assessment 
of peak purity in liquid chromatography with photodiode-array detection. Anal. Chim. Acta, 
285(1994) 181-192. 

2. R.L. White, G.N. Giss, G.M. Brissey and C.L. Wilkins, Comparison of methods for reconstruc­
tion of gas chromatogram for interferometric gas chromatography/infrared spectrometry data. 
Anal. Chem. 53 (1981) 1778-1782. 



263 

Chapter 10 

Multiple and Polynomial Regression 

10.1 Introduction 

In Chapter 8 the simple straight Une model 

r i -po + Pix 

that relates the dependent variable r| to a single x variable has been described. 
However if we suspect that r| is dependent on different variables x\,X2,...Xm multi­
variate functional relationships should be considered. 

In this chapter we only describe multivariate models that are linear or first-order 
in the regression parameters, which means models that can be written in the 
following general form 

m 

r| = Po + P1 xi -h ... + P^ x^ = Po + 1 P/x, (10.1) 
i=\ 

The following relationship 

r| = po + -!^ + p2logX2 
X\ 

is also a linear model since by taking x\ = \/x] and xi = log X2 a relationship as 
described in eq. (10.1) is obtained. 

Non-linear relationships such as the following function 
r | - p o + log(x-Pi) 

are discussed in Chapter 11. Some non-linear models are intrinsically linear since 
they can be transformed into a linear relationship. The exponential function 

r| = pô ^>" 

for example, can be transformed to a linear function by taking the natural logarithm 
which results in the following linear form 

In r| = p'o + Pi A: 

A special class of linear models consists of polynomials. If in eq. (10.1) Xi = x, 
xi = x ,̂ ..., x^ = x^ an mth degree polynomial relationship 
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r| = Po + p i x + P2Jc2+... + P.Jc'" = ip,jc' (10.2) 
/=0 

between the dependent variable and a single independent variable is obtained. It is 
obvious that, except for m = 1, the linear models represented by eq. (10.2) do not 
describe straight lines. Therefore to avoid confusion with "non-linear" used in the 
sense described earlier, the term curvilinear is sometimes preferred to indicate 
linear models that describe curved lines or surfaces. 

10.2 Estimation of the regression parameters 

The least squares procedure as described in Section 8.2.1 can be extended to 
estimate the regression coefficients, po,pi,..., pm, in the multiple linear regression 
situation. Consider n observations y\,y2,"'yn, each with variance a^, obtained at n 
different combinations of the independent variables, X]^2,-"yXm (n > m). If a 
multivariate model as given in eq. (10.1) is assumed between the response and the 
m jc-variables, each observation can be represented as 

V, = po + PlXn + P2X/2+ . . . + ^rnXim + £/ ( 1 0 . 3 ) 

with y-i'. the /th observation (/ = 1,2, ... n) 
Xik'. the value of the ki\\ independent variable for observation / (/: = 1,... m) 
e,: the /th residual. It is again assumed that the e/'s are independent, normally 
distributed random variables with mean 0 and constant variance d^ (see also 
Section 8.2.1). 

As described in Chapter 8 for the straight line regression, the least squares 
estimates (/̂ o,̂ !, ... ^m) of the p{p = m + 1) unknown regression coefficients (Po,Pi 
... p,„) are obtained by minimizing the sum of the squared residuals. This requires 
the solution of a system of/? normal equations with p unknowns. 

By expressing the regression problem in matrix notation a solution is obtained 
that is applicable to any linear regression situation, including the simple straight 
line. We consider the following vectors and matrices 

- the vector of observations y 

pi' 
\y^\ 

/ ix l 
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/>>xl 

the vector of the parameters to be estimated P 

p, 

- the independent variable matrix X 

X = 
nx() 

1 -^11 -^12 

1 X2] X21 

1 Xfi 1 A^2 

•^2m 

The I's in the first column allow for the estimation of the intercept, po. They 
correspond to the value of the x variable in the first term of eq. (10.1). 

- the error vector 8 

£1 

£2 

8 = 
nxl 

The model represented by eq. (10.3) then becomes: 

y = X p + e (10.4) 

It can be shown [ I ] that minimizing the sum of the squared residuals provides 
the normal equations 

X^Xb = XV (10.5) 

in matrix notation. When the matrix X^X is non-singular the least squares estimate, 
b, of P is therefore obtained as 
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bo' 
6. 

b = Ucx^xr'x'ry (10.6) 

This is the least squares solution applicable to all models that are linear in the 
parameters. 

With these regression coefficients the estimated response values y can be 
calculated 

y = 

yn 

= Xh = X(SJX)-'X'y (10.7) 

In this expression X(X^ X)"' X^ is known as the hat matrix, H. 
From the estimated and the measured y values the residual variance which is an 

estimate of the experimental error, a ,̂ if the model is correct, is obtained as 

sl = M. = ItLZyl (10.8) 
n ~ p n - p 

where ei = (yi - yi) represents the residual for the ith measurement. In matrix 
notation this becomes 

T 
9 e e 

n - p 
Equation (10.8) is a generalization of eq. (8.6) for the regression situation with p 
regression coefficients. 

It is easily checked that for the straight line regression, eq. (10.5) indeed yields 
the normal equations given in Section 8.2.1. Since with m = 1 

X = 

1 Xi 

1 X2 

1 X„ 

y = 

'yi' 
yi 

7" 

b = 
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and 

X^X = 
1 1 . 
X\ X2 

' M 
.. Xn 

1 Xi 

1 X2 

1 Xn 

n Y^i 

!>/ Zx? 

Therefore eq. (10.5) can be written as 

1 1 
X\ X2 

11 
Xn 

'y\' 
J2 

A 

ly/ 
L̂ iy,-

which yields the normal equations as derived in Section 8.2.1. 

nbo + Z?i X -̂ / = X yi 

bo Z x/ + fei Z 4 = Z Xi yi 

Example: 
Table 10.1 lists part of the stack loss data set given by Brownlee [2]. The data 

have been rearranged. They are obtained from a plant for the oxidation of ammonia 
to nitric acid. The dependent variable, y, is an inverse measure of the overall 
efficiency of the plant since it is 10 times the percentage of the ingoing ammonia 
that is lost. It has been studied during 17 days as a function of three predictor 
variables: x\ is the rate of operation of the plant, X2 is the temperature of the cooling 
water circulated through the coils in the adsorption tower for the nitric acid, and X3 
is the concentration of acid circulating (in arbitrary units). 

The model relating y and the three x variables is 

3; = Po + Pixi + P2X2 + p3^3 + £ 

The least squares estimates of po, Pi, P2 and p3 are obtained from eq. (10.6) 

b = (X^ X)-^ X^ y 

where 



268 

TABLE 10.1 

The adapted stack loss data set [2] 

^1 

Rate Temperature 
-̂ 3 

Acid concentration 
y 
Stack loss 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

80 
62 
62 
62 
62 
58 
58 
58 
58 
58 
58 
50 
50 
50 
50 
50 
56 

27 
22 
23 
24 
24 
23 
18 
18 
17 
18 
19 
18 
18 
19 
19 
20 
20 

88 
87 
87 
93 
93 
87 
80 
89 
88 
82 
93 
89 
86 
72 
79 
80 
82 

37 
18 
18 
19 
20 
15 
14 
14 
13 
11 
12 
8 
7 
8 
8 
9 
15 

"1 80 27 88' 
1 62 22 87 

1 50 20 80 
1 56 20 82 

T Y -X^X 

I I 
80 62 
27 22 
88 87 

1 r 
50 56 
20 20 
80 82 

1 80 27 88' 
1 62 22 87 

1 50 20 80 
1 56 20 82 

17 982 347 1455" 
982 57596 20300 84354 
347 20300 7215 29796 
1455 84354 29796 125053 
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(X^X)-' = 

14.269046605 0.000999288 -0.041431100 -0.156823712 

0.000999288 0.002898139 -0.005047759 -0.000763841 

-0.041431100 -0.005047759 0.017552937 -0.000295286 

-0.156823712 -0.000763841 -0.000295286 0.002418253 

and 

T., _ x^y 

1 1 
80 62 
27 22 
88 87 

1 r 
50 56 
20 20 
80 82 

'37" 
18 

9 
15 

246" 
15032 
5295 
21320 

Consequently eq. (10.6) becomes 

bz 
b. 

= (X^X)-' (XV) = 

- 37.65245229 
0.79767627 
0.57734001 

- 0.06707647 

and the regression equation is 

V = - 37.652 + 0.798xi + 0.577x2 - 0.067x3 

In this last expression the number of digits has been reduced but for all calculations 
all reported digits are used. Small differences will nevertheless be noticed when 
doing the calculations with a computer regression routine since these carry even 
more digits to reduce the round-off errors. 

For the different combinations of the predictor variables of Table 10.1 the 
estimated response (see eq. (10.7)) and the residuals are summarized in Table 10.2. 
The residual variance (eq. (10.8)) calculated from these data is 

9 

s; = 
lef 20.401 

n- p 13 
= 1.569 
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TABLE 10.2 

Estimated stack loss and residuals 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

37 
18 
18 
19 
20 
15 
14 
14 
13 
11 
12 

9 
15 

35.8471 
18.6693 
19.2466 
19.4215 
19.4215 
16.0559 
13.6388 
13.0351 
12.5248 
13.5046 
13.3441 
6.6537 
6.8549 
8.3713 
7.9018 
8.4120 
13.0639 

1.1529 
-0.6693 
-1.2466 
-0.4215 
0.5785 
-1.0559 
0.3612 
0.9649 
0.4752 
-2.5046 
-1.3441 
1.3463 
0.1451 

-0.3713 
0.0982 
0.5880 
1.9361 

10.3 Validation of the model 

10.3.1 Examination of the overall regression equation 

10.3.1.1 Analysis of variance 
In Chapter 8 ANOVA was proposed as a useful tool for the validation of the 

straight line model. ANOVA allows us to verify whether the predictor variables 
can explain a significant amount of the variance in the response variable. More­
over, if replicate measurements have been performed or if an estimate of the pure 
experimental error is available, the adequacy of the model chosen can also be 
checked. 

In Table 10.3 the ANOVA table constructed in Section 8.2.2.2 is generalized for 
multiple regression with p regression coefficients. In this table p is the number of 
regression coefficients, n the number of observations and k the number of different 
settings (combinations) of the x variables (m<k<n). 

The total sum of squares (SSj) can be partitioned into the sum of squares due to 
regression (SSReg) and the residual error sum of squares (SSRCS). If replicate 
measurements are available the latter can be further decomposed in the sum of 
squares due to lack-of-fit (SSLOF) and the sum of squares due to pure experimental 
error (SSPE). 
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TABLE 10.3 

Analysis of variance table for multiple regression 

Source of variation 

Regression 

Residual 
Lack-of-fit 

Pure error 

Total 

SS 

SS Reg 

SSRCS 

SSLOF 
SSpE 

SST 

Degrees 

p-\ 

n-p 
k-p 
n-k 

n-\ 

of freedom MS 

MSReg 

MSRes 

MSLOF 
MSpE 

F 

MSReg/MSRes 

MSLOF/MSPE 

For the computation of these different sums of squares the expressions given in 
Chapter 8 can be used. They can also be expressed in matrix notation [1] 

"=1 7=1 

SSReg = I n, {y> -W = ^^y-ny 

SSRes = I I(3',7-yO' = e^e = y^y-b-^XTy 
' J 

TT\2 SSpE = I Y.{yij-yi) 
i J 

SSLOF = I ni^i-yd' = y^y-h'X'y-SS PE 

(df = n - l ) 

(df = p-l) 

(df = n-p) 

(df = n-k) 

(df = k-p) 

The symbols used have the same meaning as in Chapter 8: 

y: the grand mean 
rii'. the number of replicate measurements performed at a specific combination of 
the X variables 
k 

S ni = n: the total number of observations 

yij: one of the n, measurements at a specific combination of the x variables 
yi: the mean of the replicate measurements y^ at a specific setting of the x variables 
yi : the value of y at a specific combination of the x variables, estimated by the 
regression parameters. 

Example: 
For the stack loss data from Table 10.1 the following sums of squares can be 

calculated 
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TABLE 10.4 

Analysis of variance table for the stack loss data 

Source of variation SS Degrees of freedom MS 

Regression 795.834 3 265.278 169 
Residual 20.401 13 1.569 
Total 816.235 16 

SST = y^ y - ^ 7 = 4376 - 17(14.47059)^ 

= 4376-3559.765 = 816.235 

SSRes = e^e =20.401 

SSReg = SST - SSRes = 816.235 - 20.401 = 795.834 

Since only 2 replicates (measurements 4 and 5) are available the residual sum of 
squares (SSRCS) has not been further partitioned into SSLOF and SSPE. An estimate 
of the pure error would only be based on 1 degree of freedom and consequently a 
possible lack-of-fit would be difficult to detect. Therefore lack-of-fit from the 
model y = -37.652 + 0.798x, + 0.577JC2 - 0.067JC3 is not verified. The ANOVA 
results are summarized in Table 10.4. The calculated F being much larger than the 
tabulated Foo5;3,i3 = 3.41 it can be concluded that the regression model accounts for 
a significant part of the variance of y. 

To illustrate the validation of the model Table 10.1 has been adapted to contain 
several replicate measurements. These synthetic data are shown in Table 10.5 
where the experimental conditions are identical for measurements 2 and 3; 4 and 
5; 8 and 9; 12, 13 and 14; 15 and 16. Consequently there are 11 different settings 
of the X variables {k = 11). For these data the regression equation is y = 33.771 + 
0.800JCI + 0.535JC2 - 0.102JC3 and the following sums of squares are obtained: 

SST = 816.235 

SSRes = 23.400 

SSReg = 816.235 - 23.400 = 792.835 

SSpE = i : i (y ,y -y / ) ' = 2.167 

SSLOF = SSRes - SSPE = 23.400 - 2.167 = 21.233 

Table 10.6 summarizes these ANOVA results. Since F = MSLOF/MSPE = 8.40 is 
larger than Fo.o5;7,6 = 4.21 the lack-of-fit term is significant. This lack-of-fit can be 
due to a wrong model or to the presence of outlying observations. The latter should 
be evaluated (see Section 10.9) before one starts adapting the model. 



273 

TABLE 10.5 

Synthetic data adapted from Table 10.1 to illustrate the validation of the model 

/ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

-̂1 
Rate 

80 
62 
62 
62 
62 
58 
58 
58 
58 
58 
58 
50 
50 
50 
50 
50 
56 

X2 

Temperature 

27 
23 
23 
24 
24 
23 
18 
17 
17 
18 
19 
18 
18 
18 
19 
19 
20 

-̂3 
Acid concentration 

88 
87 
87 
93 
93 
87 
80 
88 
88 
82 
93 
86 
86 
86 
80 
80 
82 

y 
Stack loss 

37 
18 
18 
19 
20 
15 
14 
14 
13 
11 
12 
8 
7 
8 
8 
9 
15 

TABLE 10.6 

ANOVA table for the synthetic data from Table 10.5 

Source of variation SS df MS 

Due to regression 
Residual 

Lack-of-fit 
Pure error 

Total 

792.835 
23.400 

21.233 
2.167 

816.235 

3 
13 

16 

264.278 

3.033 
0.361 

M S L O F / M S P E = 8.40 

10,3.1.2 The coefficient of multiple determination 
In Chapter 8, it was shown that for straight line regression between x and y the 

square of the correlation coefficient, (rjcy)^, represents the proportion of the vari­
ation of y that is explained by the x variable 

I.ni(yi-yf 

SST 11 (y,-^' 
7 SoReg 
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In multiple regression R^, the coefficient of multiple determination is defined in the 
same way 

2 _ SSReo _ S S T - SSRes _ ^ _ SSRCS (]()Q\ 

SST SST SST ^ ^ 

It is used to estimate the proportion of the variation of _y that is explained by the 
regression. /?, which is called the coefficient of multiple correlation, is the correla­
tion between y and y. For our example R^ = 795.834/816.235, indicating that 97.5% 
of the variation in stack loss can be explained by the equation y = - 'il.652 + 
0.798JC,+0.577x2-0.067x3. 

If there is no linear relationship between the dependent and the independent 
variables R^ = 0; if there is a perfect fit R^ = I. The value of R^ can generally be 
increased by adding additional x variables to the model. It can even reach unity if 
the number of coefficients in the model equals the number of observations (p = n): 
indeed a straight line (p = 2) perfectly fits two data points (n = 2). It follows that 
R^ should be used with caution. 

10.3.1.3 Analysis of the residuals 
The analysis of the residuals can be performed as described in Section 8.2.2.1 

for simple straight line regression. Statistical and graphical methods can be useful 
to detect deviations from normality. To detect shortcomings of the model residual 
plots, in which ei is plotted against yi , should be examined. For the stack loss 
example the residual plot shown in Fig. 10.1 indicates that the model is adequate 
since no particular trend in the pattern of residuals is observed. 
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Fig. 10.1. Residual plot (e as a function of y) for the stack loss data. Model: y = -37.652 + 0.798xi + 
0.577x2 - 0.067x3. 
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Additional information can also be obtained from other types of plots [ 1 ]: a time 
effect can be detected if the residuals can be plotted against the order in which the 
observations are made; the influence of a variable which has been recorded, but has 
not been included in the model, could be revealed from a plot of the residuals 
against that variable. 

10.3.2 Importance of the predictor variables 

From the previous results obtained for the stack loss data we can conclude that 
the model 

y = - 37.652 + 0.798JCI 4- 0.511x2 - 0.067JC3 

including three x variables (rate of operation, temperature and acid concentration) 
gives a good description of stack loss. However we might be interested to know 
whether all these variables are really necessary and what the importance of each 
variable is. 

One way of answering these questions is to include the different terms sequen­
tially in the model and to monitor the changes in the regression sum of squares. If 
the inclusion of a particular variable results in a significant increase of SSReg, this 
indicates that it explains a significant amount of the variation of y which is not 
accounted for by the other variables that are already in the equation. 

Consider, for example, the following models for the same data: 

Model 1: y^bo + bxxx SSReg(l) 

Model 2: 5̂  = fo'o + b\ xi + b\ X2 SSReg(2) 

If SSReg(l) and SSReg(2) are the regression sum of squares for these models then 
SSReg(2) - SSReg(l) represents the increase of the regression sum of squares due to 
the inclusion of JC2 in the model. It is called SS(;c2l;ci), the sum of squares due to X2 
given x\ is already in the model. Since SSReg(l) and SSReg(2) have 1 and 2 degrees 
of freedom, respectively, there is 1 degree of freedom associated with SSRegfeUi). 
The corresponding mean square, MSfebci) = SSfelxO/l, is compared with MSRes(2), 
the residual mean square for the more complex model, by means of an F test 

^^MSfeUO 
MSRes(2) 

This F test is called a partial F-test and is important for the selection of predictor 
variables in the stepwise regression procedures described in Section 10.3.3. What 
is tested here is the significance of the regression coefficient P2, when Pi is already 
in the model. Therefore SS(x2lJCi) is also represented as SS{b2\b\). The significance 
of a regression coefficient (HQ: P/ = 0; HI : P/ ^ 0) can also be obtained from a r-test 
(see Sections 8.2.4 and 10.4): 
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t - hi /Sh, 

with bi\ the estimate of the /th regression coefficient, p, 
Sh\ the standard deviation of the estimated regression coefficient Z?/, which can be 
obtained from eq. (10.18). 

It can be shown that the square of this r-value with n-p degrees of freedom is 
equal to the partial F value which has 1 and AZ -/? degrees of freedom. 

As an example consider Table 10.7 in which the results of the sequential fitting 
of x\, X2 and x^ are given for the stack loss data. From this it is evident that the 
addition of X2 if X\ is already present is useful since it results in a significant 
increase of the regression sum of squares. Since the total sum of squares remains 
constant this also means that a significant reduction of the residual sum of squares 
is observed. On the other hand, the addition of x^ if Xi and X2 are already present 
does not significantly improve the model. 

Notice that the addition of a new x variable changes the estimates of all the other 
regression coefficients. This is due to the correlations among the independent 

TABLE 10.7 

Stack loss data. Results of the sequential fitting of jci, X2 and JC3 

1. Fitting xi y = - 40.033 + 0.944 xi 

ANOVA 

Source df SS MS F 

Regression (jc,) 1 775.482 775.482 285.43 

Residual 15 40.753 2.717 

Total 816.235 

2. Addition of JC2 y = - 42.001 + 0.777 JC, + 0.569 X2 

ANOVA 

Source df SS MS F 

Regression (JC,^2) 2 793.975 396.987 249.68 
Residual 14 22.260 1.590 

Total 816.235 

SSix2\xiy[ 793 .975-775 .482 , ^ ^ . 

^''''''^=-^j[s^=—r^9o—=^^'^^ 
>/^{).()5;M4(=4.60) 

3. Addition of .̂ 3 y = - 37.652 + 0.798 JC, + 0.577 JC2 - 0.067 JC3 

ANOVA 

Source df SS MS F 

Regression (JC,^2^3) 3 795.834 265.278 169.04 

Residual 13 20.401 1.569 

Total 816.235 

SS(^3l^iv^2yi 795 .834-793.975 , ,„ 
partial F = — = — — =1 .18 

MS Res 1.569 

<^().{)5;l,13(=4.67) 
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variables (see Table 10.9). Without these correlations the addition of a variable 
would not influence the coefficients of the variables already in the model. 

The information of Table 10.7 can be used to partition the regression sum of 
squares of the model, including the three variables, into the individual contribu­
tions of the different variables: the contribution of Xu 2̂ and X3 is 775.482, 18.493 
(= 793.975 - 775.482) and 1.859 (= 795.834 - 793.975), respectively, when they 
are entered in that order. This is summarized in Table 10.8 together with the results 

TABLE 10.8 

Stack loss ANOVA data. Effect of the order in which the x variables are entered into the model. 

Source df SS MS F 

285.42 

11.63 

1.18* 

Regression xi,X2,X3 

due tOA'i 

residual 

due tox2U'i 

residual 

due to A'3UI,.A:2 

residual 

1 

15 

1 

14 

I 

13 

775.482 

40.753 

18.493 

22.260 

1.859 

20.401 

775.482 

2.717 

18.493 

1.590 

1.859 

1.569 

Total 16 816.235 

Regression X2,x\,X3 

due to X2 

residual 

due to A'|U'2 
residual 

due to A3lX2,A| 

residual 

1 

15 

1 

14 

1 

13 

567.032 

249.203 

226.943 

22.260 

1.859 

20.401 

567.032 

16.614 

226.943 

1.590 

1.859 

1.569 

Total 16 816.235 

Regression A'3,A'2,AI 

due to A3 

residual 

due to A2IA3 

residual 

due tOA|lA3,A2 

residual 

1 

15 

1 

14 

1 

13 

134.799 

681.436 

441.480 

239.956 

219.555 

20.401 

134.799 

45.429 

441.480 

17.140 

219.555 

1.569 

Total 16 816.235 

34.13 

142.73 

1.1^ 

2.97* 

25.76 

139.93 

*Not significant at 5% significance level. 



278 

TABLE 10.9 

Correlation matrix for the stack loss data 

X\ X2 

A-1 1.000 

A'2 

A'3 

V 

0.754 
1.000 

0.454 
0.369 
1.000 

0.975 
0.833 
0.406 
1.000 

obtained for the regression in which X2 is first entered followed by x\ and then x^ 
and also for the regression in which the order of entering is X3, xj and x\. From this 
table it follows that the contribution of the different x variables in increasing the 
regression sum of squares depends on the order in which the variables are intro­
duced into the model. For example the contribution of X2 is much larger when it is 
introduced first (567.032) than when it is added after xi (18.493). This is due to the 
relatively high correlation between X\ and X2 as follows from the correlation matrix 
given in Table 10.9. Therefore, if xi is already in the regression it explains part of 
the variation in y that could also be accounted for by X2. Consequently, the 
contribution of JC2 in the SSReg drops when it is added in second place. Nevertheless, 
x\ and X2 are important variables since, whatever the order of introduction, they 
have a significant contribution in increasing the regression sum of squares. On the 
other hand, JC3 is not important since it does not significantly contribute to the 
variation in y. 

10.3.3 Selection of predictor variables 

The discussion of the previous section brings us to the problem of the selection 
of the predictor variables: which variables should be used in the regression 
equation? The most complete approach is to compare all possible regressions 
performed on the m variables. This means that all regression equations with only 
one variable, with two variables, up to the regression equation including all m 
variables are fitted. 

Several related criteria for the comparison of the 2̂ " - 1 different regression 
equations that are obtained in this way have been proposed such as the value of R^ 
(eq. (10.9)) or of the residual mean square (MSRCS). In the comparison of models 
with a different number of jc variables R^ should of course be used with caution (see 
Section 10.3.1.2). Therefore to compare different regression equations the adjusted 
R^ which takes into account the degrees of freedom associated with the sums of 
squares (SSRCS and SST) in the expression for R^ is generally preferred: 
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(10.11) 

A statistic which is related to Ri is the Mallows Cp statistic: 

with SSRes(p): the residual sum of squares for the model with p parameters 
(=MSRes(p)(n--/7)) 

s^: an estimate of the experimental error a ,̂ e.g. obtained from the residual mean 
square of the model containing all parameters 

The form of the fitted model is adequate if Cp ~ p. 

Example: 
The comparison of all possible regressions for the stack loss data by means of 

MSRCS, RI and Cp is summarized in Table 10.10. It follows that the best equation 
(lowest residual variance and highest coefficient of multiple determination) is the 
one in which all three variables are included: 

y = - 37.652 + 0.798xi + 0.577x2 - 0.067JC3 

However in that equation the contribution of JC3 is not significant. The elimination 
of that variable results in a simpler equation with a very similar MSRCS (1.59 vs. 1.57) 
and Rl (96.88 vs. 96.92) and a Cp value, 3.19, close to 3. Therefore the equation 

y = - 42.001 + 0.777x1 + 0.569x2 

is to be preferred. 

Of course with a large number of x variables the comparison of all possible 
regression equations requires a lot of computation and therefore other procedures 

TABLE 10.10 

Comparison of the quality of all possible regressions for the stack loss data 

p 

2 
2 
2 
3 
3 
3 
4 

Variables in 
the equation 

Xl 

X2 

^3 

A'1^2 

^ 2 ^ 3 

X\^T, 

^ 1 ^ 2 ^ 3 

MSRCS 

2.717 
16.614 
45.429 
1.590 
17.140 
2.814 
1.569 

100/?2 

95.01 
69.47 
16.51 
97.27 
70.60 
95.17 
97.50 

100/?2 

94.67 
67.43 
10.95 
96.88 
66.40 
94.48 
96.92 

Cp 

12.98 
145.83 
421.31 
3.19 
141.94 
14.11 
4.00 

Variables with a significant 
contribution to the regression 

Xi 

X2 

1 
X\,X2 

Xi 

Xx 
X\,X2 
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are generally preferred over this brute force approach. These are the forward, the 
backward and the stepwise procedure. It is important to realize that these methods 
will identify an acceptable model which is not necessarily the best one. 

In the forward selection procedure the predictor variables are entered one at a 
time. At each step that variable is added that produces the largest significant 
increase in the regression sum of squares. The selection starts with the variable that 
has the largest (positive or negative) correlation with the dependent variable. If this 
variable results in a significant regression, as judged from the overall F-test, the 
variable is retained and the selection continues. This means that for all variables, 
not yet in the equation, the partial F-test of eq. (10.10) is performed. In the forward 
selection procedure this F-test is called F-to-enter and is defined as the partial 
F-test performed on a variable which is not yet in the regression equation. The 
variable that results in the largest significant increase of the SSReg (largest signifi­
cant F-to-enter value) is then added. This procedure continues until none of the 
variables left significantly contribute to the regression sum of squares. 

The backward elimination procedure starts with all the predictor variables in the 
equation and removes the least important variables one at a time. The criterion for 
removal is again based on the partial F-test of eq. (10.10). In the backward 
elimination procedure this F-test is called F-to-remove and is defined as the partial 
F-test performed on a variable already in the equation as though it was added last 
to the model. In other words, at each step it is checked for each variable of the 
model whether it significantly contributes to the regression sum of squares, if it were 
the last variable added to the model. The variable that results in the smallest 
non-significant increase of the SSReg (the smallest non-significant F-to-remove value) 
is dropped. This procedure continues until all the variables not yet dropped signifi­
cantly contribute to the regression sum of squares as judged from their F-to-remove 
value being significant. 

The forward and the backward procedure do not necessarily lead to the same 
regression equation when the predictor variables are correlated. This is because a 
variable that is entered in the forward selection remains in the model, even if after 
the addition of other correlated variables its contribution may have dropped 
significantly. Similarly, a variable deleted in the backward elimination is lost even 
if after the elimination of other variables it might become an important variable. 

Therefore the stepwise regression procedure, which combines the forward and 
backward approach, is generally preferred. At each step the F-to-enter values for 
all variables not yet in the equation are checked and the variable with the highest 
significant F value is entered. After each step the F-to-remove values for all 
variables already in the equation are tested. If a variable is detected that does no 
longer significantly contribute to the regression it is rejected. The procedure is 
continued until no more variables fulfil the criterion to be entered or to be 
removed. 
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TABLE 10.11 

Stack loss data. Regression sum of squares, residual sum of squares and % variation explained for different 
regression equations. 

Variables 
equation 

x\ 
Xl 

A'3 

x\ andjC2 
A'l andx3 
X2 and A"3 
x\,X2 and 

in the 

A'3 

Regression 

SS 

775.482 
567.032 
134.799 
793.975 
776.845 
576.279 
795.834 

df 

1 
1 
1 
2 
2 
2 
3 

Residual 

SS 

40.753 
249.203 
681.436 
22.260 
39.390 
239.956 
20.401 

df 

15 
15 
15 
14 
14 
14 
13 

[00 R^ 

95.01 
69.47 
16.51 
97.27 
95.17 
70.60 
97.50 

Example: 
The results of the stepwise regression performed on the stack loss data are given 

as an example. The information necessary for the calculations is summarized in 
Table 10.11. 

Step 1: 
Since from the correlation matrix (Table 10.9) it follows that the response 

variable y is most correlated with X\, that variable is the first to enter the regression 
equation. For the variables not in the regression the following F-to-enter values are 
calculated: 

X2: F-to-enter = (793.975 - 775.482) / (22.260/14) 
= 1 1.63 >Fo.05;l,14(= 4.60) 

JC3: F-to-enter = (776.845 - 775.482) / (39.390/14) 
= 0.48 <Fo.o5;i,i4(= 4.60) 

It follows that X2 has the highest F-to-enter value. Since it contributes significantly 
to the regression X2 is added to the equation. 

Step 2: 
For the variables in the regression equation {x\ and xi) the following F-to-re-

move values are calculated: 

x^: F-to-remove = (793.975 - 567.032)/(22.260/14) 
= 142.73 >Fo.o5;U4(= 4.60) 

JC2: F-to-remove = (793.975 -115A^)!{222601U) 
= 11.63 >Fo.o5;U4(= 4.60) 
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The smallest F-to-remove value is observed for X2. Since it is significant, xi is 
retained in the equation. Of course at this stage of the analysis, with only two 
variables entered, no other result could be expected. The F-to-remove for X] for 
example cannot be smaller than the F-to-remove for X2 because that would mean 
that in the first step, X2 was the first variable entered. For the variables not in the 
equation the following F-to-enter values are calculated: 

JC3: F-to-enter = (795.834 - 793.975)7(20.401/13) 
= 1.18 <Fo.05;l,13(= 4.67) 

X3 which is the only variable left does not significantly improve the regression. 
Consequently it is not included. Since in a further step no variables can be added 
or deleted the procedure stops and the final regression equation is: 

y = -42.001 + 0.777x1 + 0.569JC2 

In this simple example the stepwise regression procedure happens to yield the 
same model as the evaluation of all possible regressions. Dagnelie [3] describes an 
example that shows that this is not always the case. 

Variable or feature selection can also be performed by means of genetic algo­
rithms described in Chapter 27. 

10.3.4 Validation of the prediction performance of the model 

It is important to realize that during the modelling as described up to now, the 
validation has been performed with the data used to construct the model. However 
if the model has been built for prediction purposes it is of paramount importance 
to extend the validation to new, independent data. This means that new experi­
ments are performed and that the actual observations are compared with the 
predictions from the model. If new data can not be obtained an alternative approach 
known as cross-validation can be used. The data set at hand is split into subsets, 
one subset, the estimation set or training set, being used to build the model and the 
other, the prediction set or test set, to validate the model i.e. to measure the 
prediction accuracy of the model. 

There are different possibilities of splitting the data. In the leave-one-out, the 
first observation is deleted from the data set and is predicted from the model fitted 
to the remaining n - 1 data points. The residual (yi -y-i ), which will be called the 
deleted residual, is calculated (the index -1 refers to the fact that the prediction is 
from a model built without the first observation). This is repeated for all data points 
and the predicted residual error sum of squares (PRESS) or the root mean squared 
prediction error (RMSPE) is calculated: 

PRESS = 'L(yi-y.if (10.13) 

RMSPE = (PRESS/n)^'' (10.14) 
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TABLE 10.12 

PRESS values for all different models applied to the stack loss data 

Variables in the equation PRESS 

xi 62 

X2 424 

A'3 804 

A-1^2 43 
A'2^3 458 
A 1^3 66 

Ai,A2,A3 43 

TABLE 10.13 

The deleted residuals from the model y = b{) + b\xi+ b2X2 for the stack loss data 

Observation predicted* Deleted residual 

1 4.1 
2 -0.7 
3 -1.4 
4 -l.O 
5 0.2 
6 -1.4 
7 0.9 
8 0.9 
9 0.4 

10 -2.7 
11 -2.0 
12 1.1 
13 -O.l 
14 0.4 
15 0.4 
16 1.0 
17 2.3 

*The observation is predicted from the model developed with the other 16 data. 

PRESS or RMSPE are especially useful in comparing the prediction errors of 
different regression models. Table 10.12 summarizes the PRESS values for all 
different models applied to the stack loss data. The model including x\ and X2, 
which was the model selected from the evaluation made in the previous section, is 
the best model for prediction purposes. An identical PRESS value is obtained with 
the model including all three variables but the simpler model is to be preferred. 

For the different observations the deleted residuals from the best predictive 
model are listed in Table 10.13. It is interesting to note that the first data point 
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possesses the largest residual (= 4.1) and consequently contributes most to the 
prediction error sum of squares. Inspection of the first observation reveals that, 
with xi = 80 and xj = 87, it is a leverage point (see Section 8.2.6 and 10.9) since it 
is remote from the rest of the data. Being alone outside the domain of the model 
built with the other observations, it is the worst predicted. This certainly does 
not mean that it is a bad point, on the contrary it provides useful information 
concerning the model fitted. For example, it would certainly be useful to 
include more observations spanning the whole region in which predictions are 
to be performed. However, with unplanned data such as the stack loss data 
which are obtained from successive days of operation of a plant, this may be 
difficult to achieve. When possible, experimental design procedures (see e.g. 
Chapter 21), which define predetermined settings of the predictor variables, 
should be used since they allow us among others to obtain balanced data 
describing the whole domain of interest. 

10.4 Confidence intervals 

The 95% confidence intervals for the true regression parameters, p,, are obtained 
from 

bi±tom5,n-pSb, (/ = 0...m) (10.15) 

These confidence intervals can also be used to check the significance of the 
corresponding regression coefficient. If the confidence interval includes the value 
zero, P/ can be zero and consequently the regression coefficient is not significant 
at the 5% significance level. This can of course also be checked by means of a r-test 
in the usual way by calculating 

t = bi/sf,^ (10.16) 

A joint 100 (1 - a)% confidence region for all the regression parameters P, that 
takes into account the correlation between these parameters, can be obtained from 

(P - b)^ X^ X(p - b) <psl F^a;p,n-p) (10.17) 

It is a generalization of eq. (8.17) to multiple regression with p regression coeffi­
cients and represents the equation of an ellipsoid in p dimensions. Since with 
increasing p, the interpretation is not straightforward, the joint confidence region 
is less used in multiple regression. 

The variances of the different parameters, {s^f, necessary to determine the 
confidence intervals are obtained from the variance-covariance matrix (see Chap­
ter 9) of the regression coefficients, \(b) 
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\{b) = 
co\(bubo) 

cov(bm,bo) 

coy(bo,bi) cov{bo,bm) 
covibubni) 

K)' 
This is a symmetric matrix in which the diagonal elements are the variances of the 
regression parameters in the same order as they appear in the regression equation. 
The off-diagonal elements are the covariances between the regression parameters. 

It can be shown [1] that Y(b) is given by 

\(b) = sl(SJXT' (10.18) 

with s^ an estimate of the pure experimental error (eq. (10.8)). 
This is an important expression, indicating the influence of the (X^X)"^ matrix 

on the variance of the regression parameters. It means that the confidence intervals 
will largely depend on the experimental design used, thus among others on the 
range considered for the different x variables (i.e. the experimental domain), the 
distribution of the x values over the experimental domain and the number of 
measurements. In Chapter 24 different criteria, based on this matrix, are discussed 
for the evaluation of experimental designs. 

If the model is adequate the 95% confidence interval for r|, the true mean value 
ofy given a specific combination of the controlled variables, Xo, is obtained from 

yo ± tom5,n-p Se MWW^ (10.19) 

withxj =[lxoi ...xom]. 
If the objective is to predict the mean of g replicate observations at a given 

combination of the controlled variables XQ, the following expression for the 95% 
confidence interval should be used 

yo±tom5,n-pSe ^J~ + Xj (X'̂ X) ^ Xo (10.20) 

Example: 
From Section 10.3.3 the following regression equation y = - 42.001 + 0.777 X] 

+ 0.569 X2 was obtained for the stack loss data. The variance-covariance matrix of 
the parameters is 

4.099030468 -0.048535765 - 0.060580395~ 
0.048535765 0.002656869 - 0.005141029 

- 0.060580395 - 0.005141029 0.017516880 I 
\(b) = si(X'X)-' = 1.590 

6.51746 

-0.07717 

- 0.09632 

-0.07717 -0.09632 

0,00422 -0.00817 

-0.00817 0.02785 
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The 95% confidence interval for Po is therefore (̂ .025,14 = 2.145) 

-42.001 ±2.145^6.51746=-42.001 ±5.476 

The 95% confidence interval for pi and p2 are found to be respectively 0.777 ± 
0.139 and 0.569 ±0.358. 

To obtain, from eq. (10.19), the 95% confidence interval for r|, the true mean of 
y, at for example 

Xo = 

1 
62 
24 

the following information is necessary 

yo =- 42.001 + 0.777 (62) + 0.569 (24) = 19.829 

5, = V 1.590 

VxJ(X'̂ X)-»Xo = 

4.099030468 -0.048535765 -0.060580395 
- 0.048535765 0.002656869 - 0.005141029 
-0.060580395 -0.005141029 0.017516880 

[1 62 24] 
r 

62 
24 

0.419 

The 95% confidence interval therefore is 19.8 ±1.1. 

10.5 MulticoUinearity 

To obtain the regression parameters from eq. (10.6) we need to invert the matrix 
X^X. This inverse only exists if the matrix is non-singular, that is if the determinant 
of (X^X) is not zero (see Chapter 9). Singularity (det(X^X) = 0) occurs if any of 
the independent variables is a perfect linear combination of other independent 
variables. This means that some of the normal equations given by eq. (10.5) can be 
exactly expressed as linear combinations of others. Therefore fewer equations are 
available than there are unknowns and no unique solution can be obtained. 

Consider for example the following X matrix in which Xi and X2 are perfectly 
correlated since X2 = 2x\: 

X = 

"1 
1 
1 
1 
1 

1 2 ' 
2 4 
3 6 
4 8 
5 10 
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The X^X matrix is given by 

X^X = 
5 15 30' 

15 55 110 
30 110 220 

Since the determinant of X^X is zero the calculation of the inverse of this matrix 
is not possible. 

The effect of the correlation between xi and X2 can also be evaluated from the 
normal equations. With the following response vector: 

10' 
20 
30 
40 
50 

to fit the equation y = bo + biXi + b2X2, which is represented by a plane, eq. (10.5) 
becomes: 

5bo+ I5bi+ 30b2= 150 

l5bo+ 55^1 + 110^72= 550 

30^0+110^71 + 220^2=1100 

There are 3 equations with 3 unknowns but since the last equation is simply twice 
the second, it does not give us independent information. Consequently no unique 
solution can be generated from these equations. This is also shown in Fig. 10.2 
from which it becomes evident that due to the perfect correlation between Xi and 
X2, an infinite number of planes fit these data equally well. This problem of multi-
collinearity can be solved by reducing the number oix variables. 

Situations in which the determinant is not zero but is very small (because some 
variables are almost linear combinations of other independent variables) are more 
common and result in an ill-conditioned X^X matrix. This leads to unstable 
estimates of the regression coefficients which may be unreasonably large (in 
absolute value) or have the wrong sign. This is also reflected in their large 
variances (see eq. (10.18)). Highly correlated x variables therefore easily lead to 
unreliable predictions. Obviously in regression the X^X matrix is an important 
matrix (see also Section 10.4) and, as already mentioned, in experimental design 
(see Chapter 24) it will play an important role in the evaluation of the design of the 
experiments. 

A useful indicator of the interdependency among the x variables is the tolerance 
which for each x-, variable can be calculated as 
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Fig. 10.2. Illustration of the problem of multicollinearity due to the perfect correlation between xi and 
.V2 U"2 = 2X\). 

Tolerance (x,) = 1 - R\xi) (10.21) 

where R\xi) is the coefficient of multiple determination (see Section 10.3.1.2) for 
the regression between jc, (considered here as the dependent variable) and the other 
independent variables. Since R\xi) then represents the variation in Xi that can be 
explained by the other x variables, a small tolerance (large R\xi)) means that Xi is 
almost a linear combination of the other jc variables. 

A related indicator of multicollinearity is the variance inflation factor (VIF) 
which is the reciprocal of the tolerance: 

VIF(xO = 
1 

\-R\xd 
(10.22) 

The larger the variance inflation factor, the larger the variance of the regression 
coefficient. The latter can also be obtained from the following expression [4]: 

^k 
(\-R^(xd){n-l)sf 

with s^ and (1 - R\xi)) as defined by eqs. (10.8) and (10.21), respectively, and sj 
the variance of the /th x variable. A VIF larger than 5 or 10 is generally 
considered large [5] and is an indication that the corresponding coefficient is 
poorly estimated. 
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10.6 Ridge regression 

Various alternative regression procedures have been described for the analysis 
of data in which the predictor variables are highly correlated such as principal 
component regression, partial least squares regression (see Chapter 36) and ridge 
regression. The regression coefficients in the ridge regression procedure are 
obtained from: 

(X^X + fcI)b = XV (10.23) 

where X is the nxp matrix of the standardized x variables (see Section 31.3), /: is a 
positive number (usually 0 < k < 1) and I is the pxp identity matrix. Comparison 
of this expression with eq. (10.5) reveals that a constant is added to the diagonal 
elements of the X^X matrix of the normal equations. With /: = 0 the least squares 
solution is obtained since eq. (10.23) then reduces to eq. (10.5). As a result of the 
addition of the constant k, biased estimates of the regression coefficients are 
obtained in ridge regression. The estimates of the regression coefficients, b, are not 
biased if the mean of the sampling distribution of b (obtained by estimating P 
repeatedly at the same values of the x variables) is equal to the true regression 
coefficients, p. (Notice that it can be shown [1] that classical least squares multiple 
regression also results in biased regression coefficients if, by eliminating x vari­
ables, the fitted model differs from the true model). The constant k is therefore 
known as the bias parameter or the ridge coefficient. In ridge regression some bias 
is introduced in order to increase the stability of the regression coefficients. With 
increasing k values the bias in the estimates increases but their variance largely 
decreases. The residual sum of squares, SSRCS, also increases with increasing /:; 
consequently R^ decreases. Hoerl and Kennard [6] suggest selecting a value ofk 
by an examination of a ridge trace, which is a plot of the regression coefficients 
for different values of the bias parameter. At the value of k chosen the regression 
coefficients should have started to stabilize, they should have the proper sign, and 
the reduction in R^ should not be too large. The latter can be evaluated from a plot 
of R~ against different k values. 

Example: 
Consider as an example the simulated data in Table 10.14 which have been 

adapted from Hoerl [7] and for which the true relationship is 

r| = 100+ 2x] +3x2 + 5x3 

The least squares regression results and the variance inflation factors for the dif­
ferent X variables are summarized in Table 10.15. The least squares regression 
equation is 
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TABLE 10.14 

Hoerl data [7] 

A'l 

11 
14 
17 
17 
18 
18 
19 
20 
23 
25 

TABLE 10.15 

X2 

11 
15 
18 
17 
19 
18 
18 
21 
24 
25 

Least squares results for the Hoerl data 

Variable 

-̂ '1 
AT 

-̂ '3 
Constant 

bi 

8.266 
-5.516 

6.386 
121.117 

^3 

12 
11 
20 
18 
18 
19 
20 
21 
25 
24 

^bi 

5.322 
4.732 
2.019 

15.388 

y 

223 
223 
292 
270 
285 
304 
311 
314 
328 
340 

VIF 

41.92 
34.24 
7.53 

.9=121.12 + 8.27JC, - 5.52JC2 + 6.39JC3 

The VIFs, and especially those for jci and X2 are large due to the high correlation 
between the x variables. Consequently the associated coefficients are poorly esti­
mated, their variance is large and b2 has the wrong sign. The application of ridge 
regression with different k values results in the ridge trace as given in Fig. 10.3. A 
plot of R^ as a function of k is shown in Fig. 10.4. At a value of /: = 0.15 the 
regression coefficients stabilize and the reduction in R^ is not very large. The ridge 
regression equation with /: = 0.15 is 

y = 126.29 + 2.95JCI + 1.46x2 + 4.36x3 

which agrees much better with the true model than the least squares solution. 
Moreover, the estimated regression coefficients are more stable (sh^ = 0.77; s^, = 
0.85; 5/,̂  =1.01). 
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Fig. 10.3. Ridge trace for the Hoerl data. 

Fig. 10.4. Coefficient of multiple correlation, R^, as a function of the bias parameter k. 
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10.7 Multicomponent analysis by multiple linear regression 

The term multicomponent analysis is used for procedures in which several 
components in a sample are determined simultaneously. For the analysis of an 
m-component mixture at least n = m measurements are required. Linearity in the 
sense of straight line relationships and additivity of the signals is assumed. When 
n = m,3. so-called exactly determined system is obtained; when n>m which means 
that the number of measurements made is larger than the number of components, 
the system is over-determined. In general, it can be expected that the precision of 
the procedure increases with an increasing number of measurements. To some 
extent, the effect of using an over-determined system is the same as the effect of 
repeated measurements on the precision. 

The contribution to the signal of each analyte at a given sensor (e.g. a wave­
length in UV-visible spectrometry) is weighted by the sensitivity coefficients, kj (j 
= 1, 2,... m), of each analyte (in spectrometry, kij is the absorptivity of component 
j at wavelength /). For the spectrometric analysis of an m-component mixture, for 
example, for which measurements at n {n > m) wavelengths are performed the 
absorbances are: 

Ai = /:i, ci + kn Cj + ... + kim Cm 

M = kix Cx + kil C2 + ... + kim Cm 

^n — kfi] C\ "f kn2 C2 + ... + knm Cm 

This set of equations can be written in matrix notation as: 

a = K c (10.24) 

with a the vector of the absorbances measured at n wavelengths, c the concentra­
tion vector for the m components and K the (n x m) absorptivity matrix. 

If the K matrix is known, the concentrations of the components in the mixture 
can be obtained from: 

c = (K^K)-'K^a (10.25) 

Notice the similarity between this equation and eq. (10.6). It corresponds to the 
least-squares solution in which the elements of the K matrix are treated as the 
independent variables. 

The elements of the K matrix, which are the absorptivities of the m components 
at the n wavelengths, can be obtained from the spectra of the pure components. 
Alternatively, as explained in Chapter 36, they can be estimated by multivariate 
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calibration methods that relate the known concentration of calibration mixtures to 
the measured calibration spectra. In Section 36.2.1 the limitations of multicompo-
nent analysis by multiple linear regression are discussed. 

Example: 
The absorptivities of CI2 and Bra in chloroform at six wavenumbers are given in 

Table 10.16 [8]. For an optical path length of 1 cm, and concentrations c\ and C2 of 
CI2 and Br2, respectively, the measurements A\, Ai, Aj,, ..., A(, are obtained at the 
wavenumbers (22, 24, 26, 28, 30, 32x10^ cm"') 

A, =4.5ci + 168c2 = 34.10 

/42 = 8.4 ci+211 C2 = 42.95 

A3 = 20ci + 158c2 = 33.55 

/\4 = 56ci + 30c2=11.70 

/I5 = 100 ci+4.7 C2 = 11.00 

A6 = 71ci+5.3c2 = 7.98 

The concentrations c\, C2 are given by eq. (10.25), which becomes 

4.5 8.4 20 56 100 71 
168 211 158 30 4.7 5.3 

4.5 168 
8.4 211 
20 158 
56 30 

100 4.7 
71 5.3 

x - l 

4.5 8.4 20 56 100 71 
168 211 158 30 4.7 5.3 

"34.10' 
42.95 
33.55 
11.70 
11.00 
7.98 

This gives 

18667.81 8214.7 
8214.7 98659.18 

4.5 8.4 20 56 100 71 
168 211 158 30 4.7 5.3 

"34.10" 
42.95 
3'3.55 
11.70 
11.00 
7.98 
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TABLE 10.16 

Absorptivities of CI2 and Br2 in chloroform (from Ref. [8]) 

Wave number 
(cm-' X 10 )̂ 

22 
24 
26 
28 
30 
32 

Absorptivities 

CI2 

4.5 
8.4 
20 
56 
100 
71 

Br2 

168 
211 
158 
30 
4.7 
5.3 

Absorbance of mixture 
/ • l n f a < - 1 \ 

34.10 
42.95 
33.55 
11.70 
11.00 
7.98 

5.56x10-5 -4.63x10-*' 

-4.63x10-* 1.05x10-5 

4.5 
168 

8.4 
211 

20 56 
158 30 

100 71" 
4.7 5.3 

34.10' 
42.95 
33.55 
11.70 
11.00 
7.98 

-0.00053 -0.00051 0.00038 0.00298 0.00554 0.00392' 
0.00174 0.00218 0.00157 0.00006 -0.00041 -0.00027 

34.10" 
42.95 
33.55 
11.70 
11.00 
7.98 

ci =0.099241 

C2 = 0.199843 

By analogy with eq. (10.18) the variance of the concentrations is 

V(c) = si (K^K)-' 

In fact, the term (K^K)-' in this equation gives the error amplification of the 
measurement error into the analytical result, V(c). The most important conclusion 
is that the error propagation depends on the choice of the wavelengths in multicom-
ponent analysis (the K matrix i.e. the design of the calibration). 

The absorbances predicted by the model, A, , and the residuals (e, = A, - A, are 
tabulated in Table 10.17. Consequently 
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TABLE 10.17 

Predicted absorbances and residuals for the data of Table 10.16 

Wavenumber 
(cm-' X 10 )̂ 

22 
24 
26 
28 
30 
32 

A 

34.02 
43.01 
33.57 
11.59 
10.93 
8.15 

A-A 

0.08 
-0.06 
-0.02 

0.11 
0.07 

-0.17 

(A-Af 

6.4x10-^ 
3.6x10-^ 
0.4x10"-^ 
12x10-^ 
4.9x10-^ 
29 X 10"̂  

sum = 0.0563 

si = ̂ ^^' ^'^' = 0.0563 /(6 - 2) = 1.41 X lO'^ 
n- m 

where n is the number of measurements (wavelengths) and m the number of 
analytes. Moreover 

iScf=\usl 

iScf=i22sl 

where In and I22 are the corresponding diagonal elements of the (K^K)"' matrix. 
Therefore 

{scf = (5.56 X 10-̂ ) (1.41 X 10-̂ ) = 7.84 x 10"̂  

{s,f = (1.05 X 10-̂ ) (1.41 X 10-̂ ) = 1.48 X 10"̂  

The 95% confidence limits of the true concentrations are 

ci ± ro.025,4 ^(scf = 0.099241 ± 2.776 V7.84 x 10"̂  

= 0.099 ± 0.0025 

C2 ± tomsA V(5c/=0.199843 ± 2.776 ^TMxW^ 

= 0.200 ±0.0011 
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10.8 Polynomial regression 

As already mentioned in the introduction, multiple regression can also be used 
to solve polynomial regression problems. By setting X] =x,X2 = x^, ..., x^ = x"" in 
eq. (10.1) an mth degree polynomial relationship 

r| = Po + Pix + p2x' + ... + p ^ (10.26) 

is obtained which can be estimated as described in Section 10.2. 
A first degree polynomial is the straight line model. Expanding the model with 

a quadratic term introduces curvature and a maximum or a minimum in the 
function values. A second degree (or quadratic) model is the general equation for 
a parabola and is symmetrical around its extremum. In Fig. 10.5 three second-order 
polynomials are shown. 

,y = 5 + 0.20jc-0.40jc^ 

.y = 5-0.25jc + 0.10jc2 

.y = 5-1.50jc-0.05jc^ 

(10.27) 

(10.28) 

(10.29) 

>»-10 

Fig. 10.5. Second order polynomials, (a) y = 5 + 0.20JC - 0.40x^; (b) y = 5- 0.25x + O.lOx^ (c) 
y=5-\.50x-0.05x^. 
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The position of the extremum is determined by the coefficients b\ and b2. 

dylAx = /?] + Ibix = 0 

giving 

X = -b]/2b2 

When the quadratic coefficient, b2, is negative the function has a maximum (eq. 
(10.27); Fig. 10.5a). When Z?2 is positive the function has a minimum (eq. (10.28); 
Fig. 10.5.b). For the function represented by eq. (10.29) (Fig. 10.5c) the maximum 
is situated outside the plotted range. The larger the absolute value of the quadratic 
coefficient, the higher the curvature and the more sharply the extremum is defined. 
More complicated response relationships can be modelled by means of third or 
even higher order polynomials. Three examples are shown in Fig. 10.6. 

y = 5-l.5x- 0.5x' + 0.6x^ (10.30) 

y = 2-\- 2.5JC + O.ex" - 0.6x^ (10.31) 

y = 5- 0.5JC - 3.5JC2 + 3.6x' + O.Sx^ (10.32) 

As can be seen from Fig. 10.5 and 10.6 the higher the order of the polynomial, the 
more complicated relationships can be modelled. 

When more descriptor variables are available the number of terms in the 
polynomial increases rapidly 

y = Z?o + b\X\ + b2X2 + î ŝ s (linear terms) 

+ /?! ijcf 4- i>22-̂2 + 3̂3̂ 3 (quadratic terms) 

+ b\2X\X2 + b\3X]X2 + /?23̂ 2-̂ 3 (cross-product terms) 

This is called a fully quadratic model as it contains all possible terms up to 
second order. Cross-product terms such as X]X2 represent interaction terms (see 
Section 6.6). It means that the response cannot be described with a purely additive 
model, i.e. as a sum of independent terms, one for each separate descriptor. Some 
second order polynomials in two independent variables are shown in Fig. 10.7. 

,y = 15 - 7.5;ci + 1.0x2 + 0.5^ (10.33) 

y=\5- 7.5JCI + 5.0^2 + 0.54 - 0.5x1 (10.34) 

:^= 15 + IOJC, + IOX2-JC1JC2 (10.35) 

The graphs in Fig. 10.7 are called response surfaces. This term is used in a wider 
context to denote the form of the response as a function of the predictor variables. 
When there is one predictor variable the response surface reduces to a curve (e.g. Figs. 
10.5 and 10.6). When there are more than two predictor variables the response surface 
becomes a higher-dimensional hypersurface, which can no longer be visualized. 
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800r 

600h 

400 h 

200h 

>̂  Oh 

-200h 

-400h 

-600b 

-800*--
-10 

12000r 

10000 

-2 10 

8000 
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4000 

2000 

-2000' 
-10 

Fig. 10.6. Higher order polynomials, (a) y = 5 - 1 .5JC - 0.5JC^ + 0.6JC^; (b) y -• 
(c) y = 5 - 0.5x - 3.5JC2 + 3.6JC^ + O.SJC^ 

10 

2 + 2.5JC + 0.6JC2-0.6x^1 
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(a) 

(b) 

(c) 

Fig. 10.7. Response surfaces, (a) >̂  = 15 - 7.5JCJ + 1.0x2 + 0.5x1; (b) >̂  = 15 - 7.5xi + 5.0x2 + 0.5x1 -
0.5j(^;(c)y = 15+ 10x1+ 10x2 — X1X2. 
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In general, the inclusion of additional terms requires additional experimental 
data. Moreover, unnecessary terms decrease the quality of the prediction. For the 
selection of the degree of the polynomial the same methods as described in Section 
10.3.3 for the selection of variables in multiple regression can be used. However 
generally terms are entered from low order to high order. The significance of the 
term added is then evaluated from the confidence interval (eq. (10.15)), a t-tesi (eq. 
(10.16)) or an F-test (eq. (10.10)). Experience tells us that many response relation­
ships can be described by polynomials of degree two or three. 

The only possible interpretation of the resulting equation is in terms of the 
relative contributions of the independent variables to the response. When the term 
x\X2 is significant it can be concluded that there is an important interaction effect 
between the variables X\ and X2. Similarly when the term x] is significant the 
variable X] contributes in a quadratic way to the response. Terms such as x]x2 are, 
however, not easily interpretable. For this reason too one restricts the polynomial 
to the second degree in most practical situations. 

It must be noted that in polynomial regression the terms are necessarily corre­
lated, at least when the variables are not scaled (see Chapters 22 and 24). This, too, 
complicates the interpretation of the regression coefficients. The inclusion of 
higher order terms changes the role of the lower order terms, already in the model. 

The combination of modelling response data by low-order polynomial models 
in conjunction with an appropriate experimental design (e.g. central composite 
design, see Chapter 24) is known as Response Surface Methodology. 

10.9 Outliers 

As indicated in Section 8.2.6 the identification of outlying observations is not 
straightforward. In the multiple regression situation, where visualization of the 
data is no longer possible, this is even less evident. The diagnostics introduced in 
Section 8.2.6 for the straight line regression also apply in multiple regression. 
Cook's squared distance, CD ,̂) , can then also be obtained from: 

CD ô = (b - b_/)'̂  X^ X(b - b_,) /psl (10.36) 

where b is the vector of estimated regression coefficients obtained with all data 
points included, b_, is the vector of estimated regression coefficients obtained with 
observation / excluded from the data set and X, p and si are as defined before. 

Since y = Xb (eq. (10.7)), eq. (10.36) can also be written as: 

CDfo - (y - y_y (y - y_0 /psl (10.37) 

where y is the vector of estimated response values obtained with all data points 
included and y_/ the vector obtained with observation / excluded from the data set. 
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The leverage, ha, for a point / is obtained from the ith diagonal element of the 
hat matrix, H, which is defined by: 

H = X(X'̂ X)-̂  X'̂  

Therefore ha is equal to: 

hii^XiiX'Xy'xJ (10.38) 

with X/ the vector of jc variables for observation / ([1 Xn ... x,>„]). It can be shown 
that for the simple straight line regression this expression is equivalent to eq. (8.31). 

For regression with a constant term bo, another measure for leverage is the 
squared Mahalanobis distance which here takes the following form: 

MDj = (x/ - X) Cr^ (Xi - xy (10.39) 

with Xi = [xn ... Xim] 

X = (Zxi)/n 

C = the m X m variance-covariance matrix (see Chapter 9) of X, the n x m matrix 
of independent variables. 

It is a measure of the distance of x, from x that takes correlation into account. 
For the simple straight line regression expression (10.39) reduces to the square of 
the standardized value of x/ (see eq. (8.30)). 

As already mentioned in Section 8.2.6 the following relationship exists between 
hu and MDh 

, 1 MD? 

n n- 1 
For all data points of the stack loss example these diagnostics, together with the 

standardized residuals, lejsji, (see Section 8.2.6) are listed in Table 10.18. In 
Section 10.3.4 it was noticed that the first observation is a leverage point since with 
xi = 80 and X2 = 87 it is remote from the rest of the data. This is reflected in hu and 
MD? being large. As discussed in Section 8.2.6, the large CDf/) value can be due 
to the fact that the observation has a considerable influence on the regression 
estimates but also to the fact that it is a leverage point as indicated by hu. The former 
can be evaluated from a comparison of the regression equation obtained without 
the first data point: 

y = - 36.248 + 0.674xi + 0.565x2 s] = 1.240 

(3.432) (0.074) (0.147) 

with the equation for all data points: 

y = - 42.001 + 0.777JC, + 0.569JC2 si = 1.590 

(2.553) (0.065) (0.167) 
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TABLE 10.18 

Outlier diagnostics for the stack loss data associated with the LS model y = - 42.001 + 0111 x\ + 0.569JC2 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

\eilSe\ 

(2.00) 

1.20 

0.53 

0.98 

0.64 

0.16 

0.89 

0.57 

0.57 

0.23 

1.81 

1.47 

0.74 

0.05 

0.29 

0.29 

0.63 

1.69 

CD^O 
(1.000) 

2.158 

0.009 

0.045 

0.035 

0.002 

0.066 

0.026 

0.026 

0.009 

0.262 

0.086 

0.031 

0.000 

0.005 

0.005 
0.038 

0.068 

hii 
(0.353)* 

0.626 

0.082 

0.111 

0.176 

0.176 

0.170 

0.167 

0.167 

0.271 

0.167 

0.097 

0.128 

0.128 
0.141 

0.141 

0.189 

0.063 

MD? 
(5.991)* 

9.083 

0.363 

0.837 

1.871 

1.871 

1.780 

1.726 

1.726 

3.397 

1.726 

0.616 

1.112 

1.112 

1.318 

1.318 
2.084 

0.060 

*Cut-off value (see Section 8.2.6). 

(the standard deviations of the regression parameters, 5/,, are given between brack­
ets). From this it follows that the observation has some influence on the regression 
estimates. On the other hand it has a beneficial effect on the standard deviation of 
most of the parameters, /?,. Therefore the conclusion concerning the first data point 
is not straightforward. The original stack loss data set [2], which contains several 
outliers, has been studied by different investigators. Some of them identified the 
first observation (= observation 2 in the original set) as an outlier while others did 
not so [9]. A better balanced design, with more observations that cover the whole 
region, would probably be necessary to come to a decisive answer. 

For a more extensive discussion of different oudier diagnostics the reader is 
referred to the excellent book by Rousseeuw and Leroy [9]. 
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Chapter 11 

Non-linear Regression 

11.1 Introduction 

In Chapter 8 linear relationships were studied with regression analysis by fitting 
the straight line model 

>; = po + P,jc + 8 (11.1) 

In Chapter 10 this linear relationship was extended to the case of two or more 
predictors giving the linear multiple regression model 

}̂  = Po + Pi ^1 + P2 2̂ + ... + ^pXp + 8 (11.2) 

Geometrically this model represents a flat (hyper)plane in high (pH-l)-dimensional 
space. In many applications a model such as eq. (11.1) or (11.2) is theoretically 
correct. In other instances it is at least a valid approximation in the restricted 
working range of the application. Therefore, the linear approach covers a major 
part of regression applications in chemistry. In analytical method validation the 
linear range is even one of the figures of merit of a method. 

In many other fields of application, however, the straight line model is not 
appropriate and non-linear functional relationships should be used. Figure 11.1 
represents some of these non-linear relationships, e.g. exponential functions (Fig. 
11. lb), trigonometric functions (f), hyperbolas (c), Gaussian functions (e), logistic 
functions (d), splines (h), rational functions and combinations of these. Notice that 
some of these curves can be well approximated by a polynomial function. For 
example, the curve in Fig. 11.1a represents a parabola, which is defined by 

>; = po + p ix + P2x^ + e (11.3) 

It represents y as a quadratic, i.e. a non-linear function of x, given the parameters 
po, p] and p2. At the same time eq. (11.3) represents j as a linear function of the 
parameters po, pi and p2, given the associated predictor variables l(=x^), x(=x^), 
and x^. The latter viewpoint is relevant to regression analysis. One generally has 
available measurements on a set of response and predictor variables and the aim is 
to fit a model, i.e. to estimate its parameters. Fitting the parabolic model (eq. 11.3) 
is a linear parameter estimation problem that can be handled by the linear multiple 
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Fig. 11.1. Various non-linear relationships: (a) parabola; (b) exponential; (c) hyperbole; (d) logistic; 
(e) Gaussian; (f) sine; (g) rational function; (h) linear segments. 

regression method discussed in Chapter 10. Non-linear regression analysis then 
refers to the estimation of a model involving parameters which enter the model in 
a non-linear way. In practice, such models are also non-linear (curved) when seen 
as a function of the predictor variable(s). 

When studying curved relationships such as those displayed in Fig. 11.1 there 
are basically two approaches: the empirical approach and the non-empirical or 
mechanistic approach. In the empirical approach one tries to model as well as 
possible the form of the response by means of a simple function. The choice of the 
functional form is suggested by the data and also determined by considerations of 
computational ease. The resulting fitted model is used mainly for summarizing the 
relation in the form of a smooth function or for future prediction purposes. 
Interpretation of the individual model coefficients is only a secondary issue. When 
the mechanistic approach is used, the process under study must be so well under­
stood that an appropriate functional form can be selected beforehand or can be 
derived from the underlying physico-chemical phenomena or from theoretical 
considerations. The experimental data are then modelled with this function. Esti­
mation of the coefficients by fitting the model is in this approach the primary goal. 
Since the coefficients already have a well-defined meaning, the interpretation 
becomes straightforward. 

11.2 Mechanistic modelling 

The term non-empirical or mechanistic modelling is used when the data are 
modelled with a specific function that is available from theoretical considerations. 
Examples can be found in (pharmaco)-kinetics (Chapter 39), analytical chemistry 
(e.g. titration curves), physical chemistry, etc. 
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Example from kinetics 
Suppose the reaction of interest is of the form: 

A + B ^ P 

The simplest possible equation describing the decreasing concentration of A as a 
function of time {t) complies with first-order reaction kinetics: 

[A]t = [A]oexp(-/:0 (11.4) 

Here, [A]o is the concentration at start {t = 0) and k is the reaction rate constant. 
When the above function and the data do not match, the reaction apparently does 
not follow a first-order law and a different mechanism must be considered. This 
brings us immediately an important advantage of mechanistic models over empiri­
cal models. Mechanistic models, when applied appropriately, can increase the 
scientific understanding of the system under study. An additional advantage is that 
they provide a better basis for extrapolation. A number of questions arise however: 
how should the experiments be designed to test the proposed model and how can 
an inappropriate model be detected? 

Example from chromatography 
In chemometrics the term "curve fitting" is frequently used in the restricted 

sense of fitting spectroscopic or chromatographic data. Theoretical considerations 
may indicate the shape of a peak (e.g. Gaussian for chromatographic peaks, 
Lorentzian for NMR peaks). As an example, the simplest mathematical function 
for a chromatographic peak, including noise, reads 

>; = PiexpH(x-p2)/p3}'] + e (11.5) 

Estimations of the parameters of the model yield information on peak charac­
teristics such as the position of the top (P2), the width (P3), and the peak height (pi). 
The Gaussian function is but one of many alternative mathematical functions 
suggested for the description of chromatographic peak profiles [1]. When overlap­
ping peaks are studied the simplest model becomes the sum of n Gaussian func­
tions, one for each peak: 

3̂  = 1 P„exp[-(x-P2,)'/Pi,] + e (11.6) 

These parameters in turn yield information on the system or process under study. 
In chromatography the peak position is the retention time of the compound under 
study and yields information on the identity of the compound. The peak height can 
be related to the concentration. Peak width can be an indicator of the interaction 
between the compound studied and the medium. Fitting appropriately selected 
mathematical functions thus yields in an indirect way information on the under­
lying phenomena. 
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In many cases idealized functions such as the Gaussian function are not suffi­
ciently precise. In that case empirical modifications are introduced that enhance the 
fit. For example, a term may be added to make the peak shape asymmetric in order 
to account for "tailing" peaks. The status of curve fitting is then lying somewhere 
between empirical modelling and mechanistic modelling. 

11,2.1 Linearization 

In the previous section some examples of functions to model non-linear rela­
tions were given. The parameters in such functions can be estimated from experi­
mental data using least-squares regression. To explain how the least-squares 
technique can be applied in the non-linear case, three types of curvilinear functions 
must be distinguished. Examples of each type are: 

.y = po + P,Jc + P2x' + p3Jĉ  + 8 (11.7) 

>; = exp(po + Pi-x) + e (11.8) 

.V = p, exp(-P2jc) + p3 exp(-p4jc) + 8 (11.9) 

The term e denotes the error term, just as in the linear case. The first equation is 
a polynomial; it is linear in the parameters and can be treated as a (multiple) linear 
regression model as explained in Chapter 10. The other equations are non-linear in 
the parameters. There is, however, an important difference between the second and 
the third equation. Equation (11.8) can be transformed into a linear equation: 

l n y = po + p,Jc + e* (11.10) 

This form is linear in the parameters Po and pi. Equation (11.8) may therefore be 
viewed as intrinsically linear. Notice that the error term has changed (8 —> 8*) as a 
result of the transformation. The parameters po and pi can be obtained from a 
simple linear regression of log-transformed y, i.e. In y, on x. For this reason it is 
said that the model (11.8) is linearizable. This does not imply that solving eq. (11.8) 
via a least-squares fit of eq. (11.10) is always adequate. Transforming the response 
affects the distribution of errors. If the error 8 in eq. (11.8) has a homoscedastic 
normal distribution, then the error 8* in eq. (11.10) will have a different, hetero-
scedastic non-normal distribution. In that case (non-linear) least-squares regression 
of model (11.8) is appropriate, and (unweighted) linear least-squares regression of 
model (11.10) is not. This topic has already been discussed in Section 8.2.3. 

It is impossible to transform the third equation (eq. 11.9) into a form that is linear 
in the parameters. This equation is therefore said to be intrinsically non-linear. 
Whatever the transformation is, it will always yield a model that is non-linear in 
the parameters. However, when the non-linear parameters P2 and p4 are not too 
close, one may — to a good approximation — solve the equation in parts, each of 
which can be linearized (c/Chapter 39, 'curve peeling'). 
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11.2.2 Least-squares parameter estimation 

The least-squares principle as explained in Chapter 8 can also be applied in the 
non-linear case. The solution is, however, more complicated as will become clear. 
As in the linear case, the sum of the squares of the residual differences between the 
experimental value and the value predicted by the model is minimized: 

yi^ym^et (11.11) 

and 

ei^yi-ym (11.12) 

5̂ (5) is the estimated value of the response using the non-linear equation with 
estimated values b for the parameters p, the vector containing the values of the 
unknown model parameters. As for the linear case we assume independence, 
homoscedasticity and normality of the errors: 8 ~ N{0,a^). 

The sum of squares of the residual errors is 

SS(b) = I{>;,-:v,(b)}^ (11.13) 

where the sum runs over all n experimental data points. The least squares estimate 
b of P are those values of the parameters that minimize SS(b). To find the least 
squares solution we need to differentiate the SS(b) with respect to the parameters, 
b. Doing this for all p model parameters yields the normal equations. There are as 
many normal equations as there are model parameters. These normal equations 
must be solved for b: 

dSS/dbj = -2l{y,-y,m {dHh)/dbj}=0 forj=l..,p (11.14) 

Recall that for linear regression the normal equations are also linear in the 
parameters (c/Section 8.2.1). For example, yi = feo + biXi + ei (eq. 11.1) yields 
dyi I dbo = 1 and dyi I db\ = X], leading to the normal equations: 

dSS/dbo = -2l{yi-yim'l=-2l(yi-bo-b,xd = 0 (11.15a) 

ass /db, = - 2 1 {yi-yim • xi = - 2 1 {yi-bo-b, xdxi = 0 (11.15b) 

The normal equations (eqs. 11.15a and b) are linear in the parameters bo and bi and 
can be solved as explained in Chapter 8. In the non-linear case the normal equations 
are no longer linear in the parameters and this makes the solution more difficult. 
Consider, for example, the following simple non-linear function: 

y = Qxp(-bx) (11.16) 

and suppose there are n observations (yi, xi) available. The derivative of the model 
predictions with respect to the parameter b are: 

dyi / db = -Xi exp(-bxi) (11.17) 
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The (single) normal equation then is: 

l{yi- exp(-bxi)} {-Xi exp(-bxi)} = - E y, Xi exp(-to/) + I xi Qxp{-2bxd = 0 
(11.18) 

Notwithstanding the simplicity of the non-linear model (eq. 11.16), the normal 
equation (eq. 11.18) is already quite complicated. It has no analytical solution. 
When the model contains multiple parameters, it is generally not feasible to solve 
these equations in an analytical way. Therefore, iterative numerical methods are 
used to estimate the parameters in the non-linear case. The fact that there are often 
multiple solutions (local minima) complicates the situation even more. The best 
known methods are linearization, steepest descent and the Marquardt compro­
mise. It is also possible to use sequential optimization methods, such as Simplex 
(see Chapter 26) to solve non-linear equations. 

11.2.3 Gauss-Newton linearization 

We will explain the linearization or Gauss-Newton method by trying to fit a 
curve to a chromatographic peak. Figure 11.2 illustrates such a peak. The data 
points will be modelled by the Gaussian function 

y = b^txp[-{{x-b2)lb,]^] (11.19) 

Fig. 11.2. Raw data sampled from a Gaussian peak. 
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where y is the fitted height of the signal at retention time x. The parameter estimate 
b] gives the peak height, b2 the position (retention time) of the peak maximum, and 
Z?3 is related to the peak width. 

The linearization method starts the iteration process with some initial values of 
the parameters, say b^, with the superscript indicating the iteration number. In 
general these initial values may be intelligent guesses or they can be estimated from 
other procedures. In this example a first estimation of the initial values can be 
obtained from a visual inspection of the chromatogram. These initial values will be 
used as a starting point of the iterative process and will, hopefully, be improved 
during the process. 

According to Taylor's theorem all continuous functions f(z) can be expanded 
around some fixed point ^ as follows: 

f(^) = {{z"") + {9f/3z}z" (z - ẑ ) + higher-order terms, {W.IO) 

When z is close to ̂  we may disregard the terms of higher order. First-order Taylor 
expansion acts as a local linear approximation of the function f(z) in the neighbour­
hood of ẑ . When there are more variables this may be generalized to: 

f(z) - f(z°) + I [{dfldzM (zj - zj)] (11.21) 

retaining only the linear terms. 
We now apply this to the model estimate 5̂  which is a non-linear function of the 

parameter estimate b: 

:̂ ,(b) - yi (b«) + lUdyi (b) /dbj}^^^ (bj - b^)] (11.22) 

where we have again omitted the higher-order terms in the Taylor expansion. For 
the example this becomes: 

yi(bub2,b,) = yi{bibib',)^ 

+ (dym/db,),^^^ AZ7? + (dHh) /9&2)î b° Afê  + (dyiib) /db^)y^^^ Ab', (11.23) 

or, in a simpler notation, 

yi = yUJ^i A/7? + y?2 Ab'2 + y?3 Ab', (11.24) 

Here, yi = yi {b\, ^2, b^) is the response predicted for a new set of parameter values 
different from yPi = yi(bu b\, b^), the prediction using the current parameter esti­
mates. Further, Ab^ = bj - b^ is the difference between the new parameter values 
and the 'old' values and 7̂  = {35'/(b)/9/7y}b=b° is the derivative of the predicted 
response with respect to theyth parameter evaluated at x = xi and b = b^. The terms 
fij can be calculated from analytical expressions for the partial derivatives of the 
model with respect to the parameters. Alternatively it can be computed numerically 
from finite differences, e.g. A = {ytibi &2 + 5, b^) - yib\, bl b^) }/5 for some small 
value 6. Equation (11.24) can be further simplified to 
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or, since yi = yi + ei, 

Ay^ = l4Abf-^e^ 

(11.25a) 

(II.25b) 

where Ay^ = yi - yf is the deviation of the observed data from the predictions using 
the parameters b^. Note that eq. (11.25b) looks like a linear regression equation, 
the independent variables now being the y//-terms (cf. the X/, terms in multiple 
regression). The parameters can now be estimated by applying the classical least 
squares procedure. 

As in multiple linear regression, the terms 7̂  can be collected in an nxp matrix 
J^ (the so-called Jacobian): 

f= V?, 

Jn\ 

^ 2 

Jnl 

'.'. 4 • 

-J nj 

. J\p 

• Jlp 

^ ip 

'^ np 

(11.26) 

Likewise, the parameter corrections Afe" can be placed in a vector Ab° 

AZ7̂  

Ab' . 0 -

^b'j 

Afo° 

(11.27) 

and so can the current residuals Ay/'=}', - j? ,*,o 

o_ 

y\ 
yi 

yi-

yn 

-y"A 
-y\ 

'-f. 

'-yl_ 

Ay' 

Therefore, eq. (11.25b) can be written compactly in matrix notation as: 

Ay° = J° Ab° + e 

The least squares solution is given by: 

(11.28) 

(11.29) 
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Ab^^CJ^^JVl'^^Ay^ (11.30) 

assuming that the Jacobian J^ is non-singular (Section 9.3.5). Notice that eq. 
(11.30) has exactly the same form as the solution for regression coefficient vector 
in multiple linear regression (eq. 10.6). However, in the present non-linear case the 
solution is not b itself, but a correction Ab^ to the current guess b^, giving b^ the 
next better approximation of the true parameter vector P: 

b ' = b ^ + Ab^ (11.31) 

The revised estimate b^ of the non-linear model can now be used in exactly the 
same way as the initial estimate b^. Since the Jacobian J depends on the parameters 
it has to be computed for every update of the parameter vector (J^ -> Ĵ  ^ J^ —> 
etc.). Here lies the essential difference with Unear regression where the design 
matrix X plays the same role as the Jacobian J in non-linear regression. The 
difference is that in linear regression X is a given fixed matrix that does not depend 
on the parameters and does not need to be updated. 

At each stage during the iterations the error sum of squares is given by: 

SS(b). = !{) . , - J , (b)}2 (11.32) 

and at each iteration it can be verified whether the sum of squares actually has been 
reduced. The procedure can be repeated several times until convergence, e.g. until 
the relative difference between two successive estimates of p is smaller than a 
predefined small value, 5. 

Ib^-bf^'l/lbfl < 8, for ally (11.33) 

When a parameter value happens to be nearly zero, one should use the absolute 
difference \bf~bf'^^\ rather than the relative difference as a criterion for conver­
gence. Upon convergence b = b̂ "̂̂ ' represents the least-squares estimate of p. 

Upon convergence the error sum of squares SS(b̂ *"̂ )̂ = X ?̂ can be used to 
estimate the error variance 

sl = lej/in-p) (11.34) 

The standard errors of the parameters can be obtained from the appropriate diago­
nal elements of the matrix (jfin̂ T̂̂ jfinayî  -^^ analogy to the linear regression case 
(eq. 10.16): 

Standard errors computed in this way are approximate, even with homoscedastic 
normally distributed errors. For large number of observations they become correct. 
Given the standard errors one can obtain confidence intervals as bj ± hms-^n-p s{bj), 
again completely analogous to the case of linear regression (c/eq. 10.13). 
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The linearization procedure has some drawbacks. The convergence is highly 
dependent on the quality of the initial estimates and can be quite slow. Sometimes 
the solutions may oscillate and, consequently, no convergence is reached at all. 

11,2,4 Steepest descent and Marquardtprocedure 

In the steepest descent or gradient approach one determines the sensitivity of 
the error sum of squares SS(b) with respect to each parameter in the neighbourhood 
of the current estimate b^. It can be shown that this is given by 

f̂  = {dSS/db }̂  = -2(J V (11.36) 

The parameter estimates are then updated in proportion to these sensitivities. This 
corresponds to the steepest descent direction of the sum of squares as a function of 
the parameters. Thus the update of b^ becomes Ab^ = af̂ , where a is a proportion­
ality constant, and the next best estimate b^ is 

b^=b^ + Ab^ (11.37) 

The choice of the factor a is somewhat arbitrary. The steepest descent method 
can be particularly effective to improve the parameter estimates when they are far 
away from their final best-fit values. When the estimates approach their final 
values convergence can become quite slow. 

For this reason the Marquardt method provides a useful compromise between the 
linearization method and the steepest descent procedure. Here the update is written as 

Ab^ = (J^^J«+;iD)->J«^e (11.38) 

where the matrix D is a diagonal matrix with the same diagonal elements as (J^^J^) 
and ^ is a tuning parameter that affects a relative increase of the diagonal elements 
of (J^ ^J^). When X, ̂  0 we essentially approach the linearization method of 
Section 11.2.3. As ?i -^ oo, the Ĵ Ĵ̂ -term in eq. (11.38) becomes relatively unim­
portant and Ab^ becomes proportional to f̂  as in the steepest descent method. A 
good implementation of the Marquardt method starts with a relatively large value 
of A, (e.g. ̂  = 10"̂ ) and gradually decreases X as the solution converges and the error 
sum of squares continues to decrease. 

Notice that eq. (11.38) has a similar appearance as the solution of a ridge 
regression problem (Section 10.6). Indeed, the Marquardt method was originally 
devised to cope with the situation of highly correlated parameter estimates giving 
rise to a near-singular Jacobian matrix. There is always a danger in non-linear 
regression that the solution found does not correspond to the global least squares 
solution, but rather to a local minimum. One way to decrease the likelihood of such 
solutions is by redoing the calculations and starting from different initial parameter 
settings. When the same solution is repeatedly found one can be confident that the 
global minimum has been found. 
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11.2.5 An example 

Table 11.1 gives the activity of the enzyme Savinase as a function of time. The 
data are plotted in Fig. 11.3. We try and model these data with a simple exponential 
decay corresponding to a first-order reaction. Our interest is in the half-life, t\i2, and 
we rewrite eq. (11.4) as: 

A(0 = fiexp{-(In 2)̂ /̂ 1/2} (11.39) 

The linearization method to find the coefficients B and t\i2 for eq. (11.39) will be 
worked out step by step. 

TABLE 11.1 
Activity {A) of Savinase as a function of time {t, in hours) 

t 

0 
1 
2 
3 
7 

10 
15 

20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

25 

20^ 

P 15-
> 
u 
< 10-

5-

n-

%̂ 

\ 

10 15 20 

t / hr 

25 

Fig. 11.3. Enzyme activity (A) as a function of storage time {t). Three fits to the data are shown: (—) 
non-linear regression, first-order kinetics; ( ) non-linear regression, second-order kinetics; (• • •) 
back-transformed linear regression of ln(A) on t. 
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(1) Initial estimates of the coefficients 
From eq. (11.39) it can be derived that the activity, A, at time zero equals B. The 

parameter t\/2 is defined as the time in which the activity has decreased to half of 
the original value. In this way, rough estimates can be made by inspecting the data 
of Table 11.1: B^ = 20 and r?^ = 4. 

(2) The linearization procedure 

Iteration 0 

Step 0.1: Using eq. 
responses, A" : 

i t 
1 0 
2 1 
3 2 
4 3 
5 7 
6 10 
7 15 
8 18 

(11.39) and initial estimates E>^ and f\/2 compute the predicted 

A{=y) 
20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

A" 
20.0000 
16.8179 
14.1421 
11.8921 
5.9460 
3.5355 
1.4865 
0.8839 

A / = A-A« 
0.2000 
0.3821 

-0.0421 
-1.1921 
-1.0460 
-0.6355 
0.7135 
0.3161 

SS°= 3.7159 

Step 0.2: Calculate the partial derivatives of the expected response with respect to 
the two parameters in order to derive the Jacobian matrix J° (eq. 11.26) 

(d4/dB)° = exp {(-ln2) tl {{n} 

(d4/d?,/2)° = {(B" ln2 t)l{t\af] exp{(-ln2)?/??;,} 

f = 

(dA/dfi)° 
1.0 
0.8409 
0.7071 
0.5946 
0.2973 
0.1768 
0.0743 
0.0442 

0.0 
0.7286 
1.2253 
1.5456 
1.8031 
1.5317 
0.9660 
0.6892 



317 

Step 0.3: Minimize the term SS (eq. 11.32) to obtain the least squares solution for 
the correction Ab° (eq. 11.30) 

Ab° = (jo^jVJ°'"Ay« = 
• 0.2653' 
-0.3891 

Step 0.4: Use these corrections to update the parameters by means of eq. (11.31) 

fi' = fi° + Afc? = 20 + 0.2653 = 20.2653 

t\^ = fm+Ab°2 = 4 - 0.3891 =3.6109 

Iteration 1 

Step 1.1: Using the updated parameter estimates, compute new predictions, A' 
and new residuals: 

I 

1 
2 
3 
4 
5 
6 
7 

t 
0 
1 
2 
3 
7 

10 
15 
18 

A 
20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

A' 
20.2653 
16.7258 
13.8045 
11.3934 
5.2868 
2.9723 
1.1383 
0.6400 

SS' = 

Ay'=A-A' 
-0.06531 
0.4742 
0.2955 

-0.6934 
-0.3868 
-0.0723 
1.0617 
0.5600 
2.3929 

Step 1.2: Recalculate the Jacobian matrix J ' using the new estimates fi' and t\/2 

(dA/dBy (dA/dtmy 
"1.0000 O.OOOOl 

J" = 

0.8253 
0.6812 
0.5622 
0.2609 
0.1467 
0.0562 
0.0316 

0.8891 
1.4677 
1.8170 
1.9673 
1.5801 
0.9077 
0.6124 

Step 1.3: Obtain the least-squares solution for Ab' 
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Step 1.4: Update the parameter estimates 

B^ = B'+ Ab\ = 20.2653 + 0.0591 = 20.3244 

f?/2 = t\/2 + M>i = 3.6109 - 0.0133 = 3.5976 

Iteration 2 

Step 2.1: Calculate the predicted responses, A^ , with the new estimates: 

I 

1 
2 
3 
4 
5 
6 
7 
8 

t 
0 
1 
2 
3 
7 

10 
15 
18 

A 
20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

A^ 
20.3244 
16.7626 
13.8251 
11.4023 
5.2759 
2.9598 
1.1295 
0.6337 

SS2 = 

A/=A 
-0.1244 
0.4374 

-0.2749 
-0.7023 
-0.3759 
-0.0598 
1.0705 
0.5663 

= 2.3871 

Step 2.2: Calculate the matrix J^ with the new estimates B^ and t^/z 

f = 

{dA/dBf 
1.0000 
0.8248 
0.6802 
0.5610 
0.2596 
0.1456 
0.0556 
0.0312 

(dA/du^f 
0.0000] 
0.8977 
1.4808 
1.8319 
1.9778 I 
1.5851 
0.9074] 
0.6109 

Step 2.3: Obtain the least squares solution for Ab^: 

0.0014 
-0.0009 

Step 2.4: Use the correction to update the parameters 

B^ = 20.3244 + 0.0014 = 20.3257 

t]/z = 3.5976 - 0.0009 = 3.5967 
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Iteration 3 

Step 3.1: Calculate the predicted responses, A^ with the new estimates 

I 

I 
2 
3 
4 
5 
6 
7 

t 
0 
1 
2 
3 
7 

10 
15 
18 

A 
20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

A' 
20.3257 
16.7629 
13.8247 
11.4014 
5.2744 
2.9586 
1.1288 
0.6332 

SS^ = 

Ay^=A-A^ 
-0.1257 
0.4371 
0.2753 

-0.7014 
-0.3744 
-0.0586 
1.0712 
0.5668 
2.3871 

Remark: SS^ equals SS^; no improvement is made. This means that the method 
has converged. We will anyway calculate the Afc's for this step too. 

Step 3.2 Calculate the matrix J^ with the new estimates B^ and ti/z 

r 3 -

(dA/dBf 
1.0000 
0.8247 
0.6802 
0.5609 
0.2595 
0.1456 
0.0555 
0.0312 

(dA/dhn) 
0.0000 
0.8982 
1.4815 
1.8327 
1.9783 
1.5853 
0.9072 
0.6107 

Step 3.3: Obtain the least squares solution for Ab^: 

Ab3-(J3TJ3)-.J3T^„3_, 0.00009302 
^u - i . j j ; J ay -|_o.000O6585 

Step 3.4: Update the parameters 

B'* = 20.3257 + 0.0001 = 20.3258 

tU = 3.5967 - 0.0001 = 3.5966 

These values will be used as final estimates for the parameters in eq. (11.39). The 
final results then read: 
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/ 
1 
2 
3 
4 
5 
6 
7 
8 

ifinal _ 
J — 

t 
0 
1 
2 
3 
7 

10 
15 
18 

"1.0000 
0.8247 
0.6802 
0.5609 
0.2595 
0.1456 
0.0555 
0.0311 

0.0000' 
0.8982 
1.4816 
1.8328 
1.9783 
1.5853 
0.9072 
0.6107 

A 
20.2 
17.2 
14.1 
10.7 
4.9 
2.9 
2.2 
1.2 

/yfinalT Tfinal\-1 0.6141 
-0.1577 

-0.1577 
0.1120 

>4 final 

20.3258 
16.7630 
13.8246 
11.4013 
5.2743 
2.9585 
1.1287 
0.6331 

SSfinal 

e 
-0.1258 
0.4370 
0.2754 

-0.7013 
-0.3743 
-0.0585 

1.0713 
0.5669 

= 2.3871 

For the residual error variance we find: 

jy? = 2.3871/6 = 0.40 

Since 

we find for the standard errors of the regression parameters: 

s{B) = (0.6141 . 0.3978)'^^= 0.49 

s(tm) = (0.1120 • 0.3978)'̂ ^ = 0.21 

With these estimates for the standard errors and a critical Student's r-value of 2.45 
(df = 6), the 95% confidence interval estimates of the parameters are: 19.3 < B < 
21.3 and 3.2 < ti/2 < 4.0. Tables 11.2 and 11.3 summarize the analysis in the form 
of a typical output of a non-linear regression computer program. 

Figure 11.3 also shows the fit obtained via linear regression of log(A), back-
transformed to the original scale. This alternative fit definitely is inferior to the fit 
just derived: it shows larger and more systematic deviations. We may also consider 
a different model (second-order kinetics). The fit obtained with this alternative 
model has a larger residual error sum of squares which can also be read from Fig. 
11.3. Hence, the conclusion is that the experimental data are consistent with 
first-order kinetics. 
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TABLE 11.2 

Evolution of parameter estimates and sum of squares during iterations 

Iteration Parameter estimates Sum of squares 

B 

20.0 
20.2653 
20.3244 
20.3257 
20.3258 

f \ / 2 

4.0 
3.6109 
3.5976 
3.5967 
3.5966 

3.7159 
2.3929 
2.3871 
2.3871 
2.3871 

TABLE 11.3 

(a) ANOVA table of non-linear regression example 

Source 

Regression 
Residual 

df 

2 
6 

(b) Parameter estimates and asymptotic 

Parameter 

B 
t\l2 

Estimate 

20.3258 
3.5966 

Sum of squares 

10557.5 
2.3871 

confidence intervals 

Standard error 

0.4943 
0.2111 

Mean square 

5278.8 
0.3978 

F 

13,268 

95% Confidence interval 

Lower 

19.3372 
3.1744 

Upper 

21.3144 
4.0188 

11.2,5 Advanced topics 

The Statistical theory of non-linear regression modelling is considerably more 
complicated than for the linear case. Even when ideal assumptions are met, e.g. 
independence, normality and constant variance of the error, the estimators no 
longer have such desirable features as unbiasedness and normality. For that reason 
the standard deviations found in the previous section are only approximate. 

Lacking exact theory, it is expedient to apply the same methods that are valid in 
linear regression theory. For example, one may use (approximate) ^tests to test for 
the significance of a parameter (compare Section 10.3.2). Replicate observations 
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can be used to provide a model-free estimate of the pure error and an approximate 
F-test can be used for testing model adequacy (compare Section 8.2). When the 
predictor variables are also subject to error one may try and apply orthogonal 
regression (compare Section 8.2.11), although this becomes much more com­
plex. Also, methods for robust estimation (c/Chapter 12) can be applied in the 
non-linear case. The issue of experimental design in the case of a non-linear 
relation is another example where there is a large gap between the elegant 
theory and designs for the linear model and the complexity of the non-linear 
case [2]. In Section 11.2 we saw that the Jacobian matrix J depends on the 
parameters to be estimated. This is in contrast with linear regression where the 
Jacobian matrix, X, is fixed. This has a direct bearing on experimental design. 
In a linear model situation we can design X (and hence X^X) without knowing 
the corresponding parameters p. In non-linear regression the role of X is taken 
by J, which is not known at the start of the experiment. The conclusion then is 
that in order to design our experiments so as to measure the unknown parameters 
most precisely, we need to know their values! The practical way out is to cover the 
experimental region in a uniform way, with perhaps some additional experiments 
in those regions where 'things happen', i.e. where the response is expected to 
change rapidly. 

Many of these advanced topics are still in an early stage of research and typical 
chemometric examples are scarce. For advanced and up-to-date textbooks on 
non-linear regression and design, see Refs. [3-5]. 

11.3 Empirical modelling 

11.3.1 Polynomial regression 

When the functional form is not known beforehand, the simplest approach to 
modelling curved functions is by fitting a polynomial function of a certain 
degree. The basis of this approach is the fact that any well-behaved mathemati­
cal function can be approximated by means of a higher-degree polynomial. 
Model estimation is relatively easy since the model is linear in the parameters 
and the regression analysis can be seen as a problem of multiple linear regres­
sion. For that reason the subject of polynomial regression or response surface 
modelling was already treated in Chapter 10. It will not be further discussed 
here, except to notice that polynomials can suffer from a serious drawback. At 
extreme values of the predictor variable x, polynomial functions tend to +oo or -oo. 
This makes them unsuitable for fitting curves having horizontal asymptotes (or 
plateaus) at extreme values of jc. An example of such a curve is shown in Fig. 11. Id. 
The use of splines is most appropriate in these cases. 
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11.3.2 Splines 

Spline functions are constructed from joining pieces of local polynomials. The 
function values agree at the knots, i.e. the points at which the polynomial pieces are 
joined. Through a judicious choice of the knots and of the order of the piece wise 
polynomials one can fit functions of any shape. Thus, when the relationship 
between the independent variables and the response becomes complex, splines, 
because of their flexibility, can be used to advantage. 

One distinguishes regression splines and smoothing splines. Regression splines 
(Section 11.3.2.1) are used to develop flexible yet parsimonious non-linear models 
that best fit observational data using a least-squares criterion. They are an alterna­
tive to the other regression methods described in this Chapter. Smoothing splines 
are used to regularize a set of data {xi,yi}. The objective is not so much to derive a 
model as to filter the noise from the data and to derive a smooth continuous curve 
through the data summarizing the main trend (Chapter 40 also discusses methods 
for smoothing data). We will briefly discuss the application of cubic smoothing 
splines in Section 11.3.2.2. 

On a historical note it is interesting to observe that the very first scientific paper 
mentioning 'chemometrics' was a paper on the use of spline functions [6]. 

11.3.2.1 Regression splines 
In spline regression the range of predictor values is subdivided in a number of 

intervals and in each interval a low-order polynomial is fitted. Usually one requires 
that the function is continuous at the junctions. In its simplest form a number of 
straight line segments is used to fit the data (see Fig. 11.4). By increasing the 
number of line segments it is clear that in this way complex curves can be 
approximated. When the line segments are replaced by quadratic or cubic functions 
a smooth curve can be obtained. One can then also ensure that not only the fitted 
function itself is continuous but also the first derivative or the second derivative 
(see Fig. 11.5 which gives an example of the data of Fig. 11.4 fitted with a spline 
of 1st, 2nd and 3rd degree). The piecewise nature of spline functions and the 
location of the knots is hardly visible with cubic splines and continuous second 
derivatives at the knots. 

Let us consider the simple case of fitting a response curve by a number of piecewise 
linear functions. First one must decide on the number and the width of the intervals. 
This is done by selecting the knots or joint points. In Fig. 11.5 these are indicated by 
the points î, t2 and t^. The best positions of these knots can be identified after visual 
inspection of a scatter plot of the data. For some rules of thumb see Ref. [7]. Another 
approach is to spread the knots evenly over the range of the variables. 

In spline regression the parameters of each polynomial segment must be estimated. 
We describe a simple procedure which consists in associating each knot (k=l ,2,3) 
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X 
Fig. 11.4. Example of non-linear data fitted by pieces of straight lines (linear spline with 3 knots). 
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Fig. 11.5. Non-linear data fitted with spline functions of first (i 111), second (- - -) and third degree (—). 
At the two knot positions the spline functions are continuous in the zeroth, first and second degree, 
respectively. 
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with an additional predictor variable, Vk. The value of this variable is 0 for all data 
points (x/) situated on the x-axis before the knot, and is {xi - tk) for all other data 
points. 

Vk-x- tk f o r X > tk 

or in an implicit short-hand notation 

Vk = (x-tk)^ (11.40b) 

Table 11.4 and Fig. 11.6 represent a fictitious example through which a jagged 
spline can be fitted. The equation of the spline curve is: 

y = bo + b\x + C\V] + C2V2 + C3V3 = 0 + 2x-4v] + 3v2-2v3 (11.41) 

The coefficients Q represent the change of slope of the line at the ^h knot. This 
can be easily verified. Consider the first four points. Since only the x-variable is 
nonzero, the equation of the first line segment is: 

y = 2x 

From point 4 onwards the variable vi takes the value {x - 4), while V2 and V3 still 
remain zero. The equation of the second line segment is: 

y = 2x- 4vi = 2JC - 4(x - 4) = 16 - 2JC 

The equation of the third segment becomes: 

y = 2x- 4vi + 3v2 = 16 - 2JC + 3(x - 7) = -5 + Ix 

In our example the spline consists of four line segments with slopes 2, -2, 1, and 
- 1 . The slope changes are -4, +3 and -2. These values correspond to cj, C2, and C3, 
the coefficients of the additional variables that were included. This example is 
artificial since all data fit exactly the line. In practice a classical least squares 
procedure can be applied to fit the experimental data points using multiple regres­
sion of y on the four predictors x, vi, V2, and V3. Just as in ordinary multiple 
regression all variables can be tested for significance. This implies that the coeffi­
cients, Ck, of all additional variables, Vk, can be tested. If one of the variables is not 
significant it means that the slope change at that specific joint is not significant, so 
that the knot can be deleted and the two neighbouring line segments combined into 
one. It must be noted that each additional knot or segment generates an additional 
variable and takes one degree of freedom away. This implies that the number of 
experiments required for spline regression is higher than for usual regression. As 
we have seen, estimation of the parameters in spline regression can be done easily 
using least squares regression provided the knot positions are known. In a certain 
sense spline regression is then a subset of multiple linear regression. However, this 
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TABLE 11.4 

Data for the spline fit of Fig. 11.6 
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Fig. 11.6. Artificial data fitting exactly to a linear spline with three knots. 
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only holds true when the knot positions are fixed to known positions. If these 
positions have to be estimated as well then the addition of these unknown parame­
ters renders the model estimation into a non-linear regression problem. This can be 
appreciated by realizing that one cannot construct a fixed design matrix as in Table 
11.4 when the knot positions are not known beforehand. 

The use of straight line segments is not so useful in practice since only jagged 
lines can be fitted. When instead of simple line segments higher-degree polyno­
mials are fitted in each segment a smooth curve can be obtained. When fitting a 
quadratic polynomial for each segment, two additional parameters have to be 
estimated for each additional segment, one for each term in the polynomial. Just as 
in the case of fitting line segments, the value of these quadratic variables is zero 
for data points, positioned before the specific knot position. For data points after 
the knot the value equals 

The first index refers to the segment while the second index refers to the order of 
the polynomial term. Each segment requires two additional degrees of freedom. It 
is clear that with this method arbitrarily complex curves can be fitted by increasing 
the number of segments or the degree of the polynomial or both. It must be 
remembered, however, that each additional term in the polynomial requires an 
additional degree of freedom per segment. If one employs the added variables of 
highest order only, the function becomes continuous in all derivatives except the 
highest derivative. For example, a superposition of an overall quadratic function 
and iocal' cubic terms v̂ 3 yields a spline function with a continuously varying 
slope and a continuously varying curvature. This results from the behaviour of the 
individual terms (x - tk)l whose first derivative, 3(x - t\^)l, and second derivative, 
6{x - tk)+, are continuous at the knot position tk. Only the third derivative changes 
suddenly from 0 (for x < 4) to 6 (for x > 4) at the knot position. 

The above description of developing a regression spline model was given 
because of its intuitive simplicity. Essentially the same model can be derived 
through the use of so-called B-splines [8]. This alternative method, which is 
beyond the scope of this book, has better numerical properties. 

11.3.2.2 Smoothing splines 
The aim of smoothing splines is to derive a realistic looking curve through a set 

of data points. For example, a spectroscopic measurement may generate a set of 
discrete points (Fig. 11.7a). Rather than just plotting the sequence of dots, we want 
to portray the continuous nature of the spectrum. Simply joining the dots yields a 
continuous curve (Fig. 11.7a), but it does not bring across the smooth nature of the 
spectrum. Technically, we may consider the 'model' shown in Fig. 11.7a as a 
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Fig. 11.7. Four spline models fitted to the same data: (a) interpolating linear spline model; (b) 
interpolating cubic spline model (X = 0); (c) smoothing cubic spline model (optimum X); (d) 
oversmoothed cubic spline model (large X). 

first-degree spline function with a knot at every observed x-value. Since it fits each 
observed data point, this type of function is known as an interpolating spline 
function. Although the function itself is continuous, its first derivative is not. We 
may obtain a quadratic interpolating spline function by applying the method 
discussed in the previous section, treating each observed x-value as a knot. Now, 
the function as well as its first derivative are continuous. The second derivative is 
discontinuous, which may be visible as abrupt changes in the curvature of the 
spline function at the knot positions. Therefore, we may go one step further and 
obtain an interpolating cubic spline function by fitting the data with a general 
intercept, a general linear term (jc), a general quadratic term (x^), and a separate 
third-order term (y,3 = (jc-jc/)i / = 1,...,A2) for each observed x-value. This fit is 
shown in Fig. 11.7b. It has continuous second derivatives, so that the curvature 
changes in a gradual manner, giving the curve quite a natural and realistic appearance. 

In one sense, though, interpolating splines are not realistic. We know that the 
measured data is noisy, so we may relax the requirement that the curve passes 
exactly through the observed data points. We may allow some deviation of the 
curve at the observed data points if this results in a smoother curve. Mathemati­
cally, this boils down to minimizing a composite optimization criterion that has 
two contributions: the usual error sum of squares, SSE = X{>̂ / -^fi^dV^ and a term 
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representing the total amount of curvature, CURV = 1{ d^f/dx^} ̂ dx. In the composite 
criterion the second term is weighted with a smoothing parameter X, i.e. one 
minimizes SSE + 'k CURV. For small values of X the emphasis is on minimizing 
SSE, hence on obtaining a close fit. The perfectly fitting interpolating spline of Fig. 
11.7b corresponds to the limit A. = 0. As ̂  takes larger values smoother curves are 
obtained. These are called cubic smoothing splines. Figure 11.7c shows a cubic 
smoothing spline that displays a good balance between the two desiderata: fit and 
smoothness. As the value of X grows larger the curves become smoother and deviate 
more from the data (Fig. 11.7d). In the limit of A. —> oo one approaches the ultimate 
smooth curve that has no curvature at all, namely a linear fit. Of course, this may 
represent a severe misfit of the data. The leave-one-out cross-validation technique 
discussed in Section 10.3.4 may be applied to determine a best value for the smoothing 
parameter avoiding overfitting (too small X) and underfitting (too large X). 

11.3.3 Other techniques 

Recently some other techniques have been used to model in an empirical way 
non-linear relationships. We will give a short qualitative description of two such 
techniques, ACE and MARS. A full technical description of these techniques is 
outside the scope of this book. 

11.3.3.1 Alternating Conditional Expectation (ACE) 
ACE, which stands for Alternating Conditional Expectations, is a method for 

multiple regression where each of the predictors Xj is optimally transformed into a 
new variable Zj =fj{x)J = 1,...,/?, which allows a better fit of the response y. As a 
simple example, if the true (unknown) relation reads y = bi Vxr+ 2̂-̂ 2 + ̂ 3 log(x3) 
then ACE aims to uncover the three non-linear transformations from the data. The 
transformation functions^, j = 1,...,/?, which in principle will all be different, are 
not given in analytical form (a formula), but in tabular form (Xy vs.fj(Xij), i = l,...,/2). 
Plotting the transformed vs. the original values and inspecting the scatter plot may 
suggest the nature of the non-linear transformation for each predictor variable. The 
response itself may also be transformed, say into zo =/oCy)- In the latter case, the 
predictors Xj and the response y take equivalent roles, so that ACE becomes a 
correlation technique rather than a regression technique. Here, we only discuss the 
regression variant in which y is not transformed. The main idea is that the linear 
additive model 

y = lzj + e (11.42) 

may, for certain choices of transformations ^,7 = 0,1,...,/?, be better satisfied than 
the linear model in terms of the original variables 

y = 'LbjXj + e (11.43) 
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The criterion for assessing and comparing the linear relationships is the multiple 
coefficient of determination, R^. Thus, the task of ACE is to find non-linear trans­
formations, not necessarily in parametric form, of all the variables involved that 
maximize R^. The algorithm starts with a multiple linear regression (eq. 11.43), and 
we use the simple linear transformations {z\ = biX\, Z2 = ^2^2,...) as a first approxi­
mation to the optimal non-linear transformations. 

>̂  = zV̂  + ẑ^̂  + ...+4'^ + ̂  (11.44) 
where zĵ ^ = bjXj (j = I,..,/?), the superscript indicating the iteration number. Notice 
that we have absorbed the proportionality constants bj into the transformed variable. 
A still better fit can be obtained if the x-variables are also transformed non-linearly. 
This is done in turn for each jc,, giving the jc-variable in question the temporary 
status of a response variable. Starting with x\, we rearrange eq. (11.44) into 

eV» = 3'-z^">-z^'*-. . . -z^"-^ (11.45) 

This now shows zi as the 'dependent' variable and }̂  as a predictor. Next we try and 
obtain an update for z\ through a process called back-fitting. For this, a smooth 
curve is fitted through the scatterplot of zV̂  against (y - z^^ - z^^^ - ... - z\!^). In its 
simplest form we can move a window (e.g. spanning 20% of the data points) along 
the JC] axis and compute the expectation of zi for each data point as the (local) 
average of(y- z^^ - ẑ '̂  - ... - zjP). Using the updated transformation for z\ we 
proceed to fit Z2 to the other variables, i.e. 
,^n^3,_ ,p_^^i)_^ _ , ( i ) _ ^ (11.46) 

When all variables have been transformed according to this back-fitting procedure 
we start again with a new cycle (zf \ j = 1,...,/?). Such cycles of altematingly 
updating the variable transformations are repeated until convergence. 

Estimating the expectation functions ^(.) can be done in different ways. In the 
original ACE algorithm [9] it is done by a local smoothing operation. In the related 
MORALS algorithm (MORALS = Multiple Optimal Regression by Alternating 
Least Squares) spline regression is used [10]. It is also possible to restrict the 
non-linear transformations to a certain class, e.g. monotone transformations which 
preserve ranking order. Another closely related method is AVAS [11]. In this 
method also care is taken to stabilize the variance. AVAS (= Additivity and 
VAriance Stabilization) is claimed to be better suited for predictive modelling than 
the correlation-based ACE method. 

As an example Fig. 11.8 shows the transformation plots (z, versus x,) for the 
predictor variables in a QSAR investigation [12]. The x-variables represent struc­
tural parameters of a set of 6-anilinouracils. The response y was the enzyme inhibitor 
activity. Non-linear transformations (quadratic or piecewise linear) of the predic­
tors are clearly indicated. The best transformation of the response appeared to be 
nearly linear. 
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Fig. ] 1.8. ACE transformations of the predictor variables in QSAR data set [9]. 

The optimal transformation approach of ACE (or MORALS) is best applicable 
when there are many observations compared to the number of predictors. The 
technique is especially suitable for data which have been measured on non-linear 
scales. For example, with rank scales one only has information on the relative 
ordering of items, the distances between successive categories are not necessarily 
equal. One may consider applying monotone transformations which affect the 
distances along the scale, which improve the fit in a regression model and still 
preserve the original ranking of the items. Notice that the transformations can be 
very flexible but that the model remains additive, i.e. it does not accommodate for 
interactions between variables. A general introduction to these additive models is 
the book of Hastie and Tibshirani [13]. 
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11.33,2 Multivariate Adaptive Regression Splines (MARS) 
In principle the idea of spline fitting can also be applied in a multivariate setting. 

In practice this is a difficult task since the problem of placing the knots becomes 
much harder. Consider a problem with 5 variables and 2 knots per variables. This 
already generates 3 regions per variable, or 3^ = 243 subregions in 5-dimensional 
predictor space. If we fit each region with a constant value, i.e. the average 
response for that region, we need at least one data point per region, i.e. at least 243 
observations in total. Such a model would be equivalent to an ANOVA model 
containing all high-order interactions. It would be discontinuous at the boundaries. 
As a first step toward a continuous response surface, we should fit each subregion 
with a first-degree model requiring 6 parameters to be estimated. A very modest 
number of 10-20 observations would be necessary to estimate such a local model. 
Thus, we would need at least 1000, preferably over 3000, observations to fit the 
overall model. More often than not, such a large number of data points is not 
available. A possible way out of the dilemma is to search for a multivariate spline 
model that is more parsimonious in the number of subregions. 

The recent technique of Multiple Adaptive Regression Splines (MARS) com­
bines forward variable selection with spline fitting to develop a non-linear multiple 
regression model [14]. The model can be written as a summation of a few basis 
functions. Each basis function is a piecewise polynomial associated with a variable 
and a certain range of that variable. It is possible to include interaction terms 
involving two or three variables and which are active in a localized region of the 
variables involved. The task of MARS is to select the important variables and to 
determine the subregions for each variable by optimal location of a knot. Like 
many other advanced non-linear multiple regression methods, MARS can only be 
applied when a large number of observations is available. 

Figure 11.9 gives a simple two-dimensional response surface that can be fitted 
by a superposition of the two contributions shown separately and a localized 
interaction term. The model can be written as: 

V =/,(x, - r,)+ 4-/2(x, - r,)_ -^Mx2-t2)^ +/4(-^2-^2)- +/5((-̂ i - 1̂ W-^2- 3̂)+) (11 -47) 

where the notation (.)+ indicates that the result is set to zero when the argument is 
not positive (see eqs. (11.40a and b)). Likewise, the minus suffix in (.)_ indicates 
that the result is left unaltered for negative values of the argument and set to zero 
for positive values. The parameters t\, t2 and 3̂ are knot positions. The knot position 
t\ belongs to X\, whereas t2 and t^ are knot positions for X2. Each knot splits the 
experimental range of the predictor involved in two sub-regions that are separately 
modelled. 

As drawn in Fig. 11.9, the functions/] to/4 are simple linear functions making 
the response surface not smooth at the knot positions. Notice that the last term in 
eq. (11.47) is an interaction term that is only active in a local region, viz. in the 
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Fig. 11.9. MARS model as a superposition of univariate and bivariate spline models, (a) linear spline 
along x\; (b) linear spline along X2; (c) local x\XX2 interaction spline; (d) total model combining the 
three contributions. 

corner for which x\ > t\ and X2> h. By going from a first-degree spline to a spline 
of degree 2 or 3 a smoother impression of the fitted surface is obtained. Quadratic 
or cubic functions give continuity in the first or second derivative. There are 
several levels of complexity of a MARS model having to do with the number of 
terms (basis functions) in the model, the degree of the piecewise polynomials 
(splines) and the level of interactions allowed (no interactions, only two-variable 
interactions, or three-variable interactions). 
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Fig. 11.10. Search for the best variable and its optimal knot position for explaining the response y. 
Predictor variable x\ (a) explains the response better than variable .̂ 2 (b). For each predictor variable 
the solid line presents the best fitting single-knot linear regression spline. 

How are the variables and the knot positions selected? The method starts by 
choosing the first predictor variable, jci, as a candidate for the first pair of basis 
functions. Each value jc/i, (/ = l,..,n) observed in the data set for variable x\ is 
considered as a candidate for placing the first knot r. The knot splits variable x\ into 
two segments: observations with a lower value {Xi\ < t) and observations with a 
higher value than the knot {Xi\ > t). A simple regression of >̂  on X] is done for the 
two subsets of data, i.e. for the two segments of data space. The error sum of 
squares is recorded. The best knot position is the one corresponding to the best fit, 
i.e. smallest error sum of squares (see Fig. 11.10a). This is done for each variable 
in turn. With p predictor variables and n observations one must consider/? (number 
of variables) times n (number of knot positions for each variable) pairs of simple 
regressions. The variable Xj and knot position / = jc,y giving the best fit among the 
np candidates is selected (compare Figs. 11.10a and b). This then establishes the 
first two basis functions. 

This strategy can be seen as a search for the best way to split the experimental 
region in two parts which are then separately modelled. The process is repeated 
with the residual values of the response, now searching for a different way of 
splitting the experimental region in two parts that best explains the remaining 
variation in y. Quite likely a different variable will be selected, although it is 
possible that the same variable is chosen but then at a different knot location. 

Once subregions are formed, one may also consider splitting a subregion only 
(c/the last interaction term in the example given). The model is expanded in this 
forward manner to an extent that it is deliberately overfitting. Then it is checked 
whether certain terms in the model can be dropped or neighbouring (sub)regions 
be merged. In either case the complexity of the model is reduced leading to more 
reliable predictions. This backward elimination proceeds until the criterion for 
determining the optimal model complexity minimum is reached. The criterion 
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Fig. 11.11. Optimal sequential splits of the experi mental (xi,X2)-region for developing a MARS model. 
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Fig. 11.12. Additive components of MARS model for polymer property data. 

equals (SS/n)/(l - kM/nf, where SS is the error sum of squares, M is the (final) 
number of basis functions and k(^4) represents an empirically determined factor 
that puts a penalty on each additional basis function. 

Figure 11.11 shows a simple example of two predictor variables only. The first 
split is on X2, the second on xi and the third on X] again, but only for the high X2 
subregion. Notice that the last splitting introduces a strong interaction term as it 
involves the levels of two variables. The advantage of the MARS approach is that 
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it allows a representation of the model as a number of additive terms. For example, 
the final model of a five variable system may be presented as in Fig. 11.12. The 
model relates a physical property of liquid detergents to molecular structural 
parameters of the polymeric system. Variable 3 enters the model linearly, variable 
2 as a non-linear function with a plateau, and variables 1 and 5 show a strong 
interaction. Variable 4 has very little effect and does not enter the model. 

11.3.3.3 Recent developments 
The estimation of nonparametric non-linear models involving many predictors 

is an area of great research interest [15,16]. Artificial neural networks provide a 
powerful technique for modelling non-linear relations between multivariate X and 
multivariate Y (see Chapter 43). Whereas such ANN models often have good 
predictive properties their interpretation is quite difficult. There are also non-linear 
versions of popular multivariate regression techniques e.g. quadratic partial least 
squares (PLS, see Chapter 35) [17], splines-PLS [18] or locally weighted regres­
sion (LWR) in conjunction with PCR [19]. Finally, there is a growing tendency to 
exploit the growing computing power and the insight offered by interactive com­
puter graphics, leading to methods such as Projection Pursuit regression [20]. 
Genetic algorithms have been used to advantage in ill-determined curve fitting 
problems [21]. Another computer-intensive natural computation approach is to 
assemble models from a set of basic functions (constant, x, sin, log, exp) and 
elementary operators (*, /, + , - , V, exp, log, power) and to utilize genetic 
algorithms (Chapter 27) in the search for plausible and well-fitting models among 
the vast number of possibilities [22]. 
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Chapter 12 

Robust Statistics 

12.1 Methods based on the median 

12.LI Introduction 

All tests described so far have been based on the normal distribution. In applying 
these tests it is assumed that the mean and the standard deviation are representative 
measures of the central tendency and of the dispersion of the data examined, 
respectively. 

Here we introduce some methods in which no assumptions about the distribu­
tion of the population is made. Therefore they are called non-parametric or 
distribution-free methods. Since they are also resistant to outlying observations, 
which have a large effect on the mean and the standard deviation, these tests are 
also identified as robust methods. 

We start with a discussion of some descriptive robust statistics and their 
application for a visual inspection of the data. Different methods are then discussed 
which are based on a ranking of the observations and make use of the median. In 
Section 12.2 some other approaches are described. 

12.1.2 The median and the interquartile range 

The median is the value such that 50% of the observations are smaller (or 
larger). It is obtained by ranking the n data. When n is odd the median is the 
observation with rank (n + l)/2; when n is even it is the mean of the observations 
with rank nl2 and rank {n + 2)/2. 

As an example, let us consider the data of Table 12.1. To obtain the median for 
these data the measurements are ranked: 

1.1 
2.9 
3.8 
5.5 

1.2 
2.9 
3.9 
5.5 

1.5 
2.9 
4.0 
5.8 

1.6 
3.0 
4.2 
6.0 

1.8 
3.1 
4.3 
6.2 

1.9 
3.3 
4.5 

2.0 
3.4 
4.5 

2.2 
3.4 
4.6 

2.7 
3.5 
4.9 

2.8 
3.8 
5.3 
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TABLE 12.1 

The determination of aflatoxin M in 7 laboratories (from Ref. [1]) 

Laboratory 

a 

L6 
2.9 
3.5 
L8 
2.2 

b 

4.6 
2.8 
3.0 
45 
3.1 

c 

L2 
L9 
2.9 
1.1 
2.9 

d 

L5 
2.7 
3.4 
2.0 
3.4 

e 

6.0 
3.9 
4.3 
5.8 
4.0 

f 

6.2 
3.8 
5.5 
42 
5.3 

g 

3.3 
3.8 
5.5 
49 
4.5 

There are 35 values and consequently the median has rank (35 + l)/2 = 18. Thus 
the median is 3.4 (the mean is 3.5). Sometimes the median gives a better idea of 
the central tendency than the mean because it is rather insensitive to the skewness 
of the distribution and to extreme values. The mean as well as the median of 15, 
16, 17, 18, 19 equals 17. By the addition of the value 100 to this small data set the 
mean increases to 30.8. This is obviously not a good representative of the central 
tendency of the data since it exceeds 5 of the 6 observations. The median, on the 
other hand, hardly changes to 17.5. 

The first quartile or lower fourth, FL, is the value so that 25% of the observations 
are smaller. Similarly the third quartile or upper fourth, Fy, corresponds to the 
value that is exceeded by 25% of the observations. The second quartile is the 
median. The fourth spread or interquartile range (IQR) is computed as the 
difference between Fy and FL. It represents the range containing the middle 50% 
of the data and therefore is a measure of spread. Note that in a normal distribution 
50% of the observations are contained in a 1.35a range. The IQR is less sensitive 
to extreme values than the standard deviation since it is not affected by values that 
lie beyond Fy and FL. 

In our example the median is the measurement with rank 18 and the lower fourth 
is obtained as the median of the first 18 ranked observations. Consequently, the 
lower fourth, FL, is the mean of the observations with rank 9 and 10. These are 
respectively 2.7 and 2.8. Therefore FL = 2.75. In a similar way the median of the 
last 18 observations, being the mean of observations with rank 26 and 27, corre­
sponds to the upper fourth. Therefore Fu = 4.5 and the interquartile range is 
obtained as: 

IQR = F U - F L = 4.5-2.75 =1.75 

A possible approach for identifying extreme values makes use of the IQR. The 
IQR is multiplied by 1.5 and the result is taken on both sides of the interquartile 
range. Values outside this interval (or acceptable range) are considered to be 
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outliers or at least extreme values that deserve close scrutiny. In our example 
values beyond 4.50 + 1.75 x 1.5 = 7.13 and 2.75 - 1.75 x 1.5 = 0.13 would be 
regarded as extreme. There are no such values in this case. Since in a normal 
distribution the IQR almost corresponds to | a the interval calculated above corre­
sponds to about 5a. 

12.1.3 Box plots 

All the parameters introduced in the previous section can be used to construct a 
box and whisker plot (or simply box plot) which allows a visual representation of 
the data. One constructs a box with ends corresponding to the lower and upper 
fourths in which the median is represented by a horizontal bar. From each end of 
the box a vertical line is then drawn to the most remote data point that is not an 
outlier. These most remote, non extreme values are pictured with a small horizontal 
line, called "whisker". For our example of the previous section, the box plot is 
represented in Fig. 12.1a. Since no outliers were identified the whiskers correspond 
to the lowest and the highest value in the data set, i.e. 1.1. and 6.2. 

Outliers are indicated by a cross outside the whiskers. If in our example the 
highest value, 6.2, was replaced by the value 7.5 the resulting box plot would 
be the one represented in Fig. 12.1b. The box itself would be the same since 
neither the median nor the IQR would be affected by this change. Only the upper 

7.5 

6.2 

4.5 

3.4 

2.75 

1.1 

- r 6.0 

4.5 

3.4 

2.75 

a) b) 

Fig. 12.1. An example of box plots. 



342 

whisker changes since the highest value which is not an outlier is now 6.0. The 
value 7.5 being larger than 7.13 (which was calculated in Section 12.1.2 as being 
the upper limit of the acceptable range) is indicated as an extreme value or 
outlier. Box plots allow a visual interpretation of the data. They contain infor­
mation concerning the range (characterized by the whiskers), the spread (char­
acterized by the length of the box) and the distribution of the observations 
(characterized by the position of the median and the box). A horizontal bar 
(representing the median) situated out of the middle of the box, for example, is an 
indication of a skewed distribution. The latter is illustrated in Fig. 12.2a, obtained 
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Fig. 12.2. Box and whisker plots of (a) the lead contents (in ppm) in surface enamel. Group 1, in vivo 
samples; group 2, in vitro urban group; and group 3, in vitro indust group. Asterisks indicate outlying 
lead values; (b) the natural logarithm of the lead data displayed in (a). 
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Fig. 12.3. Box plots used in the comparison of groups of data. 

from Cleymaet et al. [2]. The example concerns the lead content of surface enamel. 
Acid etch surface enamel microbiopsies were taken from extracted permanent teeth 
from persons living in an urban area (urban groups) and from persons living within 
a distance of 10 km from a lead-polluting nonferrous-metal industrial plant (indust 
group). A third group of samples was obtained in vivo from adult volunteers living 
in an urbanized area (in vivo group). The box plots indicate that the three groups 
are characterized by a skewed distribution and that the indust group shows higher 
lead contents and a larger variation than the urban groups. The box plots of Fig. 
12.2b show the effect of a logarithmic transformation of the lead content: the 
variance in the different groups is comparable and the skewness of the distribution 
is reduced. 

Box plots are also useful for the comparison of different groups of data. Fig. 12.3 
summarizes the box plots for the laboratories of Table 12.1. It is immediately 
obvious that some of the groups are very different from the others (e.g. c from f). 
Moreover, this plot also indicates that the spread in each of the groups is similar 
which means that the within laboratory precision is more or less the same. There 
seems to be homogeneity of variance so that the classical ANOVA can be applied 
for a further analysis of the data. 
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12.1.4 Hypothesis tests based on ranking 

12.1.4.1 The sign test for two related samples 
The sign test is a non-parametric alternative to the paired r-test (see Section 5.2) 

which makes use of positive and negative signs. To illustrate the test let us take the 
data from Table 12.2 in which the results obtained with a test method, xj, are 
compared with those of a reference method, JCR. For each sample, the sign of the 
difference between XR and xj is considered. Differences equal to zero are not taken 
into account since they have no sign. If there is no true difference between the two 
paired samples the number of positive signs can be expected to be almost equal to 
the number of negative signs. In our example, seven out of the 10 differences are 
positive and three are negative. To test whether too few negative differences occur 
the binomial distribution with/7 = q = 1/2, which is discussed in Chapter 15, is used. 
However, statistical tables are available which contain the necessary information 
to perform the test. In Table 12.3 r represents the number of fewer signs and n the 
number of total signs. Since differences that are zero are not taken into account, n 
is smaller or equal to the number of paired observations. The table gives the 
probability that out of n (positive and negative) signs, the smaller number of like 
signs (here the - signs) is equal to or smaller than r. The probabilities given are for 
a one-sided test. They should be doubled for a two-sided test. 

In our example n= 10 and r = 3. Since we only want to know whether there is 
a difference between both methods, the test is two-sided. For n = 10 the two-
tailed probability that r < 3 is 0.344. This figure has to be compared with 0.05 
if the test is performed at the 5% significance level. Since it indicates non-
significance, the null hypothesis that there is no difference between both methods 
cannot be rejected. 

TABLE 12.2 

Data to illustrate the sign test and the Wilcoxon signed rank test for two paired samples 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

XR 

114 
49 
100 
20 
90 
106 
100 
95 
160 
110 

JCT 

116 
42 
95 
10 
94 
100 
96 
102 
150 
104 

d, 

- 2 
+ 1 
+ 5 
+ 10 
- 4 
+ 6 
+ 4 
- 7 
+ 10 
+ 6 

Sign 

+ 
+ 
+ 
-
+ 
+ 
-
+ 
+ 

Rank 

1 
7.5 
4 
9.5 
2.5 
5.5 
2.5 
7.5 
9.5 
5.5 

Signed rank 

-1 
+7.5 

+4 
+9.5 

-2.5 

+5.5 

+2.5 

-7.5 

+9.5 

+5.5 
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TABLE 12.3 

The J 
signs 

^ 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

>ign test. The table gives the probability 
is equal to or smaller than r. The values 

0 

0.063 
0.031 
0.016 
0.008 
0.004 
0.002 
0.001 

1 

0.313 
0.188 
0.109 
0.062 
0.035 
0.020 
0.011 
0.006 
0.003 
0.002 
0.001 

2 

0.688 
0.500 
0.344 
0.227 
0.145 
0.090 
0.055 
0.033 
0.019 
0.011 
0.006 
0.004 
0.002 
0.001 
0.001 

3 

0.656 
0.500 
0.363 
0.254 
0.172 
0.113 
0.073 
0.046 
0.029 
0.018 
0.011 
0.006 
0.004 
0.002 
0.001 

that out of n positive and negative signs, the smaller number of like 
are for a one-sided test. The) 

4 

0.637 
0.500 
0.377 
0.274 
0.194 
0.133 
0.090 
0.059 
0.038 
0.025 
0.015 
0.010 
0.006 

5 

0.623 
0.500 
0.387 
0.291 
0.212 
0.151 
0.105 
0.072 
0.048 
0.032 
0.021 

6 

0.613 
0.500 
0.395 
0.304 
0.227 
0.166 
0.119 
0.084 
0.058 

'should be doubled for a two-sided test. 

7 

0.605 
0.500 
0.402 
0.315 
0.240 
0.180 
0.132 

8 

0.598 
0.500 
0.407 
0.324 
0.252 

9 10 

0.593 
0.500 
0.412 0.588 

For large samples (n > 25) the binomial distribution can be approximated by a 
normal distribution [3] with: 

mean = \Xx= 1/2 n 

and 

standard deviation = Ox = (1/2) ^ 

The null hypothesis is then tested by computing 

x-[ix X- (1/2) n 

~ Cx ~ (1/2) V^ 

and using one of the tables in Section 3.4. 

12.1.4.2 The Wilcoxon signed rank test or the Wilcoxon t-testfor two paired 
samples 

A more powerful alternative to the paired ^test is the signed rank test. Besides 
the direction of the deviation between the observations, which is the only informa­
tion used in the previously described sign test, the signed rank test also considers 
the magnitude of the deviation. Its main limitation is that it cannot be applied for a 
two-tailed test if n < 6. For the example of Table 12.2 the absolute values of d,, the 
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TABLE 12.4 

Critical values of the Wilcoxon signed rank test (a = 0.05) 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

One-tailed 

2 
3 
5 
8 

10 
13 
17 
21 
25 
30 
35 
41 
47 
53 
60 
67 
75 
83 
91 

100 

Two-tailed 

0 
2 
3 
5 
8 

10 
13 
17 
21 
25 
30 
35 
40 
46 
52 
59 
66 
73 
81 
89 

differences for each pair of measurements are ranked. When ties are present the 
mean of the ranks is computed. For example here the value four occurs twice; they 
are both given the rank (2 + 3)/2 = 2.5. The next value, 5, is then given rank 4. 
Afterwards each rank is attributed the same sign as the origind difference. If there is 
no true difference between the two paired samples there should not be a large 
difference between the sum of positive ranks (7^) and that of negative ranks (7"). The 
test consists in comparing T = min (7^, 7") to a critical value. The critical values 
for one and two tailed tests of significance at a = 0.05 are given in Table 12.4. The 
null hypothesis is rejected if the calculated T is less or equal to the tabulated T. 
Notice that in the parametric tests the null hypothesis is rejected if the calculated 
test-statistic is larger than the tabulated critical value. In the example 7^ = 44.0 
and 7" = 11.0 and therefore r = 11. For a two-sided test and n = 10, the critical value 
of r at a = 0.05 is 8. It is concluded that the null hypothesis can be accepted and that 
there is no significant difference between the results of the two methods. 

For large samples (n > 25) it can be shown [3] that the sum of ranks, T, is 
approximately normally distributed with mean 

n(n+ 1) 
\^r^ -, 

and standard deviation 
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/«(n + l ) ( 2 n + l ) 
^'•^V 24 

The null hypothesis is then tested by computing 

z = 

and using one of the tables in Section 3.4 

12.1.4.3 Mann-Whitney U-test for two independent samples 
A powerful alternative to the parametric r-test for independent samples (see 

Section 5.1) is the Mann-Whitney t/-test. As an example consider the following 
two groups of measurements that are to be compared: 

A: 11.2; 13.7; 14.8; 11.1; 15.0; 16.1; 17.3; 10.9; 10.8; 11.7 rii = 10 

B: 10.9; 11.2; 12.1; 12.4; 15.5; 14.6; 13.5; 10.8 n2 = S 

First, all data are taken together and are ranked. When ties are present again the 
mean of the ranks is computed. This yields the ranking as given in Table 12.5. 

If there is no true difference between both samples the ranks for A and B 
measurements should appear at random in the above list. The test consists in 
comparing the smaller of the following two test-statistics with the critical value for 
C/in Table 12.6: 

TABLE 12.5 

Ranking of the measurements for groups A and B in the Mann-Whitney (/-test 

Group Result Rank 

A 
B 
A 
B 
A 
A 
B 
A 
B 
B 
B 
A 
B 
A 
A 
B 
A 
A 

10.8 
10.8 
10.9 
10.9 
11.1 
11.2 
11.2 
11.7 
12.1 
12.4 
13.5 
13.7 
14.6 
14.8 
15.0 
15.5 
16.1 
17.3 

1.5 
1.5 
3.5 
3.5 
5 
6.5 
6.5 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
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TABLE 12.6 

Tables for the Mann-Whitney test. The following tables contain critical values of the U statistic for significance 
levels a equal to 5% and 10% for a two-sided test. If an observed U value is less than or equal to the value in the 
table, the null hypothesis may be rejected at the level of significance of the table. 

n^2 2 3 4 5 6 7 

Critical values of U for a equal to 5 % 
1 
1 

2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
0 

2 
2 
2 
2 

Critical val 
1 
I 

2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

0 
1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 

0 
1 
2 
3 
4 
4 
5 
6 
7 
8 
9 
10 
11 
11 
12 
13 
13 

ues of V for 

0 
0 
1 
2 
2 
2 
3 
3 
4 
5 
5 
6 
7 
7 
8 
9 
9 
10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 
15 
16 
17 
18 

0 
1 
2 
3 
5 
6 
7 
8 
9 
11 
12 
13 
14 
15 
17 
18 
19 
20 

1 
2 
3 
5 
6 
8 
10 
11 
13 
14 
16 
17 
19 
21 
22 
24 
25 
27 

1 
3 
5 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 

a equal to 1 0 % 

0 
1 
2 
4 
5 
6 
8 
9 
11 
12 
13 
15 
16 
18 
19 
20 
22 
23 
25 

0 
2 
3 
5 
7 
8 
10 
12 
14 
16 
17 
19 
21 
23 
25 
26 
28 
30 
32 

0 
2 
4 
6 
8 
11 
13 
15 
17 
19 
21 
24 
26 
28 
30 
33 
35 
37 
39 

8 

0 
2 
4 
6 
8 
10 
13 
15 
17 
19 
22 
24 
26 
29 
31 
34 
36 
38 
41 

1 
3 
5 
8 
10 
13 
15 
18 
20 
23 
26 
28 
31 
33 
36 
39 
41 
44 
47 

9 

0 
2 
4 
7 
10 
12 
15 
17 
20 
23 
26 
28 
31 
34 
37 
39 
42 
45 
48 

1 
3 
6 
9 
12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 
48 
51 
54 

10 

0 
3 
5 
8 
11 
14 
17 
20 
23 
26 
29 
33 
36 
39 
42 
45 
48 
52 
55 

1 
4 
7 
11 
14 
17 
20 
24 
27 
31 
34 
37 
41 
44 
48 
51 
55 
58 
62 

11 

0 
3 
6 
9 
13 
16 
19 
23 
26 
30 
33 
37 
40 
44 
47 
51 
55 
58 
62 

1 
5 
8 
12 
16 
19 
23 
27 
31 
34 
38 
42 
46 
50 
54 
57 
61 
65 
69 

12 

1 
4 
7 
11 
14 
18 
22 
26 
29 
33 
37 
41 
45 
49 
53 
57 
61 
65 
69 

2 
5 
9 
13 
17 
21 
26 
30 
34 
38 
42 
47 
51 
55 
60 
64 
68 
72 
77 

13 

1 
4 
8 
12 
16 
20 
24 
28 
33 
37 
41 
45 
50 
54 
59 
63 
67 
72 
76 

2 
6 
10 
15 
19 
24 
28 
33 
37 
42 
47 
51 
56 
61 
65 
70 
75 
80 
84 

14 

1 
5 
9 
13 
17 
22 
26 
31 
36 
40 
45 
50 
55 
59 
64 
67 
74 
78 
83 

2 
7 
11 
16 
21 
26 
31 
36 
41 
46 
51 
56 
61 
66 
71 
77 
82 
87 
92 

15 

1 
5 
10 
14 
19 
24 
29 
34 
39 
44 
49 
54 
59 
64 
70 
75 
80 
85 
90 

3 
7 
12 
18 
23 
28 
33 
39 
44 
50 
55 
61 
66 
72 
77 
83 
88 
94 
100 

16 

1 
6 
11 
15 
21 
26 
31 
37 
42 
47 
53 
59 
64 
70 
75 
81 
86 
92 
98 

3 
8 
14 
19 
25 
30 
36 
42 
48 
54 
60 
65 
71 
77 
83 
89 
95 
101 
107 

17 

2 
6 
11 
17 
22 
28 
34 
39 
45 
51 
57 
63 
67 
75 
81 
87 
93 
99 
105 

3 
9 
15 
20 
26 
33 
39 
45 
51 
57 
64 
70 
77 
83 
89 
96 
102 
109 
115 

18 

2 
7 
12 
18 
24 
30 
36 
42 
48 
55 
61 
67 
74 
80 
86 
93 
99 
106 
112 

4 
9 
16 
22 
28 
35 
41 
48 
55 
61 
68 
75 
82 
88 
95 
102 
109 
116 
123 

19 

2 
7 
13 
19 
25 
32 
38 
45 
52 
58 
65 
72 
78 
85 
92 
99 
106 
113 
119 

0 

4 

10 
17 
23 
30 
37 
44 
51 
58 
65 
72 
80 
87 
94 
101 
109 
116 
123 
130 

20 

2 
8 
13 
20 
27 
34 
41 
48 
55 
62 
69 
76 
83 
90 
98 
105 
112 
119 
127 

0 

4 

11 
18 
25 
32 
39 
47 
54 
62 
69 
77 
84 
92 
100 
107 
115 
123 
130 
138 
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^ 1 = ^ 1 ^ 2 + 2 ^^ '^'^•'^ 

n2(/i2+ 1) o 
U2 = n]n2 + 2 ^2 

where ri] and 2̂ = the smaller and the larger sample size, respectively; and R] and 
/?2 = the sum of the ranks for the group with sample size n\ and ^2, respectively. 

The null hypothesis is rejected if the test-statistic (the smaller of U\ and U2) is 
less or equal to the tabulated U. 

For our example rii = 8, 2̂ = 10, R] = 70.5 and R2 = 100.5. Consequently, f/i = 
45.5 and U2 = 34.5. The smaller of these values, i.e. 34.5, has to be compared with 
the critical value of U. For a two-sided test with rt] =S and A22 = 10 the 5% level of 
U, as obtained from Table 12.6, is 17. Therefore the null hypothesis is accepted and 
one concludes that there is no evidence for a difference between the two groups of 
measurements. 

For large samples (̂ 2 > 20) U is approximately normally distributed with mean 

n\n2 

and standard deviation 

5u=y 
^1^2 {n\ -h«2+ 1) 

12 

The null hypothesis is then tested by computing 

z = 

and using one of the tables in Section 3.4. A corrected standard deviation when a 
large amount of ties are present can be found in Siegel [3]. Different alternatives, 
requiring the use of different tables with critical values, for this test have been 
proposed. 

12.1,4,4 Kruskal-Wallis one-way analysis of variance by ranks 
In this section a non-parametric test is introduced for the comparison of k 

independent samples. To illustrate the method, the data from Table 12.1 will be 
used as an example. As in the previous test all data are first taken together and they 
are ranked. For ties the mean of the ranks is computed. In the table the original data 
are then replaced by their corresponding rank and the sum of the ranks in each 
column (= Ri with / = 1, ..., k) is calculated. For our example this results in Table 
12.7. With this information the following test-statistic is calculated: 
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TABLE 12.7 

Ranks for the data of Table 12.1 

Ri 

4 
12 
19 
5 

48 

28 
10 
14 
26.5 
15 

93.5 

2 
6 
12 
1 
12 

33 

3 
9 
17.5 
7 
17.5 

34 
22 
25 
33 
23 

54 137 

35 
20.5 
31.5 
24 
30 

16 
20.5 
31.5 
29 
26.5 

141 123.5 

H = 
12 

yv(A^+i) 
3(yv+i) (12.2) 

where k = the number of samples; tti = the number of observations in the /th sample; 
and Â  = Z î/, the total number of observations. 

Since H is distributed approximately as %̂  with k - 1 degrees of freedom [4] the 
test consists in comparing the calculated H value with the tabulated x^ given in 
Table 5.4. The null hypothesis is rejected at the chosen level of significance if H is 
equal to or larger than the tabulated x^ value. 

For our example 

H = 
12 

30(30+1) 

= 24.94 

^48^ 93.52 
• ^ ^ + — ; : — + . 

123.5 2\ 
-3(50+1) 

Since Xo.o5;6 = 12.59 the null hypothesis is rejected. It is concluded that the results 
obtained by the seven laboratories differ significantly. In this example all samples 
are of equal size (all n, = 5) but eq. (12.2) applies equally well with samples of 
different size. 

The %2 approximation to the distribution of H is only valid if there are at least 5 
observations in the different groups. Moreover with less than 5 observations the 
test should not be used at a significance level lower than 1%. 

12.1.4.5 The Spearman rank correlation coefficient 
This non-parametric correlation coefficient for measuring the degree of associa­

tion between two variables yi and j2 in a sample is calculated in the following way: 
616} 

r s= l 
nin^-l) 

(12.3) 
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TABLE 12.8 

Calculation of d? to obtain Spearman rank correlation between Cu and Zn data from Table I 

Brain structure 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Cu 

(^gg" 

25.8 
24.2 
27.3 
32.8 
27.3 
17.9 
14.0 
13.3 
10.0 
10.9 
10.7 
16.0 

Zn 

^ dry weight) 

78.0 
81.8 
69.4 
76.1 
62.5 
60.1 
34.2 
35.5 
33.3 
38.9 
40.8 
46.4 

Rank 
Cu 

9 
8 

10.5 
12 
10.5 
7 
5 
4 
1 
3 
2 
6 

Rank 
Zn 

11 
12 
9 

10 
8 
7 
2 
3 
1 
4 
5 
6 

d/ 

-2 
-^ 

1.5 
2 
2.5 
0 
3 
1 
0 

-1 
-3 

0 

d? 

4 
16 
2.25 
4 
6.25 
0 
9 
1 
0 
1 
9 
0 

where n = the number of paired observations; and d, = the difference between the 
ranks given separately to the variables y\ and ^2. 

It can be shown [3] that r^ is the Pearson product-moment correlation coefficient 
r, as defined by eq. (8.58), between the ranks of 3̂1 and y2. 

Consider, for example, the Cu and Zn concentrations determined in 12 different 
structures of the human brain from Table 8.8. The calculation of n is illustrated in 
Table 12.8. In the case of ties, tied values have been given the average rank. For 
the example r^ is found to be 0.816 whereas the product-moment correlation 
coefficient calculated in Section 8.3.1. was 0.898. The significance of r^ (HQ: ps = 0; 
Hi: ps 9̂  0) can be deduced from Table 12.9 which tabulates critical values of r^,. 
Since r^ is larger than the critical value at the 5% significance level, a significant 
correlation between Cu and Zn has been detected. 

When n is larger than 25, r^ can also be tested as described in Section 8.3.2 for 
the Pearson correlation coefficient, r. There will be little error in using eq. (8.61) 
or Table 8.9. 

12.1.4.6 Detection of trends by the runs test 
In order to be able to draw conclusions about a population from a sample taken 

from that population the sample must be random. The runs test can be used to test 
the random sampling assumption if the original order in which the observations 
were obtained is known. 

It is especially useful in testing the random sequence of observations. In 
Chapters 8 (Section 8.2.2.1) and 10 (Section 10.3.1.3) on regression we concluded 
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TABLE 12.9 

Critical values of the Spearman rank correlation coefficient for a two-tailed test at different/? values 

n p = 0.\0 p = 0.05 p = 0.0[ 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

that a random sequence of positive and negative residuals (y, - yi), when plotted 
against yi , is an indication for the adequacy of the model used to fit the data. For 
the residuals plot in Fig. 8.5b a non-random arrangement of residuals was detected. 
Here we will show how we came to that conclusion by using the runs test. The 
following pattern of positive and negative residuals was obtained: 

0.829 
0.714 
0.643 
0.600 
0.564 
0.536 
0.503 
0.484 
0.464 
0.443 
0.429 
0.414 
0.401 
0.391 
0.380 
0.370 
0.361 
0.353 
0.344 
0.337 

0.886 
0.786 
0.738 
0.700 
0.648 
0.618 
0.587 
0.560 
0.538 
0.521 
0.503 
0.485 
0.472 
0.460 
0.447 
0.435 
0.425 
0.415 
0.406 
0.398 

1.000 
0.929 
0.881 
0.833 
0.794 
0.755 
0.727 
0.703 
0.675 
0.654 
0.635 
0.615 
0.600 
0.584 
0.570 
0.556 
0.544 
0.532 
0.521 
0.511 

• + + + + + + + + + - + - -
There are 19 residuals (n = 19), 9 of which are negative (rii = 9) and 10 of which 
are positive (n2 = 10). A run being a sequence of identical signs, 5 runs (r = 5) are 
observed in these data: a run of 5 negative residuals is followed by a run of 9 
positive residuals, a run of one negative residual, a run of one positive residual and 
finally a run of 2 negative residuals. Table 12.10 gives the critical values of r at a 
= 0.05 for All and AZI less or equal to 20. For each combination of n\ and ^2 two 
critical values are listed. An observed r value which is less than or equal to the 
smaller critical value or greater than or equal to the larger critical value results in 
a rejection of the hypothesis of a random arrangement at the 5% significance level. 
For our example with ni=9 and n2= 10 a non-random sample would contain 5 or 
less runs or 16 or more runs. Since only 5 runs are observed a non-random arrange­
ment of positive and negative residuals has been detected. 
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T A B L E 12.10 

Critical val 

n,^2 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 
-
2 
-
2 
-
2 
-
2 

2 

2 

2 

2 

lues 

3 

2 
-
2 
-
2 
-
2 
-
2 
-
2 
-
2 
-
2 
-
2 
-
3 
-
3 

3 

3 

3 

3 

of rin 

4 

2 
9 

2 
9 

2 
-
3 
-
3 
-
3 
-
3 
-
3 
-
3 
-
3 
-
3 
-
4 

4 

4 

4 

4 

the runs test [4] 

5 

2 
9 

2 
10 

3 
10 

3 
11 

3 
11 

3 
-
3 
-
4 
-
4 
-
4 
-
4 
-
4 
-
4 

4 

5 

5 

5 

6 

2 

2 
9 

3 
10 

3 
11 

3 
12 

3 
12 

4 
13 

4 
13 

4 
13 

4 
13 

5 
-
5 
-
5 
-
5 

5 

5 

6 

6 

7 

2 

2 

3 
11 

3 
12 

3 
13 

4 
13 

4 
14 

5 
14 

5 
14 

5 
14 

5 
15 

5 
15 

6 
15 

6 

6 

6 

6 

6 

8 

2 

3 

3 
11 

3 
12 

4 
13 

4 
14 

5 
14 

5 
15 

5 
15 

6 
16 

6 
16 

6 
16 

6 
16 

6 
17 

7 
17 

7 
17 

7 
17 

7 
17 

9 

2 

3 

3 

4 
13 

4 
14 

5 
14 

5 
15 

5 
16 

6 
16 

6 
16 

6 
17 

7 
17 

7 
18 

7 
18 

7 
18 

8 
18 

8 
18 

8 
18 

10 

2 

3 

3 

4 
13 

5 
14 

5 
15 

5 
16 

6 
16 

6 
17 

7 
17 

7 
18 

7 
18 

7 
18 

8 
19 

8 
19 

8 
19 

8 
20 

9 
20 

11 

2 

3 

4 

4 
13 

5 
14 

5 
15 

6 
16 

6 
17 

7 
17 

7 
18 

7 
19 

8 
19 

8 
19 

8 
20 

9 
20 

9 
20 

9 
21 

9 
21 

12 

2 

2 

3 

4 

4 
13 

5 
14 

6 
16 

6 
16 

7 
17 

7 
18 

7 
19 

8 
19 

8 
20 

8 
20 

9 
21 

9 
21 

9 
21 

10 
22 

10 
22 

13 

2 

2 

3 

4 

5 

5 
15 

6 
16 

6 
17 

7 
18 

7 
19 

8 
19 

8 
20 

9 
20 

9 
21 

9 
21 

10 
22 

10 
22 

10 
23 

10 
23 

14 

2 

2 

3 

4 

5 

5 
15 

6 
16 

7 
17 

7 
18 

8 
19 

8 
20 

9 
20 

9 
21 

9 
22 

10 
22 

10 
23 

10 
23 

11 
23 

11 
24 

15 

2 

3 

3 

4 

5 

6 
15 

6 
16 

7 
18 

7 
18 

8 
19 

8 
20 

9 
21 

9 
22 

10 
22 

10 
23 

11 
23 

11 
24 

11 
24 

12 
25 

16 

2 

3 

4 

4 

5 

6 

6 
17 

7 
18 

8 
19 

8 
20 

9 
21 

9 
21 

10 
22 

10 
23 

11 
23 

11 
24 

11 
25 

12 
25 

12 
25 

17 

2 

3 

4 

4 

5 

6 

7 
17 

7 
18 

8 
19 

9 
20 

9 
21 

10 
22 

10 
23 

11 
23 

11 
24 

11 
25 

12 
25 

12 
26 

13 
26 

18 

2 

3 

4 

5 

5 

6 

7 
17 

8 
18 

8 
19 

9 
20 

9 
21 

10 
22 

10 
23 

11 
24 

11 
25 

12 
25 

12 
26 

13 
26 

13 
27 

19 

2 

3 

4 

5 

6 

6 

7 
17 

8 
18 

8 
20 

9 
21 

10 
22 

10 
23 

11 
23 

11 
24 

12 
25 

12 
26 

13 
26 

13 
27 

13 
27 

20 

2 

3 

4 

5 

6 

6 

7 
17 

8 
18 

9 
20 

9 
21 

10 
22 

10 
23 

11 
24 

12 
25 

12 
25 

13 
26 

13 
27 

13 
27 

14 
28 
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When either rii > 20 or Ai2 > 20 a normal approximation may be used [3] with 

2nin2 . 
mean = \Xr = + 1 

n 

where n = n] + ni, and 

V 2n\n2(2n 
standard deviation ^ ' ^'^ 

\n-\) 

The null hypothesis is then tested by computing 

r-\ir 
Z--

a. 
and using one of the tables in Section 3.4. 

The runs test can also be used when the observations can be dichotomized (i.e. 
converted into two categories). Consider, for example, 20 successive measure­
ments performed on a sample. To test whether there is a drift in the results, the runs 
test above and below the median can be used. Observations that are lower than the 
median are denoted by a negative sign and observations that are larger than the 
median by a positive sign. Observations that are equal to the mean are either 
disregarded [5] or are all given a positive or a negative sign [6]. 

In the following example the median is 8 (the average of the 10th and 11th 
measurement after ranking) and there are 9 runs: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Result 5 9 9 10 7 3 7 10 9 7 9 9 4 9 10 9 4 6 2 3 
Sign - + + + - - - - + + - + + - + + + - - - -

Since it follows from Table 12.10 that with n\ = 10 and n2 = 10 a non-random 
sample would contain 6 or less runs or 16 or more runs at the 5% significance level 
there is no drift in the results. 

12.1.5 Median-based robust regression 

The classical least-squares regression, which consists of minimizing the sum of 
the squared residuals assumes among others a normal error distribution. Conse­
quently, the presence of outliers can have a large influence on the estimated 
parameters. The lack of robustness of the regression parameters is illustrated in Fig. 
12.4. The hypothetical data consist of six points (0.0,0.0), (1.0,1.1), (2.0,2.0), (3.0, 
3.1), (4.0, 3.8) and (5.0, 10.0). It is clear that the last point is not representative for 
the linear model fitted by the rest of the data. The outlier in this straight line 
relationship attracts the regression line, computed by least squares, to such an 
extent that the estimated line is unacceptable. It could be argued that outliers can 
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Fig. 12.4. Hypothetical data with an outlier. The line is the least squares line. The data are given in 
the upper part of Table 12.2. 

be discovered by examining the least-squares residuals. Unfortunately this is not 
always true: the outlying point in Fig. 12.4 does not have a particularly larger 
residual than some other data points (see the upper part of Table 12.12). 

The concept of robust estimation has been extended to regression analysis and 
different robust regression methods that resist the violations of the classical 
assumptions have been described. The resistance of a procedure to outliers is 
measured by means of the breakdown point. Hampel [7] defined the breakdown 
point as the smallest percentage of contaminated data (outliers) that can cause the 
regression estimators to take on arbitrarily large aberrant values. Since even one 
outlier can have a large influence on the least squares line, the least squares method 
has a breakdown point of 0%. Here some median-based robust regression methods 
will be described. Other robust methods in which weighting procedures are introduced 
to down weight the influence of outlying observations are given in Section 12.2. 

12.1.5.1 Single median method 
The single median method (SM) proposed by Theil [8] is the simplest median-

based robust regression method for a straight line relationship. The slope, b], is 
estimated as the median of the n(n - l)/2 slopes between all pairs of data: 

b, - med {(yj - yd /(xj - xd) l<i<j<n (12.4) 

For the data in Fig. 12.4, n = 6 and n{n - l)/2 = 15. The slopes for all pairs of data 
are given in Table 12.11. The median of these slopes is 1.03. Consequently the 
single median slope, Z?i, equals 1.03. The estimator of the intercept, bo, can be 
obtained as the median of the intercepts calculated with this robust slope for all data 
points: 

bo = med (yt - biXi) (12.5) 
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TABLE 12.11 

Slopes for all pairs of data in Fig. 12.4 

Slope 

2 1.10 
3 1.00 
4 1.03 
5 0.95 
6 2.00 

2 3 0.90 
2 4 1.00 
2 5 0.90 
2 6 2.23 
3 4 1.10 
3 5 0.90 
3 6 2.67 
4 5 0.70 
4 6 3.45 
5 6 6.20 

For our example the intercepts calculated are: 

Point 1 
Intercept 0.00 

2 
0.07 

3 
-0.06 

4 
0.01 

5 
-0.32 

6 
4.85 

Consequently the single median intercept, bo, equals 0.00 (0.005 rounded to 0.00) 
and the SM regression line is: 

>; = 0.00+ 1.03 jc 

It can be shown [9] that this method has a breakdown point of 29%. In Table 
12.12 (Data 1) notice the large residual from the robust SM fit for the outlying 
point. This indicates that the line is less influenced by the outlying point than the 
least squares line. However, if two outliers exist in these data (see Data 2 of Table 
12.12) the contamination by outliers is too large to obtain correct estimators. 

12.1.5.2 Repeated median method 
The repeated median method (RM) is an improvement of the single median 

since the breakdown point is increased to 50%. In this method developed by Siegel 
[10] the slope and the intercept are obtained as: 

Z7, = med fmed (Cvy - yd /(jc, - jc,))l (12.6) 

bo = mQd(yi-biXi) (12.7) 
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TABLE 12.12 

Comparison of least-squares and median-based robust regression methods 

DATA 1 
(1 outlier) 

DATA 2 
(2 outliers) 

X 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

regression 
parameters 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

regression 
parameters 

>' 

0.0 
1.1 
2.0 
3.1 
3.8 

10.0 

^0 

bi 

0.0 
1.1 
2.0 
3.1 

10.0 
10.0 

bi) 
bi 

LS 

0.90 
0.30 

-0.49 
-1.08 
-2.07 

2.44 

-0.90 
1.69 

1.19 
0.07 

-1.26 
-2.38 

2.30 
0.08 

-1.19 
2.22 

Residual 

SM 

0.00 
0.07 

-0.07 
0.00 

-0.33 
4.83 

0.00 
1.03 

0.45 
-0.45 
-1.55 
-2.45 

2.45 
0.45 

-0.45 
2.00 

RM 

-0.03 
0.06 

-0.06 
0.03 

-0.29 
4.89 

0.03 
1.02 

0.00 
0.00 

-0.20 
-0.20 

5.60 
4.50 

0.00 
1.10 

LMS 

0.00 
0.07 

-0.07 
0.00 

-0.33 
4.83 

0.00 
1.03 

0.00 
0.07 

-0.07 
0.00 
5.87 
483 

0.00 
1.03 

First, for each of the n data points the median of the (n-l) slopes between that 
point and all other points is calculated. Thus n medians are obtained and the median 
of these n medians is the repeated median estimator of the slope. The procedure is 
explained in Fig. 12.5 for the data from Fig. 12.4 which are also given in the upper part 
of Table 12.12. The lowest median is 0.90 for point 5 and the highest median is 2.67 
for point 6. In Fig. 12.5b the 6 medians are ranked and the RM estimator of the 
slope, bu is the mean of the third and fourth ranked median values. It equals 1.02. 

The estimation of the RM intercept is identical to the SM estimation of the 
intercept described in the previous section. Consequently, the RM line calculated 
for our example is 

y = 0.03 +1.02 X 

which again is not influenced by the outlying point. That the RM method is more 
robust than the SM method follows from the lower part of Table 12.12. Even with 
two outliers the repeated median method behaves well. 
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Fig. 12.5. Illustration of the repeated median method for the data in Table 12.2. (upper part), (a) 
Ranked slope b\ for each point /, joined by a line to each of the other points; and (b) ranked median 
slopes selected from (a). Medians are indicated by a cross and 3-5(5)indicates that for point 5 the 
median slope is that of the line between points 3 and 5, etc. 

12.1.5.3 The least median of squares (LMS) method 
Another important median-based robust regression method, which is also apphca-

ble to the multiple regression situation, is the least median of squares method proposed 
by Rousseeuw [9] and first introduced in chemometrics by Massart et al. [11]. 

The LMS method is based on the minimization of the median of the squared 
residuals. For the straight line relationship this means: 

minimize med (yi - b\ xi - bof 

with the median defined here as the ([n/2] + l)th ranked value; [nil] denotes the 
integer part of nil. Notice that this definition of the median differs slightly from 
the one given in Section 12.1.2 if/i is even. 

In its simplest form, the slope and the intercept are estimated as follows: the 
lines between all possible pairs of points are calculated; with n data points this 
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TABLE 12.13 

Least median of squares regression for the example of Fig. 12.4 

/ 

2 
2 
2 
2 
3 
3 
3 
4 
4 
5 

J 

2 
3 
4 
5 
6 
3 
4 
5 
6 
4 
5 
6 
5 
6 
6 

bi 

1.100 
1.000 
1.033 
0.950 
2.000 
0.900 
1.000 
0.900 
2.225 
1.100 
0.900 
2.667 
0.700 
3.450 
6.200 

bo 

0.000 
0.000 
0.000 
0.000 
0.000 
0.200 
0.100 
0.200 

-1.125 
-0.200 

0.200 
-3.333 

1.000 
-7.250 

-21.000 

Residuals (r) 

1 

0.000 
0.000 
0.000 
0.000 
0.000 

-0.200 
-0.100 
-0.200 

1.125 
0.200 

-0.200 
3.333 

-1.000 
7.250 

21.000 

2 

0.000 
0.000 
0.067 
0.150 

-0.900 
0.000 
0.000 
0.000 
0.000 
0.200 
0.000 
1.767 

-0.600 
4.900 

15.900 

3 

-0.200 
0.000 

-0.067 
0.100 

-2.000 
0.000 

-0.100 
0.000 

-1.325 
0.000 
0.000 
0.000 

-0.400 
2.350 

10.600 

4 

-0.200 
0.100 
0.000 
0.250 

-2.900 
0.200 
0.000 
0.200 

-2.450 
0.000 
0.200 

-1.567 
0.000 
0.000 
5.500 

5 

-0.600 
-0.200 
-0.333 

0.000 
-4.200 

0.000 
-0.300 

0.000 
-3.975 
-0.400 

0.000 
-3.533 

0.000 
-2.750 
0.000 

6 

4.500 
5.000 
4.833 
5.250 
0.000 
5.300 
4.900 
5.300 
0.000 
4.700 
5.300 
0.000 
5.500 
0.000 
0.000 

med (r^) 

0.040 
0.010 
0.004 
0.023 
4.000 
0.040 
0.010 
0.040 
1.756 
0.040 
0.040 
3.121 
0.360 
7.563 

112.360 

yields n{n - l)/2 trial estimates for bo and bi each; for each line the squared 
residuals for all n data points are calculated; finally the line is retained for which 
the median of the squared residuals is minimal. 

For our example of Fig. 12.4 (Data 1 in Table 12.12) the slopes and intercepts 
of the 15 lines between all pairs of the 6 data points as well as the residuals for 6 
data points and the median of the squared residuals for each line are summarized 
in Table 12.13. From this table it follows that the median of the squared residuals 
(med(/^)) is minimal for the line between point 1 and point 4. Consequently, the 
LMS line is 

>' = 0.00+ 1.03 jc 

It should be noted that in this way the LMS line always exactly fits two of the 
data points. Rousseeuw [9] proposes an adjustment of the intercept by replacing 
the intercept term by the LMS location estimate of the n values: 

boii) = yi-biXi i=l,...,n (12.8) 

where b\ represents the robust estimate of the slope determined as described above. 
The LMS location estimate is the midpoint of the shortest half of the sample 

which is obtained as follows. After ranking the intercepts, by finding the smallest 
of the differences 

t>0{h) — bo(\), bo(h+l) ~ ^0(2), • • •» ^O(n) ~ bo(n-h+l) 

where h = [n/2] + 1. 
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In our example the ranked intercepts are: 

-0.32 -0.06 0.00 0.01 0.07 4.85 
I I 

0.33 

0.13 

4.85 

The halves of the sample are indicated by the horizontal lines. The shortest half is 
between -0.06 and 0.07. Therefore the midpoint of this interval, namely 0.00, is 
the LMS location estimate. 

Rousseeuw and Leroy [9] indicate that the standardized residuals resulting from 
a robust fit such as LMS can be used to diagnose outliers. The procedure first 
involves the calculation of an initial scale estimator, / : 

/ = 1.4826( 1 + 5/(n - 2)) Vmed ej (12.9) 

The expression is based on the median of the squared LMS residuals where 1.4826 
is an asymptotic correction factor for the case of normal errors and (1 + 5/(n - 2)) 
is a finite sample correction factor. The latter is necessary to make s^ unbiased 
when errors are normally distributed. If \ei/s^\ < 2.5, the data point is retained, 
otherwise it is rejected. The final scale estimate, s*, for LMS regression is then 
calculated: 

(12.10) 

where n* represents the number of data points retained. 
For the ultimate identification of an outlier, each observation is evaluated again: 

if \ei/s*\ < 2.5 the data point is retained, otherwise it is rejected. 
For our example where the LMS line is 5̂  = 0.00 + 1.03 x this procedure yields 

the following results: 

Xi yi yi a e] ejs* 
0.0 0.0 0.00 0.00 0.0000 0.00 
1.0 1.1 1.03 0.07 0.0049 0.36 
2.0 2.0 2.06 -0.06 0.0036 -0.31 
3.0 3.1 3.09 0.01 0.0001 0.05 
4.0 3.8 4.12 -0.32 0.1024 -1.67 
5.0 10.0 5.15 4.85 23.5225 25.26 

The median of the squared residuals, here the 4th ranked value (see earlier), is 
0.0049. Therefore from eq. (12.9), / = 1.4826 (1 + 5/(6 - 2)) VO.0049 = 0.234. 
Since for the last data point l^^^l = 4.85/0.234 > 2.5 this point is deleted and the 
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final scale estimate (eq. (12.10)) is calculated as s* = V0.111/(5 - 2) = 0.192. The 
outlier test reveals that the last point is an outlier since e/s* = 25.26 > 2.5. 

In re weigh ted least squares based on LMS, proposed by Rousseeuw and Leroy 
[9], the outlier is given a zero weight and the classical least squares procedure is 
applied to the remaining data points. Re weigh ted least squares for the example 
yields the following regression equation: y = 0.08 + 0.96 x. 

LMS can also be applied in multiple regression. For further information the 
reader is referred to the book by Rousseeuw and Leroy [9]. 

12.1.5.4 Comparison of least squares and different median based robust 
regression procedures 

Hu et al. [12] used simulated data contaminated with outliers to compare 
different regression methods. For data that do not contain outliers least squares 
provides the best results, i.e. the least biased estimates of slope and intercept and 
the least variance. The robust regression methods also behave well: the estimated 
regression parameters are similar to the ones obtained by LS; however their 
dispersion is larger. When outliers are present the performance of LS degrades 
rapidly with increasing magnitude of the outlying observations. The effect is 
largest for outliers situated at the extreme points. Robust methods are then better 
suited, the best results (in terms of bias) being obtained for the LMS procedure. 

The authors also applied the outlier diagnosis, as described in the previous 
section for LMS, to the other median-based robust regression methods. SM and 
RM detect only part of the outliers while in some situations LMS treats too many 
points as outliers. They propose the use of these methods in the exploratory 
validation of linear calibration lines and in suitability checks in routine calibration. 
Robust regression is applied to detect outliers in calibration lines found to have a 
bad quality, after which reweighted least squares is performed. 

For the least-squares method confidence intervals for the regression parameters 
can be easily obtained (see Chapter 8). For the median based methods this seems 
less evident. Rousseeuw and Leroy [9] proposed (complicated) approximate con­
fidence intervals for the LMS parameters. These confidence intervals are, of 
course, not needed if a reweighted least squares procedure is used. 

12.2 Biweight and winsorized mean 

Another approach to robust estimation is Mosteller and Tukey's biweight 
approach [13]. It is representative for a class of methods that use iterative weight­
ing procedures to downweight the influence of outlying observations. It is compu­
tationally more complex, but, as shown later, it has other advantages. The biweight, 
x\ is defined as: 
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X - -
Lw/jc/ 

Xw/ 

where 

w, = < 

0 

2 

-xycsf\ when ((jc/ 

otherwise 

with 5 a measure of spread such as half the interquartile range (1/2 IQR); and c a 
constant, usually 6. 

For a normal distribution, where S - {2/3)c (see Section 12.1.2), 65 corresponds 
to 4a and therefore observations that are more than 4a away from the mean are 
given a zero weight. 

Iterative calculations are required since, to obtain the different weights, W/, one 
needs x* and to obtain x* the values of w/ must be known. As starting value for x* 
the mean or the median can be used. Iteration proceeds until a stable value for x* is 
obtained. An example adapted from Mosteller and Tukey [13] is given in Table 
12.14. The biweight determined for the observations 7, 3, 3, -2, -5 , -6, -21, is 
-0.79 (it can be checked that after a fifth iteration, not shown here, a stable value 
of-0.79 is obtained). This is quite different from the value for the median (-2) and 
of the mean (-3). Both the median and the biweight are less affected by the outlier 
than the mean, but the median is affected here by the fact that there is a rather large 
difference between the middle values 3, -2, and -5 . For the example the biweight 
is probably a better measure of central tendency of these data. 

To describe the influence of an outlier on the different measures of central 
location discussed here, we will consider a somewhat larger series of numbers [13] 
-8 , -6, -5 , -5 , -2, 3, 3, 3, 7, 10 for which the mean, the median and the biweight 
are equal or very close to zero. Let us see how these measures of location behave 
when an 11th measurement, x, which takes different values is added. In Fig. 12.6 
the effect of x on the mean (x), the median (represented as x) and the biweight (x*) 
is shown. One observes that the biweight performs best: it remains closest to zero 
and when x becomes an outlier it does not have any influence on the biweight. The 
median of course is most influenced by changes in the middle values of the data 
set. Once x reaches a value outside this middle range, the median is no longer 
influenced. The largest influence of a single observation is observed on the mean. 
If the observation is sufficiently outlying the mean becomes +oo or -oo. 

Mosteller and Tukey [13] recommend the use of 
- median-based estimations in explorative data analysis 
- the biweight (or related estimates such as the trimmed mean (see further)) 

when higher performance is needed for data that are not normally distributed or for 
which normality has not been verified; 
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TABLE 12.14 

Example of biweight mean computation 

First iteration: 
S = 4.5: 

Xj 

7 
3 
3 

-2 
-5 
-6 

-21 

jci = x = - 3 

= half the distance between 3 and -6 (in 

Xj-X] 
10 
6 
6 
1 

-2 
-3 

-18 

Second iteration: 

^i 

7 
3 
3 

-2 
-5 
-6 

-21 

Third iteration 
Xj 

7 
3 
3 

-2 
-5 
-6 

-21 

Xj-xl 
8.48 
4.48 
4.48 

-0.52 
-3.52 
-4.52 

-19.52 

Xj — X^ 

8.02 
4.02 
4.02 

-0.98 
-3.98 
-4.98 

-19.98 

Fourth iteration: 
Xi 

7 
3 
3 

-2 
-5 
-6 

-21 

Xj — JC4 

7.87 
3.87 
3.87 

-1.13 
-4.13 
-5.13 

-20.13 

bci - x*i\/6S = Ui 

0.37 
0.22 
0.22 
0.04 
0.07 
0.11 
0.67 

be, - X2I/65 = Ui 

0.31 
0.17 
0.17 
0.02 
0.13 
0.17 
0.72 

\Xj - xlVSS = Ui 

0.30 
0.15 
0.15 
0.04 
0.15 
0.18 
0.74 

Ix,- - JC4I/65' = Ui 

0.29 
0.14 
0.14 
0.04 
0.15 
0.19 
0.75 

fact -5.5, but -6 

u} 
0.14 
0.05 
0.05 
0.00 
0.00 
0.01 
0.45 

uj 
0.10 
0.03 
0.03 
0.00 
0.02 
0.03 
0.52 

uj 
0.09 
0.02 
0.02 
0.00 
0.02 
0.03 
0.55 

u} 
0.08 
0.02 
0.02 
0.00 
0.02 
0.04 
0.56 

is used for 

\-uj 
0.86 
0.95 
0.95 
1.00 
1.00 
0.99 
0.55 

i-uj 
0.90 
0.97 
0.97 
1.00 
0.98 
0.97 
0.48 

i-uj 
0.91 
0.98 
0.98 
1.00 
0.98 
0.97 
0.45 

i-uJ 
0.92 
0.98 
0.98 
1.00 
0.98 
0.96 
0.44 

ease 

1 = 

1 = 

1 = 

1 = 

of computation) 

Wi 

0.74 
0.90 
0.90 
1.00 
1.00 
0.98 
0.30 

5.82 

Wi 

0.81 
0.94 
0.94 
1.00 
0.96 
0.94 
0.23 

= 5.82 

Wi 

0.83 
0.96 
0.96 
1.00 
0.96 
0.94 
0.20 

= 5.85 

Wi 

0.85 
0.96 
0.96 
1.00 
0.96 
0.92 
0.19 

: 5.84 

1 = 
X*2 = 

1 = 
^3 = 

1 = 
X*4 = 

1 = 
4 = 

WiXi 

5.18 
2.70 
2.70 

-2.00 
-5.00 
-5.88 
-6.30 

-8.60 

:-1.48 

WiXi 

5.67 
2.82 
2.82 

-2.00 
-4.80 
-5.64 
-4.83 

-5.96 
-1.02 

WiXi 

5.81 
2.88 
2.88 

-2.00 
-4.80 
-5.64 
-4.20 

-5.07 
-0.87 

WiXi 

5.95 
2.88 
2.88 

-2.00 
^ . 8 0 
-5.52 
-3.99 

-4.60 
-0.79 
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Fig. 12.6. The effect of an eleventh value x, added to the numbers -8 , -6, -5 , -5 , -2, 3, 3, 3, 7, 10, on 
the mean (I), the median (x) and the biweight (jc*). 

- mean-based calculations when careful studies indicate that all aspects of the 
normal distribution are verified. 

A somewhat similar approach is the winsorized mean [14] for which different 
proposals exist. Thompson [15] applied one of these to method validation in 
analytical chemistry. The robust estimate of the mean, jCw, is obtained as: 

where the X,(H;) are the winsorized values of jc,. They are obtained as follows: 

•^/(w) — -^w Cij 11 Xi —~ X\\; ^ ~ C*3 

The value of c depends on the amount of outliers expected and a value of 1.5 is 
often used. 5 is a robust estimate of the standard deviation for which, with c= 1.5, 
Thompson uses the expression: 

5^ = variance JC/(H;/0.778 

This means that values within a spread of 35 around the winsorized mean are used 
as such, while more outlying observations are given the less extreme value of Xw + 
1.5 5 or Xw- 1.5 5. 

As for the biweight approach, an iterative calculation of x^ and 5 is required. 
Initial estimates of these parameters used by Thompson are: 

-̂ (̂0) — med Xi 

5(0) = 1.483 med (U, - med X/l) 
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12.3 Iteratively reweighed least squares 

In Section 12.1.5 median based robust regression methods, that make use of the 
robustness of the median as location estimator, have been described. In other robust 
methods weighting procedures are introduced in order to down weight the influence 
of possible outliers in the regression data. Different weight functions have been 
proposed among which the biweight described in the previous section. Iteratively 
reweighted least squares (IRLS) is a least-squares method in which at each 
iteration the observations are weighted. Weighted least squares is applied itera­
tively. At each iteration the regression coefficients are estimated and new weights 
based on the residuals are calculated. If the biweight is used the observations are 
weighted according to: 

Wi = 

\-{ei/cSyy when kl < c5 

0 otherwise 

where ei is the residual, the deviation of the /th observation from its value predicted 
by the regression model (= yi - 5 /̂); 5 is a robust measure of spread (the median of 
the absolute residuals is frequently used; then S = (med Ir,!)); c is a constant, usually 6. 

Initially, all observations are given a weight equal to one. Consequently the 
starting values for the regression parameters are obtained from a simple least-
squares procedure. From the least-squares fit new weights are calculated which are 
used to estimate new regression parameters by means of a weighted regression 
procedure (see Section 8.2.3.2). Iteration is continued until stable regression 
coefficients are obtained. 

The technique of iteratively reweighted least squares will be illustrated with the 
hypothetical data of Section 12.1.5. Only the calculations for the first three steps 
are given in Table 12.15. A summary of the complete results is given in Table 12.16. 
The intermediate results were rounded to two decimal places. Stable regression 
coefficients are obtained after 6 iterations. The weight of the outlying observation is 
then zero while all good points reach weights very close to one. Therefore the 
regression equation obtained corresponds to the line through the first five data points. 

Philips and Eyring [16] have proposed a correction for the initial least-squares 
estimates used as starting values since they suffer from lack of robustness and 
according to the authors can lead to incorrect results. The correction is based on a 
winsorizing of the residuals from the least squares fit. The authors [16] compared 
iteratively reweighted least squares and classical least squares regression (LS). 
They propose approximate confidence intervals for the IRLS regression parame­
ters which are based on an estimate of the variance for the biweight, given in 
IVIosteller and Tukey [13]. Philips and Eyring conclude that IRLS is superior to LS 
when errors are not normally distributed or when normal data are contaminated 
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TABLE 12.15 

Computation of the first three steps in iteratively reweighted least squares applied to the hypothetical data of 
Section 12.1.5 

Step 1 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

0.0 
1.1 
2.0 
3.1 
3.8 

10 

v = -0.90+ 1.69 jc 

Step 2 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

-0.90 
0.79 
2.48 
4.17 
5.86 
7.55 

\ei\ 

0.90 
0.31 
0.48 
1.07 
2.06 
2.45 

1̂ /1/65 

0.15 
0.05 
0.08 
0.18 
0.35 
0.41 

0.96 
1.00 
0.98 
0.94 
0.77 
0.69 

5 = (0.90+1.07)72 = 0.99 
i'= -0.78+1.62 X 

Step 3 \ei\ \ei\l6S 

0 
1 
2 
3 
4 
5 

-0.78 
0.84 
2.46 
4.08 
5.70 
7.32 

5 = (0.78 + 
y = -0.66 + 

0.98)/2 
1.54 jc 

0.78 
0.26 
0.46 
0.98 
1.90 
2.68 

= 0.88 

0.15 
0.05 
0.09 
0.19 
0.36 
0.51 

0.96 
1.00 
0.98 
0.92 
0.76 
0.55 

TABLE 12.16 

Summary of the iteratively reweighted least squares applied to the hypothetical data of Section 12.1.5 

A",-

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

>•/ 

0.0 
1.1 
2.0 
3.1 
3.8 

10.0 

^ 0 

bi 

w, 

Step: 1 

-0.90 
1.69 

2 

0.96 
1.00 
0.98 
0.94 
0.11 
0.69 

-0.78 
1.62 

3 

0.96 
1.00 
0.98 
0.92 
0.76 
0.55 

-0.66 
1.54 

4 

0.96 
1.00 
0.98 
0.92 
0.74 
0.34 

-0.47 
1.39 

5 

0.96 
1.00 
0.98 
0.92 
0.71 
0 

0.07 
0.97 

6 

0.96 
0.98 
1.00 
0.92 
0.86 
0 

0.09 
0.96 

7 

0.96 
0.98 
1.00 
0.92 
0.92 
0 

0.08 
0.96 

8 

0.96 
0.98 
1.00 
0.90 
0.92 
0 

0.08 
0.96 
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with outliers. LS however is to be preferred in the ideal situation of normally 
distributed observations. This conclusion therefore is similar to the one made for 
median-based robust regression methods in Section 12.1.5.4. 

12.4 Randomization tests 

In a randomization test the probability (p) of falsely rejecting the null-hypothe­
sis when in fact it is true, is not determined from statistical tables. Significance is 
determined from a distribution of the test statistic generated by randomly assigning 
the experimental data to the different conditions (i.e. groups, treatments, methods, 
etc.) studied. 

An example of the randomized independent r-test will illustrate this. The 
example is obtained from Ref. [17]. Two treatments A and B which yield the 
following results: A: 18; 30; 54 and B: 6; 12 are compared. If the null hypothesis 
(Ho: |LLA = ^B) is true one could randomly interchange the results for A and B 
without affecting the conclusion. The example is small to allow an illustration of 
the complete procedure. The ^value (see eq. (5.8)) calculated for these data is 1.81. 
The significance of this calculated r-value is determined by computing t for all 
permutations of the data. These are given in Table 12.17. For a one-tailed test (HQ: 
|LIA = |LIB; HI: |LIA > |LIB) the ordered theoretical distribution of r: -3.00, -1.22, -0.83, 
-0.52, 0.00, 0.25, 0.52, 0.83, 1.22, 1.81 is considered. A r-value as high as the one 
obtained with the experimental data (1.81) occurs only once in the ten possible 
permutations. In this example t > 1.81 has a probability of 0.10 (p = 0.10). 
Therefore, if Ho is true, the probability that the random assignment performed 
would result in a r-value as large as the one obtained with the experimental results 
is 0.10. If the pre-established level of significance a = 0.20, Ho is rejected. 

TABLE 12.17 

Data combinations obtained by permutation of the original data [17] 

X 

t 

X 

t 

A 

6 
12 
18 
12 

6 
30 
54 

30 

-3.0 

0.83 

B 

30 
54 

42 

12 
18 

15 

A 

6 
12 
30 
16 

12 
18 
30 

20 

B 

18 
54 

36 
-1.22 

6 
54 

30 
-0.52 

A 

6 
12 
54 
24 

12 
18 
54 

28 

0.00 

0.52 

B 

18 
30 

24 

6 
30 

18 

A 

6 
18 
30 
18 

12 
30 
54 

32 

B 

12 
54 

33 
-0.83 

1.22 

6 
18 

12 

A 

6 
18 
54 
26 

18 
30 
54 

34 

0.25 

1.81 

B 

12 
30 

21 

6 
12 

9 
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TABLE 12.18 

Comparison of two series of measurements; an outlier is present in the data of treatment B [17] 

A'A = 

Treatment A 

0.33 
0.27 
0.44 
0.28 
0.45 
0.55 
0.44 
0.76 
0.59 
0.01 
0.412 

Treatment B 

0.28 
0.80 
3.72 
1.16 
1.00 
0.63 
1.14 
0.33 
0.26 
0.63 

JCB = 0.995 
1/1= 1.78 

In general, the one-tailed probability for t for a randomization test is defined as 
the probability, if Ho is true, to obtain a r-value at least as large as the obtained 
value. For a two-sided test (HQ: |IA = M̂B, HI : |IA ^ M̂B) the probability for t is defined 
as the probability, if HQ is true, to obtain a value of \t\ as large as the obtained value 
of kl. For our example the following ordered theoretical distribution of \t\: 0, 0.25, 
0.52, 0.52, 0.83, 0.83, 1.22, 1.22, 1.81, 3.00 is obtained. Two values are at least as 
large as the \t\ for the experimental data. Therefore p = 0.20 and for a = 0.20 Ho is 
rejected. 

The data from Table 12.18 show that the test is robust. The outlier in B (3.72) 
causes the (two-tailed) parametric independent r-test to yield a non-significant 
result (p = 0.092). The randomization test yields p = 0.026. The presence of the 
outlier increases the standard deviation for group B, SQ, and reduces the value of t. 
Because s^ increases more than \XA -XB\ the r-value is lower. 

A randomization test requires a great amount of computation, even for small 
samples. For the analysis of the results of Table 12.18 e.g. 1847561 values have to 
be computed, requiring a computer. For large samples the computer time can be 
reduced by using random data permutation programs [17]. With random data 
permutations the test statistics are only calculated for a given number of permuta­
tions from all those possible. 

This has been applied in the next example which illustrates the randomization test 
procedure for one-way analysis of variance. The data are given in Table 12.19. Four 
laboratories analyzed the same sample containing trifluoperazine with the same 
titrimetric method. Each laboratory obtained 10 replicate results. The question is then 
whether there is a significant difference between the mean results obtained. 
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TABLE 12.19 

Comparison of 4 laboratories for the analysis of trifluoperazine with the same titrimetric method 

1 
(%) 

100.25 
100.29 
100.09 
100.49 
101.18 
101.32 
100.63 
100.90 
100.76 
100.46 

x = 100.64 
s = 0.41 

2 
(%) 

100.83 
100.82 
100.60 
99.43 
100.73 
100.85 
100.17 
101.22 
100.21 
98.96 

100.38 
0.71 

3 
(%) 

99.58 
99.76 
100.53 
100.1 
99.1 
100.3 
99.7 
99.2 
99.6 
99.6 

99.75 
0.45 

4 
(%) 

100.89 
100.99 
99.98 
100.41 
100.53 
101.05 
101.92 
100.12 
100.35 
100.08 

100.63 
0.60 

The ANOVA takes the form of Table 6.3 with )t = 4 and n = 40. Systematic data 
permutation would result in about 5 x 10 '̂ permutated data sets. The random data 
permutation method was used to select 3000 permutations. To perform the ran­
domization ANOVA test one could compute F for each of these permutated data 
sets and compute the probability for F as the proportion of the 3000 permutations 
that yield an F-value as large as the F-value for the original data set. Edgington 
[17] shows that one can advantageously use (L(Tj Mi), with 7/ and rii the sum and 
the number of experimental results for a particular condition (here method), to test 
the significance of F. Since for the example only 8 out of the 3000 permutations 
provide a value for Z(7? Mi) as large as that for the obtained data the probability of 
obtaining such a large F is 0.0026. The selection of another 3000 permutations 
confirmed the differences between the laboratories. 

Besides the fact that randomization tests do not require the assumptions of 
normality and homoscedasticity they have an additional advantage. Randomization 
tests can also be applied when the random sampling assumption, which is the basis of 
all classical statistics, is violated. One such violation is systematic selection which may 
occur in some intercomparison studies in which only good laboratories participate. 

12.5 Monte Carlo methods 

Monte Carlo (MC) methods are part of the field of numerical simulation (Part 
B, Chapter 42) and play an important role in mathematics and statistics since their 
formal development in 1945. They originated within the context of the Manhattan 
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project which dealt with the design of the first atomic bomb and nuclear reactor. 
During that period the approach was code named Monte Carlo, which is also 
reminiscent of gambling and casinos. The founders of modem MC methods were 
Ulam, Metropolis, Fermi and von Neumann [18,19]. 

We will discuss two aspects of the MC approach. The first is referred to as 
deterministic MC and aims to determine theoretical quantities, that arise from 
differential equations and integrals, by means of simulated random events. The 
other is called probabilistic MC and is used for the simulation of properties of 
stochastic processes, such as the distribution of a random variable and the robust­
ness of a statistical procedure. 

12,5.1 Probabilistic MCfor statistical methods 

Due to the steady improvement in speed of computers and the decreasing cost 
of computing, Monte Carlo methods constitute a robust alternative to physical and 
statistical models that often have to introduce simplifying assumptions in order to 
obtain a manageable solution. The role of Monte Carlo methods in statistics can be 
compared to that of experimentation in the natural sciences [20]. Consequently, 
there also is a need for proper conduct and reporting of MC experiments. 

The scope of the statistical MC also includes the permutation and randomization 
tests (Section 12.3) and of the resampling tests which are based on bootstrapping 
?ind jack-knifing. In bootstrapping one produces a number of samples of size n from 
an original sample of the same size n by means of random selection with replace­
ment. From these bootstrapped data one can then compyte various statistics, such 
as the confidence intervals for the median, interquartile range, etc. of the original 
sample. Jack-knifing employs a similar technique, but with the difference that 
resampling produces a predetermined number of samples of size m<nby means 
of random selection without replacement. The statistics computed from the jack-
knifed data are then corrected for the loss of degrees of freedom that resulted from 
drawing samples whose size is smaller than that of the original sample [21]. 

One of the earliest applications of this approach is attributed to Student (W.S. 
Cosset) for the study of the r-distribution for small samples, before the analytical 
form of the distribution was known [22]. The particular shape of the ^distribution 
can be studied empirically by repeatedly taking two samples of a given size n from 
the normal distribution. One then computes the r-statistic in the usual way: 

r = (jci - 3c2) /{sp/^) with si = (5i -h 2̂) /2 

where x\,X2 and S], S2 represent the means and standard deviations of the two 
samples, respectively. 

This operation is repeated a large number of times, after which the distribution 
of the r-values is plotted. Figure 12.7 shows the result of an MC simulation of the 
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Fig. 12.7. Student's r-distributions for the difference of the means from two samples with size 2 and 
100, respectively, drawn from a normal population. The distributions have been derived from 1,000 
runs in a probabiHstic Monte Carlo simulation. 

r-distribution for n equal to 2 and 100, using 1000 runs in each case. One can 
observe the protracted tails of the r-distribution for small sample sizes and the 
asymptotic convergence toward the normal distribution for larger sample sizes. 

The MC procedure can be employed for the study of distributions whose 
analytical form is difficult to obtain. Practical applications of this approach can be 
found in problems that involve waiting lines (queues) or random walks where the 
basic transition probabilities are not stationary, such as occurs in self-regulating 
and adaptive systems. 

In MC models one often makes the simplifying assumption that the phenomena 
are normally distributed, with a given mean and standard deviation. An expedient 
way to generate pseudo-normally distributed random numbers follows from the 
central limit theorem. (The term pseudo-normal indicates that the numbers are only 
approximately normally distributed.) To this effect, 12 random numbers u\, U2, ... 
Wi2 are drawn from the uniform distribution between 0 and 1. It can be shown that 
the pseudo-normal variable z is given by: 

z = X Ui - 6 (12.11) 

A practical application of probabilistic MC is the robust determination of the 
minimal sample size n for a minimal detectable difference <i in a test for the 
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comparison of two means, when the distribution of the test statistic x is known but 
not normal [23]. The procedure is as follows. First, one constructs an alternative 
distribution by shifting the original distribution of x by the amount d. Then one 
takes a sample of a relatively small size n from each of the two distributions. The 
preferred two-sample test is performed and one notes whether the outcome is 
significant at the stated level of significance a (e.g. 0.05) or not. The sampling is 
repeated a large number of times (of the order of 10000) and the fraction of 
significant outcomes is determined. This fraction is the power 1 - (3 of the test for 
the given distribution of x, level of significance a, difference d and small sample 
size n. Usually, the power thus obtained will be smaller than the required one (e.g. 
0.80). The procedure is repeated again for the same settings of d and a, but for a 
substantially larger sample size n. The resulting power may turn out to be larger 
than required. If not, the procedure is repeated once again until a power of at least 
equal to the prescribed one is obtained. Finally, the power 1 - (3 is plotted against 
the sample size n. From this plot one can determine the minimal sample size by 
means of interpolation for a given power 1 - (3, significance a, difference d and 
distribution of jc. 

A drawback of the Monte Carlo approach is that the number of simulation runs 
that must be performed can be excessively high. As a general rule one can state that 
the error d between a theoretical and MC-estimated distribution decreases with the 
square root of the number of runs yv [21]. In order to obtain an accuracy 5 with a 
certainty of 99% one must have at least: 

yv = (1.63/5)2 (12.12) 

For example, in the case of 3-digit accuracy (6 = 0.0005) the minimal requirement 
is about 10̂  runs. 

12.5.2 Probabilistic MC for physical systems 

Generally in statistics, phenomena with a random component are studied by 
means of a model. Sometimes, however, the model is too complex to be solved 
either analytically or numerically. With Monte Carlo methods, the model itself is 
studied by means of simulated random events. 

The latter was the case with the design of the first atomic bomb and nuclear 
reactor. The physical model which accounted for production, scattering and absorption 
of secondary neutrons produced by fission of uranium was intractable by ordinary 
mathematical methods. Hence, no reliable estimates for the design parameters could 
be obtained, which either guaranteed rapid explosion or controlled operation. 

The Monte Carlo approach consisted in modelling the chains of random events 
that could take place. These are represented schematically in Fig. 12.8 which 
shows two types of events following fission of an U235 atom in the core of a reactor. 
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Fig. 12.8. Random walks of secondary neutrons produced by fission of uranium inside the core of a 
nuclear reactor. The mean free path length of the neutrons can be estimated by means of a probabilistic 
Monte Carlo simulation of the physical processes. 

In event A, a neutron is produced by fission of U235 and is scattered outside the fuel 
rod into the surrounding graphite mantle. The neutron is slowed down by succes­
sive collisions and eventually reenters the fuel rod as a thermal neutron where it 
contributes to the chain reaction by fission of another U235 atom. In event B, a 
secondary neutron is also scattered into the graphite moderator, but is absorbed in 
the graphite and thus lost for a sustained chain reaction. The successive events 
constitute a random walk, which is characterized by the mean free path length of 
the neutrons. This is a critical parameter for the controlled operation of a nuclear 
reactor. In reality the model is much more complicated than we have described 
here. The point is, however, that the random processes inside a reactor can be 
simulated, given the relevant physical characteristics and design parameters, such 
as the cross section for scattering and absorption of neutrons by graphite and 
uranium, the proportion of U235 to U238, the dimensions of the fuel rods, the spacing 
between rods, etc. For various settings of the design parameters, one can then 
obtain statistical estimates for the operating characteristics, such as the yield of 
secondary neutrons, heat production, etc. 

The phenomena of photon scattering and absorption inside a photographic film 
have been studied likewise by means of MC calculations [24]. Three basic types 
of events are represented schematically in Fig. 12.9. In event A, a photon is 
absorbed directly in the photographic emulsion on top of the film. In event B, the 
photon is scattered into the supporting film and is subsequently lost, while in C it 
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Fig. 12.9. Random walks of photons that interact with the sensitive emulsion and plastic support of 
a photographic film. The sensitivity of the film can be determined by means of the probabilistic Monte 
Carlo approach. 

is back scattered into the sensitive emulsion layer. In this case, the description of 
the physical system also led to intractable mathematical equations. The MC 
approach, however, allowed to design photographic films with controllable sensi­
tivity for various types of emulsion and support. 

12,5.3 Deterministic MC 

In deterministic applications of MC a deterministic quantity is expressed as a 
parameter of some random distribution, and then that distribution is simulated. A 
classical illustration of the deterministic approach is the so-called needle game of 
Buffon, which was designed around 1750 for the determination of the number n 
[25]. In this game, parallel lines, separated by a distance d are drawn on a sheet of 
paper (Fig. 12.10). A needle with length /, smaller than d, is thrown nt times on the 
sheet, and the number of times nc that the needle crosses one of the lines is 
recorded. The value of n can be determined to any desirable degree of accuracy, 
depending upon the number of throws nt, by means of the formula: 

n = 2l/(d-k) v/'\ih k = nc/nt (12.13) 

Deterministic MC is also used for the calculation of high-dimensional integrals 
for which analytical or numerical solutions are difficult to obtain. The procedure 
for the one-dimensional case is illustrated in Fig. 12.11. We assume that the 
function f(x) to be integrated ranges between the values fmin and fmax on the interval 
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Fig. 12.10. The needle game of Buffon, a classical illustration of the deterministic Monte Carlo 
method. 

Fig. 12.11. Integration of a function by the deterministic (hit-or-miss) Monte Carlo approach. 

of X between 0 and 1. The rectangle defined by the limits fmin, fmax and 0, 1 is then 
seeded randomly by nt points and the number of points nb that lie below the curve 
of f{x) is recorded. The integral is then determined to any degree of accuracy, 
depending on nt, by means of: 

j f(x)djc = fmin + /:(fmax" fmin) with k = nb/nt (12.14) 

The above approach is also referred to as the hit-or-miss Monte Carlo method. 
In a broad sense one can also regard the so-called natural computing techniques, 

such as genetic algorithms and simulated annealing (Chapter 27), as modern 
developments of the Monte Carlo approach. While the crude Monte Carlo method 
uses only random sampling of the space of possible solutions, natural computing 
algorithms make use of both random variation and selection rules in order to arrive 
at the solution. 
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Chapter 13 

Internal method validation 

13.1 Definition and types of method vahdation 

Method validation in analytical chemistry is the last step in method develop­
ment. Once a candidate method has been obtained, it has to be shown to meet the 
requirements of the user, namely to measure a specific substance with a given 
precision, accuracy, detection limit, etc. Method validation is carried out to ensure 
the quality of a method. It is therefore an essential part of any quality assurance 
program in the laboratory. Quality assurance (in general) has been defined [1] as: 
"A system of activities whose purpose is to provide to the producer or user of a 
product or a service the assurance that it meets defined standards of quality with a 
stated level of confidence." 

Chemical analysis can also be considered as a service. To "meet defined 
standards of quality" requires, among other things, that the analyst should define 
the performance characteristics that a method must meet and the "stated level of 
confidence" requires a statistical approach to measuring those performance char­
acteristics. This then leads to the following definition [1]: 

"Method validation consists of documenting the quality of an analytical 
procedure, by establishing adequate requirements for performance criteria, 
such as accuracy, precision, detection limit, etc. and by measuring the values 
of these criteria." 

The word "document" is important. Several regulatory bodies require that one 
details the analytical procedures used as standard operating procedures (SOP). 
They also require proof that one has indeed carried out a validation of such methods 
and this means one must document the validation as part of a quality assurance 
program. Method validation requires different experimental set-ups according to 
the purpose and the context and must always be concluded with a statistical 
analysis of the data produced by the method validation experiments. The statistics 
applied are also very diverse and require knowledge of a large part of the statistical 
techniques described in the preceding chapters. It is therefore one of the main fields 
of application of chemometrics. 
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Two types of method validation can be distinguished. The first will be called 
internal method validation. It consists of the validation steps carried out within one 
laboratory, for instance, to validate a new method that has been developed in-house 
or to verify that a method adopted from some other source is applied sufficiently 
well. In many cases the method validation stops here. When a company is prepar­
ing a method for the determination of a drug in blood, it is often not necessary to 
collaborate with other laboratories in doing this. However, there are many situ­
ations in which two or more parties are involved, e.g. the laboratory of a manufac­
turer and that of a third party. Also, there are many instances where analytical 
results are of interest to the general scientific community. In such cases agreement 
about analytical results requires interlaboratory validation. Moreover, confronting 
many laboratories is the best way of thoroughly testing a method. Internal valida­
tion is described in this chapter and the interlaboratory approach in Chapter 14. 

Primary and secondary performance criteria can be distinguished. The primary 
criteria are precision, which describes the size of random errors, bias, accuracy 
and/or trueness, which measure the magnitude of systematic errors (see Sections 
2.5 and 2.6) and the detection limit, which determines the lowest quantity of a 
substance that can still be distinguished from the background. Secondary criteria 
are criteria that have an influence on the primary ones. An example is linearity. In 
many cases the determination requires a calibration step and the calibration line is 
often a straight line. If the method is based on the linearity of the calibration line, 
then deviation from this postulated relationship will lead to bias. Other secondary 
criteria are as follows. 

- The range (i.e. the interval between upper and lower analyte levels) in which 
the linear relationship or any other calibration relationship used is correct. 

- The quantification limit, which is the lowest concentration of the analyte that 
can be determined with sufficient precision and accuracy. 

- The selectivity, which ensures that the signal measured is not influenced by 
concomitant substances or, at least, that the contribution of other substances 
is removed. 

- The sensitivity, which gives an indication of how much the signal changes 
with concentration. As discussed in Section 13.8, this term is also used in a 
very different context together with specificity and terms such as fillse positive 
rate and false negative rate to describe the performance of qualitative analy­
sis procedures. 

- The ruggedness, which measures to what extent a method is sensitive to small 
changes in procedure or circumstances. 

All the terms given above are used in this section in a colloquial sense. 
Definitions will be given and discussed in the sections devoted to each of the 
performance criteria. It should be noted immediately that terminology is a 
major problem. At the time of writing this chapter (1996), there are for instance 
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nomenclature guidelines by lUPAC [2-4], by ISO [5,6] and a proposed terminol­
ogy by AOAC [7]. These definitions do not agree on several points. Moreover, 
many other guidelines, norms, and definitions exist in specific areas. Where 
possible, we will follow ISO, lUPAC and AOAC guidelines. Where they disagree, 
we will say so and state our preference for one or other term. 

13.2 The golden rules of method vahdation 

There are three very important rules which must always be kept in mind: 
- Validate the whole method: Quite often, one validates only the actual determi­

nation (e.g. the atomic absorption measurement). One must however validate also 
the preparatory steps, such as dissolution and digestion of the sample. Where 
relevant, attention must be paid to the sampling and the storage of the sample. 
These, however, are not part of the validation of the analytical determination as 
such. In other words, one assumes that the sampling is correct and this assumption 
is tested separately. 

- Validate over the whole range of concentrations: A method may work very 
well at high concentration but be inadequate at low concentration. It is also known 
that precision depends on concentration (see further Sections 13.4.2 and 14.2.5). 

- Validate over the whole range of matrices: It is evident that a method for 
moisture in cheese does not necessarily work for the same determination in 
chocolate. However, even "cheese" consists of sufficiently different types of 
matrices to require that one should consider several representative kinds of cheese 
in the validation. This is also true for "urine" (include several urines from different 
patients) or "waste waters" (identify the different types of waste water and include 
a representative set in the validation procedure). 

13.3 Types of internal method vahdation 

There are several types of internal laboratory validation: 
- Prospective validation. This is carried out when a new method is introduced. 

The method must then be fully tested for its performance characteristics. Prospec­
tive validation can often be divided in an exploratory phase and a full validation. 
In the exploratory validation stage one determines with a limited number of 
samples whether the method can be considered to be a good candidate for its 
purpose. Very often this initial phase will focus on those aspects of a method which 
are known to be the more delicate ones (e.g. selectivity of a chromatographic 
method, freedom from matrix interferences of an atomic absorption method) and a 
cursory determination of repeatability. When the results are considered acceptable, 
a more detailed/w// validation follows, the extent of which is determined by the 
context in which the analysis is carried out (e.g. is the method to be used for a short 
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period or over many years? In the first case, there is no sense in determining the 
ruggedness of the method — see Section 13.4.5). 

- Suitability checks. These can be appHed when transferring a method from one 
laboratory (where it was fully tested) to another. This is then called transfer 
suitability check and requires the receiving laboratory to do a reduced amount of 
testing. Method bias (see Section 13.5.1) has been eliminated as a source of error 
in the prospective validation phase, but laboratory bias may exist. This means that 
one will no longer need to study, e.g., freedom from matrix effects, but the 
receiving laboratory will need to analyze a few samples which have also been 
analyzed by the developing laboratory. The receiving laboratory will certainly also 
need to determine its own repeatability values (see Section 13.4.1). 

System suitability checks are used to investigate whether the instruments, re­
agents, etc. are functioning correctly before starting a new series of determinations. 
It often consists of checking whether certain key characteristics of the method are 
respected. This will nearly certainly involve an evaluation of the calibration line 
(is it still straight? Has the sensitivity changed?) and, where this is relevant, of the 
blank. Method specific characteristics are also used. For instance, in chromatogra­
phy one will require that a certain resolution (often >1.5) is obtained. This type of 
suitability checking is often included when working under Good Laboratory 
Practices (GLP) rules or under a quality assurance program and should be specified 
in the standard operating procedure (SOP). 

- Retrospective validation. One can collect over a period of time the results of 
a certain number of determinations. These are then used to determine precision 
over long periods. 

- Quality control. Running one or a few samples with known composition, 
preferably in a blind way, permits the preparation of charts for both the mean result 
(detection of bias) and the range (repeatability). This was discussed in detail in 
Chapter 7 and will not be considered further here. 

Which type of method validation has to be carried out depends on the applica­
tion field of the laboratory. Because there are so many different contexts, it is 
impossible to give an exhaustive enumeration. However, one can distinguish more 
or less three types of situations, namely: 

- The laboratory develops its own methods, to a large extent for its own use. A 
typical example is a pharmaceutical company that develops and produces its own 
active molecules and requires analytical methods for content and stability in 
formulations, to investigate metabolization, etc. The methods are essentially meant 
for use in the company, but must be validated and be available to regulatory bodies. 
Such a laboratory will essentially carry out full validation about all the perform­
ance characteristics described in Section 13.2. It may also develop suitability 
checks for transfer to other laboratories of the same group or contract laboratories 
and will certainly prepare suitability checks for inclusion in SOPs. 
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- The laboratory develops new methods for general use. An example might be 
a research institute for the agro-food industry. This laboratory will need to carry 
out a full validation and prepare suitability checks for the SOP. If the method is 
successful and thought to be of more general use, the laboratory will take steps to 
have some official organization, such as the Association of Official Analytical 
Chemists (AOAC), organize an interlaboratory study of the method-performance 
type (see Section 14.1). 

- The laboratory uses standard methods. Examples here are control laboratories, 
both governmental and industrial. Since the method has been validated its perform­
ance characteristics are known. The laboratory should concentrate on proving that 
it is generally proficient in its chosen area, for instance by analyzing reference 
materials, and, where possible, by participating in interlaboratory studies of the 
lab-performance type (see Section 14.2). When the laboratory carries out routine 
analyses on a regular basis, it will also need suitability checks for daily use and 
quality control procedures. 

13.4 Precision 

13.4,1 Terminology 

The precision is a measure for the size of the random errors. Random errors are 
discussed in Sections 2.2.2 and 2.5. From a statistical point of view, precision 
measures the dispersion of the results around the mean, irrespective of whether that 
mean is a correct representation of the true value. Therefore, it requires the 
measurement of the standard deviation. How this is done depends on the context. 

Two extreme types of precision are usually distinguished, namely the repeat­
ability and the reproducibility. Reproducibility, as defined by ISO [5,6], can be 
determined only with interlaboratory experiments and for this reason, we define 
these terms in Section 14.2.1 and recommend that the reader should read that 
section together with the present section. 

In short, repeatability is the precision obtained in the best possible circum­
stances (same analyst, within one day when possible) and reproducibility in the 
most adverse possible circumstances (different laboratories, etc.). Intermediate 
situations may and do occur. 

A protocol about collaborative studies prepared under the auspices of lUPAC 
[8] also considers what it calls preliminary estimates of precision. Among these it 
defines the total within-laboratory standard deviation. It includes both the within-
run (= repeatability) and the between-run variation. This means that one has 
measured on different days and preferably used different calibration curves. The 
total within-laboratory standard deviation can be considered as a within-laboratory 
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reproducibility. These estimates are preliminary when the experiments are carried 
out as a prelude to an interlaboratory method performance study. Other terms, such 
as intra-assay (= within-run) and inter-assay (= between-run) precision are also 
used. The ISO-standard [6] also gives some definitions in this context. A laboratory 
cannot determine reproducibility as such, because this has to be done in interlabo­
ratory experiments, but it can determine intermediate precision conditions (i.e. 
intermediate between reproducibility and repeatability). ISO recognizes what is 
called M-factor different intermediate precision conditions (M = 1, 2 or 3), where 
M = 1 means that only one of the three factors (operator, equipment or time) is 
different, or the equipment is recalibrated between successive determinations. M = 
2 or 3 means that two or all three factors differ between successive determinations. 
The term intermediate precision has been accepted for instance by the ICH [9], the 
International Committee for Harmonization that regulates terminology in pharma­
ceutical analysis. 

A third term used in the context of precision is robustness or ruggedness. An 
analytical procedure consists of a set of instructions, such as "Adjust the pH to 5 
by adding acetic acid 1 N," or "Heat during 5 minutes at a temperature of 100°C." 
Small departures from these details often occur when one carries out the procedure 
in practice and one may wonder how rugged the procedure is to such variations. In 
the same way, the analyst developing a method is faced with the question of how 
strictly instructions should be stated. Should a pH of 5 ± 0.05 be required or is 5 ± 
0.5 sufficient? The question will also be how rugged the new method is in relation 
to departures from the nominal values put in. In this case, one needs to measure the 
robustness or ruggedness of the method. The determination of the ruggedness is 
sometimes carried out to detect possible critical experimental parameters, that have 
a larger effect on the results than other parameters. Controlling such parameters 
may lead to better reproducibility or to avoid sources of laboratory bias (see also 
Section 13.5.1). 

13,4.2 Repeatability 

A laboratory can measure its own performance for a certain application in terms 
of repeatability, or several laboratories together can measure the repeatability of 
the method by carrying out an interlaboratory experiment. The latter is explained 
in Section 14.2 and we will confine the discussion here to the former. The basic 
procedure is simple. Six to eight replicate determinations are carried out, when 
possible within a single run by the same analyst, and the standard deviation is 
determined. The result can also be reported as a relative standard deviation 
(sometimes symbolized as RSD) or the coejficient of variation (% CV) (see also 
Section 2.1.4.3). lUPAC [2] prefers the itrm percentage standard deviation instead 
of coefficient of variation, but recommends that the relative standard deviation be 
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reported. Some guidelines suggest carrying out the repeatability measurement 
three times, to pool the variances (see Section 2.1.4.4) and obtain the standard 
deviation from the pooled variance. Care should be taken that the replicates are true 
replicates and not only measurement replicates, i.e. it should be ensured that all 
steps are replicated. If the blank is a possibly important source of variation, then it, 
too, should be replicated. Because precision often depends on concentration, it 
should not only be determined at the standard or specification values of concentra­
tion but also at the upper and lower limits (see also quantification limit — Section 
13.7.3 ) of the concentration range if this is not very limited. Of course, it may be 
useful to measure separately the repeatability of a certain step in the procedure. For 
instance, repeatability of the injection is often measured by chromatographers. 
This permits the steps responsible for important parts of the total variation to be 
identified and a decision made as to which step should be better controlled. To 
make a distinction, certain organizations [10] distinguish between what they call 
the precision of a method and the precision of a system. The former requires 
repetition of the whole procedure, while the latter results from replicate measure­
ments of a standard preparation "in a form ready for direct measurement of the 
analyte (e.g. no further sample treatment is required)". 

There are situations which require more elaborate experimental designs. Con­
sider, for instance, the example of Table 13.1. The left part of this table has already 
been given as Table 2.3. A method for measuring moisture in cheese was devel­
oped. It is not acceptable to validate it for only one type of cheese. This would 
violate the third rule of method validation (Section 13.2). We then need to select a 
certain number of cheeses that covers sufficiently well the scope of the method. Let 
us suppose that this was achieved by selecting the seven first types in Table 2.3 
(reprinted as Table 13.1). In that case we can analyze a number of replicates n, of 

TABLE 13.1 

Comparison of the repeatabilities of two methods for moisture in cheese 

Type of cheese 

Processed cheese food 
Processed cheese food 
Monterey jack 
Cheddar 
Processed american 
Swiss 
Mozzarella 

Sy 

df 

Karl Fischer 

Si 

0.29 
0.31 
0.35 
0.24 
0.30 
0.31 
0.24 

0.293 

Hi 

10 
10 
8 
8 
8 
8 
9 

54 

Oven 

Si 

0.01 
0.01 
0.12 
0.13 
0.13 
0.25 
0.01 

0.126 

ni 

2 
2 
2 
2 
2 
2 
2 

7 
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each type as described in the table. It is not always necessary that as many 
replicates of each sample are analyzed as for the Karl Fischer method. In fact, we 
will see that in certain applications duplication can be sufficient. 

When the replicates of one cheese are analyzed within the shortest possible time 
and, when possible within one run, a measure of repeatability is obtained. It does 
not matter that there is a time lapse between the analysis of each different cheese. 
Indeed, the calculation procedure is such that one determines precision under 
repeatability conditions for each separate cheese and then pools them to obtain an 
average measure of repeatability. How to do this was shown in Section 2.1.4.4. We 
conclude that the repeatability standard deviation, Sr = 0.293. When the number of 
replicates is only two then we have paired data and eq. (2.8) can be applied. 

A question which can be asked in method development is whether a certain 
method is more precise than another. Let us consider an example. We want to 
compare the Karl Fischer method, which was used for the data of Table 2.1 with 
another method, namely an oven method. This leads to the data of Table 13.1. 

In Chapter 5 we learned that two standard deviations can be compared using the 
F-test. We make use of this here for the pooled standard deviations. The calculated 
F is given by F = (0.293)^(0.126)^ = 5.41. 

For HQ: Gr (Fischer) = Gr (oven) and Hi: Gr (Fischer) 9̂  Gr (oven), i.e. a two-sided 
test, and a = 0.05, Fcm = Fo.o5;54,7 = 4.27 

Since F> Fcru we reject Ho or, in other words, the Fischer method has a different 
repeatability from that of the oven and, in view of the results obtained, we conclude 
that the oven shows better repeatability. 

Note that it is not possible to show that the Karl Fischer and the oven method 
have a different repeatability for the first processed cheese food (or any other 
cheese) specifically. Indeed, for the first type of cheese F = (0.29)^(0.01)^ = 841 
and Fcht = Foo5;9,i = 963. This is due to the small number of replications (and 
therefore of degrees of freedom) for the oven method. We should remember that 
the p-error (not finding a difference, when that difference is real) depends on the 
number of replicates (see Chapters 4 and 5). An ISO norm [11] gives graphs that 
allow to determine P at a given a and number of replicates n or the n needed to 
reach a given p at a certain level of a, both for the comparison of an experimental 
s with a given G or the comparison of two standard deviations. Unfortunately, for 
the comparison of two standard deviations the graphs are given only for situations 
where the number of replicates is the same for both standard deviations. It will be 
clear that the larger n is and therefore the degrees of freedom, the smaller p will be. 
Pooling variances as we did here, is useful in such cases, because the number of 
degrees of freedom increases. For cheese 1 we are not able to decide whether the 
Karl Fischer method is worse than the oven method, but we can decide that this is 
so for cheese samples on the whole. Part 6 of ISO norm 5725 [6] gives numbers of 
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Fig. 13.1. Standard deviation (a) and relative standard deviation (b) as a function of concentration. 
Models derived for ICP [12]; A: a = 1/3 + 0.1 C, B: a^= V3 + 0.12 Cl 

measurements required to detect a difference between precisions as a function of 
what is called the detectable ratio. This is defined as the minimum ratio of 
precision measures that the experimenter wishes to detect with high probability 
from the results of experiments using two methods. 

A final question that can be asked is how the repeatability changes with 
concentration. The data of Table 13.6 are typical. They show that the repeatability 
standard deviation increases with the concentration. The coefficient of variation 
usually decreases, but may stabilize for higher concentrations. When the concen­
trations cover a large range, this phenomenon of heteroscedasticity is often noted. 
Several studies have evaluated repeatability as a function of concentration. For 
instance, Thompson [12] studied repeatability in 700 geochemical materials for 25 
elements by ICP. He investigated several models, the most adequate of which was 
also the simplest, namely a = Go + Z?! C. Good results were also obtained with the 
relationship a^ = GQ + b'\ C ,̂ where C is concentration. The authors consider this 
to be theoretically more satisfactory because variances are additive and standard 
deviations are not. The relationships are shown in Fig. 13.1. It should be noted that 
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these relationships are studied also in the context of interlaboratory studies (see 
Section 14.2.5). 

In Chapter 8 it was explained that when the variance is not constant over the 
range studied weighted regression may be preferable when constructing calibration 
lines, because it will lead to results with better precision. It follows that in many 
cases weighted regression should indeed by preferred. 

13.4.3 An intermediate precision measure: within-laboratory reproducibility 

In this section we will discuss the determination of (time-different) intermediate 
precision or within-laboratory reproducibility as defined in Section 13.4.1. 

The basic experimental set-up is again straightforward. One measures the 
standard deviation of a set of replicate measurements, for instance by analyzing 
one replicate each day for a certain number of days (often n = 5 to n = 8). More 
complex set-ups are possible. For instance, one can estimate within-laboratory 
reproducibility and repeatability in a single experimental set-up with duplicates. 
Consider, for example. Tables 13.2 and 13.3. Two measurements are carried out 
on 7 days. The ANOVA table learns that the residual mean squares, which here are 
termed the mean squares within-days, is 0.0414. This represents s^ under repeat­
ability conditions (̂ r̂ = 0.20). To determine the variance due to the between-day 
effect, one uses eq. (6.20) and substitutes b̂etween and MSbetween for sj, and MSA 
respectively 

TABLE 13.2 

Experiment for the determination of within-laboratory reproducibility and repeatability from a single experimental 
set-up 

Day Replicate 1 Replicate 2 

1 31.2 31.7 
2 30.9 30.9 
3 30.7 30.9 
4 31.1 31.5 
5 31.3 31.6 
6 31.4 31.6 
7 31.4 31.4 

TABLE 13.3 

ANOVA Table for the data of Table 13.2 

Source SS df MS 

Between days 0.9843 6 0.1640 
Within days 0.2900 7 0.0414 
Total 1.2743 13 
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'̂ between ~ (MSbetween " M S within) /rij ( 1 3 . 1 ) 

For MSbetween = 0.1640, MSwithin = 0.0414 and rij = 2, this yields 
'^between 

= 0.0613. 
The within-laboratory reproducibility ^WR is equal to: 

S^R = si + 5Lween= 0 . 1 0 3 ( 1 3 . 2 ) 
^WR = 0.32 

The conclusion is that the repeatability standard deviation is 0.20 and the within-
laboratory reproducibility standard deviation is 0.32. 

The number of replicates and days depends on the situation. Some guidelines 
give minimal requirements. For instance, the Societe Fran9aise des Sciences et 
Techniques Pharmaceutiques (SFSTP) [13] requires 6 replicates and 3 days or 
laboratories or operators or instruments, depending on the type of intermediate 
precision one needs to measure. The National Committee for Clinical Standards 
(NCCLS) [14] recommends 20 days and determinations in duplicate. In all cases, 
one should remember that the repeatability and within-laboratory reproducibility 
are estimates of the true values of these parameters and that the estimate becomes 
better when n increases. The NCCLS procedure is more equilibrated than the 
SFSTP one. In the latter there are 15 df for the repeatability compared to only 2 for 
the between-day component. In the former there are 20 df for the repeatability and 
nearly as many (19) for the between-day component. 

13.4.4 Requirements for precision measurements 

The precision required depends on the application. However, we can ask what 
precision should reasonably be expected. Important work in this context has been 
done by Horwitz [15] in the context of interlaboratory studies (see Section 14.2). 
Some guidelines have been proposed by several organizations in specific areas. For 
instance, in the area of pharmacokinetics, a committee [16] proposed that precision 
is acceptable if it is smaller than 15% relative standard deviation, as measured with 
n > 5 replicates, except at the quantification limit (see Section 13.7.3) where it 
should not exceed 20%. Strangely, these values are given both for repeatability and 
within-laboratory reproducibility. As the latter is usually worse than the former, 
one can infer that the criteria given above are meant for within-laboratory repro­
ducibility. The Canadian Acceptable Methods guidelines [10] expect a method 
intra-day and inter-day relative precision of 1% for drug substances and less than 
2% for active substances in dosage forms. For minor components (irnpurities/re-
lated substances) less than 5% system relative precision is expected at the 0.2% 
concentration level. In all these guidelines it would seem that one does not 
distinguish between true precision and precision, measured with the recommended 
number of replicates (5 to 8), which is only an estimate of the true precision. If one 
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finds that the estimated precision measure is 4.8% and 5% is the accepted Hmit, 
should one then accept the method because 4.8 < 5 or should one reject it, because 
the upper confidence limit around 4.8 exceeds 5? It would seem that the first 
position is adapted, but this is not made clear. This is certainly a weakness of such 
guidelines. 

In Section 2.4 we studied the quality of a measurement in relation to the quality 
of a process. Relating the capability of a process and the tolerance limits of a 
process to the acceptable precision for a measurement method is possible, but 
seems to have been performed only rarely in the analytical literature. 

A very interesting new development is the use of precision clauses based on 
repeatability or reproducibility standard deviations. For the moment, this is only 
advocated for standard methods resulting from interlaboratory experiments. How­
ever, there is no reason why they should not be included more generally in 
suitability checks, SOPs, QC programs, etc. An example of such a clause is: "The 
absolute difference between two single test results obtained under repeatability 
conditions should not be greater than 0.5 mg/kg". This is described in Chapter 14.2. 

13.4,5 Ruggedness 

There are no definitions of ruggedness by the more general authorities such as 
ISO or lUPAC, but there are some in the pharmaceutical world, such as in the US 
Pharmacopeia [17], the Canadian Acceptable Methods [10] and the SFSTP docu­
ment [13]. In the chemical literature the term ruggedness or robustness is used 
when one measures the influence of small changes in the stated procedure on the 
result. If the change induced is considered to be acceptably low, then the procedure 
is considered to be rugged. The French definition comes close to this. It states that 
"the ruggedness of an analysis procedure is its capacity to yield exact results in the 
presence of small changes of experimental conditions such as might occur during 
the utilization of these procedures." It continues by defining that by small changes 
in experimental conditions is meant "any deviation of a parameter of the procedure 
compared to its nominal value as described in the method of analysis." 

The US Pharmacopeia, on the other hand, defines ruggedness as follows: "The 
ruggedness of an analytical method is the degree of reproducibility of test results 
obtained by the analysis of the same samples under a variety of normal test 
conditions, such as different laboratories, different analysts, different instruments, 
different lots of reagents, different elapsed assay times, different assay tempera­
tures, different days, etc.". In short, this is a definition of reproducibility. It should 
be noted that the definitions of the US Pharmacopeia often do not follow general 
usage in method validation. For instance, the term repeatability is not known by 
them. The Canadian document [10] follows the US Pharmacopeia, but includes a 
paragraph hinting at the French definition by including different levels of ruggedness 
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testing. One level "requires verification of the basic insensitivity of the method to 
minor changes in environmental and operational conditions", while another level 
is very similar to the US Pharmacopeia definition. We consider the French defini­
tion as the most apt. As a consequence, a ruggedness test as we understand it here 
consists of a set of experiments according to an experimental design to study how 
an analytical method is affected by small changes in the implicit or explicit 
procedural details. By explicit, we mean a factor mentioned in the procedure, for 
instance the time during which one has to boil a solution or the molarity of the 
hydrochloric acid to be added. The implicit factors are not mentioned as such but 
may have an influence. For instance, if no temperature is mentioned at which 
certain steps in the procedure have to be carried out, then one will work at ambient 
temperature. We may then wonder whether carrying out these steps at 15°C or at 
25°C will have an effect on the end result. 

The term "ruggedness" was introduced by Youden and Steiner [18] into analyti­
cal chemistry. They recommend that for each factor one defines a nominal and an 
extreme level. The nominal level is the level given in the procedure or the most 
probable level of an implicit factor, the extreme level is the one which exception­
ally might be attained in practice. Usually, one exaggerates a little in defining the 
extreme level to make sure that one measures the maximum effect possible. For 
instance, if a procedure states: "Boil the solution during 10 minutes", then one 
could reason that it is unlikely that anyone would boil it for longer than 15 minutes. 
The nominal level would be 10 minutes, the extreme level 15 minutes. One can 
also consider two extreme levels around the nominal level. For instance, the 
nominal level for boiling a solution being 10 minutes, one could consider that the 
extremes are 7 minutes and 15 minutes and try to determine the effect on a response 
between those two levels. 

As there are two levels of each variable and one does not want to perform too 
many experiments, the experimental design used is often one of the screening 
designs, described in Chapter 23, i.e. either a saturated fractional factorial or a 
Plackett Burman design. Different articles concerning the measurement of rugged­
ness using designs of this type were published by Vander Heyden et al. [19] and 
van Leeuwen et al. [20]. 

It is not possible to go into the details of exactly how these designs are applied 
and interpreted yet but a few examples should give an idea. Table 13.4 is an 
example of the simplest possible application namely a design consisting of four 
experiments to examine the ruggedness of a procedure towards three factors. Let 
us suppose that we have developed a colorimetric procedure and are concerned 
about the effects of the factors pH (A), temperature (B) and concentration (C) of a 
reagent on the absorbance. The nominal values are pH = 8.0, concentration = 0.10 
M and the temperature is not specified. We could decide to investigate the 
experimental region from pH 7.8 to 8.2, concentration from 0.09 M to 0.11 M and 
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TABLE 13.4 

Ruggedness determination for three variables: (a) actual values; (b) coded values; (c) computation of effects 

(a) 

(b) 

Exp. 

1 
2 
3 
4 

Exp. 

pH 

8.2 
7.8 
8.2 
7.8 

A 

r° 

25 
25 
18 
18 

B 

Cone. 

0.11 
0.09 
0.09 
0.11 

C 

Result 

1.00 
0.90 
1.01 
0.89 

y 

1 + + + 1.00 
2 - + - 0.90 
3 + - - 1.01 
4 - - + 0.89 

(c) Effect A = [Cv, + ya) - (̂ 2 + y^Wl = 0.11 
Effect B = [iyi+ y2) - {y^ + y4)V2 = 0.0 
Effect C = [(y, + >'4) - 0'2 + y3)]/2 = -0.01 

temperature from 18°C to 25°C. We will call the lowest value the - level and the 
higher one the + level. Referring to Table 13.4, this means that one should carry 
out the first experiment at pH +, i.e. 8.2, concentration +, i.e. 0.11 M, and 
temperature +, i.e. 25°C. 

Note that for each factor there are two experiments at the + and two at the - level. 
For instance, for pH the experiments 1 and 3 are at the +, 2 and 4 at the - level. One 
reasons that by subtracting the sum of the two - experiments from the two + 
experiments and dividing by 2, one estimates the effect of that factor. Thus, one 
obtains the estimates given in Table 13.4. The effect of A (in absolute values) is 
higher than that of B and C. How to treat such data is described in more detail in 
Chapter 23. However, it is clear that, if the standard deviation on the four experi­
ments is not appreciably higher than that obtained for the repeatability, one may 
conclude that the method is rugged. Also, if one variable needs to be better 
controlled, it is variable A. 

More complex designs are sometimes required. One such design is the so-called 
reflected design. An example is given in Table 13.5. This is applied when one 
considers that effects may be asymmetric, for example a higher pH than the nominal 
one may have an effect but a lower one not. Two designs are then made, one with the 
upper level (1) and the nominal one (0) and one with the lower level (- 1) and the 
nominal one. The experiments 1-12 make up the first design and experiments 12-23 
the second. It should be noted that experiment 12 is common to both designs. The 
statistical interpretation of the results will be discussed further in Chapter 23. 
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TABLE 13.5 

Reflected design for 11 factors (Fl-Fl 1) (from [20]) 

Exp. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Fl 

1 
1 
0 
1 
1 
1 
0 
0 
0 
I 
0 
0 
-1 
-1 
0 
-I 
-1 
-1 
0 
0 
0 
-1 
0 

F2 

0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
1 
0 
0 
-1 
-1 
0 
-1 
-1 
-1 
0 
0 
0 
-1 

F3 

1 
0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 
-1 
-1 
0 
0 
0 

F4 

0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 
-1 
-1 
0 
0 

F5 

0 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 
-1 
-1 
0 

F6 

0 
0 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 
-1 
-1 

F7 

1 
0 
0 
0 
1 
0 
1 
1 
0 
1 
1 
0 
-1 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 
-1 

F8 

1 
1 
0 
0 
0 
1 
0 
1 
1 
0 
1 
0 
-1 
-1 
0 
0 
0 
-1 
0 
-1 
-1 
0 
-1 

F9 

1 
1 
1 
0 
0 
0 
1 
0 
1 
1 
0 
0 
-1 
-1 
-1 
0 
0 
0 
-1 
0 
-1 
-1 
0 

FIO 

0 
1 
1 
1 
0 
0 
0 
1 
0 
1 
1 
0 
0 
-1 
-1 
-1 
0 
0 
0 
-1 
0 
-1 
-1 

Fll 

1 
0 
1 
1 
1 
0 
0 
0 
1 
0 
1 
0 
-1 
0 
-1 
-1 
-1 
0 
0 
0 
-1 
0 
-1 

When one interprets the ruggedness as proposed by the US Pharmacopeia [17] 
(see above) and would like to quantify the effects of, for instance, different 
laboratories and different instruments, it is not possible to apply designs such as 
those of Tables 13.4 and 13.5. Supposing that one lab is situated in the US, the other 
in Japan, this would require the Japanese instrument to be moved to the US and the 
US instrument to Japan to carry out experiments for combinations of the variables 
"country" and "instrument" as required in a factorial design. In such cases, one 
would prefer to carry out nested designs (see Chapter 6). 

13.5 Accuracy and bias 

13.5.1 Definitions 

Systematic errors are characterized by terms such as trueness and bias and 
related to the term accuracy. Unfortunately, there is quite a lot of confusion about 
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them, because the definitions by different organizations are sometimes contradic­
tory. ISO [5,6] defines accuracy as "the closeness of agreement between test result 
and the accepted reference value" and adds as a note that the term accuracy 
describes a combination of random components and a common systematic error or 
bias component. A test result can be a single result or the average of a set of results. 
lUPAC [2] and AOAC [7] give definitions that are very similar. Probably the 
AOAC definition is clearest. It states that the accuracy is the difference of individ­
ual values from the "true" or "assigned" or "accepted" value. 

ISO [6] defines the trueness as "the closeness of agreement between the average 
result obtained from a large series of test results and the accepted reference value". 
The definition adds that the measure of trueness is expressed in bias. In other 
words, trueness is the concept and bias is the measure. Bias itself is defined as "the 
difference between the expectation of the test results and an accepted reference 
value". In practical terms, this means that to ISO bias and trueness essentially mean 
the same thing. It should be noted that lUPAC [2] gives the same meaning to bias, 
but does not recognize the term trueness. AOAC also accepts bias in the same 
sense. It states that bias is the "long term" or expected difference from an average 
of many groups of individual values from the "true" or "assigned" or "accepted" 
value. AOAC defines trueness on the contrary as the difference of an average for 
a group of individual values from the "true" or "assigned" or "accepted" value. It 
thereby creates a hierarchy such that accuracy is the difference of an individual 
result from the true value, the trueness that of a single average and the bias that of 
many averages. 

Although the wording of the definitions is different one should note that all three 
organizations seem to agree about the terms accuracy and bias. As the terminologi­
cal situation stands now, it therefore seems reasonable to avoid the term trueness 
and use only the others. 

It is only recently that the term accuracy was accepted by the chemical commu­
nity as having the meaning given in the above definition. Indeed, as ISO writes in 
its introduction "accuracy was at one time used to cover only the component now 
named trueness". It was an ill-advised move of ISO not to have kept the term 
accuracy as it was used originally and introduced trueness, because then all 
organizations would have agreed without difficulty. Indeed, in the 1990 draft to its 
present document lUPAC still defined accuracy (of the mean) as "The closeness 
of agreement between the true value and the limiting or population mean'result 
which would be approached by applying the experimental procedure a very large 
number of times". The ICH [9], for instance, still states that the "accuracy of an 
analytical procedure expresses the closeness of agreement between the value 
which is accepted either as a conventional true value or an accepted reference value 
and the value found" and add as an afterthought. "This is sometimes termed 
trueness". The reader should be warned therefore that in many textbooks and 
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documents the terms discussed above will be defined or used differently and that, 
moreover, it is probable that further changes will occur in the terminology. 

Let us now try to clarify the situation with a simple example. Suppose the true 
value, |io, is known to be 100. For a single measurement yielding 92 one would then 
say that the accuracy is -8 . If that measurement were to be replicated a number of 
times, say 5 to 8 times as would be the case for a repeatability measurement and 
yield an average of 89, then in AOAC terminology the trueness would be -11, ISO 
would still call this accuracy and lUPAC does not seem to have a specific term for 
this situation. Probably it would be best to call this an estimated bias or, in analogy, 
with precision measurements, an intermediate estimate of bias. If many sets of 
averages are obtained for instance by several labs, and this would yield 90, then 
lUPAC, AOAC and ISO would say that the bias is (estimated to be) -10 and ISO 
would consider this bias a measure of the trueness of the method. In this book, we 
will use bias to describe both the intermediate case and that for which the three 
organizations use that term. Bias, A, is then determined as 

A = |i-|Lio (13.3) 

where \x is the population mean of the experimental results and |Lio the true value. 
Since \x is not known, but estimated from an observed mean x, it would in fact be 
better to define an estimated bias D = x - |Uo (lUPAC uses A or A [3]). 

There are two components of bias. The first is method bias, the error inherent to 
the method, the second is laboratory bias. The latter is often viewed as the bias 
introduced by the way a specific laboratory applies an otherwise unbiased method. 
In certain definitions, it is however considered to be the total bias in a given 
laboratory. lUPAC [14] states: "The laboratory bias should be defined as the 
difference of the long-term average value from the true, formulated, or assigned 
value. The average of all individual laboratory biases is the estimate of the method 
bias". This definition was made in the context of inter-laboratory comparisons and 
a wider definition would be useful. ISO [6] states that the laboratory bias is the 
difference between the expectation of results (i.e., the mean of a sufficiently large 
number of results) from a particular laboratory and the accepted reference value. 
The bias of a measurement method is defined as the difference between the 
expectation of test results obtained from all laboratories using that method and the 
accepted reference value. The laboratory component of bias is the difference 
between the average of a large number of results in that laboratory and the overall 
average result for the measurement method obtained by all laboratories. According 
to these definitions, the laboratory bias thus is the (algebraic) sum of the bias of the 
measurement method and the laboratory component of the bias. 

Depending on the situation the laboratory component of the bias can be consid­
ered to be part of the systematic or of the random error (Fig. 13.2). From the point 
of view of the individual laboratory this component of bias is a systematic error. 
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A 
Bias (A) Repeatability 

True value .̂  Population mean Single result 
f.iO Method bias Lab component of bias |ij xy 

(estimated by Xj) . 

accuracy 

B 1̂  
I Bias (A) Between-lab Repeatability ' 

standard deviation 
True value Population Population Single result 

MO mean mean Xjj 
\i (of all labs) ^j (in one lab) 

Method bias 

reproducibility 

Fig. 13.2. Bias and precision components for (A) a single laboratory y working under repeatability 
conditions; (B) the interlaboratory situation. 

However, when carrying out method-performance interlaboratory studies, we can 
consider that the between-laboratory component of reproducibility includes the 
laboratory components of the bias of the participating laboratories. When using a 
standard method, which has been found free from method bias, any bias detected 
by a laboratory is a lab bias and must be considered to be due exclusively to the 
laboratory component of bias. To avoid ambiguities concerning the systematic or 
random nature of errors, ISO [5] also uses the term uncertainty. This is defined as 
"an estimate attached to a test result which characterizes the range of values within 
which the true value is asserted to lie." This range is determined by several error 
components, both random and systematic. 

Systematic errors may be constant (absolute) or proportional (relative). Suppose 
that the true result of three samples is respectively 100, 200 and 300, that no random 
error is made and that one finds 110, 210 and 310. This is a constant error. If we were 
to find 110, 220 and 330, we would call it proportional. A constant error refers to a 
systematic error independent of the true concentration of the analyte and should be 
expressed in concentration units. A proportional error depends on the concentration of 
the analyte and should be expressed in relative units, such as percentage. 

The main sources of constant error are insufficient selectivity, which is caused 
by another component that also yields a response, and inadequate blank correc­
tions. Proportional errors are caused by errors in the calibration, for instance by 
different slopes of the calibration lines of the standards and in the sample (matrix 
interference). The incorrect assumption of linearity over the range of analysis will 
also cause errors related to the concentration to be determined. 
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13,5.2 Restricted concentration range — reconstitution of sample possible 

The experimental design to estimate bias depends on a number of experimental 
considerations, mainly the extent of the concentration range to be investigated, the 
availability of blank material (i.e. the matrix to be analyzed without the analyte to 
be determined) and the possibility to add analyte to such a material in a repre­
sentative way. We will discuss different typical situations going from the simplest 
(in this section) to the most difficult (the following sections) from a practical point 
of view. 

In some instances the expected concentration is known within a rather narrow 
margin, for instance when one needs to verify the content of a manufactured 
product, such as a drug in a pharmaceutical preparation. When this is technically 
possible, one validates the method by reconstituting the sample e.g. by preparing 
synthetic preparations (i.e. preparations with exactly the same composition as the 
one that has to be assayed) or by spiking (addition of the analyte to blank material). 
Since one needs to validate over the whole range of concentrations that can be 
encountered, one prepares a synthetic preparation with a content of 100% of the 
expected value and contents that are considered to be the extreme limits that can 
occur in practice, often 80% and 120%. 

The validation consists in carrying out the analysis on a number of replicates at 
each level, often n = 6 and comparing the mean obtained with the known content 
of the placebo. The statistical analysis is therefore carried out with a ^test. Let us 
return to our example from Chapter 4. Suppose that a synthetic preparation 
containing 100 mg of a substance was prepared. The results obtained are 98.9, 
100.3, 99.7, 99.0, 100.6, 98.6 andx = 99.5. 

Ho:|i=100 

Hi:|Li;^100 

Although we observe that x < 100, the statistical question is two-sided (|LL is 
different from 100) and not one-sided (|LL < 100), since no a priori reason was given 
why, in the case of |Li 9̂  100, it should necessarily be smaller. In method validation, 
the test is always carried out at the a = 5% level. Since n < 30, the r-test is 
employed. In this case, s = 0.813, so that 
,, 199.5-1001 ^ ^̂  

0M3m 
.̂025,5 = 2.57 

Since 1.51 < 2.57 the result of the hypothesis test is negative: no significant 
difference between |Li, estimated as 99.5, and 100 can be shown. Let us now suppose 
that, in fact, the 0.5 mg difference obtained is real and let us also suppose that this 
difference in the context of the analyzing laboratory is important, so that we would 
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really want to have detected the difference. Why then was it not detected? The 
reason is that for the value of the parameter X (= difference/standard deviation — 
see Section 4.8) = 0.5/0.813 = 0.61 the number of replicates, n = 6, is not large 
enough to achieve a reasonable p-error, i.e. the probability of not detecting a 
difference of 0.5 when that difference is real. The ISO norm [11] shows that, in 
fact, one needs AZ = 36 for p = 0.05 and n = 30 for P = 0.10! Unfortunately this type 
of reasoning is seldom applied in method validation, although the definition of 
Section 13.1 really requires it: one should state how much bias is admitted, and, 
taking into account the experimentally determined repeatability, compute how 
many replicates are required to rule out that the bias is larger with a stated 
probability of making an error. Part 4 of the recent ISO-norm [6] gives a complete 
description of how to determine laboratory bias by analyzing a reference material 
with known concentration for the special case that the method applied is a standard 
method. This norm includes an equation for determining how large n should be. 

We should note here that there is a statistical problem. Indeed, the same r-test at 
the a = 5% level is carried out three times (at 80, 100 and 120% of the nominal 
level). Therefore, a for the whole experiment approaches 15% (see Section 5.2). 
One might take two attitudes: 

- the joint level of confidence for the three tests should be a = 5%; therefore 
each test should really be applied at a = 5/3 = 1.66% 

- if something is wrong with the method, then, from a chemical point of view, 
it is more probable that this occurs at one of the extreme levels. Therefore, 
experiments at these levels should be considered as separate experiments. In 
practice, this means that each of them should be judged at the 5% level. 

Apparently, the latter approach is always taken. Nevertheless, it would be 
preferable that the problem be investigated by regulatory agencies and that an 
explicit decision be taken about which of the two attitudes should be preferred. 

13.5.3 Restricted concentration range — reference material available 

Reference materials are employed very often. They are of limited value in a full 
validation of a method, in the sense that they include a certain amount of analyte 
in a certain matrix and that therefore one will generally not be able to validate with 
them the whole range of concentrations and matrices required. However, when the 
range of concentrations and matrices is covered, analyzing reference materials is 
the validation method to be employed. Moreover, even when the reference materi­
als do not cover the full range, they should be analyzed when available. Obtaining 
good results on a reference material indicates that the method is at least acceptable 
for that composition of the matrix and that further full validation over a wider range 
of compositions has a chance of being successful. A bad result means that further 
full validation is not useful. Thus analyzing reference materials is often part of the 
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exploratory validation process (see Section 13.3). Reference materials are also 
invaluable to detecting the laboratory component of bias and measure the profi­
ciency of individual laboratories in using standard methods (which should be free 
of method bias). 

The statistical analysis of the measurements obtained by a user on a reference 
material poses a problem. Basically, what must be done is to compare the mean 
obtained by the user with the mean obtained during the certification process, i.e. 
the comparison of two means. At first sight this should be done using the r-test to 
compare two means as described in Section 5.1. However, there is a problem, 
namely that ^2 of eq. (5.6) is not defined. Indeed, the user laboratory compares the 
mean of the replicate analyses it has carried out (the number of which in this 
context is called n^, the n\ of eq. (5.6)) with the mean of an unknown number of 
replicate determinations in an equally unknown number of laboratories participat­
ing in the certification, so that not all data are available that are required to carry 
out the comparison of the two means by a r-test. 

To avoid this difficulty, one should then carry out the computations as described 
by the certifying organization. For instance the BCR [21] recommends to proceed 
as follows: 

- check that the repeatability of the method is compatible with the repeatabilities 
of the certifying laboratories. BCR proposes that this be done by verifying that the 
standard error of the mean of the user laboratory results, sj'^n^, is less than the 
standard deviation s of the distribution of certifying laboratory mean values, as 
stated on the certification document 

- if the repeatability standard deviation of the user laboratory is acceptable, then 
it can verify whether the mean obtained, yu, falls within the confidence limit of the 
certified value, which is considered to be ± 2s and is given by the certifying 
organization: (certified value - 25") < >̂u < (certified value + 25") where 2 is the 
approximate value of t for a sufficiently large number of degrees of freedom or z 
at the a = 5% level of confidence. 

13.5.4 Large concentration range — blank material available 

Since the concentration range is large, one must validate over that whole 
concentration range. When material to be analyzed without the analyte can be 
obtained, one can spike it. For instance, when one must determine a drug in blood, 
one can obtain blood without the drug and then add the drug in known concentra­
tions. Spiked samples are also cdXXtd fortified samples [7]. The result is often given 
as % recovery (or recovery rate), i.e the amount found compared to that added 
expressed as a percentage. The situation is rather similar to that described in 
Section 13.5.2. However, because the range is large, regression methods can be 
used: in a narrow range, this would not be recommended (see Section 8.2.4) 
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because the estimates of the parameters of the regression line would not be optimal. 
Moreover, the question arises of how many concentration levels to test. 

From the chemical point of view, spiking is sometimes less evident than one 
would think at first sight: for instance, when one analyzes an inorganic species it 
can be in a different form in the material than in the standard added. This can have 
a profound influence on the analytical behaviour. In particular, the first steps in 
some procedures such as dissolution or digestion are difficult to test in this way. 
We should warn that the chemical problems should not be forgotten by worrying 
exclusively over the statistics. 

One usually adds three to eight different concentration levels, covering the range 
to be determined. In the same way as for the repeatability and the within-laboratory 
reproducibility, one should at least determine the recovery at the upper and lower 
limits of the concentration range, with particular emphasis on any standard or 
specification value. The Washington consensus document [16] states that one 
should carry out this type of experiment at at least three concentrations, one near 
the lower quantification limit (LQ), one near the centre, and one near the upper 
boundary of the standard curve. 

A first approach is similar to that described in Section 13.5.2 and consists of 
analyzing enough replicates at each concentration level to be able to carry out a 
r-test. At each level, one compares the mean obtained with the known amount 
added. At each level, this then is the same situation as in Section 13.5.2. Let us 
consider an example. The example comes from a study about the analysis of a 
pharmaceutical drug in urine [22]. The author studied two chromatographic meth­
ods A and B. The only difference between the two is that in method A an internal 
standard is added, while such a standard was not added in method B. The author 
stated that when a method is under control, addition of an internal standard is not 
useful and that it will merely increase imprecision, as one adds the variation on the 
measurement of the internal standard to that of the analyte. The data are given in 
Table 13.6. We will use the data here to investigate, as an example, whether method 

UB - UOI 
B is unbiased. For this purpose we have computed It^l = F=~ where XB is the 

s /in 
mean of the values obtained with method B at a certain level and |Lio is the 
concentration level obtained by spiking. This must be compared with ro 025,5 = 2.57. 
One concludes that the differences are significant at all levels except at the level 
10. There is a (positive) bias in method B. It is small and probably the user would 
conclude that although the bias exists, it is too small to be of chemical consequence. 
Indeed, in this area one seems to consider biases up to 15% as acceptable. The bias 
increases with increasing quantity of drug, so that one would conclude that there is 
a proportional systematic error and that probably the calibration procedure is not 
optimal. 
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TABLE 13.6 

Analysis of a drug in urine (adapted from Ref. [22]). tB is the observed t value when comparing the amount 
obtained with method B with the known amount. 

Amount added 
(^ig/ml) 

0 
1 
3 

10 
30 

100 
300 

1000 

Method A 
(|ig/ml ± s) 
6 replicates 

0.5 ±0.3 
1.3 ±0.2 
3.6 ±0.4 

10.6 ±0.6 
34.9 ±1.5 

107.2 ±2.6 
318.9 ±8.1 

1051.0 ±29.2 

Method B 
(|ig/ml ± s) 
(6 replicates) 

0.5 ±0.3 
1.3 ±0.2 
3.5 ±0.4 

10.3 ±0.5 
33.9±1.8 

104.1 ±2.9 
316.1 ±9.4 
1037 ±4.4 

Î BI 

4.08 

3.67 

3.06 

1.47 

5.31 

3.46 

4.20 

20.60 

The fact that at the level 10 no bias could be shown, will not be considered in 
this context as an indication that there is no bias, but rather that it could not be 
detected: a p-error has occurred. The inverse also occurs: one finds no bias at all 
levels, except one. Suppose that we have carried out tests at the levels 5,10,20, 50, 
100, 200, 500, 1000 ng/ml and that the test at the 50 ng level shows a difference, 
while all others do not. What interpretation should be given? It does not make 
chemical sense to declare that the method is free from bias in the ranges 5-20 ng/ml 
and 100-500 ng/ml, but is biased at 50 ng/ml. We would probably be tempted to 
disregard the result at 50 ng/ml, but then we must ask the question whether 
statistical tests of which we disregard the conclusions should be taken seriously. 
Carrying out several r-tests in the same validation experiment and interpreting each 
of them separately, carries with it the philosophical problem we already discussed 
in Section 13.5.2. For each test separately, one accepts implicitly a possibility of 
making the decision that there is a difference, while in fact there is not (type I or a 
error), usually of 5%. In Section 13.5.2 only 3 levels were tested, but it quite often 
happens that one tests up to 8 levels. Performing eight tests at the 5% level of 
confidence means that one has about 34% probability that one of the eight tests will 
lead to a type I error. 

If the discrepancy described above occurs at the extremes of the concentration 
range, one should investigate whether the analytical range was well chosen, for 
instance by looking at the linearity of the calibration line and as a result probably 
shorten the range. If the concentration level at which a bias was found is situated 
in the middle of the range as described higher, one should remember that when 
several r-tests are carried out in a single experiment (here a method validation 
experiment), one should really interpret them in a simultaneous fashion and apply, 
e.g., Bonferroni's method (see Chapter 5). 
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One might reason that this simultaneous interpretation should include also the 
extremes of the range. In practice, there is a higher probability of something being 
wrong at these extreme ranges and one would not like to run the risk to miss that. 
Bonferroni's method has the disadvantage of making detection of bias at each 
separate level less sensitive and therefore less adapted to finding bias at the 
extremes of the analytical range. 

Purely from the point of view of detecting bias, the experiment described above 
is not really optimal. Instead of analyzing 8 levels in 6-replicate, one would have 
been better inspired to focus on two or three extreme levels (the extremes plus one 
in the middle). In the latter case, and with the same amount of work, one would 
have been able to analyze 16 replicates at 3 levels, thereby decreasing the p-error 
(the possibility of not detecting a bias, when there is one). This is also what we 
recommend. It is in this case better to concentrate on 3 levels of concentration. 
However, when one is interested at the same time in determining repeatability in 
function of concentration, there may be some justification in carrying out the 
experiment as described. 

Instead of summarizing the experiments by using Bonferroni's principle, it is 
possible to apply regression techniques. One or only a few replicate determinations are 
then carried out at each level and a graph of the amount found (y) against the amount 
added (x) is made — see also Fig. 13.3. If no measurement error were made and 
there were no bias, this would yield the relationship y = x, which can be written as: 

3; = 0 + 1 J C (13.4) 

This ideal situation is depicted in Fig. 13.3a. Because at least random errors are 
made, one determines the coefficients by regression 

y = bo-\-bix 

and one has to show that Po, estimated by bo, and pi, estimated by b\, are not 
significantly different from 0 and 1, respectively: 

Ho (intercept): po = 0; H,: Po ^ 0 

Ho (slope): p, = l; Hj: p, ;̂  1 

Example 5 of Section 8.2.4.1 is an example of method validation using this 
approach. Let us also apply the same calculations to the data of method B in Table 
13.6. Since individual results were not given, we used the mean values to obtain 
the regression equation. We obtain ô = 1 • 17 ± 1.54 and fci = 1.037 ± 0.006, where 
± gives the 95% confidence limits. It follows that po = 0 and pi ^ 1. If pi ^̂  1 (Fig. 
13.3b), then the slope of the line differs from what is expected. The difference 
between the actual line and the ideal one increases with concentration. This is 
indicative of a proportional systematic error. If it had been found that Po ^ 0, then 
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c) d) 

Fig. 13.3. Possible relationships between x (known amount added) and y (amount found); (a) bo - 0, 
b\ = \\no systematic error; (b) ^o = 0, ^i T̂  1: proportional systematic error; (c) b()i^O,b\ = \'. absolute 
systematic error; (d) non-linearity. 

the regression line would be shifted away from what it should be by an amount 
equal to the intercept b^ (Fig. 13.3c). This amount does not depend on concentra­
tion and one has therefore detected an absolute systematic error. 

In the example of Table 13.6, since Po = 0 and (3i ^ 1, one concludes that there 
is a proportional systematic error. Since b\ - 1.037, the best estimate of this error 
is +3.7%. As described in Section 8.2.4.2, it would be possible, and even recom­
mended, to apply joint confidence intervals. However, in practice this is rarely 
applied. 

Before carrying out the regression analysis, one should first investigate whether 
the line is indeed a straight line. This can be carried out with the ANOVA 
procedure described in Section 8.2.2.2. If non-linearity occurs, then this may be 
due to a problem at one of the extreme levels such as in Fig. 13.3d. One should 
carry out the validation over a shorter concentration range (if this is still compatible 
with the original aim!). 
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An important question is how many levels and how many replicates should be 
analyzed for a regression experiment. Some guidelines [16] exist and intuitively 
experimenters seem to favour a relatively large number of levels (up to 8) and a 
relatively restricted number of replicates. It can be shown that we should test only 
3 levels and carry out as many replicates at each level as is considered economi­
cally feasible. In fact, in the chapters on experimental design (Chapters 21-25), we 
will stress that the best estimates of a straight regression line are obtained by 
concentrating on two (extreme) levels (see also Section 8.2.4.3). The confidence 
intervals are narrower for, e.g., 6 replicates at 2 levels than for 2 replicates at 6 
levels. The third level is added here because it allows us to investigate linearity in 
the same experiment. 

The regression model not only allows us to investigate whether bias occurs, but 
also when it occurs it helps to diagnose the problem. Indeed, absolute and relative 
systematic errors are due to different causes and therefore identifying one of these 
errors points to its source and this is a first step towards finding a remedy. 

Requirements for % recovery have been published in a few fields. For instance, 
the pharmacokinetics consensus document [16] requires a recovery of 85-115% 
and an EEC guideline for control of residues in food [23] allows the following 
deviations: < 1 |Lig/kg: -50% to +20%, > 1 |Lig/kg to 10 |Lig/kg: -30% to +10%, > 10 
|Lig/kg:-20%to+10%. 

13,5.5 Large concentration range — blank material not available 

When no sample can be obtained that does not contain the analyte, the tech­
niques described in the preceding section cannot be applied. This is often the case. 
For instance, since it is not possible to obtain blood without iron, we cannot apply 
the techniques of Section 13.5.4 to evaluate the bias in the determination of iron in 
blood. In this section, we will consider the situation that analyte can be added to 
the sample in a representative way. As already stated in the preceding section, this 
is not evident and the analyst should consider carefully whether the chemical 
composition of the spiking solution ensures that the addition can be considered 
representative. 

As in the preceding section, two approaches are possible. In both one adds m 
different known amounts and analyzes n replicates of the different concentration 
levels thus obtained. In the first approach the results at each level are interpreted 
separately by comparing the known amount added with the difference between the 
results obtained with and without the addition, and in the second all results are 
interpreted as one experiment. In the first approach, r-tests are therefore applied, 
and in the second regression. 

Let us first consider interpretation at each level and let us, for simplicity, assume 
that only one known amount is added (m = 1). If the unknown concentration 
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originally present in the sample is |LLI and the amount added is such that the 
concentration increases with the known quantity |Lio, then the total concentration is 
|i2 = |Lii + M-o and |Li2 too is unknown. One can now carry out the analysis with the 
method to be validated and obtain the estimates X[ and X2 of |Lii and |Li2, respectively. 
It follows that 

X2-X] =x (13.5) 

Ideally, x should be equal to |Lio. As it is obtained from two estimates, x itself is an 
estimate. We call the quantity it estimates |Li. No bias is detected if |Lio = |i. If the 
analyses are replicated to a sufficient extent, one can use a r-test as described in 
Chapter 4 to verify whether 

Ho:|Li = |̂ o(H,:|Li7 |̂Lio) 

is true. Suppose the sample is analyzed 6 times and the following results are 
obtained (in mg/ml). 

90.00 - 90.80 - 89.70 - 89.20 - 88.60 - 91.20 (xi = 89.92, s, = 0.972) 

and after addition of 60.00 mg/ml 

156.00 - 154.20 - 155.30 - 155.60 - 153.80 - 154.70 {x2 = 154.93, ̂ 2 = 0.848). 

The difference between the two series of measurements is x = 65.01. We should 
now test whether this differs from 60. We should apply the following /-test proce­
dure. The 95% confidence interval around the difference X[ -X2 is given by (Sec­
tion 5.1.1.2): 

(154.93 - 89.92) ± 2.23 J [(5 x 0.972^ + 5 x 0.848^10] 4 + -|l= 65.01 ±1.17 

where ro.o25;io = 2.23. 
Since 60 is not included in the confidence interval, we conclude that 65.01 is 

significantly different from 60. We could also carry out the test, by subtracting 60 
from the second mean (154.93 - 60 = 94.93) and compare the mean 89.92 (̂ 1 = 
0.972) with 94.93 (5*2 = 0.848) using the independent t-iesi as described in Section 
5.1.1.2. 

What do we validate in this way? Let us suppose we make an absolute system­
atic error, such as a blank error leading to an overestimation of the concentration 
by Xb. Since the error is absolute it occurs equally at all concentrations and will 
affect equally X2 and xi. When performing the subtraction of eq. (13.5), Xb will be 
eliminated, so that it will not be revealed by the /-test. Proportional errors on 
the other hand would be noted. Suppose that there is such an error, so that a 
result/x (f^ 1) is obtained when one should find x. Then the subtraction of eq. 
(13.5) leads to 
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fxi -fiC\ =f{X2 - Xi) =JjC ^X 

and i f / i s different enough from 1, the difference between |i, which is now 
estimated by/x, and |Lio will be declared significant by the r-test. 

The conclusion is that the experiment described here does detect proportional, 
but not absolute, systematic errors. These proportional errors are due to different 
slopes of the calibration line and the line relating response to concentration in the 
sample. As a slope is best studied through regression methods, the second ap­
proach, which we will now describe, is often preferred. This approach is called the 
method of standard additions. Standard addition was described in Chapter 8. As 
applied in method validation, standard addition requires the comparison of two 
lines. The first is the calibration line obtained with aqueous standards, i.e. the 
calibration line that would be used to analyze unknown samples. The other line is 
the standard addition line. This is obtained by adding m known amounts to aliquots 
of the material to be analyzed, often without replication (n = 1), and plotting 
amount added (x) against signal measured (y). In such a graph, ^̂ o, the value of y 
measured for x = 0 will probably be positive because of the (unknown) amount of 
substance present at the start of the experiment. It is therefore not possible to do a 
test on the intercept as in the preceding section, so that one cannot detect absolute 
systematic errors. 

One expects both lines to have the same slope. In Fig. 13.4, line a is a standard 
addition line. If b were the aqueous calibration line, then one would declare that no 
bias can be detected; with calibration line c the conclusion would be that there is a 
proportional systematic error. lfb]c is the slope obtained for the calibration line and 
b\s the slope for the standard addition line, then one tests 

HQ: Pic = pis 

How to do this was described in Section 8.2.8. If the slopes are found to differ this 
means that a relative systematic error is present. This was the case in Example 9 of 
Section 8.2.8. For an analysis procedure of Al in serum a standard addition experiment 
was carried out. The slope of the calibration line was found to be 8.63 and that of the 

Fig. 13.4. The standard addition method; y = signal measured; x = amount added. Line a = standard 
addition line, b and c = aqueous calibration lines. 
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Fig. 13.5. (a) Spectra for analyte X and interferent Y. (b) The H-point. 

Standard addition line 8.03. The difference between the two slopes was found to be 
significant. It was concluded that the method is subject to proportional error. The 
best estimate is that the results are [1 - (8.03/8.63)] x 100% = 7.5% too low. 

As the method of standard additions detects only proportional systematic errors 
other approaches (using reference materials, comparing different methods — see 
next section) are required to make sure that there is no absolute systematic error. It 
should be noted that absolute systematic error does not depend on concentration. It is 
therefore sufficient to show for one or two concentration levels, for instance with a 
reference material, that there is no bias. Combined with standard addition over a 
sufficient range of concentration, this validates the absence of bias for the method. 

The standard addition method can be extended in certain cases. The H-point 
standard addition [24,25] is a modification of the standard addition method that 
permits correcting for both absolute and proportional systematic errors. In the 
simplest case (one interferent, the spectrum of which is known; see Fig. 13.5a) the 



408 

method requires measurement of a standard addition line at two wavelengths, X{1) 
and X (2), where the interferent shows the same absorbance. The two standard 
addition lines intersect at the so-called H-point with coordinates (CH; AH), where 
CH is the concentration of the analyte in the sample and AH the analytical signal due 
to the interferent at both ^i and X2 (Fig. 13.5b). Modifications of this method can 
be applied when the spectrum of the interferent is not known. 

13.5,6 Comparison of two methods or laboratories 

When none of the methods described in the preceding sections can be applied, 
the last resort is to develop two independent methods and to compare the results. 
If both methods yield the same results, then both are considered unbiased. It should 
be noted that both methods should be completely independent, i.e. different. If, for 
example, method A consists of an extraction, followed by a spectrophotometric 
determination and method B uses the same extraction and HPLC, then one can 
validate the spectrophotometric and HPLC steps, but not the extraction. The 
interpretation can be difficult when the results of both methods are not found to be 
the same. In that case, one knows that one of the methods, or both, are subject to 
bias but not more. To know which method is wrong, additional experimentation 
and chemical reasoning is required. 

Comparison of two methods is recommended in the following situations: 
- none of the experimental situations described in the preceding sections can be 

applied to the material to be analyzed. This often occurs. Suppose, for instance, one 
wants to determine moisture in cheese: it is then not possible to add in a homoge­
neous and representative way a known amount of water to the cheese. 

- one would like to replace an old method, the accuracy of which is considered 
to be proven, with a new more convenient one. Part 6 of the ISO-standard [6] 
describes how to do this when one of the two methods is a standard method. 

- when it is not sufficient to detect proportional systematic errors with a standard 
addition experiment, but absolute systematic errors must also be excluded. 

A rather similar experimental set-up is encountered when the comparison occurs 
between two laboratories. Such a comparison is carried out when one lab transfers 
a method to another lab. This is then called a transfer suitability check. The 
laboratory component of the bias due to the receiving laboratory can be detected 
by analyzing a set of samples covering the range of application of the method in 
both the developing and receiving laboratory. Suppose laboratory A has developed 
and fully validated a method to analyze a certain drug in blood and wants to transfer 
the method to laboratory B. The best way of studying bias in the receiving 
laboratory is to analyze the same set of m real blood samples in both laboratories 
and compare the result according to one of the experimental set ups to be described 
later. If a difference is found it must be due to lab bias in laboratory B. 
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The following experimental set-ups are most common. 
(a) One analyzes replicates at a restricted set of concentration levels covering 

the whole concentration range with the two methods. For instance, one might carry 
out the comparison at the quantification limit, the highest level to be determined 
and some in-between value. 

(b) One analyzes many samples over the whole concentration range. Each sample 
is analyzed with both methods and few replicate measurements are carried out. 

The former method is preferred when a single type of well-defined matrix is 
analyzed. When many different types of matrix occur, then one prefers the latter 
method. 

Let us first consider the method in which only a few concentration levels are 
analyzed. At each level several replicate analyses are carried out. Their number is 
preferably determined using p-error considerations, but is often in practice situated 
between 5 and 8. As in Section 13.5.4 the number of levels is best restricted to three. 
The statistical procedure required is an unpaired (independent) ^test at each level. 

Let us consider one such level. The results obtained are: 

xi = 32.6 5*1 = 2.56 ni = 11 

JC2 = 31.6 52 = 2.01 ^2=13 

It should be remembered (Chapter 5) that the independent t-test requires that the 
two series of measurements have the same variance. Therefore, the F-test is first 
carried out. 

F = sUsl = 6.55/4,04 =1.62 

This is compared with the critical F-value for a = 0.05 at 10 and 12 degrees of 
freedom for a two sided-test, Fcm = 3.37. Since F < Fcnt, CT? = ai. Therefore one can 
pool the variances: 

2 10x6.55 + 12x4.04 ^ _ 
'= 22 = ^'^^ 

and compute 

r = (32.6 - 31.6)/V5.18(l/ll + l/13) = 1.072 

Because of the low ^value we conclude that the two methods are equivalent: 
there is no bias at the level considered. 

When many samples over the whole concentration range are analyzed with both 
methods, we can apply two types of statistical analysis. A first possibility is to use 
a paired Mest and the second is to compare the results of both methods by 
regression. In this case preliminary visual analysis of the results is particularly 
useful and we will first discuss these visual methods. 
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Fig. 13.6. Comparison of two clinical methods. The dashed line is thcy = x line, the solid line is the 
regression line. Adapted from Ref. [26]. 

In some cases, particularly with automatic measurement techniques, it is possi­
ble to analyze many samples (often up to a few hundred). One plots the result for 
each sample of method 1 against that of method 2. If the two methods yield the 
same results then the points on the plot should be spread out evenly around the line 
y = x. Including the line foTy = xin the plot helps the visual assessment. An example 
is given in Fig. 13.6. This consists of a comparison of a potentiometric and a flame 
photometric method [26]. One observes easily that the results in the middle range 
coincide, but that at higher levels the result of the potentiometric method is 
higher. There probably is a proportional error (calibration problem) in one of 
the methods. 

Another visual interpretation method will be introduced with a data set from 
Ref. [27]. This concerns two methods to determine fat in pork products; 19 
materials with different fat content were selected. Each was analyzed in duplicate 
with the two methods. The data are shown in Table 13.7. 

One can plot Iwil and IW2I against jci and JC2, respectively (see Fig. 13.7). \w\\ and 
IW2I are the absolute differences between the two replicate results (which is 
equivalent with the range). These plots do not show a trend in the differences 
between the replicates and therefore indicate that s is constant over the range 
studied, so that we can expect the standard deviation of the differences between 
X\ and X2 to be constant too. This is a necessary condition for carrying out the r-test, 
because the test assumes that there is one single standard deviation of the differ­
ences between the two methods. 

One then plots d = jci -X2 in function of jc = (jci +JC2)/2 (see Fig. 13.8). This too 
does not show a trend, either in magnitude or in range, so that we can safely assume 
that the conditions are fulfilled for applying the paired r-test. Indeed, we test 
whether d is different from 0. This means that one assumes that all d spring from 
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TABLE 13.7 

Determination of fat in pork products (adapted from Ref. [27]) 

Product 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Method 1 

XI 

4.83 
6.74 
8.46 

12.60 
13.52 
15.72 
15.83 
18.37 
18.90 
23.10 
32.45 
40.89 
41.42 
43.36 
45.96 
47.70 
50.02 
57.20 
78.48 

Iwil 

0.00 
0.14 
0.09 
0.33 
0.14 
0.62 
0.24 
0.54 
0.34 
1.03 
0.05 
0.64 
0.77 
0.49 
0.59 
0.04 
0.07 
0.39 
0.40 

Method 2 

X2 

4.63 
7.39 
8.76 

11.85 
13.67 
15.80 
16.05 
18.22 
18.79 
22.80 
32.53 
41.03 
41.52 
43.70 
45.89 
47.81 
50.11 
57.51 
79.38 

IW2I 

0.00 
0.80 
0.24 
1.30 
0.49 
1.31 
0.12 
0.74 
0.90 
0.15 
0.39 
0.82 
0.26 
0.16 
0.03 
1.16 
0.56 
0.65 
0.09 

JC1-X2 

0.20 
-0.65 
-0.30 
0.75 

-0.15 
-0.08 
-0.22 

0.15 
0.11 
0.30 

-0.08 
-0.14 
-0.10 
-0.34 

0.07 
-0.11 
-0.09 
-0.31 
-0.90 
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Fig. 13.7. Visual representation of the pork fat data of Table 13.7 for method 1. 

the same distribution with true difference 8. If d depends on the concentration this 
assumption does not hold. In our example, the mean difference, 3 = -0.099 {s = 
0.351), so that we can write that the differences between the two methods come 
from a population with mean and confidence interval 
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Fig. 13.8. Bland and Altman plot for the data of Table 13.7. 

-0.099 ± roo25;i8 (0.351/VT9') = -0.099 ± 0.169 

This includes 0 so that the difference is not significantly different from 0: the two 
methods are equivalent and no bias is detected. 

This type of plot, proposed by Bland and Altman [28], is of great diagnostic 
value by itself. In the present case, without carrying out statistics, it is clear that the 
two methods are equivalent, except perhaps at the highest concentration and it 
would be recommended to study this concentration in more detail. This way of 
plotting permits us to observe certain points that would have escaped attention 
otherwise. Some typical situations are shown in Figs. 13.9a,b and c. Figure 13.9a 
would be obtained in the case of an absolute systematic error, b for a proportional 
error and c is obtained when the variance of the methods depends strongly on 
concentration. 

A problem in applying this method is that, by the selection of real samples of 
which the concentration is not known a priori, one will tend to analyze most 
samples in the medium concentration range and only a few at the lowest and the 
highest concentration levels. The data of Table 13.7 are illustrative of the problem: 
the highest concentration levels are not well represented. Therefore, if at all 
possible, one should carry out a preselection of the samples, so that the extreme 
levels are equally well represented as those in the middle. 

The same remarks apply, of course, when one carries out the interpretation by 
regression. The latter is to be preferred in this case to using the r-test, because it 
gives more information. It is very similar to that of the preceding sections (Sections 
13.5.4 and 13.5.5). Ideally, the slope should be 1 and the intercept 0. A deviation 
of the former indicates a proportional discrepancy between the two methods, and 
if one of the two has been validated earlier (reference method), then the other (test 
method) is subject to a proportional systematic error. A non-zero intercept is 
diagnosed as an absolute discrepancy or an absolute systematic error. 
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H 

c 
Fig. 13.9. Bland and Altman plots for situation with (a) absolute systematic error; (b) proportional 
error; (c) heteroscedasticity. 

One important problem is the following. In the preceding sections, we plotted 
on the X-axis a known amount or concentration and on the y-axis the experimental 
result. In other words, we considered the x-values to be free from random error and 
the y-values not. Ordinary least squares regression can then be applied. However, 
when comparing two laboratories or two methods both the x and the y are 
experimental results. We should use the model of Section 8.2.10 with residuals 
orthogonal to the regression line, instead of parallel to the3;-axis. Using orthogonal 
residuals means that similar precisions are assumed for both methods. If necessary, 
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different precisions can also be taken into account but this is very rarely, if ever, 
done. It should be noted that in practice, the classical regression model is often 
applied instead. This is acceptable only when the measurement error variance in x 
(i.e. reproducibility or repeatability — according to experimental conditions — 
squared), which we will call here aL , is small compared with the spread of the x 
values over the concentration range as measured by the variance of the x-values, 
a?. From simulations by Hartmann et al. [29], it follows that errors are made quite 
easily in practice and it therefore seems advisable not to apply ordinary least 
squares at all in such a comparison. 

A method which is often applied, but should in fact never be used in this type of 
study is to compute the correlation coefficient between the results obtained with 
the two methods. The correlation coefficient is a measure of association and all it 
can be used for is to decide whether two methods give indeed related results. As 
this is the least one expects, measuring the correlation coefficient is of no use in 
this context (see also Section 13.6.1). 

13.5.7 An alternative approach to hypothesis testing in method validation 

All the methods described so far test whether there is no bias e.g. HQ: |io = |I as 
in Section 13.5.2. However, fundamentally it is improbable that there should be no 
difference at all. We should state rather that the difference should not be larger than 
a given bias. Such a situation is similar to that described in Chapter 4.10. In this 
section, it was explained that instead of the use of point hypothesis tests, we may 
prefer to apply interval hypothesis tests. This was also proposed for method 
validation by Hartmann et al. [30]. They showed that this also allows a better way 
of taking p-error into account, which, as stated in preceding sections is often not 
done at all in method validation. 

13.5.8 Comparison of more than two methods or laboratories 

From time to time, more than two methods will have to be compared. This will 
usually not be the case in the full validation step, but it may happen during the 
exploratory stage. As an example, we refer to Table 6.1a. In this case we were 
interested in the analysis of a specific mineral-vitamin formulation. The experi­
mental set-up consisted of analyzing 6 replicates of the material by 6 different 
methods. The statistical analysis is carried out by one-way ANOVA. As explained 
in Section 13.2, when the concentration levels cover a larger range, or, if different 
types of matrices can occur, we should analyze several materials. This then 
constitutes a two-way ANOVA (materials, methods). We are interested in the 
factor methods and the interaction between materials and methods. The variance 
due to materials is not of interest, but has to be taken into account in the ANOVA. 
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TABLE 13.8 

Comparison of wet oxidation methods for the analysis of Se (results in fig Se/100 ml sample). Adapted from Ref. 
[27]. 

Material 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Procedure 

A 

6.0 
16.8 
11.9 
45.8 
75.7 
54.4 
86.1 
19.7 

125.9 

B 

7.8 
21.6 
17.5 
48.9 
76.6 
56.8 
90.4 
23.9 

130.8 

C 

6.7 
19.5 
13.7 
44.6 
74.4 
54.6 
89.0 
18.9 

127.1 

D 

4.0 
18.5 
10.5 
44.1 
74.9 
51.4 
84.1 
18.3 

124.2 

E 

8.6 
19.6 
16.6 
49.3 
78.6 
56.3 
89.4 
21.5 

128.6 

ANOVA analysis 

Source 

Materials 
Procedures 
Materials x 
(= residue) 

procedures 

df 

8 
4 

32 

Sum of squares 

65573.71 
150.81 
35.63 

Mean square 

37.70 
1.11 

F 

34.0 

Here, we will discuss another example of the latter type, taken from Ref. [27]. The 
data concern the analysis of Se in urine using 5 different wet oxidation procedures. 
B is a fully validated procedure and the other four are possible alternatives. Nine 
urines were analyzed and the results are given in Table 13.8. 

The example is interesting, because, at first sight, it is not possible to estimate 
the effect of interaction because there is no replication. The materials require 8 
degrees of freedom, the procedures 4 and the interaction 32. Since the total number 
of results is 45, there are 44 degrees of freedom that are used up by the effects, 
leaving none for the residual. However one should remember that the mean square 
is a variance. The interaction effect therefore corresponds to a standard deviation 
ofVl.ll = 1.05. If this is significantly larger than the experimental error, we would 
conclude that the effect is significant. 

In this case, the experimental error is not obtained from the ANOVA experi­
ment, but it was known from earlier experiments that the repeatability standard 
deviation was of the order of 1.25. As this is certainly not smaller than 1.05, the 
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interaction effect cannot be significant and its sum of squares and degrees of 
freedom can be incorporated into the residual error, which can then be estimated 
(see also Chapter 6.7). It is a good example of how outside information can be 
put to advantage. In this case, it eliminated the need for replication. Note also 
that this is what we called in Chapter 6 repeated testing: MS and F for the factor 
materials are not calculated. We know that the materials are different and must 
therefore include the effect into the ANOVA to filter out its contribution to the 
overall variation, but it is not relevant to compute the variance of that effect 
(MS) nor its significance (through P), As a conclusion, we need only to assess 
the effect of the factor procedures. Since Fo.o5;4,32= 2.67, there is a clear effect 
of the procedures. Further statistical analysis shows that only E gives equivalent 
results with B and that this is the only alternative procedure meriting further 
consideration. 

It is also very useful to carry out intercomparisons with a few laboratories. This 
type of study is not the complete intercomparison, which will be described in 
Chapter 14 and which requires much work and planning, but rather an additional 
step in the intralaboratory validation of a few laboratories with common interests 
or a preliminary step in a true interlaboratory study. The experimental set-up then 
consists of ^ laboratories (often only 3 or 4) using/? methods (often 1) to analyze 
m different materials in Ai-replicate. As an example, we give here an experiment 
preliminary to the proposal of a new method for the titrimetric analysis of chlor-
promazine in the European Pharmacopeia [31]. Three methods were studied, one 
being the existing one, and another being proposed because it does not require 
mercury salts and is therefore environmentally more friendly. Four laboratories 
participated and three materials were analyzed in 10-replicate. The analysis of the 
resulting data set can be carried out using a three-way (qxpxm) ANOVA, but it 
is not necessarily a good idea to apply this without further thought. Instead it is 
preferable to have a look at the data first with box plots (see Chapter 12). Indeed, 
because of the preliminary nature of the intercomparison it is possible that the data 
contain outliers and that the precisions of the laboratories are very different. If this 
is the case, classical ANOVA becomes a doubtful proposition and we prefer in this 
case to use randomization tests (see Chapter 12). 

Figure 13.10 shows the box plot for the three methods on one of the materials. 
A figure like this immediately allows some conclusions to be made. There is no 
evidence for systematic differences in concentration levels found between the three 
methods, so that there probably is no systematic error in any of the methods. Also 
laboratory 1 works with consistently better precision than 3 and the correspon­
dence between laboratories is best with method B. Because this is an indication of 
ruggedness, method B was chosen for further validation. 
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Fig. 13.10. Box plot for the comparison of three methods, (a), (b), (c), carried out by four laboratories 
(adapted from Ref. [31]). 

13.6 Linearity of calibration lines 

Most measurement techniques make use of a calibration graph to estimate the 
analyte concentration in unknown samples. This implies that a decision concerning 
the nature of the relationship between the concentration and the response has to be 
taken. Very often a simple straight line relationship is preferred and many meas­
urement techniques are designed to achieve proportionality between response and 
concentration. In practice, however, deviations from linearity are frequently ob­
served. Therefore, it is essential for a method validation program to include a 
linearity test. Such tests are discussed in this section. 

Before discussing these tests, it should be noted that in pharmaceutical guide­
lines [17,32] linearity is used in a different context. For instance, the Committee 
for Proprietary Medicinal Products [32] defines linearity of a test procedure as "its 
ability (within a given range) to obtain test results directly proportional to the 
concentration (amount) of analyte in the sample". The US Pharmacopeia [17] adds 
that the mathematical treatment normally is a calculation of a regression line by the 
method of least squares of test results versus analyte concentrations. In other 
words, methods described in the context of the determination of bias are used 
(Section 13.5.4). It also follows that if methods have been shown to be unbiased at 
the lowest and highest levels of interest and at an intermediate one (for instance, 
the nominal level when this notion applies), that there is no sense in determining 
the linearity of the test procedure. As the bias is always investigated at at least three 
levels including two extreme levels, the determination of the linearity of a test 
procedure is superfluous. Linearity in this section will therefore mean linearity of 
the calibration line. 
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13.6.1 The correlation coefficient 

As described in Section 8.3 the correlation coefficient, r, between x and 3; 
evaluates the degree of linear association between the two variables. It only 
indicates whether the variables vary together linearly. Therefore, as shown in Fig. 
13.11, a correlation coefficient very close to 1 can also be obtained for a clearly 
curved relationship. Consequently, the correlation coefficient, which is commonly 
used, in itself is not a useful indicator of linearity. 

Nevertheless, calculation of the correlation coefficient is acceptable for a system 
suitability check if the full method validation has established linearity between the 
response and the concentration. The check could further consist in a comparison of 
the correlation coefficient with a default value specified from the method valida­
tion results. For instance, one could require that r > 0.999. If r is found to be less, 
this is taken to mean that the calibration line is not good enough. The reason for 
this can then be ascertained further through visual inspection. 

13.6.2 The quality coefficient 

Another suitability check is the calculation of the quality coefficient. It was 
defined by Knecht and Stork [33] to characterize the quality of straight line 
calibration curves and is calculated from the percentage deviations of the calcu­
lated x-values from the ones expected: 

4 1(% deviation)^ 
; (13.6) 

n - 1 

with 

% deviation =""''''''''' ' ' ' '"""" 100 
•^known 

The better the experimental points fit the line, the smaller the quality coefficient. 
A similar expression, based on the percentage deviations of the estimated 

response, has been used by de Galan et al. [34] in their evaluation of different 
models to fit curved calibration lines in atomic absorption spectrometry: 

(13.7) 
n- 1 

with yi = the measured response, and yt = the response predicted by the model. 
Since these expressions are calculated from the percentage deviation of either 

the calculated xory values, they assume that the relative standard deviation (RSD) 
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is constant. For the evaluation of straight Une calibration lines with homoscedastic 
measurements the following adaptation of the quality coefficient has been pro­
posed [35]: 

l-yi-yj^ 

ec=ioo^ JL 
n-\ 

(13.8) 

Each residual (y/ - yt ) being related to the same absorbance value, i.e. y, which is 
the mean of all responses measured, implicitly means that the absolute deviation is 
considered constant. 

If a target value for the quality coefficient has been specified, for instance from 
the full method validation or from previous experience, the suitability of a calibra­
tion line can be checked. The line is unacceptable if its QC value exceeds the target 
value. As an example, consider the calibration line of Fig. 13.11 which is also given 
in Table 13.9. The straight line equation is y = 0.051 + 0.3225x. From this fitted 
line the QC (eq. 13.8) is calculated as follows (see Table 13.10): 

QC = 100 V 2.342 10-2 
= 5.4% 

The calibration line is from atomic absorption spectrometry for which a target 
value of 5% has been proposed [35]. Consequently it is concluded that the line is 
unacceptable, in this case due to non-linearity. 

fxglm 

Fig. 13.11. Example of a curved calibration line with a correlation coefficient close to 1 (r = 0.996). 
The data are given in Table 13.9. 
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TABLE 13.9 

Test of linearity: absorption signal y measured as a function of concentration jc 

X (|ig/ml) yW 

0.00 
0.40 
0.80 
1.20 
1.60 
2.00 
2.40 
2.80 
3.20 

0.000 
0.173 
0.324 
0.467 
0.610 
0.718 
0.825 
0.938 
1.048 

TABLE 13.10 

Calculation of the QC for an atomic absorption calibration line {y = absorption signal, x = concentration) 

A', 

(|ig/ml) 

0.0 
0.4 
0.8 
1.2 
L6 
2.0 
2.4 
2.8 
3.2 

yi 
(A) 

0.000 
0.173 
0.324 
0.467 
0.610 
0.718 
0.825 
0.938 
1.048 

y = 0.567 

yi 
(A) 

0.051 
0.180 
0.309 
0.438 
0.567 
0.696 
0.825 
0.954 
1.083 

(iyi-yi)/yf 

8.090 10"^ 
0.152 10--̂  
0.700 10-^ 
2.616 10-^ 
5.751 10-^ 
1.505 10--̂  
0 
0.796 10"̂  
3.810 10-^ 

1 = 2.342 10-2 

QC= 100 V2.34210-2/8 =5.4% 

Since in eqs. (13.7) and (13.8) the gC corresponds to a relative residual standard 
deviation it seems in fact more logical to divide by (n - 2) rather than by (n - 1), 
the former also being used in the expression of the residual standard deviation (see 
eq. (8.6)). 

The QC is to be preferred over the correlation coefficient not only because it 
gives a better idea of the spread of the data points around the fitted straight line but 
also because it gives some indication on the percentage error to be expected for the 
estimated concentrations. Moreover, the QC can also be used in the evaluation of 
more complex calibration models. Division by (n - p), p being the number of 
regression coefficients included in the model, might then also be preferred. 
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13.6.3 The F-testfor lack-of-fit 

In full method validation we use either the F-test for lack-of-fit or the one 
described in Section 13.6.4. Both are included in draft lUPAC guidelines for 
calibration in analytical chemistry [36]. The test for lack-of-fit described in Section 
8.2.2.2 verifies whether the straight line model adequately fits the calibration data. 
As pointed out earlier it requires that replicate measurements are available to 
estimate the pure experimental error. Because of this requirement the F-test for 
lack-of-fit is generally restricted to the full method validation program. For a 
worked example the reader is referred to Example 2 of Chapter 8. 

13.6.4 Test of the significance ofbi 

Another possibility to test linearity of a calibration graph is to fit a second degree 
polynomial to the data: 

y = bo + b\X + bix^ 

A straight line relationship is demonstrated if the quadratic regression coeffi­
cient, ^2, is not significant. The hypothesis that the quadratic term is zero (HQ: p2 = 
0; Hi: p2 9̂  0) can be tested by means of the confidence interval for p2 or by means 
of a r-test (see Section 10.4). In the r-test the absolute value of 

t = b2/sh^ 

with Sh, the standard deviation of bj as obtained from eq. (10.18), is compared with 
the tabulated ^ forn - 3 degrees of freedom at the chosen confidence level. 

Example: 

Table 13.9 gives the data shown in Fig. 13.11. The second degree equation is: 

y = 0.0064 + 0.4181 x - 0.0299 x^ 

and Sh^ = 0.00324 

From the 95% confidence interval for p2: 

- 0.0299 ±(ro.o5;6X 0.00324) 

- 0.0299 ± (2.447 x 0.00324) 

- 0.0299 ± 0.0079 
or from the absolute value of: 

t = - 0.0299/0.00324 = - 9.228 

as compared to ro.o5;6 = 2.447, it is concluded that the quadratic term is not zero. 
Consequently non-linearity is demonstrated. 
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ISO [37,38] and lUPAC [36] include this approach, although in a different form, 
to evaluate the linearity of the calibration line. The test is performed by means of 
the partial F-test discussed in Section 10.3.2. If non-linearity is detected ISO 
recommends either reducing the working range in order to obtain a straight line 
calibration function or, if this is not possible, using the quadratic calibration 
function. However, it should be noticed that the significance of the quadratic term 
does not imply that the second degree model fits the data correctly. This was also 
recognized by Penninckx et al. [39] who propose a general strategy for the 
validation of the calibration procedure that makes use, among others, of the 
ANOVA lack-of-fit test, the test of the significance of ^2 discussed in this section 
and a randomization test (see Section 12.4) for lack-of-fit. 

13.6.5 Use of robust regression or non-parametric methods 

Robust regression methods can be applied to detect non-linearity. Indeed, robust 
regression methods are not sensitive to outliers. The use of the straight line model 
when a deviation from linearity occurs, will result in model outliers (i.e. outliers 
due to the erroneous use of the straight line model). They can be detected with 
robust regression methods such as the least median of squares (LMS) method as 
described in Section 12.1.5.3. 

In principle, LMS could be used in full validation. However, we prefer for this 
purpose the methods described in the preceding sections. The method can, how­
ever, be applied for a system suitability check to diagnose problems with the 
calibration line, if QC or r exceed their threshold value. Its use for this purpose, in 
conjunction with another test, called the slope ranking method, was proposed by 
Vankeerberghen et al. [40]. 

13.7 Detection limit and related quantities 

An important characteristic of an analytical method is the smallest concentration 
of the analyte that can be detected with a specified degree of certainty. In the 
seventies lUPAC [41] stated that the limit of detection, expressed as the concen­
tration, JCL, or the quantity qi^, is derived from the smallest measure yi^, that can be 
detected with reasonable certainty for a given analytical procedure, where 

3̂L = >̂bi + ^̂ b̂i (13.9) 

with jbi the mean of the blank responses, ^bi, the standard deviation of the blank 
responses and k a constant. The detection limit x^ (or qO is obtained as: 

xi^ior qO = ksJS (13.10) 
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with 5, the sensitivity of the analytical method (see Section 13.8), corresponding 
to the slope of the calibration line. lUPAC strongly recommends to use a value of 
k = 3. 

In general terms, the detection limit has been defined as that concentration 
which gives an instrument signal (y) significantly different from the blank signal. 
The different interpretations of the term "significantly different" have resulted in 
different definitions for the quantification of the detection limit and this has led to 
a lot of confusion. The fact that both blank and sample measurements are subject 
to error requires the problem of chemical detection to be treated in a statistical way. 
This implies that detection decisions are prone to the two kinds of errors associated 
with any statistical testing: false positive decisions (type I or a-error) and false 
negative decisions (type II or P-error). Traditional approaches for determining 
detection limits (such as the former lUPAC definition [41]) only provide protection 
against type I errors. They do not take the p-error into account. According to Currie 
[42, 43] three limiting levels are required to completely describe the detection 
capabilities of an analytical method: (1) the decision limit at which one may decide 
a posteriori whether or not the result of an analysis indicates detection, (2) the 
detection limit at which a given analytical procedure may be relied upon to lead a 
priori to detection and (3) the determination limit (or quantification limit) at which 
a given procedure will be sufficiently precise to yield a satisfactory quantitative 
estimate. The decision limit is related to the question "Has something been 
detected?", the detection limit to the question "How little can be detected?". The 
most recent lUPAC Nomenclature document [3] recognizes the necessity to con­
sider both a and p errors and includes the different limits specified above. 

The discussion of the detection limit and related quantities in this section is 
based on papers by Currie [42], Hubaux and Vos [44], Winefordner and Long [45] 
and Cheeseman and Wilson [46] and on a textbook edited by Currie [43]. Termi­
nology and symbols for the measurement limits in this discussion are as far as 
possible as recommended by lUPAC [3]. In the literature and in some specific 
guidelines several other terms and symbols are used. 

13.7.1 Decision limit 

Let us first consider the blank measurement. The blank is a sample which is 
identical to the sample of interest except that the analyte to be measured is not 
present. The measurement of that blank is of course also subject to error, which we 
consider to be normally distributed. This means that a sufficiently large number of 
observations on the blank can be represented by a normal distribution of the 
responses, with mean ^bi, the true blank value, and standard deviation Gbi as shown 
in Fig. 13.12. Now consider a response, LQ, which is made kc standard deviations 
away from the mean blank value: 
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Fig. 13.12. Normal distribution of the blank measurements. 

Lc = |Llbi + ^cObi (13.11) 

The probability to measure a blank signal, >'bi, which is larger than LQ is equal 
to a. The higher Lc is, compared to the mean blank value, the less probable it 
becomes to obtain a blank signal that is larger than Lc- From this it follows that if 
Lc is sufficiently larger than the mean blank value a measured signal which is larger 
than Lc is unlikely to be due to the blank. If signals larger than Lc are interpreted 
as "component present", then only a fraction a of blanks will be (mis)interpreted 
as "component present". 

The critical value, Lc, thus depends both on the standard deviation of the blank 
measurements and on the risk one is willing to take of making a wrong decision. 
For kc = 3, Lc is equal to >̂L as formerly defined by lUPAC [41 ]. A value of kc = 3 
corresponds with a probability a = 0.13% that a signal larger than Lc is due to a 
blank. Therefore, it can be concluded with a high probability (1 - a = 99.87%) that 
the component has been detected. 

However, if a signal is measured which is lower than Lc it cannot, with the same 
certainty, be concluded that the component is not present. To explain this, consider 
a sample with a true concentration corresponding to an average response Lc. The 
distribution of an infinite number of repeated measurements on this sample is 
represented, together with the distribution of the blank measurements, in Fig. 
13.13. A normal distribution with a standard deviation equal to Obi is assumed. Note 
that 50% of the signals observed for the sample will be smaller than the limit Lc. 
Therefore, the statement that the component is absent if the measurement is smaller 
than Lc is very unreliable. Indeed, the probability of not detecting the analyte when 
it is present with a concentration yielding a signal Lc, is 50% (= the p error, the 
probability of false negative decisions — see Chapter 4). Consequently, with this 
limit Lc, the probability to decide that the analyte is present when in fact it is absent 
(= a error) is small whereas the probability to decide that the analyte is absent when 
in fact it is present (= (3 error) is very large. 
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componenf component 

Fig. 13.13. Illustration of the decision limit, LQ. 

Due to the large p error it has been proposed to use this limit only for an a 
posteriori decision about the presence of a component, i.e. a decision after the 
signal is measured. It is then defined as the critical level or decision limit above 
which an observed signal may be reliably recognized as detected [3,42,43]. lUPAC 
[3] proposes a default value for a equal to 0.05. This corresponds with kc = 1.645. 

13.7,2 Detection limit 

To reduce the (3 error, so that eventually the a and the p error are better balanced, 
the two distributions in Fig. 13.13 have to be separated to a larger extent. In Fig. 
13.14 the situation is represented where a = p. It is assumed that a at the detection 
limit LD is equal to Gbi. 

Fig. 13.14. Illustration of the detection limit, LD. 
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The detection limit LD is set fco standard deviations away from Lc' 

LD^Lc + ZcDObi (13.12) 

= M-bi + IC'D CTbi with /C'D = /̂ c + D̂ 

From Fig. 13.14, where the relationship between the critical level, Lc, and the 
detection limit, LD, is illustrated, it follows that LD has the following meaning: for 
a sample that does not contain the analyte (the true concentration corresponds to 
an average response |Libi) less than a% of the measurements will exceed Lc. For a 
sample with a true concentration corresponding to a response LD only (3% of the 
measurements will be below Lc and are indistinguishable from the blank. There­
fore, given Lc (or a), LD protects against false negative decisions. 

In Fig. 13.14a = pbecause^c = ̂ D.Withforexample^c = ̂ D = 3,a = p = 0.13% 
and 

LD = Lc + 3 Gbi = |Llbi + 6 Obi (13.13) 

Therefore, with LD as detection limit, as defined by eq. (13.13), we run a risk of at 
most 0.13% to conclude that the component is absent when in fact it is present. 
Consequently, the risk for both false positive (a) or false negative results (p) is very 
small. 

Taking the default values for both a and P equal to 0.05, lUPAC [3] proposes a 
multiplication factor equal to 3.29 (= 2 x 1.645). 

13.7.3 Quantification limit 

The determination or quantification limit, LQ, is defined as the level at which the 
measurement precision will be satisfactory for quantitative determination (lUPAC 
[3] recommends not to use the term determination limit). In other words, the 
quantification limit is the concentration that can be determined with a fixed 
maximum relative standard deviation (RSD) and a suitable accuracy. 

It is defined as: 

LQ = l̂ bl +/CQ Obl (13.14) 

If for quantitative determination an RSD of 5% is required, /:Q should be 20. The 
relative standard deviation at the level LQ is thus Xlkq (= ObALq - |Libi)). Conse­
quently, the relative standard deviation of the quantitative measurement at the 
decision level Lc is 33.33% and at LD 16.67%. lUPAC [3] proposes a default value 
of 10 for kq. The above definition of course assumes that a at the quantification 
limit is equal to Gbi. In practice therefore, LQ is preferably determined from the 
precision measured at the level thought to be equal to LQ. 

The SFSTP group [13] specifies that the precision and accuracy have to be 
evaluated at the quantification limit by preparing n independent samples {n > 6) 
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containing the component to quantify at the concentration LQ and performing the 
test procedure on each sample. 

The choice of the k values (or the t values — see next section) determines the 
risk one is willing to take of making a wrong decision. However, the different 
values for the constants used have contributed to the existing confusion about 
detection limits. Therefore, when reporting the lower limits of measurement, the 
way they are defined and determined should be specified. In this context, the 
Analytical Methods Committee of the Royal Society of Chemistry [47] recom­
mends the former lUPAC definition for the detection limit which as mentioned 
earlier, specifies A: = 3, and discourages the use of the other lower limits of 
measurement (decision limit and quantification limit). The committee prefers a 
simple operational definition for the detection limit that is regarded as a rapidly 
acquired but approximate guide to performance of an analytical system. Be­
cause of difficulties in the interpretation of detection limits it is considered that 
there is no point in trying to estimate them very precisely, or in defining them 
strictly in terms of confidence intervals. We agree that this makes sense but in 
many disciplines such as the bio-analysis of drugs [16], one has to state a 
quantification limit. 

13.7.4 Measuring the blank 

The expressions for Lc, LD and LQ are based on the mean blank and on the 
variability of the blank. To ensure that realistic estimates of these limits are made 
it is important to select the appropriate blank. A solvent or reagent blank, which is 
the solution that contains the reagents in the same quantity used to prepare the 
calibration line or to dilute the sample, may give detection limits which are too 
optimistic. If our main interest, however, is in the comparison of detection limits 
of different instruments such a solvent blank is perfectly useful. An analytical 
blank contains all reagents and has been analyzed in the same way as the samples. 
It is a blank solution which has been taken through the whole procedure, from the 
pretreatment up to the measurement and therefore it is much more appropriate to 
determine the detection limit of the analytical method that is being validated. 
Therefore detection limits based on the signal to noise ratio should only be used if 
they can be obtained from the entire measurement process. The ideal blank is the 
matrix blank which has exactly the same composition as the sample except for the 
analyte to be analyzed. In some situations a sample in which the analyte is not 
present can be obtained e.g. if a drug has to be determined in blood, blank blood 
without the drug can usually be obtained. Alternatively, if a blank sample is not 
available, the variability of a sample with a very low analyte concentration 
(concentration near the detection limit) can also be used for the evaluation of the 
detection and quantification limits. 
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Good estimates of the mean and the standard deviation of the blank require a 
reasonable number of blank measurements, n. The fact that the calculated standard 
deviation is only an estimate can be taken into account by replacing the constants 
kc, ki) and kq in eqs. (13.11, 13.12 and 13.13), which are derived from the 
standardized normal distribution, by t values (re, fc and tq for n - 1 degrees of 
freedom). However, if a reasonable number of blank measurements have been 
made, the values obtained for the different limits will be very similar to those given 
earlier. lUPAC [3] specifies that when a is estimated as s, a confidence interval 
must be given for the detection limit LD to take the uncertainty in s into account. This 
can be done by considering the confidence interval for a as derived from eq. (5.16). 

Another approach, which is also included in the ICH document [9], is to estimate 
the standard deviation of the blank from the residual standard deviation of the 
calibration line {Se, see eq. (8.6)). It should be obvious that this is only useful 
provided (i) that the calibration standards have the same composition as the 
samples to be analyzed, (ii) that the calibration standards have been taken through 
the whole analytical procedure and (iii) that the calibration data are homoscedastic. 

Practices also differ with respect to the blank correction. Indeed eqs. (13.11) to 
(13.14) are based on the comparison of the measured signal with the blank signal. 
However, when blank correction is part of the analytical procedure, the measured 
response should first be corrected for the blank response. The decision that the 
analyte is present is then based on a comparison of the net signal with zero. If 3̂N 
represents the net signal, ys the gross signal and y\y\ the blank signal: 

VN = .Vs - .Vbi 

Consequently, unless the blank is well known, the variability of the net signal is: 

If the standard deviation is independent of the concentration: 

oh = 2 al 

When the sample does not contain the analyte, ys =ybu and their difference follows 
a normal distribution with a population mean of zero and a standard deviation Oo 
= V^Gbi. Therefore, the decision limit and the detection limit for blank corrected 
signals are given by 

Lc = kcCo = kc^a[,\ 
(13.15) 

LD = k'o Oo - /C'D V^Obi with /:'D = /CC + ^D 

Equation (13.15) applies for paired comparisons [43]. This means that with each 
sample (or each batch of samples) a blank is analyzed and each sample response 
(or the sample responses within a batch) therefore is individually blank corrected. 
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If the blank correction is performed by subtracting the mean of n blank determi­
nations the equations given above change into 

with 

G N = cJs + Gbi /n 

Thus, if the standard deviation is independent of the concentration 

Go = Vl + ( l / n ) Gbi 

and 

Lc = kcaQ = Vl + (l/n) kc Gbi 

(13.16) 
LD = /:'D OO = V l+( l /n ) /C'D Cbi (/C'D = /̂ C + ^D) 

Notice that the recent lUPAC [3] basic definitions consider the mean value of 
the blank response as well as the variance of the blank to be precisely known since 
the expressions for LD and Lc, given a = (3 = 0.05, and for LQ, given kq = 10, are: 

Lc= 1.645 Go (13.17) 

LD = 3.29GO (13.18) 

L Q = 1 0 G O (13.19) 

However several of the possible complications discussed in this section are also 
treated in the lUPAC document [3]. It also briefly discusses the effect of hetero-
scedasticity on the expressions for the measurement limits. 

13.7.5 Concentration limits 

The detection limits have been described so far in terms of the measurement 
signal. They can be re-expressed into concentration or analyte detection limits by 
making use of the slope of the calibration line, b\: 

_ L c - liibi _ kc Gbi 
•^C T — T 

, ^' ,r (13.20) 
_ L D — |U.bi _ ^ D CJbi 

X D -. — - , 
b\ bx 

With k = 3 these expressions correspond to the detection limit as formerly 
recommended by lUPAC (eq. 13.10) which should be reported as XL(̂ =3). 

In eq. (13.20) it is assumed that the blank is well known since in the blank 
correction the variability of the blank is not taken into account. If this variability is 
considered, concentration limits have to be calculated from eq. (13.16). 
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_ L c _ V l + ( l / n ) /ccObi 
" ^ - ^ b, 

(13.21) 

-̂ D = i — = r {kj) = kc + kB) 

13.7.6 Example 

Lead in foodstuffs is analyzed by means of GFAAS after microwave digestion 
of 0.25 g material and dilution to a final volume of 25 ml. The calibration equation 
for standard solutions containing between 0 and 60 ng Pb/ml is y = 0.002 + 
0.0029 IJC. The variability of the blank is obtained from the analysis, including the 
microwave digestion, of 10 analytical blanks. The following responses, expressed 
as peak area, are measured for those blanks: 

blank 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

area 
0.025 
0.037 
0.012 
0.029 
0.048 
0.026 
0.024 
0.015 
0.041 
0.019 

x ± 5 = 0.028 ±0.012 

For the determination of the detection limit the traditional lUPAC definition as 
well as some other approaches discussed earlier will be calculated for a = (3 = 0.05. 

From eqs. (13.9) and (13.10) the traditional lUPAC detection limit is obtained 
as follows: 

.yL(k=3) = 0.028+ (0.012x3) 

and 

xuk^-i) = (0.012 X 3) / 0.00291 = 12 ng/ml 

Taking into account the weight of material (0.25 g) and the final volume (25 ml) 
used in the analysis, this corresponds to a detection limit in the original foodstuff 
of 1.2|agPb/g. 

At the 5% probability level chosen (a = (3 = 0.05) for the illustration of some other 
approaches, the (one-sided) r-values for 9 degrees of freedom are ĉ = D̂ = 1 -833 (as 
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compared to /cc = ^D = 1 -645 for df = ©o). We will consider two different situations. 
(A) In the analysis each sample absorbance is blank corrected with the mean 

blank absorbance calculated previously. The decision limit Lc becomes (see eq. 
(13.16)). 

Lc = 1.833 Vl+(1/10) 0.012 = 0.023 

The detection limit, LD, is then 0.046. Those limits are converted into the following 
concentration limits (see eq. (13.21)) 

0.023 ^ ^, , , 
^^^000291 = ^ ^ ^ ^ ™ 

XD = 2 xc = 16 ng Pb/ml 

Taking into account the weight of material (0.25 g) and the final volume (25 ml) 
used in the analysis, this corresponds to a decision and a detection limit in the 
original foodstuff of respectively 0.8 |Lig Pb/g and 1.6 |ig Pb/g. According to 
Kirchmer (see Ref. [43]) for a sample yielding a Pb concentration of 0.9 |Lig/ml, it 
can be decided that Pb is present and the result can be reported as such. On the other 
hand, an estimated sample concentration of 0.6 |Lig Pb/g should then be reported as 
<1.6 |Lig Pb/g to take into account the possibility of false negative decisions. 
However, this way of reporting is generally not used. We advise to follow the 
lUPAC [3] recommendation that all results less than the detection limit, including 
negative values, and their uncertainty are always reported. 

(B) In the analysis the variability of the blank is obtained from the replicate 
blank measurements given earlier but for each batch of sample analyses a single 
blank determination is performed. The decision limit is then (see eq. (13.15)): 

Lc= 1.833 V2ro.012 = 0.031 

and the detection limit 

LD = 0.062 

This corresponds to a decision and a detection limit in the original foodstuff of 
respectively 1.1 |Lig Pb/g and 2.2 |Lig Pb/g. 

13.7.7 Alternatives 

For analytical methods that involve the measurement of a peak on a noisy 
baseline (e.g. chromatography) the method detection limit (MDL) has been intro­
duced [48]. It is defined as "the minimum concentration of a substance that can be 
identified, measured and reported with 99% confidence that the analyte concentra­
tion is greater than zero and is determined from analysis of a sample in a given 
matrix containing the analyte". The method detection limit is obtained as 
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20 X peakwidth at 
half height 

Fig. 13.15. Alternative approach to determine limits of measurement from, e.g., a chromatographic run. 

MDL = ro.oi:.-i s 

where t is Student's t value aX n- I degrees of freedom and a = 0.01 (one-sided) 
and s is the standard deviation of n rephcate analyses of standards or samples with 
a low concentration of the analyte. The term method detection limit is misleading 
since the value not only depends on the method but also on the instrument sensi­
tivity, the nature of the samples and the skill of the analyst [43]. 

For methods such as chromatography the SFSTP [13] advises the following 
procedure. The complete analysis is performed on a matrix blank and the chroma-
togram is recorded. The maximum amplitude, /zmax, over a distance which is equal 
to twenty times the width at half height of the peak corresponding to the analyte is 
determined as shown in Fig. 13.15. From this the detection limit is obtained as 
3/2niax/̂  and the quantification limit as 10/imax̂  where R is the response factor 
quantity/signal (expressed in peak height). The precision and accuracy at the 
quantification limit is evaluated by the analysis of samples with a concentration 
corresponding to the limit of quantification. It should be noted that this procedure 
applies to signals expressed as peak height. For measurements obtained as peak 
areas the evaluation of the detection and quantification limits can be based on the 
variability of a sample with an analyte concentration near the detection limit. The 
earlier described approaches can then be used. 

13.7,8 Determination of the concentration limits from the calibration line 

In the following approach for the concentration detection limit, which up to now 
is not generally practised, allowance is also made for the uncertainty in the 
calibration line. Indeed, the calibration line is only an estimate of the true regres­
sion line. It is possible to take this uncertainty into account by considering the 
confidence limits of the calibration curve. Therefore, consider Fig. 13.16 in which 
the lower part of the calibration line with the lower and upper confidence limits are 
shown. 

The possible outcomes for estimations of the response of the blank {x - 0) are 
represented by the distribution drawn at the left of the figure. In this distribution yc 
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Fig. 13.16. Illustration of the detection limit taking into account the uncertainty in the calibration line. 

represents the lowest detectable signal and corresponds to Lc defined earlier: a 
measured signal larger than ŷc is unlikely to be due to the blank, the probability 
that it is due to the blank being 100a%. From this, the lowest concentration, XD, 
which can be distinguished from zero, the blank, can be obtained as the intersection 
of the horizontal line y = yc and the curve describing the lower confidence limit. If 
we measure a sample with an unknown concentration which is smaller than XB the 
P error, the risk for false negative decisions, increases. For example XQ cannot be 
considered as the detection limit because the (3 error is 50% which is much too high. 
With XD as detection limit a better balance between the two types of error, a and (3, 
is obtained. From XD the corresponding detection limit, expressed in terms of the 
signal, can be calculated from the calibration function. 

The calculation of these limits can be performed as follows: 
1. Consider the confidence limits for the mean of m responses at a particular x 

value, xo (see Section 8.2.5.1). 

bo + Z?! Xo ± tn-2 S, 
y m n 

(XQ - X)^ 

l,(Xi - xf 

t corresponding to a probability a for the upper limit and (3 for the lower limit. 
2. Compute yc which is the upper confidence limit (one-tailed) for the mean of 

m responses when the analyte concentration is zero: 

.VC = ^0 + ta-n-l Se J — + --
\ m n 

? 
YiXi - X)̂  

3. XD can be obtained in different ways: 
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- as the intersection of the hne y = yc with the curve describing the lower 
confidence limit, y = yi^, where: 

yL = bo-¥ bx XD - t^-n-2 Se\^ — + - + : 
V m n I,{Xi-xf 

This calculation is rather cumbersome. 
- by iteration, JCD is then defined as the lowest value of x which gives a value for 

L̂ exceeding or equal to ^̂ c-
- the following approximation has been proposed by the AOAC [27]: 

,, n 1 (2JCC-JC)' 
-̂ D = ^C + t^-n-2 sjbx -v/ — + - + -^, =ry 

\l m n J,{xi-xf 
This originates from: 

\ m n 
__ . „ / X , X _ ( X D - x) 

^{Xi-xf 

xc being the lower (1 - p) % confidence limit for a predicted concentration XD and 
the exact value of JCD being near 2 jcc-

4. From the calibration line, if necessary, calculate the corresponding limit in 
terms of the response 

>̂ D = ^0 + bx XD 

The detection limit determined in this way can be decreased by improving the 
precision {Se), increasing the number of standards (n) and the number of measure­
ments made for the sample (m). The calibration design, e.g. the concentration range 
considered and the distribution of the standards within this range also influences 
the detection limit through its effect on jc and Zfc - ^)^. It has been recognized, for 
example, that limits which do not reflect the real performance capability of the 
analytical method (because they are too large) can result from a calibration line in 
which the lowest standard(s) are considerably removed from the origin [43]. It 
should also be realized that it is assumed that the residual variance, estimated as 
s], is equal to the sample measurement precision. When this assumption does not 
hold, which might, e.g., be the case when simple calibration standards are used, the 
detection limit will be underestimated. The calibration should then be planned to 
include the complete measurement process from the pretreatment up to the actual 
measurement. 

lUPAC [3] proposes a propagation of error approach, using the Taylor expan­
sion for the variance of x at the detection limit JCD, to take the uncertainty in the 
calibration line into account. Without an explicit derivation the following expres­
sion for the detection limit (homoscedasticity and a = (3) is considered: 
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D̂ = (2ra;dfao/fe,)(^//) 

where K= 1 + r(bo,b]) (OtJCo) [ta-dfi^h/bi)] 

/=l-fe;df(a, / /70f 

In this expression r(bo,bi) is the correlation coefficient between slope and intercept 
which is obtained as -x/^Qjcfyn. However it is not indicated how the degrees of 
freedom are obtained, which are necessary in the selection of the r-value. Moreover 
it is remarkable that in another lUPAC document [2] this same expression is given 
with each a replaced by s. 

As a conclusion to the discussion of measurement limits it should be re-empha­
sized again that, due to the many different approaches that are possible, in reporting 
these limits it is of paramount importance to specify how they were obtained. 

13.8 Sensitivity 

13.8.1 Sensitivity in quantitative analysis 

lUPAC [3] and ISO [37] define the sensitivity as the slope of the calibration line 
because a method with a large slope is better able to discriminate between small 
differences in analyte content. In metrology and in analytical chemistry, the 
sensitivity is defined as the slope of the calibration line. The reader should note that 
because one says colloquially that a method is sensitive when it has a low detection 
limit, sensitivity is sometimes used erroneously in lieu of detection limit. 

In fact, there is little sense in including sensitivity as a performance charac­
teristic when it is defined as the slope. It is not sufficient to know the slope of the 
calibration line to determine whether two concentrations can be discriminated: one 
also needs the standard deviation on that slope. The smallest difference d that can 
be distinguished between two signals depends on the standard deviation s of the 
two signals (which we can consider to be the same for the two) and thfe risks a and 
P one takes respectively to conclude there is a difference when there is none and to 
conclude that there is no difference when it exists (see Chapter 4). To determine 
the smallest difference d one can distinguish in concentration units one must relate 
signal to concentration using /?!, the slope. The following equation has been 
proposed for the sensitivity [13]: 

d = (r,_a^ + r,_p)5V2"(l//70 (13.22) 

where the r-values are determined for a = 0.05 (two-sided) and (3 = 0.05 (one-sided) 
for the number of degrees of freedom with which s was determined. Suppose that 
the relevant precision measure (repeatability, intermediate precision, ...) 5* was 
determined with 10 determinations, then ti-a/i = 2.26 and ri_p = 1.83. It then follows 
that d = 5.76 5/fo,. 
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13.8.2 Sensitivity and specificity in qualitative analysis 

In Chapter 16, we will learn that sensitivity and specificity are used to charac­
terize the quality of assays with a binary output, yes or no (e.g., see Section 16.1.3: 
are there HIV antibodies in the urine or not?). Recently, these terms have been 
introduced into analytical chemistry. AOAC [7] proposes the following definitions: 

Specificity rate = qualitative — the probability, for a given concentration, that 
the method will classify the test samples as negative given that the test sample is a 
"known" negative. Specificity is calculated as number of found negatives/total 
number of "known" negatives. 

Sensitivity rate = qualitative — the probability, for a given concentration, that 
the method will classify the test sample as positive given that the test sample is a 
"known" positive. Sensitivity is calculated as number of found positives/total 
number of "known" positives. 

AOAC also proposes the following related definitions: 
False positive rate = Number of false positives/total number of "known" 

negatives. 
False negative rate = Number of false negatives/total number of "known" 

positives. 
The proposal states for all four definitions that the term is applicable to immu­

nological assays, microbiological assays, clinical studies and clinical chemistry. 
The terms false positives and false negatives are now also being used in food 
analysis [49,50]. 

13.9 Selectivity and interference 

When another substance, a set of substances or the matrix as a whole have an 
effect on the signal of the analyte measured and this is not accounted for in the 
method developed, then systematic errors can affect the result and cause bias. This 
situation is described by stating that there is a lack of selectivity or that interfer­
ences occur. There do not seem to be generally accepted and clear definitions for 
these terms. For instance, several guidelines use "specific" instead of "selective" 
and some make a distinction between those two terms. In view of the use of the 
term specific in another context, described in the preceding section, it seems 
preferable not to use it for the characterization of quantitative analysis procedures. 

The term interference is often a general term. Van der Linden [51] states "An 
interfering substance in analytical procedures is one that, at the given concentration, 
causes a systematic error in the analytical result". 

Selectivity and matrix effect or matrix interference have a more restricted 
meaning. The literature does not make the distinction clearly. In our opinion, the 
difference lies in the type of systematic error they cause. 
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Matrix interferences lead to relative systematic errors. The factors yielding such 
interferences may be physical or chemical and do not lead to a response as such. 
They affect the slope of the calibration line. The effect can be due to one specific 
substance (for instance in AAS, the presence of phosphate decreases the slope of 
the calibration line of Ca, because it forms a compound with it) or to many (for 
instance, the potential of an ion-selective electrode is affected by the ionic strength 
and therefore by all the ions that are present). Matrix interferences can be detected 
by comparing the slope of the calibration line with the relationship between signal 
and concentration in the matrix, using methods such as standard addition (see 
Sections 8.2.8 and 13.5.5). 

A method is considered selective when no concomitant species has a response 
of its own that adds to that of the analyte. Lack of selectivity would affect the blank: 
a sample containing all substances in the sample, including the concomitant 
species, but not the analyte would yield a positive value. If not corrected for, this 
would lead to a constant systematic error. 

Unfortunately, statistics does not help very much in detecting problems with 
selectivity due to blanks. One must use chemical reasoning, make a list of possible 
interferents and show experimentally that the substance in question does not 
influence the result. Often, the interpretation is simple. For instance, in chromatog­
raphy one can often conclude that the peak of the candidate interferent is com­
pletely separated from that of the analyte. When an analyte-free matrix can be 
obtained, one can analyze this and, if the blank is sufficiently low, conclude that 
the substances in such a sample do not contribute to the signal with which the 
analyte will be quantified. This is not a guarantee, since it is always possible that 
another matrix may contain other concomitant substances, that will be measured. 
However, Shah et al. [16] write in their guidelines for bioanalysis that analyzing 
six samples of different origin in this way may be considered as proof of sufficient 
selectivity. Sometimes, one will do determinations on a number of samples with 
and without the possible interferent(s). This means one compares two series of 
measurements sample by sample. This is the same type of comparison as discussed 
in Section 13.5.5 and one can therefore use the same type of experimental design 
and statistical interpretation. 

In some other cases, bivariate approaches may help. By this we mean that 
instead of measuring the signal according to one single variable, one can add a 
second dimension. A bivariate approach is often applied in hyphenated chroma­
tographic techniques such as high performance liquid chromatography (HPLC) 
with a diode array detector (DAD). If the spectrum measured with the DAD 
stays constant over the whole length of the peak, this is taken to mean that the 
peak is due to a single analyte. The interpretation of the data tables obtained is 
not always straightforward. Sometimes factor analytical techniques (Chapter 
40) are required. 



438 

References 

1. J.K. Taylor and H.V. Oppermann, Handbook for the Quality Assurance of Metro logical 
Measurements. Lewis Publ., 1988. 

2. L.A. Currie and G. Svehla, Nomenclature for the presentation of results of chemical analysis. 
Pure Appl. Chem., 66 (1994) 595-608. 

3. L. A. Currie, Nomenclature in evaluation of analytical methods including detection and quanti­
fication capabilities. Pure Appl. Chem., 67 (1995) 1699-1723. 

4. W.D. Pocklington, Harmonized protocols for the adoption of standardized analytical methods and 
for the presentation of their performance characteristics. Pure Appl. Chem., 62 (1990) 149-162. 

5. ISO standard 3534 (E/F) (1993) Statistics — Vocabulary and Symbols Part 1. 
6. ISO standard 5725. 1 to 6 (1994), Accuracy (trueness and precision) of measurement methods 

and results. 
7. Association of Official Analytical Chemists, Definitions and calculations proposed for method 

performance parameters. The Referee, 6-12, March 1995. 
8. W. Horwitz, Protocol for the design, conduct and interpretation of collaborative studies. Pure 

Appl. Chem., 60 (1988) 855-864. 
9. International Conference on Harmonisation (ICH) of Technical Requirements for the Registra­

tion of Pharmaceuticals for Human Use, Validation of analytical procedures. Stability of new 
drug substances and products and Impurities in new drug substances. Draft 1993. 

10. Health Protection Branch, Drugs Directorate Guidelines, Acceptable Methods, Draft 31 July 1992. 
11. ISO standard 3494 (1976) Statistical interpretation of data — Power of tests relating to means 

and variances. 
12. M. Thompson, Variation of precision with concentration in an analytical system. Analyst, 113 

(1988) 1579-1587. 
13. Commission SFSTP, Guide de Validation Analytique: Rapport d'une Commission SFSTP I. 

Methodologie. STP Pharma Pratiques 2 (4) 205-226, 1992. 
14. National Committee for Clinical Laboratory Standards. Evaluation of Precision Performance 

of Clinical Chemistry Devices, Second Edition; tentative guideline. NCCLS Document EP5-
T2, Villanova, PA:NCCLS 1992. 

15. W. Horwitz , L.R. Kamps and K. W. Boyer, Quahty assurance in the analysis of foods for trace 
constituents. J. Assoc. Off. Anal. Chem., 63 (1980) 1344-1354. 

16. V.P. Shah, K.K. Midha, S. Dighe, I.J. McGilveray, J.P. Skelly, A. Yacobi, T. Layloff, C.T. 
Viswanathan, C.E. Cook, R.D. McDowall, K.A. Pittman and S. Spector, Analytical Methods 
Validation: bioavailability, bioequivalence and pharmacokinetic studies. Pharm. Res., 9 (1992) 
588-592. 

17. US Pharmacopeia, Chapter 1225, Validation of Compendial Assays-Guidelines, Pharma-
copeial Forum, pp. 4129-4134, 1988. 

18. W.J. Youden and E.H. Steiner, Statistical Manual of the Association of Official Analytical 
Chemists. The Association of Official Analytical Chemists, ArHngton, 1975. 

19. Y. Vander Heyden, K. Luypaert, C. Hartmann, D.L. Massart, J. Hoogmartens and J. De Beer, 
Ruggedness tests on the HPLC assay of the United States Pharmacopeia XXII for tetracycline 
hydrochloride. A comparison of experimental designs and statistical interpretations. Anal. 
Chim. Acta, 312 (1995) 245-262. 

20. J.A. Van Leeuwen, L.M.C. Buydens, B.G.M. Vandeginste, G. Kateman, P.J. Schoenmakers, 
M. MulhoUand, RES, an expert system for the set-up and interpretation of a ruggedness test in 
HPLC method validation. Part 2: The ruggedness expert system. Chemom. Intell. Lab. Sys­
tems, 11 (1991)37-55. 



439 

21. BCR Information, Report EUR10618EN (1986). 
22. I.D. Wilson, Observations on the usefulness of internal standards in the analysis of drugs in 

biological fluids, in: E. Reid and I.D. Wilson (Eds.), Methodological Surveys in Biochemistry 
and Analysis, Volume 20. Royal Society of Chemistry, Cambridge, 1990, pp. 79-82. 

23. Rules governing Medicinal Products in the European Community, EEC regulation 2377/90, 
Community procedure for the establishment of maximum residue limits for residues of 
veterinary medicinal products in foodstuffs of animal origin. 

24. F. Bosch-Reig and P. Campins Falco, H-Point standard additions method. Part 1. Fundamentals 
and application to analytical spectroscopy. Analyst, 113 (1988) 1011-1016. 

25. P. Campins Falco, J. Verdu Andres and F. Bosch-Reig, Development of the H-Point standard 
additions method for the use of spectrofluorimetry and synchronous spectrofluorimetry. Ana­
lyst, 119 (1994) 2123-2127. 

26. A. Boeyckens, J. Schodts, H. Vandenplas, F. Sennesael, W. Goedhuys and F. Gorus, Ektachem 
slides for direct potentiometric determination of sodium in plasma: Effect of natremia, blood 
pH and type of electrolyte reference fluid on concordance with flame photometry and other 
potentiometric methods. Clin. Chem., 38 (1992) 114-118. 

27. G.T. Wernimont, Use of statistics to develop and evaluate analytical methods. AOAC, Ar­
lington, V A, USA, 1987. 

28. J.M. Bland and D.G. Altman, Statistical methods for assessing agreement between two methods 
of clinical measurement. Lancet, Feb. 8 (1986) 307-310. 

29. C. Hartmann, J. Smeyers-Verbeke and D.L. Massart, Problems in method-comparison studies. 
Analusis, 21 (1993) 125-132. 

30. C. Hartmann, J. Smeyers-Verbeke, W. Penninckx, Y. Vander Heyden, P. Vankeerberghen and D.L. 
Massart, Reappraisal of hypothesis testing for method validation: Detection of systematic error by 
comparing the means of two methods or of two laboratories. Anal. Chem., 67 (1995) 4491^M-99. 

31. J.O. De Beer, B.M.J. De Spiegeleer, J. Hoogmartens, I. Samson, D.L. Massart and M. Moors. 
Relationship between content limits and assay methods: an interlaboraty statistical evaluation. 
Analyst, 117 (1992) 933-940. 

32. CPMP working party on quality of medicinal products, III/844/87-EN. 
33. J. Knecht and G. Stork, Prozentuales und logarithmisches Verfahren zur Berechnung von 

Eichkurven. Fresenius' Z. Anal. Chemie, 270 (1974) 97-99. 
34. L. de Galan, H.P.J, van Dalen and G.R. Kornblum, Determination of strongly curved calibra­

tion graphs in flame atomic-absorption spectrometry: Comparison of manually drawn and 
computer-calculated graphs. Analyst, 110 (1985) 323-329. 

35. P. Vankeerberghen and J. Smeyers-Verbeke, The quality coefficient as a tool in decisions about 
the quality of calibration in graphite furnace atomic absorption spectrometry. Chemom. Intell. 
Lab. Syst., 15(1992)195-202. 

36. lUPAC, GuideUnes for calibration in analytical chemistry. Part 1. Fundamentals and single 
component calibration. V.l. Dokument 25/91, final draft 1996. 

37. ISO standard 8466-1 (1994) Water quahty — CaHbration and evaluation of analytical methods 
and estimation of performance characteristics. Part 1: Statistical evaluation of the linear 
calibration function. 

38. ISO standard 8466-2 (1994) Water quality — CaHbration and evaluation of analytical methods 
and estimation of performance characteristics. Part 2: Calibration strategy for non-linear second 
order calibration functions. 

39. W. Penninckx, C. Hartmann, D.L. Massart and J. Smeyers-Verbeke. Validation of the calibra­
tion procedure in atomic absorption spectrometric methods. J. Anal. Atomic Spectrom., 11 
(1996)237-246. 



440 

40. P. Vankeerberghen, J. Smeyers-Verbeke and D.L. Massart, Decision support systems for run 
suitability checking and explorative method validation in electrothermal atomic absorption 
spectrometry. J. Anal. Atomic Spectrom., 11 (1996) 149-158. 

41. Nomenclature, Symbols, Units and Their Usage in Spectrochemical Analysis — II. Spectro-
chim. Acta, Part B, 33 (1978) 242. 

42. L.A. Currie, Limits for qualitative detection and quantitative determination. Anal. Chem., 40 
(1968)586-593. 

43. L.A. Currie (Ed.), Detection in Analytical Chemistry. American Chemical Society, Washington 
DC, 1988. 

44. A. Hubaux and G. Vos, Decision and detection limits for linear calibration lines. Anal. Chem., 
42(1970)849-855. 

45. J.D. Winefordner and G.L. Long, Limit of detection — A closer look at the lUPAC definition. 
Anal. Chem., 55 (1983) 712A-724A. 

46. R.V. Cheeseman and A.L. Wilson, Manual on Analytical Quality-Control for the Water 
Industry. Water Research Center Medmenham, UK, 1978. 

47. Analytical Methods Committee, Recommendations for the definition, estimation and use of the 
detection limit. Analyst, 112 (1987) 199-204. 

48. Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, Environ­
mental Protection Agency Publication EPA-600 14-82-057, July 1982. 

49. Codex Alimentarius Commission, CXIMAS 92/15, Rome 1992, Criteria to limit the number of 
false positive and false negative results for analytes near the limit of detection. 

50. W.G. de Ruig and H. van der Voet, Is there a tower in Ransdorp? Harmonization and 
Optimization of the Quality of Analytical Methods and Inspection Procedures, pp. 20-43 in: 
D. Littlejohn, D. Thorburn Burns, Reviews on Analytical Chemistry — Euroanalysis VIII. 
Royal Society of Chemistry, Cambridge, 1994. 

51. W.E. van der Linden, Pure Appl. Chem., 61 (1989) 91-95. 



441 

Chapter 14 

Method Validation by Interlaboratory Studies 

14.1 Types of interlaboratory studies 

Interlaboratory studies are studies in which several laboratories analyze the 
same material. Three types can be distinguished. 

- Method-performance or collaborative studies in which the performance char­
acteristics of a specific method are assessed. These performance characteristics 
usually have to do with precision. How to proceed in this case has been described 
in an ISO guideline [1], in which this type of study is called diprecision study. The 
AOAC/IUPAC protocol [2] can be seen as amending the ISO guideline. ISO itself 
[3] recently has amended its guideline and has also published a guideline to 
estimate the bias of a measurement method. 

- Laboratory-performance or proficiency studies, in which a material is analyzed 
of which the true concentrations are known or have been assigned in some way, 
often from the interlaboratory experiment itself. The participants apply whatever 
method is in use in their laboratory. The results of the laboratories are compared to 
evaluate the proficiency of individual laboratories and to improve their performance. 
lUPAC [4] describes a protocol for the proficiency testing of analytical laboratories. 
Recommendations are also given by the Analytical Methods Committee [5]. 

- Material-certification studies in which a group of selected laboratories ana­
lyzes, usually with different methods, a material to determine the most probable 
value of the concentration of a certain analyte with the smallest uncertainty 
possible. The objective of such a study is to provide reference materials. This latter 
type of study is very specialized and reserved to institutions created for that 
purpose, so that we will not discuss it here. 

14.2 Method-performance studies 

14.2.1 Definition of reproducibility and repeatability 

Repeatability refers to precision as measured under repeatability conditions. 
These have been defined as follows [1]: 
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"Repeatability conditions are conditions where mutually independent test 
results are obtained with the same method on identical test material in the 
same laboratory by the same operator using the same equipment within short 
intervals of time." 

Reproducibility refers to reproducibility conditions and these were defined as 
follows: 

"Conditions where test results are obtained with the same method on identical 
test material in different laboratories with different operators using different 
equipment." 

In other words, reproducibility of a method is measured in collaborative preci­
sion studies of a (proposed) standard method, in which several laboratories analyze 
the same material. 

Repeatability and reproducibility conditions are extremes. In the former, the 
operator, the instrument, and the laboratory are the same and the time interval is 
kept short. In the other, the laboratory is changed, so that operator and instrument 
are also different and the time interval is greater. In interlaboratory studies only 
these extremes are of interest, but we should remember (see Chapter 13) that 
several intermediate measures of precision are possible. 

All reproducibility measures lead to variance models with a within-lab and a 
between-lab component. Before explaining this model we note the convention that 
everything related to repeatability is represented by r and everything related to 
reproducibility by /?. For instance, the standard deviation obtained experimentally 
in a repeatability experiment is written down as Sr and that in a reproducibility 
experiment as SR. 

The basic statistical model is a random effects model (see Chapter 6.1.4) 

y^y^B + e (14.1) 

where y is the general average for the material analyzed, B represents the laboratory 
component of bias and e is the random error. The latter is estimated by si the 
repeatability variance, while B gives rise to -̂L, the between-laboratory variance. 
By definition the mean value of iS is zero. We can then write that: 

si = si ̂  si (14.2) 

Equations (14.1) and (14.2) state that, as noted in Chapter 13, laboratory compo­
nents of biases are systematic errors from the point of view of a single laboratory, 
but random errors from the interlaboratory point of view. 

It should be noted here that the Guide to the Expression of Uncertainty in 
Measurements [6] defines reproducibility as "the closeness of agreement between 
the results of measurements of the same measurand, where the measurements are 
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carried out under changed conditions". The Guide continues to specify that the 
changed conditions can include different principles or methods of measurement, 
different observers, different measuring instruments, different locations, different 
conditions of use or different periods of time. Reproducibility is then no longer 
linked to a specific method and a note specifies that "a valid statement of repro­
ducibility requires specification of the conditions changed". In the context of 
interlaboratory studies as described in this chapter and in the ISO, lUPAC and 
AOAC norms, reproducibility is a precision measurement for a specific method. 

14.2,2 Method-performance precision experiments 

A precision experiment is carried out by p > 8 laboratories. They analyze the 
materials with the method, the performance of which is studied, at m levels of 
concentration. Indeed, precision can (and usually does) depend on concentration 
and when a method is validated this has to be done over the whole range concerned 
(see Chapter 13.2). Each level is analyzed n times. The recommended value for n 
is 2. The number of levels m depends on the concentration range. ISO [1] recom­
mends m > 6 and lUPAC [2] at least 5 materials, where a material is a specific 
combination of matrix and level of analyte. However, there are cases where this 
makes little sense. For instance, when one validates a method for the analysis of a 
drug in formulations, its concentration is probably situated in the relatively small 
range at which it is pharmacologically active but not toxic so that it is improbable 
that drugs will be formulated at vastly different concentrations. A smaller m can 
then be accepted. The number of laboratories should be at least 8, but when only 
one single level of concentration is of interest the ISO standard recommends to 
include at least 15 laboratories. It should be noted that the numbers of laboratories 
given here, are those cited in the standard. They are needed if one wants to develop 
an internationally accepted reference method. This does not mean that method-per­
formance studies with smaller numbers of participants are not useful. 

The experiment can be run as a uniform level experiment or a split level 
experiment. In a uniform level experiment one carries out n = 2 replicate determi­
nations on the same material. This can in some cases lead to an underestimation of 
the precision measure. If operators know they are analyzing replicates, they may 
be influenced and produce results that are as alike as possible. This may be avoided 
with split level experiments, in which a material with slightly different concentra­
tions is used. Each of the levels is analyzed once. In Section 14.2.4 we will describe 
how to compute the results for uniform level experiments. How to carry out similar 
computations for split level experiments is described in [1] and [3]. It should be 
stressed also that this chapter describes what is of interest to the chemometrician, 
namely the statistical analysis of the data. Readers who want to study in detail how to 
carry out method performance experiments should be aware that the organizational 
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aspect is very important. This is described in Refs. [1] and [3]. Tutorial articles 
such as Ref. [7] are also useful to understand better how to set up such experiments. 

14.2.3 Repeatability and reproducibility in a method-performance experiment 

The ISO standard [1,3] describes two measures for the repeatability and the 
reproducibility. The repeatability can be described by the repeatability standard 
deviation Sr, which is the standard deviation measured under repeatability condi­
tions (see Section 13.4.1). How to obtain this value is described in Section 14.2.4. 
It estimates, as usual, the true repeatability standard deviation a .̂ The relative 
repeatability standard deviation is written as RSD;.. Another measure is the 
repeatability (limit), r. This is the value below which the absolute difference 
between two single test results obtained under repeatability conditions may be 
expected to lie with a probability of 95%. The standard states that 

r = 2.8a, (14.3) 

In the same way one can define the reproducibility standard deviation SR, the 
reproducibility limit R and the relative reproducibility standard deviation, RSD/?, 
and write 

/? = 2.8a, (14.4) 

The value of 2.8 can be understood as follows. The variance of the difference 
between two replicate measurements is 2a^ (a being estimated by Sr or SR, accord­
ing to the situation). The confidence interval at 95% level on the difference is 
0± 1.96 V2"a. If Sr or SR cstimatc a well enough, as should be the case in an 
interlaboratory experiment, then one can write that the confidence interval is ± 1.96 
^ Sr (or SR) rouudcd to ± 2.8 Sr (or SR). There is therefore a 95% probability that 
the difference between two individual determinations will not exceed 2.8 5̂ (̂or SR). 

The repeatability and reproducibility values can be used to include precision 
clauses in the description of the method. A typical precision clause is: "The 
absolute difference between two single test results obtained under reproducibility 
conditions should not be greater than 0.7 mg/l". 

An experimental difference between two values larger than r, therefore indicates 
that the laboratory's repeatability for the method investigated is not up to standard. 
Part 6 of the ISO standard [3] describes a procedure on how to judge on the 
acceptability of results when the repeatability limit is exceeded. 

14.2.4 Statistical analysis of the data obtained in a method-performance 
experiment 

The analysis of the data starts by investigating the statistical assumptions. The 
main assumptions are: 
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1. Normal distribution of the laboratory means at each level. 
2. Equality of variance among laboratories at each level. 
Since outliers lead to non-normal distributions, ISO recommends to investigate 

the existence of outliers to test the first hypothesis. A violation would indicate 
unacceptable laboratory bias in the outlying laboratories. The second assumption is 
investigated by testing the ranges (if n = 2) or variances (if n > 2) for outliers. Violation 
would indicate unacceptable differences in repeatability among laboratories. 

The standards describe a procedure for outlier removal. The flowchart of the 
outlier removal procedure is shown in Fig. 14.1. One first tests the homogeneity of 
the variance in the laboratories with the use of the Cochran test (see Chapter 6.2). 

START 

CALCULATE 
PREOSION 
MEASURES 

COCHRAN 
OUTLIER? 

NO 

YES 
DROP LAB UNLESS 

OVERALL FRACTION OF 
LABS DROPPED WOULD 

EXCEED 2/9 

YES 

NO 

DROP LAB UNLESS 
OVERALL FRACTION 
OF LABS DROPPED 
WOULD EXCEED 2/9 

DROP LABS UNLESS 
OVERALL FRACTION OF 
LABS DROPPED WOULD 

EXCEED 2/9 

Fig. 14.1. Flowchart for outlier removal from a precision experiment (adapted from Ref. [7]). 
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The averages for the same level presented by the p laboratories are then tested for 
outliers by the Grubbs' test (see Chapter 5), first with the 2-sided single outlier test, 
then with the Grubbs' pair test (double outlier test in the ISO terminology). ISO 
uses a version of the latter test which detects two simultaneous high or two 
simultaneous low values, while the AOAC/IUPAC version also detects one high 
and one low value occurring simultaneously. In all tests, outliers at the 1% level 
are eliminated (at the 2.5% level in the AOAC/IUPAC protocol [2]), while 
stragglers at the 5% level are flagged, but are included in the analysis except when 
an assignable cause for the outlying result is found. A graphical way to evaluate 
the consistency of results and laboratories, and recommended in [3], is what are 
called Mandel's h and k statistics. These statistics can also be used to evaluate the 
quality of laboratories and we describe these methods in Section 14.3 on laboratory-
performance studies. 

An example of the analysis of a uniform level experiment is given in Table 14.1. 
The example concerns a standard test method, involving a thermometric titration 
[8]. Nine laboratories participated, five materials were analyzed in duplicate. The 
first step is the outlier removal procedure. It is carried out using the data of Tables 
14.2 and 14.3. The data of Table 14.2 are subjected to the Cochran test. At level 4, 
the test value for 1.10 (laboratory 7) is 0.667; at level 5 the test value for 1.98 
(laboratory 6) is 0.636. The critical values for n = 9 are 0.754 (a = 1 %) and 0.638 
(a = 5%) (see Tables in Chapter 5). The value 1.10 is a straggler and 1.98 is so 
close to it that it is also flagged. However, none of these values is eliminated yet. 
The single Grubbs' test indicates that there are outliers at levels 3 and 4 of 
laboratory 1 (Table 14.4). The two values are eliminated. The other values obtained 
by laboratory 1 are not detected as outliers, but they too are high and therefore it 
was decided to reject all values of laboratory 1. The Cochran test is now applied 

TABLE 14.1 

A uniform level experiment (from [8]). Data are given in % mass/mass 

Lab. / 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Level j 

1 

4.44 
4.03 
3.70 
4.10 
3.97 
3.75 
3.70 
3.91 
4.02 

4.39 
4.23 
3.70 
4.10 
4.04 
4.03 
3.80 
3.90 
4.07 

2 

9.34 
8.42 
7.60 
8.93 
7.89 
8.76 
8.00 
8.04 
8.44 

9.34 
8.33 
7.40 
8.80 
8.12 
9.24 
8.30 
8.07 
8.17 

3 

17.40 
14.42 
13.60 
14.60 
13.73 
13.90 
14.10 
14.84 
14.24 

16.90 
14.50 
13.60 
14.20 
13.92 
14.06 
14.20 
14.84 
14.10 

4 

19.23 
16.06 
14.50 
15.60 
15.54 
16.42 
14.90 
15.41 
15.14 

19.23 
16.22 
15.10 
15.50 
15.78 
16.58 
16.00 
15.22 
15.44 

5 

24.28 
20.40 
19.30 
20.30 
20.53 
18.56 
19.70 
21.10 
20.71 

24.00 
19.91 
19.70 
20.30 
20.88 
16.58 
20.50 
20.78 
21.66 
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TABLE 14.2 

Cell ranges for the data of Table 14.1 

Laboratory / Level y 

1 

1 0.05 
2 0.20 
3 0.00 
4 0.00 
5 0.07 
6 0.28 
7 0.10 
8 0.01 
9 0.05 

2 

0.00 
0.09 
0.20 
0.13 
0.23 
0.48 
0.30 
0.03 
0.27 

3 

0.50 
0.08 
0.00 
0.40 
0.19 
0.16 
0.10 
0.00 
0.14 

4 

0.00 
0.16 
0.60 
0.10 
0.24 
0.16 
1.10 
0.19 
0.30 

5 

0.28 
0.49 
0.40 
0.00 
0.35 
1.98 
0.80 
0.32 
0.95 

TABLE 14.3 

Cell averages of the data of Table 14.1 

Laboratory / 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Level j 

I 

4.415 
4.130 
3.700 
4.100 
4.005 
3.890 
3.750 
3.905 
4.045 

2 

9.340 
8.375 
7.500 
8.865 
8.005 
9.000 
8.150 
8.055 
8.305 

3 

17.150 
14.460 
13.600 
14.400 
13.825 
13.980 
14.150 
14.840 
14.170 

4 

19.230 
16.140 
14.800 
15.550 
15.660 
16.500 
15.450 
15.315 
15.290 

5 

24.140 
20.155 
19.500 
20.300 
20.705 
17.570 
20.100 
20.940 
21.185 

TABLE 14.4 

Application of Grubbs' test to the cell averages of Table 14.3 

Level 

1 
2 
3 
4 
5 

a = 1% 
a = 5% 

Single 

1.36 
1.57 
0.86 
0.91 
1.70 

2.215 
2.387 

low Single 

1.95 
1.64 
2.50 
2.47 
2.10 

2.215 
2.387 

high Double low 

0.502 
0.540 
-
-

0.501 

0.149 
0.085 

Double high 

0.356 
0.395 

-
-

0.318 

0.149 
0.085 
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again. The critical value for n = 8 being 0.680 at a = 5%, none of the two previously 
identified stragglers can be considered an outlier. However, the value 16.58 of level 
5 from laboratory 6 might by mistake have come from level 4 and this result is 
therefore considered to have an assignable cause and eliminated. The result at level 
4 for laboratory 7 is however accepted. It should be noted that outlier rejection is 
not applied here (and should never be applied) as an automatic procedure, but 
rather that the statistical conclusions are only one aspect of the whole context 
leading to the final decision. 

After elimination of the outliers, one can determine Sr and SR by one-way 
analysis of variance at each concentration level (and, by multiplication with the 
factor 2.8, r and R can also be obtained). Simple hand calculations are also possible 
and are carried out as follows for a uniform level experiment. One uses the equation 
for paired results, eq. (2.8). This yields: 

S'r=-

sl = 

= -

^ l d ? 0 = l , . . . , p ) 

P- 1 

-^[l^i-y)']-s'r/ 

fl 

p-\ 

where d/ is the difference and yi the mean of the two results obtained by laboratory 
/ and y the grand mean, i.e. Yyt/p. When 5? and si have been computed, si can be 
obtained from eq. (14.2). 

An example of the calculations for one of the m levels is given in Table 14.5. 
The calculations are given only for level 5. The results for all the levels are 
summarized in Table 14.6. 

A last step is to investigate whether there is a relationship between the Srj (or SRJ) 
and the concentrationj^ obtained at each level/ Indeed, it is known that precision 
measures can depend on concentration (see Section 13.4.2). The ISO document [3] 
recommends the following models be tested: 

Sr = b\y 

Sr = b'o^b\y (14.5) 

log^, = /?"o + ^" i log j 

Similar models are developed for SR. The simplest of the models that is found to 
fit the data sufficiently well is adopted for further use. Weighted regression is 
applied and a procedure to decide on the weights is described in the norm. For Sr 
the results are: 
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TABLE 14.5 

Example of calculation of r and R (adapted from ISO [1]) (level 5 of Table 14.1) 

Laboratory 

2 
3 
4 
5 
7 
8 
9 

I 

>'/ 

20.155 
19.500 
20.300 
20.705 
20.100 
20.940 
21.185 

142.885 

d, 

0.49 
0.40 
0.00 
0.35 
0.80 
0.32 
0.95 

d? 

0.240 
0.160 
0.000 
0.122 
0.640 
0.102 
0.903 

2.167 

yi-y 

-0.255 
-0.910 
-0.110 
0.295 

-0.310 
0.530 
0.775 

{yi-y? 

0.0650 
0.8281 
0.0012 
0.0870 
0.0961 
0.2809 
0.6006 

1.9583 

3.94 
8.28 
14.18 
15.59 
20.41 

0.258 
0.501 
0.355 
0.943 
1.102 

0.478 
1.393 
1.121 
1.620 
1.783 

y = 20.41 

sj- = 2.167/14 = 0.1548 .v, = 0.393 r = 2.8 x 0.393 =1.102 

sl= 1.9583/6-0.1548/2 = 0.2490 

si = 0.1548 + 0.2490 = 0.4038 SR = 0.6358 /? = 2.8 x 0.6358 = 1.783 

TABLE 14.6 

Repeatability (r) and reproducibility (R) values for the data of Table 14.1 

Level y r 

s, =0.019 y 

Sr = 0.032-\-0m5y 

Sr = 0.03\^-^^ 

No formal procedures have been described to decide which of the equations fits 
best. In this case, it is decided that the simplest equation is good enough, so that this is 
the one that is finally adopted. In the present case, the first equation is adopted. 

14,2,5 What precision to expect 

One of the questions that could be asked in a method-performance experiment 
is what values of 5"̂  and SR should be expected. Interesting work in this context has 
been carried out by Horwitz et al. [9]. They examined results of many interlaboratory 
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Concentration 

Fig. 14.2. Relative reproducibility standard deviation RSD/? as a function of concentration (adapted 
from Ref. [9]). 

collaborative studies on various commodities ranging in concentration from a few 
percent (salt in foods) to the ppb (ng/g) level (aflatoxin Ml in foods) but including 
also studies on, for example, drug formulations, antibiotics in feeds, pesticide 
residues and trace elements. They concluded that the relative reproducibility 
standard deviation RSD/? (%) as a function of concentration is approximated by the 
following relationship (see also Fig. 14.2): 

where C is the concentration expressed as a decimal fraction (for example for a 
concentration of 1 |Lig/g, C = 10"̂  g/g). This equation states that RSDR approximately 
doubles for every 100-fold decrease in concentration, starting at 2% for C = 1 (or 
log C = 0). This means, for instance, that when one carries out a purity check by 
analysing the main component, one should count with a relative reproducibility 
standard deviation of 2%. This leads to Table 14.7. It should be noted that these 
results have been obtained under optimal conditions. Laboratories participating in 
a between-lab study want to be able to show good results and probably exercise 
somewhat more care than would be the case in normal routine. 

One of the notable conclusions of Horwitz' study is that the RSDR depends only 
on the concentration and not on the analyte or method. This is true to such an extent 
that in a later publication [ 10] the author states that RSD/?-values are suspect, when 
they exceed by more than a factor 2 what is expected from eq. (14.6). The ratio 
between the reproducibility obtained and the one expected from eq. 14.6 is 
sometimes called the HORRAT (short for Horwitz ratio). 
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Pure substances (100%) 
Drug formulations (1 %) 
Drug in feeds (0.01%) 
Trace elements (fxg/g) 
Aflatoxins (10 ng/g) 

1 
0.01 
0.0001 
0.000001 
10-^ 

TABLE 14.7 

Relative reproducibility standard deviation for some concentrations (in %) (from Ref. [9]) 

Type (Concentration) Fractional RSD/? 

2 

4 
8 

16 
32 

Another interesting result is that the corresponding repeatability measure 
(RSD^) is generally one-half to two-thirds of the reproducibility. A similar result 
was obtained in clinical chemistry by Steele et al. [11]. From eq. (14.2), it follows 
that si is about 0.5 to 0.75 of si. 

14.2.6 Method-performance bias experiments 

Until recently, method-performance experiments were synonymous with preci­
sion experiments. Part 4 of the ISO standard [3] describes methods for estimating 
the bias of a measurement method and the laboratory bias, when applying that 
method. It is restricted to the study of standard methods and requires that a 
reference value can be established, for example by measurement of reference 
materials. It also considers only situations where the measurement is carried out at 
a single level and where no interferences are present. 

14.3 Laboratory-performance studies 

14.3.1 Visual display methods 

Table 14.8 gives a summary of the data of an experiment for the proficiency of 
laboratories in analyzing clenbuterol in urine [12]. This is a p-blocker illegally 
used as growth promoter for cattle. The set-up was the following. The 10 partici­
pating laboratories, identified by a code number in Table 14.8, used their own 
method to analyze (in 10-replicate) 3 samples, namely a spiked sample containing 
the known amount of 1.5 ng/ml (mean result yi), a real sample with a concentration 
close enough to 1.5 ng/ml not to be easily distinguishable from the first sample 
(mean result ^2), a second real sample with higher content (mean result yi). The 
samples were randomly coded so that the two first samples in particular could not 
be distinguished by the participants. Three visual display methods are discussed in 
this section. A fourth, based on principal components, is found in Section 17.5.2. 
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TABLE 14.8 

Performance assessment of laboratories by ranking. The data are for clenbuterol in urine [ 12] 

Lab 

11 
12 
20 
30 
40 
50 
60 
70 
81 
82 

Results (in ng/ml) 

y\ 

1.15 

1.49 

1.64 

1.51 

1.67 

1.07 

1.50 

0.69 

1.68 

1.91 

>'2 

1.33 

1.76 

1.70 

1.70 

1.98 

0.74 

1.82 

0.85 

1.54 

2.01 

>'3 

3.13 

3.32 

3.40 

3.38 

4.42 

2.39 

4.02 

1.32 

3.67 

4.01 

Ranks 

Ri 

8 
7 
4 
5 
3 
9 
6 
10 
2 
1 

R2 

8 
4 
5.5 
5.5 
2 
10 
3 
9 
7 
1 

R3 

8 
7 
5 
6 
1 
9 
2 
10 
4 
3 

Score 

24 
18 
14.5 

16.5 

6 
28 
11 
29 
13 
5 

14 J. 1.1 Box plots 
In all cases where this is relevant one should first evaluate the results visually. 

The box plot (see Chapter 12) is a very useful way to do that. Figure 14.3 gives the 
results for the first two samples. The two figures show, for instance, that laboratory 
70 delivers clearly lower results than the others and so, to a lesser extent, do 50 and 
11. Laboratory 60 is less repeatable than the others. Comparison with the known 
content of 1.5 immediately shows that laboratories 11, 50, 70, 82 do not deliver the 
correct result. Others, such as 40, are probably significantly biased but the differ­
ence is not large enough to be considered important. 

143,1.2 Youden plots 
The information in Fig. 14.3 can be looked at in another way, namely by making 

a Youden plot [13]. This consists of plotting the results of two samples with similar 
concentration, for instance in a split level experiment, against each other for each 
laboratory. Such sets of samples are sometimes called Youden pairs. The two first 
samples of Table 14.8 have slightly different concentrations and their Youden plot 
is shown in Fig. 14.4. 

In the original publication [13], the origin of the plot was situated at the median 
values of both samples, in later publications one uses the averages. Through this 
origin one draws lines parallel to the x- and the y-axis, thereby dividing the graph 
into four quadrants. If the origin of the graph is accepted as the most probably true 
value for both samples, then laboratories situated in the upper right corner have a 
positive bias on both samples. Laboratories in the lower left corner have a negative 
bias on both samples and the two other quadrants are high for sample 1 and low for 
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Fig. 14.3. Laboratory-performance study for the analysis of clenbuterol [12]. The numbers 11-82 are 
the codes of the laboratories, (a) Blank urine spiked with 1.5 ng/ml. (b) Real sample. 

sample 2, respectively low for sample 1 and high for sample 2. If only random 
errors occurred, one would expect the points to be more or less equally distributed 
over all quadrants. However, the situation of Fig. 14.4 occurs more frequently: 
there are more points in the upper right and lower left quadrant, indicating that most 
laboratories have either consistently too high or too low results, in other words, 
there is a systematic error. When all laboratories use the same niethod, these 
systematic errors are laboratory biases. In our example the laboratories all use 
different methods, so that it is not possible to conclude whether the systematic error 
is due to the methods or to the laboratories. 
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Fig. 14.4. Youden plot. Average concentrations found for sample (a) and (b) by the laboratories of 
Fig. 14.3 plotted one against the other. 

A more general treatment was given by Mandel and Lashof [14]. Youden's 
article assumed that the concentration of the analyte in the two materials was nearly 
the same, so that the repeatability as well as the laboratory biases would be the 
same for two materials. Mandel and Lashof investigate the situation where the two 
samples do not have a similar concentration so that random and systematic errors 
are no longer necessarily the same for both methods. They showed that in all cases 
the points in the plot fall within an elongated ellipse. When Youden's assumptions 
are obeyed, then the major axis makes a 45° angle, but when these assumptions are 
found to be incorrect other angles may be obtained. Their paper contains a 
procedure to decide whether lab bias occurs or not and to estimate all variance 
components. 

14.3.1.3 MandeVs h and k consistency statistics 
Mandel's h and k consistency statistics are a graphical way of describing the 

variability in the set of data and to look for inconsistencies [3]. The /z-statistic 
essentially studies the variability of the mean results obtained at each level and the 
/c-statistic compares standard deviations of the laboratories. 

The equations are the following: 
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1 

yij-yj (14.7) 

, I iy,-yf 

where7 is theyth level and the other symbols have the same meaning as in Section 
14.2.4. 

kij = Sij/Sj w i t h (14.8) 

Sj=J I sjj/pj 
i=\ 

The ISO standard also gives indicator values at the 1 and 5% levels, ytj - y, is the 
deviation of the cell average 'yij of laboratory / at levely from y^ the general average 
at level y and the /i-ratio therefore compares the deviation for a laboratory from the 
general average at that level with the standard deviation of the mean values 
obtained by all p, laboratories that have reported results at level j . A plot for the 
data of Table 14.1 is shown in Fig. 14.5 and the clenbuterol data are found in Fig. 
14.6. In Fig. 14.5,oneobservesthatfourofthefive values of laboratory 1 are larger 
than the 5% indicator values. Moreover, all values for that laboratory are rather 
high. This confirms that the results of laboratory 1 are inconsistent with those of 
the others. No other inconsistencies are observed. For the clenbuterol data of Fig. 
14.6, it is observed that laboratory 70 yields too low results. One of the results of 
laboratory 50 also exceeds the 5% indicator value, but we probably would not 
decide to eliminate 50 from further consideration. 

• 3 ^ 

• 1 

0 

h consistency statistic 

I. I l ' l ' 'M 

-1 1 

I' Y W 

<N r o ^ i / ^ i D c ^ o o en 

Fig. 14.5. Mandel's /z-statistic for the data of Table 14.1. 
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Fig. 14.6. Mandel's /z-statistic for the data of Table 14.8. 
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Fig. 14.7. Mandel's A:-statistic for the data of Table 14.1. 
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The k-raiio compares the standard deviation Sy of laboratory / at level y with that 
of all laboratories at that level, Sj. The plot for the data of Table 14.1 is given in 
Fig. 14.7. It shows that two values exceed the 1% level and also that, in general, 
laboratory 6 seems to deliver less repeatable results. As explained in Section 
14.2.4, it was found that the result at level 5 should be eliminated. 

14.3.2 Ranking method 

Some methods for evaluating laboratory performance make use of scores calcu­
lated for the laboratories. In the ranking method [15] these scores are based on a 
ranking of the results obtained by the laboratories. Table 14.8 illustrates the 
procedure for the clenbuterol data introduced in Section 14.3.1. For each of the 
three urine samples the highest result is given rank 1, the one but highest is given 
rank 2 and so on. When ties are present the mean of the ranks is computed. The 
ranked results for the three urine samples are given in the table under Ri, R2 and 
R3. The laboratory score is obtained as the sum of the ranks the laboratory received. 
For our example the lowest possible score is 3 while the highest possible score is 
30. The former will be obtained by a laboratory that systematically reports the 
highest results for all materials while the latter will be the score of a laboratory that 
systematically reports the lowest results for all materials. Therefore extreme scores 
are an indication for the presence of systematical errors. Table 14.9 gives, for 
different combinations of m (number of materials analyzed) and p (number of 
laboratories involved in the study), upper and lower limits for the scores. For each 
combination of p and m two critical values are listed. A calculated score which is 
less than or equal to the smaller critical value or greater than or equal to the larger 
critical value results in the rejection of the hypothesis of a random ranking at the 
5% significance level. For our example (p = 10 and m = 3) random ranking would 
result in a score not less than 5 and not more than 28. The score 29 for laboratory 
70 therefore is considered extreme and points to a systematic error resulting here 
in low results. The performance of laboratories 50 and 82, respectively with scores 
28 and 5 at the border of the critical region, might also be questioned. 

14.3.3 The z-score method 

Scores have the advantage that they constitute a simple way to compare labora­
tories among each other or the present performance of a laboratory with its 
previous performance and that they can be used as a formal way of eliminating 
laboratories, that do not perform sufficiently well, from accreditation. Such a score, 
known as the z-score, was described by the Analytical Methods Committee [5] and 
lUPAC [4] and will be explained here. 

The z-score of an individual laboratory is obtained as follows: 
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TABLE 14.9 

Critical values of ranking scores [15] 

Number 
of labs. 

ip) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Number of materials (m) 

3 

3 
18 

3 
21 

3 
24 

3 
27 

4 
29 

4 
32 

4 
35 

4 
38 

4 
41 

4 
44 

4 

4 
12 

4 
16 

5 
19 

5 
23 

5 
27 

6 
30 

6 
34 

7 
37 

7 
41 

7 
45 

8 
48 

8 
52 

8 
56 

5 

5 
15 

6 
19 

7 
23 

7 
28 

8 
32 

9 
36 

9 
41 

10 
45 

11 
49 

11 
54 

12 
58 

12 
63 

13 
67 

6 

7 
17 

8 
22 

9 
27 

10 
32 

11 
37 

12 
42 

13 
47 

14 
52 

15 
57 

15 
63 

16 
68 

17 
73 

18 
78 

7 

8 
20 

10 
25 

11 
31 

12 
37 

14 
42 

15 
48 

16 
54 

17 
60 

19 
65 

20 
71 

21 
77 

22 
83 

23 
89 

8 

10 
22 

12 
28 

13 
35 

15 
41 

17 
47 

18 
54 

20 
60 

21 
67 

23 
73 

24 
80 

26 
86 

27 
93 

29 
99 

9 

12 
24 

14 
31 

16 
38 

18 
45 

20 
52 

22 
59 

24 
66 

26 
73 

27 
81 

29 
88 

31 
95 

33 
102 

35 
109 

10 

13 
27 

16 
34 

18 
42 

21 
49 

23 
57 

25 
65 

27 
73 

30 
80 

32 
88 

34 
96 

36 
104 

38 
112 

41 
119 

11 

15 
29 

18 
37 

21 
45 

23 
54 

26 
62 

29 
70 

31 
79 

34 
87 

36 
96 

39 
104 

42 
112 

44 
121 

47 
129 

12 

17 
31 

20 
40 

23 
49 

26 
58 

29 
67 

32 
76 

35 
85 

38 
94 

41 
103 

44 
112 

47 
121 

50 
130 

53 
139 

13 

19 
33 

22 
43 

26 
52 

29 
62 

32 
72 

36 
81 

39 
91 

43 
100 

46 
110 

49 
120 

52 
130 

56 
139 

59 
149 

14 

20 
36 

24 
46 

28 
56 

32 
66 

36 
76 

39 
87 

43 
97 

47 
107 

51 
117 

54 
128 

58 
138 

61 
149 

65 
159 

15 

22 
38 

26 
49 

31 
59 

35 
70 

39 
81 

43 
92 

47 
103 

51 
114 

55 
125 

59 
136 

63 
147 

67 
158 

71 
169 
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z = {x-X)IS (14.9) 

where x is the result obtained by a laboratory, X the true concentration of the 
analyte or its best estimate X and S some kind of standard deviation. The difficulty 
with using eq. (14.9) is the determination of X and S. 

The best way of determining X is to add a known amount of analyte to the base 
material. Unfortunately, there are several chemical reasons why this often is not 
possible, nor recommended. Among them there is the difficulty of adding homogene­
ously the analyte to many types of base material, the speciation which may be different 
and the problem of obtaining such materials, free of analyte. When it is not possible to 
determine X in this way, one needs consensus values. These can be obtained in two 
ways, namely by a group of expert laboratories using best possible methods or by the 
participants themselves. The former is more costly, but has the advantage to provide 
an external performance standard with which to measure the proficiency of other 
laboratories. The latter is cheaper, since the consensus is not determined in a special 
round of experiments, but in the actual proficiency testing round. A further question is 
how to compute X. One possibility is to obtain the mean of the participating laborato­
ries, after elimination of outliers. Another is to obtain a robust mean such as the 
median, the biweight or winsorized mean described in Chapter 12. 

S can be obtained in a proficiency testing round as the standard deviation of the 
laboratories' results after the elimination of outliers. However when possible it is 
to be preferred that S should be a target value of precision. This could be derived 
from the precision required to perform a certain task, from method performance 
studies (Section 14.2.3) or from the Horwitz curve (Section 14.2.5). 

With good estimates of X and 5, z corresponds to a standardized variable. 
Consequently one expects that Izl > 2 in only 4.55% of the cases and \z\ > 3 in only 
0.27%. The latter indicates unacceptably poor performance in terms of accuracy 
while for a satisfactory performance Izl < 2 is required. 

When, as is usual, more than one test material is being analyzed a composite 
score over all the test materials might be required. For this purpose one can use 
some type of sum of scores. The Analytical Methods Committee and lUPAC prefer 
the sum of squared scores, SSZ 

SSZ = Iz^ 

This follows a %̂  distribution with m degrees of freedom, where m is the number of 
scores that is combined into SSZ. An interpretation for the SSZ similar to that for the 
z-scores requires the use of Table 14.10. A SSZ < A is satisfactory, if A < SSZ < B the 
performance is questionable and for SSZ > B it is unsatisfactory. A and B are 
respectively the 4.55% and 0.27% points of the j ^ distribution which corresponds to 
the two-sided z-values 2 and 3 used in the interpretation of the z-score. The above-men­
tioned organizations do not recommend the general use of combination scores 
because a significant single score can systematically be masked in this way. 
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TABLE 14.10 

Classification of SSZ scores [5] 

m 

2 
3 
4 
5 
6 
7 
8 
9 
10 

A 

6.18 
8.02 
9.72 

11.31 
12.85 
14.34 
15.79 
17.21 
18.61 

B 

11.83 
14.16 
16.25 
18.21 
20.06 
21.85 
23.57 
25.26 
26.90 

m 

11 
12 
13 
14 
15 
16 
17 
18 
19 

A 

19.99 
21.35 
22.70 
24.03 
25.35 
26.66 
27.96 
29.25 
30.53 

B 

28.51 
30.10 
31.66 
33.20 
34.71 
36.22 
37.70 
39.17 
40.63 
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Chapter 15 

Other Distributions 

15.1 Introduction — Probabilities 

In Chapter 3 we described the normal distribution and stated that it is the best 
known probability distribution. There are several other probability distributions. In 
certain cases the data are not continuous, but discrete and we need other distribu­
tions such as the binomial, the hypergeometric and Poisson distributions to de­
scribe these data. Other probability functions have been defined for specific 
purposes. Examples of some of the more important special distributions are 
described in Sections 15.5 and 15.6. Hypothesis tests based on these distributions 
have been developed, but will not be described here. 

Since we will have to apply probability calculus in this and several of the next 
chapters, some concepts and axioms must be defined here. 

(1) The probability of an event X is a non-negative number smaller than or equal 
to 1 

0 < P [ X ] < 1 (15.1) 

(2) The sum of the probabilities of all possible events X/ for a given situation is 
equal to 1 

1P[X,] = 1 (15.2) 

When one carries out quality control, some objects will be found to have no defects, 
some a single defect and some two defects. Supposing that objects with three or 
more defects do not occur, one can write: 

P[no defect] + P[\ defect] + P[2 defects] = 1 

(3) X and Y are said to be mutually exclusive if no event belongs to both X and 
Y. In this case 

P[XuY] = P[X] + P[Y] (15.3) 

XuY (X or Y) is called the union of X and Y. It is the event which consists of all 
the simple events belonging to X or Y or both X and Y. It can also be written as 
event X + Y. 
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Suppose that an item can have either defect A or B, but not both, then defects A 
and B are mutually exclusive. If, of 100 items investigated, 10 are found to have 
defect A and 10 defect B, then 

P[AuB] = P[defect] = P[A] + P[B] = 0.2 

(4) When an event can belong to both X and Y, then X and Y are not mutually 
exclusive and the probability of the union is then given by 

P[XuY] = P[X] + P[Y] - P[XnY] (15.4) 

XnY (X and Y) is the intersection of two events X and Y. It is the event consisting 
of all events belonging to both X and Y and is sometimes written as X.Y or XY. 

Suppose now that A and B are not mutually exclusive i.e. an object can have 
only defect A, only defect B or both defects. Then P[both defects] = P[AnB]. 

If P[only A] = 0.1, P[only B] = 0.1, P[both defects] = 0.05, then P[A] = 0.15, 
P[B] =0.15 and P[defect] = P[A] + P[B] - P[AnB] = 0.15 + 0.15 - 0.05 = 0.25. 
Equation (15.4) is known as the addition law. 

(5) Two events X and Y are said to be independent if and only if 

P[XnY] = P[X] P[Y] (15.5) 

A company produces two types of items, blue-coloured ones and red-coloured ones. 
Defects are not related to colour. The amount of blue-coloured objects produced is 
one-quarter of the total production (P[blue] = 0.25). Suppose P[defect] =0.1. The 
occurrence of blue objects with a defect in the total population of objects is 

P [blue n defect] = 0.025 

Two events are complementary if 

P[X] + P[Y] = 1 (15.6) 

An object can either present no defect or at least one (object defective). Both events 
are complementary: 

P[defective] + P[no defect] = 1 

In that case all events that do not belong to X can be written as not-X (X), so that 

P[X]=P[Y] 

(6) P[XIY] is called the conditional or posterior probability of event X given the 
occurrence of event Y. To detect a defect, one carries out a test. This test can have 
two outcomes (positive, which is supposed to mean there is a defect, or negative, 
leading to the conclusion there is no defect). The test in question is however not 
perfect: in a few cases a test will not be positive when there is a defect and now and 
then a non-defective sample will yield a positive test. P[defectlpositive] is then the 
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probability that an object is indeed defective, when a positive test has been 
obtained. It can be shown that 

P[XIY] = P[XnY]/P[Y] (15.7) 

By contrast, P[X] is then often called the prior probability. P[defect] is the 
(prior) probability that a specific object would be defective if no other informa­
tion is available. When a test has been carried out, more information is present. 
P[defectlpositive] is then the (posterior) probability that there is a defect, when the 
test was positive. A test is all the more informative when the difference between 
posterior and prior probability is larger. This is related to the concepts of sensitivity 
and selectivity of tests, introduced in Section 13.8.2 and treated in detail in Chapter 
16 and to the information theory described in Chapter 18. 

15.2 The binomial distribution 

15.2.1 An example: the counter-current distribution method 

Counter-current distribution (CCD) is a separation method in which one repeat­
edly partitions an analyte between two liquid phases. One phase is called stationary 
and the other mobile. In this technique one starts by bringing all the analyte into 
the first (Fig. 15.1a) of a series of cells. In each cell a stationary phase is available 
and in cell 1, one has also added mobile phase and one carries out the partition in 
that cell between the mobile phase and the stationary phase. The partition coeffi­
cient is given by ^ = qlp, where q is the fraction of analyte in the mobile phase and 
p is the fraction in the stationary phase. Since q and/? are fractions, it also follows 
that 

analyte —-

new 
M 

[TT 
1 s S S S 

1 2 3 4 

[M 
s s S s 
1 2 3 4 

M 

S 

M 

S S s 1 

b) 

new M 

LLJ L I ] L 
1 2 3 4 

Fig. 15.1. The CCD process: (a) initial situation, (b) first transfer, (c) second transfer. 
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p^q=\={p + q)' (15.8) 

The mobile phase of cell 1 is now transferl-ed to cell 2 (Fig. 15.1b) and new 
mobile phase is added to the first cell. The analyte present in both cells is 
partitioned between the two phases in those cells. If Nemst's partition law is 
followed, the partition coefficient is independent of concentration and therefore the 
same in all cells throughout the distribution. In cell 1 there is a fraction p present. 
A fraction p of p (p^) remains in the stationary phase and a fraction q of p (pq) is 
transferred to the mobile phase of cell 1. In cell 2 a fraction p of q (pq) remains in 
the stationary phase and a fraction q of q (q^) will be found in the mobile phase. 
When the mobile phases of both cells are now transferred to the next cell, one finds 
in cell 1 a fraction p^, in cell 2 a fraction 2 pq (pq remaining in the stationary phase 
of cell 2, pq from the mobile phase of cell 1) and in cell 3 a fraction q^. The total 
amount is of course still equal to 1, so that 

p' + 2pq + q'=l=(p-^qf (15.9) 

We can verify that after the next round of partitioning and transfer (Fig. 15. Ic) 
of the mobile phase, the fractions in successive cells are p^, 3 p^q, 3 pq^ and q^, so 
that these fractions are given by the terms of (p -\- qf. 

(p + qf=p^ 4- 3/7V+ 3/7̂ 2 + q^=\ (15.10) 

In separation chemistry, counter-current distribution is used to separate two or 
more substances with different partition coefficients K. These will yield different 
distributions over the cells so that a separation effect occurs. 

Let us now rephrase this in a way that is more customary in statistics. The 
analyte consists of a certain number of molecules. These molecules can assume 
two states in the separation process: they can go into the mobile phase (M) or stay 
in the stationary phase (S). Let us suppose that the molecules had three occasions 
to choose between M and S. Then we sort them as follows: 

Situation 1: SSS 

Situation 2: MSS 

Situation 3: MMS 

Situation 4: MMM 

The order is not relevant. MSS means that the molecule once was M and twice S. 
The M-state may have occurred in partition step one, two or three. 

The calculations of this section show that the different combinations of two 
possible states can be computed using the terms of the equation described by (/? + qY. 
The resulting distribution is called the binomial distribution and we will discuss 
this distribution more formally in the next section. 
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15.2,2 The distribution 

The binomial distribution can be used to model the distribution of objects that 
can take on two states. In statistics books, the binomial distribution is often 
explained with an urn in which there are a number of balls, thepth fraction of which 
are red, and the rest black. When one takes a ball from this urn it has a probability 
p to be red and a probability q= I -ptohc black. If R is red and B is black, then 
the following combinations of red and black balls can be obtained when three balls 
have been drawn. 

Combination 1:RRR 

Combination 2: BRR 

Combination 3: BBR 

Combination 4: BBB 

where the order of B and R is not relevant: only the final result is important. It is 
not difficult to see the connection with the process described in the preceding 
section. It is shown that, if the drawing operation is repeated n times (i.e. there are 
n independently selected items) and the selected ball is replaced (i.e. put back into 
the urn each time), then the probability of having selected x red balls is: 

m= 
with 

X 
V J 

p\\-py-' x = o,i,...,n o</7<i (15.11) 

X 
V J 

(15.12) 
x\{n ~x)\ 

An example of a binomial distribution is given in Fig. 15.2. The population 
parameters for the binomial distribution are 

\x = np a = ^np{\ -p) (15.13) 

or 

\i = p o = ̂ p(\-pyn (15.14) 

depending on whether one presents the results as counts (number defectives, for 
instance) or as fractions (fraction defectives, for instance). 

It should be noted here that one can also describe multinomial distributions. In 
this case each object can take on more than two states. 



466 

, 

0,4-

0.3-

0.2-

0.1-

^ probability, f (x) 

*^ 

1—f̂  

\ 

y 
1 1 

( \ 

\ . V 
- 1 r^::::^—, r -> — » • 

Fig. 15.2. Binomial distributions for Ai= 10,/? = 0.2 (*) and/7 = 0.5 (•). 

15.2,3 Applications in quality control: the np charts 

Suppose that in a manufacturing process one selects at random 100 produced 
items and inspects them for a certain characteristic. It is known that the process, 
when it is under control, produces 2% defective items. The mean number of 
defectives will then ht\x = np= 100 x 0.02 = 2. Of course, when one draws 100 
items and inspects them this will often lead to the detection of fewer or more than 
2 defective items. When the number of defects becomes much higher than 2, this 
will be considered as an indication that the processes no longer performing 
correctly. This reasoning is applied in constructing the np chart for attributes. At 
regular times one draws n items from the process and inspects them. One then sets 
warning and action lines such that (see Chapter 7) certain probabilities are not 
exceeded. These limits can be obtained from tables of the binomial distribution, 
but usually one applies approximate equations that are very similar to those applied 
in Chapter 7. The general equation is: 

Limit = |Ll + /:a 

For the warning line (probability = 0.05) /: = 2 and for the action line (probability 
= 0.01))t = 3, sothat 

Upper action limit = np -h 3^np{l -p) 

Upper warning limit = np + 2^np{\ -p) 

For our example (see Fig. 15.3) this becomes: 

Upper action limit = 2 + 3V2(0.98) = 6.2 
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number defective 

UAL 

UWL 

1 5 10 15 20 25 days 

Fig. 15.3. An np chart. The number of defectives per 100 items is charted and the upper warning limit 
(UWL) and upper action limit (UAL) are given for a mean number of defectives equal to 2 (/? = 0.02). 
Item 20 exceeds the UWL, but item 21 does not, so that the process is considered under control. 

which means that when 7 defectives are found, one will consider that action must 
be taken. The upper warning limit is 4.8, so that 5 defectives is the level at which 
a warning is issued. The rules applied are the same as in Chapter 7. For instance, 
when two consecutive runs lead to a warning, then the process is considered to be 
out of control and action must be taken. 

Instead of np charts, p charts, in which one plots the proportion of defectives, 
have also been described. 

15.3 The hypeigeometiic distribution 

The hypergeometric distribution is similar to the binomial distribution but 
sampled without replacement. Consider again the urn with red and black balls. To 
obtain the binomial distribution, we took one ball, noted its colour and put it back 
into the urn before taking the next ball. Suppose now that instead of putting each 
ball back in the urn, we simply take n balls and count the number of red balls. 
Suppose that there are m red balls in the urn, then the probability of taking a red 
ball at the outset is p = mIN where N is the total number of balls. If the first ball 
to be taken out, turns out to be red, then for the second ball, p has changed to 
(m - 1)/(A^ - 1). The probability of finding x individuals characterized by prob­
ability /7 in a sample of n items from a population of size Â  is then given by the 
hypergeometric distribution: 

fW = 
n - x\ 

-J- (x = 0, l . . . ,n) (15.15) 
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In quality control terms, f(jc) would be the probability of finding x defectives in 
a sample of size n taken from a population of size Â  in which the probability p of 
finding a defective sample is given by /? = mIN. 

At first sight, the QC application described in Section 15.2.3 might be consid­
ered a situation that should be described better by the hypergeometric than by the 
binomial distribution. However, it can be shown that when N is large compared 
with Az, the hypergeometric distribution reduces to the binomial one. This follows 
for instance from a comparison of the population parameters. For the situation 
where the results are presented as proportion defectives, these population parame­
ters are given by Duncan [1, p. 103]: 

\i = p (5 = ^[p{\ -p)/n\ . [{N-n)/{N- 1)] (15.16) 

The variance of the hypergeometrical distribution is equal to that of the binomial 
one multiplied by {N -n)l{N - 1) which becomes very close to 1 when A^» n. 

15.4 The Poisson distribution 

15.4A Rare events and the Poisson distribution 

In the two preceding sections, we studied situations in which the total number 
of objects could be counted. We selected a sample of n objects, each of which was 
in one of two states. For instance, we took 10 objects from a production line and 
counted the number of defectives. The rest is not-defective. This is not always 
possible. Suppose the production consists of spray-painting a metal surface. Small 
defects may then occur on the painted surface. The number of defects can be 
counted, but how do we define the number of non-defects? In principle, the defects 
will occur only here and there and will therefore be relatively rare events. If we 
want to do quality control of the spray-painting shop, we will have to make 
conclusions based on the probability of 1, 2, 3,... defects occurring on a certain 
area: we have to study the distribution of a rare event. Other such situations are 
found in epidemiology or in measurements based on counting (microbiology, 
radioactivity). If jc is the number of defects or counts observed in a given unit (area 
in m^ for the spray-painting, time for radioactivity counting, ...) then f(x), the 
probability of observing x defects or counts in such a unit is given by 

f(x) = Q-\X'/x\) (15.17) 

where X is the average number of defects or counts observed in the given unit. 
Examples are shown in Fig. 15.4. 

The population parameters are 

yi = X a = VI' (15.18) 
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Fig. 15.4. Poisson distributions for ^ = 2 ( • ) and X = 5 (*). 

Suppose, for instance, that a radioactive source is measured repeatedly. Then, if the 
mean counting rate is 10000 counts/min, the standard deviation is 100 counts/min. One 
observes that the higher the number of counts, the smaller is the relative standard 
deviation: counting precision is better when there are more counts. 

It is possible to determine confidence limits for rarely occurring events. Suppose 
3 new cases of juvenile diabetes are observed in a population of 30000 people over 
a certain period. The observed value 3 is an estimate of the true incidence in that 

TABLE 15.1 

95% confidence limits for Poisson-distributed values, n = observed value, LL = lower limit factor, UL = upper 
limit factor. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

LL 

0 
0.0253 
0.121 
0.206 
0.272 
0.324 
0.367 
0.401 
0.431 
0.458 
0.480 
0.499 
0.517 
0.532 
0.546 
0.560 
0.572 
0.583 
0.593 
0.602 
0.611 

UL 

3.00 
5.57 
3.61 
2.92 
2.56 
2.33 
2.18 
2.06 
1.97 
1.90 
1.84 
1.79 
1.75 
1.71 
1.68 
1.65 
1.62 
1.60 
1.58 
1.56 
1.54 

n 

22 
24 
26 
28 
30 
35 
40 
50 
60 
80 
100 
150 
200 
250 
300 
400 
500 
600 
800 
1000 

LL 

0.627 
0.641 
0.653 
0.665 
0.675 
0.697 
0.714 
0.742 
0.770 
0.798 
0.818 
0.849 
0.868 
0.882 
0.892 
0.906 
0.915 
0.922 
0.932 
0.939 

UL 

1.51 
1.49 
1.47 
1.45 
1.43 
1.39 
1.36 
1.32 
1.30 
1.25 
1.22 
1.178 
1.151 
1.134 
1.121 
1.104 
1.093 
1.084 
1.072 
1.064 
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population over such a period. The 95% confidence Umits on that observation can be 
obtained by multiplying it by the lower and upper limit factors from Table 15.1 [2]. 
This yields the confidence interval 3 x 0.206 to 3 x 2.92 or 0.62 to 8.8. The confidence 
interval for the incidence rate per 100000 people is therefore 2.1 to 29.3. The 
uncertainty will be smaller when the sample size is larger. Suppose one had observed 
the same incidence rate on a population of 300000. We would then have observed 
30 cases. The confidence intervals for the incidence rate per 100000 people would then 
be 30 X 0.675 x (100000/300000) to 30 x 1.43 x (100000/300000) or 6.75 to 14.3. 
Since we can determine confidence intervals, we can also carry out hypothesis tests. 
The test will be more powerful when the sample size is larger, since the confidence 
intervals are then relatively smaller. The same conclusion was reached in Section 4.8. 

15.4.2 Application in quality control: the c and u-charts. 

The c-chart is the traditional name for a chart which monitors the number of 
defectives in situations such as the spray-painting example, c is then the average 
number of defects per unit (i.e. is equal to X, the symbol more generally used in 
statistical texts). The limits are then given by: 

Upper action limit (p = 0.01) = c + 3a = c + 3V^ 

Upper warning limit {p = 0.05) = c + 2a = c + 2^ 

Suppose the mean number of defects c per unit is 4.0, then from eq. (15.18), it 
follows that a = V̂ oT = 2.0. The upper warning limit is then given by 4.0 + 2 
X 2.0 = 8.0 and the upper action limit by 4.0 + 3 x 2.0 = 10.0. An example of a chart 
is shown in Fig. 15.5. 

^number of 
de fec t s ^ ^»„take a c t i o n 

10.0 

8.0 

6.0 

4.0 4 

2.0 

5 10 I tem no 

Fig, 15.5. A c-chart. Item no. 5 exceeds the UWL, the inspection is repeated and yields no. 6 which 
exceeds the UAL. Action must be taken and is successful (item no. 7). Adapted from Ref. [3]. 
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We use u-charts when the unit investigated is not always the same. Suppose that 
instead of investigating always the same area of spray-painted metal, we decide to 
investigate metal plates of varying area; u would then be the number of defects per 
m^ and follows again a Poisson distribution. 

15.4.3 Interrelationships between the binomial, Poisson and normal 
distributions 

One approach to introducing the Poisson distribution is to consider it as a 
limiting case of the binomial distribution for which n tends to infinity, p becomes 
very small but np remains constant and equal to X. The Poisson distribution tends 
to normality when X is sufficiently large (k > 10). The binomial distribution can be 
approximated with a normal distribution when np> 5 and n(l -p)> 5. 

15.5 The negative exponential distribution and the Weibull distribution 

The negative exponential distribution is of interest in the SPC for describing 
lifetime (time-to-failure), degradation or reliability of a product. It is given by 

f(jc) = - e 
6 

or 

f(jc) = - e 

e 

-A/e 

-(x-r)/9 

(15.19) 

(15.20) 

where ris a threshold. The mean is equal to 9 in eq. (15.19) and to 0 + Mn eq. 
(15.20). In both cases the standard deviation is equal to 6. An example of the 
distribution with and without threshold is given in Fig. 15.6. 

f (x) 

1-

0 .5 -

i 

\ ^ 

V 
1 a 

b \ \ 

- 2 0 2 4 6 X 

Fig. 15.6. The negative exponential distribution: (a) r = 0, 9 = 1; (b) r = 0, 0= 2; (c) r = -2, 0=1. 



- 2 0 2 L 6 X 

Fig. 15.7. The WeibuU distribution: (a) r = 0,9 = 2, p = 2; (b) ̂  = 0,0 = 2, p = 1; (c) r = -2,0 = 1, (3 = 2. 

The negative exponential distribution is a special case of a more general 
distribution, called the WeibuU distribution (Fig. 15.7). It is given by 

fW = (p/9) 
fx-t^' 

e 
f 

exp 
x-t ^\ 

e 
(15.21) 

Again, r is a threshold, often equal to 0, and (3, 9 > 0. Examples of the distribution 
are shown in Fig. 15.7. It can be verified that for p = 1 the negative exponential 
distribution is obtained. 

15.6 Extreme value distributions 

Extreme values are of interest when describing or predicting catastrophic situ­
ations, e.g. the occurrence of floods or for safety considerations. In this section we 
will follow the description of extreme-value techniques given by Natrella [4]. 

Figure 15.8 is a typical curve for the distribution of largest observations. This 
curve is the derivative of the cumulative probability function 

F{x) = exp[- exp(-jc)] (15.22) 

This distribution is skewed and describes largest values, for instance the largest 
values of atmospheric pressure obtained in a year in a certain location. The 
distribution can be used for extreme-value plots similar in approach to normal-
probability plots. In one axis we plot the value of JC and in the other the probability, 
according to eq. (15.22), of the observations ranked from smallest to largest. 
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• dF(x)/dx 

Fig. 15.8. An extreme-value distribution (adapted from Ref. [4]). 

A pressure in mm 

790 i 

780 

0.1 0.5 0.8 0.9 0.95 0.99 

Fig. 15.9. Extreme-value plot. The plot describes the largest annual atmospheric pressure in Bergen 
(Norway) in the period 1857-1926 (adapted from Ref. [5]). 

Suppose there are 50 observations, then the smallest one will be plotted at the 
probability value 1/(50+1). An example is shown in Fig. 15.9. This graph allows 
to conclude that the probability that the largest value will exceed 793 mm in any 
year is 0.01. Smallest values can also be plotted. They are of interest, for instance, 
in fracturing or fatigue situations. 

Other distributions can also be applied, for example, the Pareto distribution of 
Fig. 2.8. One of the main tasks in studying extreme value distributions is then to 
decide which of the many possible distributions fits the data best. More details can 
be found in a book by Beirlant et al. [6]. 
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Chapter 16 

The 2x2 Contingency Table 

16.1 Statistical descriptors 

16.1.1 Variables, categories^ frequencies and marginal totals 

A contingency table arises from the classification of a sample according to two 
qualitative variables [1]. Hence, the cells of a contingency table contain counts or 
frequencies. Each cell of a contingency table, say in row / and column7, represents 
the number of elements in the sample that have been observed to belong simulta­
neously to category / of the first variable and to category 7 of the second variable. 
If the two variables have n and p categories, respectively, we speak of an nxp 
contingency table. We assume that the categories of any given variable are exhaus­
tive and mutually exclusive, which means that each element in the sample can be 
classified according to that variable into one and only one category. 

In this chapter we deal exclusively with 2x2 contingency tables. The general 
nXp case will be treated extensively in Chapter 32. Here we assume that the two 
variables are dichotomous. A dichotomous variable provides for only two categories. 
This is the case with the outcome of a screening assay when it is reported as either 
positive or negative, and with a diagnosis of a patient when it is stated as either diseased 
or healthy. In dichotomous variables, such as outcome and diagnosis above, there is 
no provision for categories in between. For example, one may have studied a cohort 
of twenty patients that became HIV positive at about the same time. Ten of these 
received antiviral monotherapy (e.g. AZT), the remaining ten received combination 
therapy (e.g. AZT + ddl). The aim of the study is to know whether the expected 
proportion of patients that developed AIDS symptoms after 5 years of therapy is 
smaller under combination therapy than under monotherapy. There are four contin­
gencies in this study, i.e.: AIDS (mono), no AIDS (mono), AIDS (combination) and 
no AIDS (combination), and the corresponding frequencies of occurrence can be 
arranged in a 2x2 contingency table. Clearly, if combination therapy is superior to 
monotherapy we would expect to obtain more patients without AIDS in the former 
category. The difference between observed and expected frequencies, however, may 
be due to chance, especially as we are dealing with a small number of patients. In this 
chapter we will develop the necessary statistical concepts and tests which will lead 
to correct conclusions from 2x2 contingency tables. 
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TABLE 16.1 

Outcome of assay A for diagnosis of HIV infection 

Outcome 

Positive 
Negative 

Total 

Diagnosis 

Diseased 

276 
24 

300 

Healthy 

15 
285 

300 

Total 

291 
309 

600 

By way of illustration we consider the outcomes of an assay for the presence of 
HIV antibodies in urine which we have adapted from Science Briefings [2]. We 
assume here that this screening test, which we call assay A, has been applied to 600 
subjects. Specimens of urine were collected from 300 persons with confirmed HIV 
infection and from 300 uninfected persons. It was found that 276 of the 300 
diseased persons tested positively in this assay, while only 15 of the 300 healthy 
persons obtained a positive outcome. The two variables in this example are 
diagnosis (diseased or healthy) and outcome (positive or negative). The results are 
summarized in Table 16.1. 

The row and column totals of a contingency table are called the marginal totals. 
They indicate the cell frequencies observed in each category of the two variables. 
The grand total represents the sample size. In Table 16.1 we find that the sample 
of size 600 has been evenly divided between the two diagnostic categories (dis­
eased and healthy). Note that the column totals in this example are fixed by the 
design of the assay. We also observe that the same sample is divided into 291 
persons with positive outcome and 309 with negative outcome. In practice, these 
row totals are subject to random sampling errors. Replication of the assay, using 
identical sample size and marginal column totals, will probably produce different 
row totals. Later on we will discuss the case where only the grand total is fixed. 
This situation occurs for example in epidemiological studies where the number of 
persons found with or without a disease is also subject to sampling error. On rare 
occasions a design is obtained in which both sets of marginal totals are fixed. 

16.1.2 Probability and conditional probability 

We consider a 2x2 contingency table with the dichotomous variables of diagno­
sis and outcome. In Table 16.2 we define a general layout for 2x2 contingency 
tables in the context of diagnostic assays [3]. This layout can be adapted to 
chemical and other applications by replacing the names of the variables and their 
dichotomous categories. 
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TABLE 16.2 

2x2 contingency table for diagnostic assay 

Outcome 

Positive 
Negative 

Total 

Diagnosis 

Diseased 

tp 
fn 

tp + fn 

Healthy 

fp 
tn 

fp + tn 

Total 

tp + fp 
fn + tn 

TABLE 16.3 

2x2 contingency table for diagnosis and outcome, in terms of probabilities 

Outcome 

Positive 
Negative 

Total 

Diagnosis 

Diseased 

P[dnp] 
P[dnn] 

P[d] 

Healthy 

P[hnp] 
P[h n n] 

P[h] 

Total 

P[p] 
P[n] 

1 

In Table 16.2 N represents the sample size or grand total. The variable diagnosis 
has the categories diseased (d) and healthy (h). The variable outcome consists of 
the categories positive (p) and negative (n). The four cells of the table correspond 
to the four possible contingencies, the probabilities of which are shown in Table 16.3: 

true positive (tp) = diseased and positive (d n p) 
false negative (fn) = diseased and negative (d n n) 
false positive (fp) = healthy and positive (h n p) (16.1) 
true negative ftn) = healthy and negative (h n n) 

We denote by P[X] the probability of the occurrence of event X. In particular, 
P[d n p] is the joint probability of observing simultaneously a positive outcome 
and a diseased person. Likewise, P[d] is the prevalence of the disease and P[p] is 
the probability of a person obtaining a positive outcome whatever his diagnosis. 
The probabilities in the table are estimated by dividing observed frequencies by the 
sample size Â  (Table 16.4): 

P[d n p] is estimated by tp/A^ 
P[d] is estimated by (tp + fn)/A^ 
P[p] is estimated by (tp + fp)/A ,̂ etc. 
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TABLE 16.4 

2x2 contingency table for diagnosis and outcome, showing observed proportions 

Outcome 

Positive 
Negative 

Total 

Diagnosis 

Diseased 

tp/N 
fn/N 

(tp + fn)/N 

Healthy 

fp/N 
in/N 

(fp + tn)/N 

Total 

(tp + fp)/N 
(fn + tn)/yV 

1 

From the axioms of probability, which have been stated in Chapter 15, we can 
derive the following propositions in the context of our example from clinical assays: 

P[d] > 0 

P[d u h] = P[d] + P[h] = 1 (16.2) 

P[dlp] = P[dnp]/P[p] 

We must also have that: 

P[p] = P[p n d] + P[p n h] (16.3) 

since d and h are mutually exclusive and exhaustive events: a positive person is 
either diseased or healthy. 

After substitution of eq. (16.3) in eq. (16.2) we obtain: 

P[dlp]= ^^^^^ (16.4) 
^ P[p n d] + P[p n h] 

(Note that p n d equals d n p because of the commutative property of the intersection.) 
If we replace probabilities by observed relative cell frequencies in eq. (16.4) we 

develop an expression for the conditional probability: 

P [ d l p ] « — ^ = - V (16-5) 
(tp + fp) /N tp + fp 

The symbol ~ denotes that two expressions are approximately equal. It is used here 
to indicate that theoretical probabilities are substituted by observed proportions. 

16.1.3 Sensitivity and specificity 

In order to compare assays with one another we need to measure their perform­
ance. Let us consider, for example, a competitive assay for the detection of HIV 
antibodies in urine. This assay, which we refer to as assay B, has been applied to 



479 

TABLE 16.5 

Outcome of assay 

Outcome 

Positive 
Negative 

Total 

Bfor diagnosis of HIV infection 

Diagnosis 

Diseased 

364 
36 

400 

Healthy 

12 
388 

400 

Total 

376 
424 

800 

400 persons who have been diagnosed previously to be carriers of the infection and 
to 400 persons who were known to be free of infection. The observed outcomes are 
found in Table 16.5. If we compare assays A and B, which of the two is to be 
preferred? The ideal assay is, of course, the one which produces a positive outcome 
for all persons in which the disease is present. Such an assay possesses a sensitivity 
of 100%. Sensitivity is defined here as the proportion of true positives with respect 
to the total diseased: 

Sensitivity = Numberof truepositives ^ _J^ ^ , ^ 
Total number of diseased tp + fn 

where tp and fn represent the number of true positives and the number of false 
negatives, respectively. The sensitivity of an essay is also called power. In the 
context of testing of hypotheses (Section 4.7) one also defines power as 1 - p, 
where p represents the probability of obtaining a false negative, or P[n I d] in our 
notation.The ideal assay also produces a negative outcome for all persons in which 
the disease is absent. Such an assay has a specificity of 100%. Specificity is defined 
here as the proportion of true negatives with respect to total healthy. 

^ .̂ . . Number of true negatives tn „. i un ri^n\ 
Specificity = -T^—:; : ^,^ , ,— = ~ P[n I h] (16.7) 

^ ^ Total number of healthy tn + fp 
where tn and fp represent the number of true negatives and the number of false 
positives, respectively. In a statistical context one relates (1 - specificity) to the 
level of significance of a test which is denoted by a and which represents the 
probability of obtaining a false positive, or P[p I h] in our notation. 

In the case of assay A for screening against HIV infection we estimate the 
sensitivity and specificity to be as follows: 
Sensitivity = 100(276/300) = 92% 

Specificity = 100(285/300) = 95% 
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In the case of assay B we obtain the following estimates: 

Sensitivity = 100(364/400) = 91% 

Specificity = 100(388/400) = 97% 

On the basis of these estimates alone we cannot decide which of the two assays 
performs best. On the one hand, assay A shows greater sensitivity than assay B. On 
the other hand, assay B possesses greater specificity. But are these differences 
significant in a statistical sense? Perhaps replication of the assays using different 
samples of infected and non-infected persons may produce different results. It is 
important to realize that the above sample estimates are not the population values 
of sensitivity and specificity of assays A and B. In order to make a sound statistical 
analysis we also need to know the variances of these sample estimates. This idea 
will be pursued in Section 16.2 on hypothesis testing. Let us suppose, however, that 
the above estimates reflect statistically significant differences which are highly 
unlikely to be due to the effect of random sampling. The question then arises 
whether these differences have practical relevance. 

Assay A has the greatest sensitivity and is therefore expected to produce more 
true positives and, hence, a smaller number of false negatives. The cost to society 
of declaring a diseased person to be healthy may be enormous. False negatives may 
unknowingly spread the disease, contaminate blood banks and so on. Assay B has 
the greatest specificity and is therefore expected to yield more true negatives and, 
consequently, fewer false positives. In the case of mass screening it is mandatory 
to retest all positives in order to protect false positives from unnecessary treatment 
and discomfort. However, second-line assays are usually more expensive and 
time-consuming than primary screening assays. Additionally, as we will see in the 
next section, rare diseases may produce large numbers of false positives, even with 
highly specific assays. Hence, the cost to society of declaring healthy persons to be 
diseased may also be considerable. As will be discussed in more detail later, an 
increase in sensitivity is usually at the expense of a decrease in specificity, and vice 
versa. The balancing of costs and risks associated with the introduction of new 
diagnostic assays and therapeutic treatments is a delicate task which also involves 
the competence of health economists. 

In the context of analytical chemistry definitions for specificity and sensitivity 
similar to those described here have been proposed by the Association of Official 
Analytical Chemists (AOAC). These definitions are described in Section 13.8 and 
13.9 and are applicable to immunological assays, microbiological assays, clinical 
studies and clinical chemistry. In other areas of analytical chemistry these terms 
have very different meanings. Sensitivity is defined as the slope of a calibration 
line relating the strength of the output signal to the concentration of a component 
in a material to be analyzed [4]. Specificity is described as the ability of an 
analytical method to respond to only one specific component in a mixture [5]. It is 
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clear that the latter definitions are unrelated to the statistical definitions which we 
use here in our discussion of the 2x2 contingency table. 

16,1.4 Predictive values 

In the laboratory, sensitivity and specificity of a diagnostic assay can be esti­
mated from samples of diseased and healthy persons, the sizes of which can be 
fixed in the design of an experiment. But, in screening for a disease, the sizes of 
the samples of diseased and healthy persons depend on the prevalence of the 
disease, i.e. the proportion of diseased persons in the population at the time of 
observation. Hence, in a 2x2 contingency table relating diagnosis of a disease to 
outcome of a screening test in a large sample we find that all the marginal totals 
are subject to sampling error. 

In Tables 16.6 and 16.7 we have constructed the presumed outcomes from 
screening 1 million persons for infection by HIV, using the sensitivities and 
specificities of assays A and B which have been estimated above. It is assumed that 
the prevalence of HIV infection in the general population is 1 in 2000. Conse­
quently, in a large sample of 1 million persons we expect to find 500 infected 
persons. With assay A we expect to find 40 false negatives against 45 with assay B. 
This is in accordance with a difference of 1% in sensitivity in favour of assay A. 

TABLE 16.6 

2x2 contingency table for screening with assay A 

Outcome 

Positive 
Negative 

Total 

TABLE 16.7 

2x2 contingency 

Outcome 

Positive 
Negative 

Total 

Diagnosis 

Diseased 

460 
40 

500 

table for screening with assay B 

Diagnosis 

Diseased 

455 
45 

500 

Healthy 

49975 
949525 

999500 

Healthy 

29985 
969515 

999500 

Total 

50435 
949565 

1000000 

Total 

30440 
969560 

1000000 
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With assay A we expect to obtain 49975 false positives compared to 29985 with 
assay B. This is in agreement with a difference of 2% in specificity in favour of 
assay B. The large number of false positives is typical for screening of phenomena 
with low prevalence in a large sample, such as for HIV infection, tuberculosis, drug 
abuse, doping, etc. Even highly specific assays may still produce large numbers of 
false positives. 

The performance of a screening assay can be measured by means of its positive 
predictive value (PPV) which is an estimate of the proportion of true positives (tp) 
with respect to the total number of positives (tp + fp): 

PPV = i:^"";^^'" »f true positives ^ _ t ^ ^ p^^ , ^ ^^.g) 
Total number of positives tp + fp 

the right side of which is equal to that of eq. (16.5). 
It thus follows that the positive predictive value of an assay is the conditional 

probability for the presence of a disease when the outcome is positive, or P[d I p] 
in our notation. 

In screening for HIV infection we obtain: 

PPV = 100 (460/50435) = 0.91% using assay A 

PPV = 100 (455/30440) = 1.50% using assay B. 

The positive predictive values of both assays for HIV antibodies in urine are 
expected to be quite low when these assays will be applied to mass screening. The 
positive predictive value depends on both the sensitivity and specificity of the 
assay and on the prevalence of the phenomenon. This relationship follows from 
Bayes' theorem which will be demonstrated below. 

In a similar way we define the negative predictive value (NPV) as: 

Npv ^ Number of true negatives ^ tn ^ , 
Total number of negatives tn + fn 

16.1,5 Posterior and prior probabilities, Bayes' theorem and likelihood ratio 

Using the axioms of probabihty (eq. (16.2)) we can express the conditional 
probability in eq. (16.4) in the following form: 

P [p ld ]xP[d ]_ P[pld]xP[d] 

^ /"[p] P[pld]xP[d] + P[plh]xP[h] 

which can be rearranged into: 

(/>[pld]//>[plh])xP[d] 

^ (P[pld]/P[plh])xP[d] + ( l -P[d] ) 

since P[h] = l -P [d ] . 
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The conditional probability P[d I p] is also called iht posterior probability. It is 
the probability of finding a person with a disease, knowing that his outcome in a 
diagnostic assay is positive. It also follows from eq. (16.8) that the posterior 
probability can be estimated by means of the positive predictive value. The 
probability P[d] represents the prevalence of the disease which is also called the 
prior probability. It is the probability of finding a person with the disease without 
having any prior knowledge. 

Equation (16.10) is known as Bayes' theorem. In this context it relates the positive 
predictive value of an assay P[d I p] to the prevalence of the disease P[d] by means of 
the ratio of two conditional probabilities which is called the likelihood ratio LR: 

Likelihood Ratio = L/? = P[p I d]/P[p I h] (16.11) 

After substitution of probabilities by relative cell frequencies we derive that: 

P[d] / P[h] (tp + fn)/yV^(tn + fp)/A^ 
tp / fp 

tp + fn tn + fp 

and after rearrangement we obtain: 

L / ? ^ - ^ ^ / r i — ^ V "̂"̂ ^̂ ^̂ ^̂ y (16.13) 
tp + fn ^ ^ tn + fp J 1 - Specificity 

Finally, after substitution of eq. (16.11) into the expression of Bayes' theorem by 
eq. (16.10), we obtain the relationship between posterior probability and prior 
probability (prevalence): 

^ . T̂  1 1 1. L/f X Prevalence / i ^ i .x 
Posterior Probability = (16.14) 

LR X Prevalence + 1 - Prevalence 

16.1.6 Posterior and prior odds 

The concept of odds stems from the study of betting. How is a stake to be divided 
fairly between two betters which are betting for the occurrence of an event with 
known probability PI A bet can be regarded to be fair when the expected gain is 
zero for each of the two parties. In such a fair game (also called Dutch book) there 
is no advantage of betting one way or another, i.e. for the occurrence or for the 
non-occurrence of an event with probability P. In this case it can be shown [6] that 
the stake is to be divided between two betters according to the ratio: 

Odds(P) = P / ( l - P ) (16.15) 

which is called the odds for an event with probability P. The odds associated with 
an event range between 0 for certain non-occurrence (P = 0) to infinity in the case 
of certain occurrence (P = 1). Odds larger than unity are associated with events that 
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possess probabilities larger than 0.5. Conversely, odds smaller than unity are 
related to events with probabilities smaller than 0.5. The relation between odds and 
probabilities (eq. (16.15)) can be inverted yielding: 

P = Odds/(l +Odds) (16.16) 

The use of odds instead of probabilities is favoured in anglo-saxon countries. It also 
presents an advantage in the calculation of pay-offs in horse races and other 
gambling games. Here, we introduce the concept of odds because it simplifies 
formulas that involve prior and posterior probabilities. 

In the previous subsection we have established that the positive predictive value 
(PPV) is an estimate of posterior probability (eq. (16.10)). In terms of odds we can 
now write that: 

Posterior Odds - ^^^ = ^ (16.17) 
1 - PPV fp 

The posterior odds reflect our belief in the occurrence of a disease in the light of 
the outcome of an assay. 

Similarly, we can define prior odds: 

Prior Odds ^ Prevalence ^ tp + fn ^^^^^^ 
1 - Prevalence tn + fp 

The prior odds reflect our belief in the occurrence of a disease before an assay has 
been performed. 

Finally, if we combine eqs. (16.12), (16.17) and (16.18), we obtain a very 
elegant relationship between prior and posterior odds: 

Posterior Odds = L/? x Prior Odds (16.19) 

The likelihood ratio LR thus appears as a factor which, when multiplied by the prior 
odds, returns the posterior odds. It is the ratio of posterior odds to prior odds. Hence 
it tells by how much we are inclined to modify our initial belief in the occurrence 
of a disease when we are informed about a positive outcome of an assay. This is a 
Bayesian approach to statistical decision-making. It differs from the widely prac­
tised Ney man-Pear son approach of hypothesis testing, which will be discussed in 
Section 16.2. One of the principal aspects of the Bayesian approach is that often 
one starts with a subjective guess about the prior probability. In the light of 
evidence that becomes available, the latter is transformed into a posterior prob­
ability, which in turn becomes a revised prior probability in a subsequent analysis. 
It is claimed that in the end, after many revisions, the posterior probability becomes 
independent of the initial subjective prior probability. 

From a philosophical point of view, the Bayesian approach of posterior prob­
abilities is deemed to be more scientific than the testing of a single hypothesis, as 
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the former accumulates knowledge from several assays, whereas the latter relies 
on the outcome of a single experiment [6]. 

Bayesian statistics can be regarded as an extension of Neymann-Pearson hy­
pothesis testing, in which the sample size is artificially increased as a result of prior 
information. The stronger the a priori evidence, the larger will be the number of 
pseudosamples that can be added to the observed sample size. Hence, the power of 
the test is effectively increased, and stronger assertions can be derived from the 
Bayesian test than would have been the case with classical statistics. 

The Bayesian approach finds important applications in medical diagnosis [7,8] 
and in risk assessment. It is of importance in all disciplines where decisions have 
to be made under conditions of uncertainty in the light of experimental outcomes 
and where maximal use must be made of prior knowledge. 

16.1,7Decision limit 

The elevation of serum creatine kinase (SCK) is a diagnostic indicator for the 
destruction of heart tissue during myocardial infarction (MI). Radack et al. [7] have 
presented the outcomes of an experiment in which SCK (in lU/ml) was determined 
in 773 persons who complained of chest pain. Of these, 51 were confirmed to suffer 
from an attack of myocardial infarction, while the other 722 did not. The catego­
rized data are shown in Table 16.8 and the corresponding hand-fitted distributions 
are presented in Fig. 16.1. 

The mean SCK in patients with myocardial infarction is 234 with standard 
deviation of 190 lU/ml (coefficient of variation of 81%). The mean SCK in patients 
without myocardial infarction is 117 with standard deviation of 97 lU/ml (coeffi­
cient of variation of 83%). Although patients with the disease can be expected to 

TABLE 16.8 

Serum creatine kinase (SCK in lU/ml) and myocardial infarction in persons complaining of chest pain [7]. Number 
of persons {N) and proportion if) of total number in each group of persons 

SCK(IU/ml) 

0-120 
121-240 
241-360 
361-480 
>480 

Total 

Myocardial infarction 

Present 

Â  

23 
6 
7 
6 
9 

51 

/ 

0.451 
0.118 
0.137 
0.118 
0.176 

1.000 

Absent 

N 

All 
201 

24 
12 
14 

722 

. / • 

0.652 
0.278 
0.033 
0.017 
0.019 

1.000 
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Fig. 16.1. Distributions of outcomes of serum creatine kinase (SCK in lU/ml) in subjects with 
myocardial infarction present and absent. The decision limit of SCK is fixed at 240 lU/ml. (Adapted 
from data by Radack et al. [7]). 

produce larger values of SCK, the overlap between the distributions of persons 
with and without the disease is considerable, as is apparent from Fig. 16.1. It also 
appears that the distributions are far from being normal. Both show positive 
skewness towards large values of SCK. There is also an indication that one of the 
distributions may be bimodal. This situation is not unexceptional with clinical 
chemistry data, especially with enzyme assays [9]. 

From the data in Table 16.8 we can estimate the prevalence of myocardial 
infarction in patients with chest pain to be 51/(51 + 722) = 0.066. Hence, the prior 
odds of the disease is estimated at 0.066/(1 - 0.066) = 0.071. 

From these data we construct four 2x2 contingency tables, corresponding with 
four different decision limits, namely 120, 240, 360 and 480 lU/ml (Table 16.9). 
The decision limit defines the value above which the outcome of an assay is 
declared to be positive. The decision limit also defines the sensitivity and specific­
ity of the assay. The shaded areas on Fig. 16.1 are proportional to the specificity 
and sensitivity values of the SCK assay at the decision limit of 240 lU/ml. At each 
of the four decision limits we computed the different measures of performance 
which we have discussed so far: sensitivity, specificity, predictive value and 
likelihood ratio. These results are presented in Table 16.10. 

From this analysis it follows that the positive predictive value of the assay is 
rather low. At the highest decision level of 480 lU/ml we expect only 39.1% of all 
positive outcomes to be true positives. This is due in this case to the low prevalence 
of the disease (0.066). The likelihood ratio indicates, however, that the assay may 
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TABLE 16.9 

SCK and myocardial infai-ction (MI) in patients with chest pain using different decision limits [7] 

SCK 

>480 
<480 

MI 

Present 

9 
42 

Absent 

14 
708 

Total 

23 
750 

SCK 

>360 
<360 

MI 

Present 

15 
36 

Absent 

26 
696 

Total 

41 
732 

Total 51 722 773 Total 51 722 773 

>240 
<240 

Total 

22 
29 

51 

50 
672 

722 

72 
701 

773 

>120 
<120 

Total 

28 
23 

51 

251 
471 

722 

279 
494 

773 

TABLE 16.10 

Measures of performance of the SCK assay for myocardial infarction at different decision limits 

Decision limit Sensitivity Specificity Positive predictive value Likelihood ratio 

120 
240 
360 
480 

0.549 
0.431 
0.294 
0.176 

0.652 
0.931 
0.964 
0.981 

0.100 
0.306 
0.366 
0.391 

1.58 
6.25 
8.17 
9.26 

be of considerable value. At the decision level of 480 lU/ml it modifies our prior 
odds of the disease (0.071) into posterior odds by a factor of 9.26. Even at lower 
decision limits this assay appears to perform well. For example, an outcome of 240 
lU/ml would increase the odds for the disease by a factor of 6.25. 

From Table 16.10 we observe an inverse relationship between sensitivity and 
specificity. An increase in sensitivity (proportion of positive outcomes from total 
with disease) is at the expense of specificity (proportion of negative outcomes from 
total without disease). Conversely, we have a direct relationship between sensitiv­
ity and (1 - specificity), which is called the receiver operating characteristic 
(ROC). The ROC is also used extensively in statistical process control (Chapter 
20). It will be developed in more detail below. 

16.1,8 Receiver operating characteristic 

The predictive value of an assay can be displayed in the form of a plot of 
sensitivity against (1 - specificity) at various settings of the decision limit. The 
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Fig. 16.2. ROC of SCK assay for myocardial infarction, from data by Radack et al. [7]. 

resulting curve is called the receiver operating characteristic or ROC for short. The 
use of ROC curves stems from the study of signal detection (initially in the 
development of radar) and has been applied extensively in psychophysiology [10]. 
The ROC curve for the serum creatine kinase (SCK) assay for myocardial in­
farction in persons complaining of chest pain [7] is presented in Fig. 16.2. 

The diagonal line of this diagram represents the case of an assay with zero 
predictive value. The greater the distance of the ROC curve from this diagonal, the 
more performing is the assay. ROC curves allow to estimate the performance of an 
assay over a wide range of decision limits and independently from the prevalence 
of the phenomenon under investigation. It is well-suited for the comparison of 
assays and methods. 

An alternative ROC diagram represents sensitivity and (1 - specificity) along 
axes of normal deviates (z) [11]. If the distributions of the outcomes in subjects 
with and without the disease are normal, then the ROC curve is transformed into a 
straight line. The distance of this line from the diagonal line is again a measure of 
the performance of the test. Figure 16.3 represents the transformed ROC curve of 
Fig. 16.2. The deviation from linearity of the transformed ROC curve of Fig. 16.3 
is the result of the apparent lack of normality of the distributions of SCK in 
populations with the disease present and absent (Fig. 16.1). 

In statistical terms, the ROC defines the relationship between the previously 
defined a-error (of obtaining a false positive), the p-error (of obtaining a false 
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Fig. 16.3. Transformed ROC of SCK assay for myocardial infarction on double normal deviate (z) 
axes, from data by Radack et al. [7]. 

negative) and the smallest detectable difference 8 of the test. In the present 
terminology we need to replace specificity by 1 - a, sensitivity by 1 - P and the 
decision limit by 5. For any given a and 5 one can derive (3, from the ROC. The 
power of the test is thus defined as 1 - p. 

De Ruig and van der Voet [12] have advocated the use of sensitivity and 
specificity as quality criteria for the analytical chemical laboratory (Chapter 13). They 
also pointed out that a trade-off is to be made between sensitivity and specificity. 
Increasing sensitivity (by lowering P) automatically leads to a decrease of specificity 
(by raising a) for any given smallest difference 8, as defined by the ROC of the test. 
From their point of view, the ROC defines the intra-laboratory standards for the test 
and forms part of the contract between the laboratory and its clients. Inter-laboratory 
quality standards can also be compared more easily by means of ROC. 

16.2 Tests of hypothesis 

16,2.1 Test of hypotheses for 2x2 contingency tables 

We have already briefly outlined in Section 16.1 that observed frequencies in a 
2x2 contingency table can be generated in three different ways, depending on the 
design of the experiment. In order to expand on the differences between these, we 
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TABLE 16.11 

Observed frequencies in a 2x2 contingency table 

Variable 1 

Category 1 

Category 2 

Total 

Variable 2 

Category 1 

n2i 

Category 2 

ni2 

n22 

n+2 

Total 

adopt the notation of Table 16.11. For the purpose of illustration, we assume that 
variable 1 is the outcome of an assay with categories positive and negative, and that 
variable 2 is a diagnosed disease with categories present and absent. Furthermore, 
we assume that all the observations which generated the 2x2 contingency table 
have been made independently from one another. The double subscripts of the 
symbols refer to the variables in the order given above. For example, «/, is the 
element at the intersection of row / and column y of the table. A subscripted plus 
sign indicates that the sum has been taken over the categories of the corresponding 
variable. For example n\+ = /in + n^, etc. The size of the sample is the grand total 
of the table and is denoted in this section by n++. 

In a first type of design only the sample size n++ is fixed. In the context of clinical 
assays this occurs when a sample is selected at random from a population. In this 
case we find that the number of subjects with the disease present n+\ and the 
number of subjects without the disease n+2 are variable and subject to sampling 
error. Of course, the number of positives n\+ and the number of negatives At2+ are 
also variable and subject to random fluctuation. This case is called a double 
dichotomy [13]. 

A second type of design fixes one set of marginal totals. This arises when we 
select at random a predefined number of persons n+i in which a disease has been 
diagnosed to be present and another predefined number of persons n+2 in which the 
disease is absent. Here, only the number of positives n\+ and the number of 
negatives /Z2+ is variable. In this design we test the homogeneity of the two samples, 
i.e. whether the proportion n\ \/n+\ is equal to the proportion rinln^i. 

Finally, a third and rather uncommon design fixes all the marginal totals. We 
may imagine a design of this type in which an additional constraint is imposed. We 
inform the analyst in charge of the assay that he must produce exactly ni+ positive 
outcomes. The analyst is allowed to vary the decision limit of his assay such as to 
match the number of positive outcomes with the fixed ni+. In this case we test the 
independence of the two variables, i.e. whether n\\ln2\ equals n\2ln22. In the 
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previously discussed HIV assay the decision limit may be based on the amount of 
precipitation produced by the antibody-antigen reaction. By lowering the decision 
limit below that recommended, one could increase the number of positive out­
comes in the example to such an extent that the total number would be 300 instead 
of 291 (Table 16.1). This also decreases the number of negative outcomes from 309 
to 300, since the total number of patients was fixed at 600. Although a design with 
all totals fixed is rather artificial, it is, nevertheless, the only one for which, strictly 
speaking, exact probabilities can be computed. It has been shown that these exact 
probabilities are the best possible approximations to those that arise in designs in 
which not all marginals are fixed [13]. 

16.2.2 Fisher's exact test for two independent samples 

Fisher derived the exact probability of obtaining a given 2x2 contingency table 
from the hypergeometric distribution (Section 15.2) which assumes that all mar­
ginal totals are fixed: 

P= "r'^r'?'?'. (16.20) 
where the factorial function k\ denotes the consecutive product 1 2 3 ...(/:- 1)/:, and 
particularly where 0! equals 1. 

A statistical test for the significance of a 2x2 contingency table is set up by 
considering all similar tables with the same marginal totals that have cell frequen­
cies as extreme or more extreme than that observed [14]. In the so-called Fisher's 
exact test we reject the null-hypothesis of independence between the two variables 
if the sum of all the resulting probabilities is less than some predefined level of 
significance a. Fisher's test produces the best possible approximation to the exact 
probability when the strong assumption of fixed marginal totals is not met. In the 
laboratory, we most often find that only one set of the marginal totals is fixed. In 
this case we will test for homogeneity of a variable in two samples. 

By way of illustration we consider Table 16.12 which relates the outcome of an 
assay (positive or negative) to a treatment (medication or control). The sizes of 
both treatment groups have been fixed to 10 by the design of the experiment. In a 
randomized design, subjects are assigned at random between the two samples. 
These two samples are called independent as they are composed of different 
subjects. After conclusion of the trial we find that 2 out of the 10 patients on 
medication still produce a positive outcome in the assay, against 5 of the 10 
controls. The magnitude of the difference amounts to 30% in favour of treatment. 
Can we conclude that treatment had a significant effect on outcome? Or is the 
difference due to random variation? 
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TABLE 16.12 

Observed outcomes of an assay in two treatment groups 

Outcome Treatment Total (t) 

Medication (m) Control (c) 

Positive (p) 
Negative (n) 

Total (t) 

2 
8 

10 

5 
5 

10 

7 
13 

20 

TABLE 16.13 

Outcomes of an assay in two treatment groups that are more extreme than those observed in Table 16.12 

Outcome 

Positive (p) 
Negative (n) 

Total (t) 

Treatment 

m 

1 
9 

10 

c 

6 
4 

10 

Total (t) 

7 
13 

20 

Outcome 

Positive (p) 
Negative (n) 

Total (t) 

Treatment 

m 

0 
10 

10 

c 

7 
3 

10 

Total (t) 

7 
13 

20 

Here we test the null hypothesis that the variable outcome is homogeneous in 
the two treatment categories. The alternative hypothesis is that the proportion of 
positive outcomes in the medication group is smaller than the one in the control 
group. Note that we test a one-sided hypothesis, as we are only interested in 
differences in one direction (i.e. less positive outcomes with medication). To this 
end we compute the exact probability of Table 16.12 (which we call PI) and of the 
ones that represent situations more extreme than that observed. The latter are 
shown in Table 16.13. Here, there are two cases which are more extreme than the 
one which we have observed, i.e., when the number of positive outcomes in the 
medication group is 1 or 0 instead of 2. (The corresponding probabilities are called 
PI and P3). 

The three relevant exact probabilities PI, P2 and P3 are computed as follows: 

10! 10! 7! 13! 
K 

P\ = 

P2 = 

20! 

K 
2! 5! 8! 5! 

K 
1!6!9!4! 

= 0.1463 

= 0.0271 
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P3 = = 0 0015 
0!7!10!3! 

In order to compute the probability of obtaining the observed case and ail cases 
which are more extreme, we have to add PI 4- P2 + P3 which yields 0.1749. Hence 
if we have fixed the level of significance in a one-sided test a at 0.05 then clearly 
we have to conserve the null hypothesis. In this case, we cannot accept the alterna­
tive hypothesis that the less frequent positive outcomes are due to the effect of the 
medication, although there is a tendency for the patients who received medication 
to be better off than those in the control group. Perhaps failure to detect a real effect 
of the observed magnitude is due to the limited size of the sample that has been 
studied. In other words, our test lacks sufficient power to detect a difference of 30% 
at the 0.05 level of significance. The concept of power has been introduced in 
Section 16.1.3 in relation to the sensitivity of a test, i.e. the power to detect a real 
effect. If we had enrolled more patients in the study, then perhaps the result might 
have turned out to be significant, provided that the observed effect is not due to 
random events. 

As the number of discrete probabilities that are to be calculated increases with 
the size of the sample n++, Fisher's exact test has been usually reserved for small 
samples. But this is a practical rather than a theoretical constraint. As we have 
already pointed out, Fisher's test is the best choice for testing hypotheses about 2x2 
contingency tables, even if its strict assumption of fixed marginal totals is rarely 
met [13]. Although the test is essentially for one-sided hypotheses, it can be 
extended to handle two-sided hypotheses as well. 

16.2.3 Pearson's y^ test for two independent samples 

If we reconsider the observed outcomes of an assay in the two treatment groups 
in Table 16.12 we might ask what values we would expect if we knew in advance 
that there was no difference at all between the two treatments. In other words, is it 
possible to calculate expected values for the elements of a 2x2 contingency table 
under the null hypothesis. It can readily be seen that the expected number of 
positive outcomes in the medication group must be proportional to the correspond­
ing marginal totals, i.e. the total number of patients in the medication group (10), 
the total number of patients with positive outcomes (7) and to the total number of 
patients in the study (20). In what follows we will approach this problem in a 
formal way. 

Under the assumption of independence between the variables of a contingency 
table, we can express the maximum likelihood estimate of any cell frequency as the 
product of its corresponding marginal totals [13]: 

£(^..) ^ "l^llhl with / = 1, 2 and; =1 ,2 (16.21) 
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where E(nij) means expected value of Uij and where the marginal totals n/+, n+/ and 
AZ++ have been defined before. The assumption of independence implies that all 
marginal totals are fixed, a situation that is rarely met in practice. Notwithstanding 
this limitation, expected values of a 2x2 contingency table are most often calcu­
lated by eq. (16.21), as if all marginal totals are fixed. As mentioned already, the 
practical consequences of the violation of the strict assumption are minimal. 

Using the result of eq. (16.21) we can derive Pearson's y^ statistic for goodness 
of fit between observed and expected values of a 2x2 contingency table: 

X' = i i ^ = ^ ^ (16.22) 
I .1 

which possesses one degree of freedom (df). Note that a 2x2 contingency table 
with fixed marginal totals possesses only one degree of freedom. This means that, 
given one of the four cell frequencies, we can derive the other three cell frequencies 
using the fixed marginal totals. 

After substitution of expected values from eq. (16.21) into the expression of %̂  
we obtain [14]: 

( . „ n . , - . . , n „ ) ^ n ^ wUhdf=l (16.23) 
/ i ,+ /t+i n2+n+2 

The x^ statistic, as a measure of goodness of fit, has also been applied in the test of 
normality described in Section 5.6. 

We apply the above expression of eq. (16.23) to the data in Table 16.12 in order 
to test the homogeneity of outcomes (positive or negative) in the two treatment 
groups (medication or control): 

, (2 X 5 - 5 X 8)^20 
X- = - = 1.978 withdf= 1 
^ 7 x 1 3 x 1 0 x 1 0 
From tabulated values of the %̂  distribution function we can determine the prob­
ability of obtaining a value of %̂  as large or larger than the one observed. More 
conveniently, we can make use of the property that x^ with one degree of freedom 
is distributed as the square of the standard normal deviate z. Hence, we determine: 

z = -lf^ =^1.978 = 1.406 

and we look up the corresponding one-sided probability in a table of the standard 
normal distribution function, which yields that/7 = 0.0798. 

The one-sided probability of Pearson's %̂  test statistic is at variance with 
Fisher's exact probability, which produced p = 0.1749 (one-sided). The lack of 
agreement is attributed to the fact that the distribution of Pearson's x^ is continuous, 
whereas Fisher's exact probabilities are derived from the discrete hypergeometric 
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distribution. Yates has proposed a correction for continuity which tends to make 
probabilities obtained in Pearson's y} test conform more to those derived from 
Fisher's exact test [14]: 

9 (1̂ 11 n22-nx2n2\\-n^/lfn^ 
with df = 1 (16.24) 

n\+n+\ n2+n+2 

The correction proposed by Yates is recommended when the sample size is small. 
If Yates' correction is applied in our example, we obtain: 

, (12x5-5x81-10)^20 
X--

and 
7 x 13x 10x10 

= 0.8791 with df = 1 

z = A/0.8791 -0.9376 

From the table of the standard normal distribution we find that the probability of 
Pearson's x^ with correction for continuity is 0.1742 (one-sided), whereas Fisher's 
test produced an exact probability of 0.1749 (one-sided). In this example, the 
difference is negligible. 

Cochran [15] has proposed a set of rules which may help in deciding between 
Fisher's exact test and Pearson's x^ test. Cochran's diagram indicates that Fisher's 
exact probability test is to be preferred above the corrected x^ test in the case of 
small sample sizes (n++ < 20) and in the case of near-zero cell frequencies (n/, < 5). 
These conditions are presented schematically in Fig. 16.4. It is observed from eqs. 

Begin 

Fisher's 
exact test 

X test, corrected 
for continuity 

Fig. 16.4. Selection of a test of hypothesis for two independent samples according to Cochran [15]. 
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(16.23) and (16.24) that the corrected %̂  is always smaller than the uncorrected one. 
Hence, the corresponding probability of the corrected y^ is always larger. For this 
reason it is stated that the correction is conservative, as it tends to preserve the null 
hypothesis more often than the uncorrected test statistic. More recently, the suit­
ability of Yates' correction has been questioned [16] especially in the case of small 
sample sizes, although many authors still recommend its use [1]. However, due to 
increased availability of computational resources, there is a trend towards recom­
mending Fisher's exact test throughout, e.g. for compliance to the guidelines for 
good laboratory practices [17]. 

In summary, Fisher's test is only 'exact' in the sense that it correctly derives 
probabilities for discrete cases, whereas the x^ statistic applies to continuous cases. 
Strictly speaking, Fisher's test requires that all marginal totals be fixed, an 
assumption which is rarely met in practice. Nevertheless, Fisher's exact test is 
regarded as the best choice, even when the strict assumption of fixed marginals 
is not satisfied, and certainly in the case of small sample sizes and near-zero cell 
frequencies. 

16.2 A Graphical y^ test for two independent samples 

In practice it often happens that a large battery of assays and observations is 
performed on the same pair of independent samples, for example in the comparison 
of various effects of a treatment in a medication and a control group. This results 
in a large number of tests for homogeneity of outcomes in the two samples. The 
statistical tests can be performed graphically by means of the so-called 'elevation-
contrasts' diagram [18]. On the vertical and horizontal axes of the diagram in Fig. 
16.5 we represented the proportion of positive outcomes of the SCK assay for 
myocardial infarction, as described in Section 16.1.7 on decision limits. The vertical 
axis thus represents sensitivity and the horizontal axis is defined by (1 - specificity). 
Both axes are logarithmic in order to allow for a wide range of variation. Each point 
in the diagram corresponds to a particular assay or observation. 

In the 'elevation-contrasts' diagram one has to focus on the position of a point 
relative to the diagonal line. This line represents the case of complete homogeneity 
of outcomes in the two treatment groups. It is the line of zero contrast, where 
contrast is to be understood in the sense of difference or heterogeneity. Points 
above the line correspond to more positive outcomes in the medication group than 
would be expected under the hypothesis of homogeneity. These points reflect 
positive contrasts. Points below the line correspond to less positive (or more 
negative) outcomes in the control group than can be expected under the null 
hypothesis. These points possess negative contrasts. The further away a point is 
from the diagonal, the stronger is its contrast. The curved contours are the significance 
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Fig. 16.5. 'Elevation-contrasts' diagram for a battery of assays applied to a medication and control 
group. Graphical y^ test for two independent samples. Data are those of Table 16.9 (adapted from 
Radack et al. [7]). 

bands outside which the hypothesis of homogeneity is rejected at a predefined level 
of significance using Pearson's x^ test for 2 independent samples corrected for 
continuity (with two-sided a = 0.05, 0.01 and 0.001). 

Points that project on the high side of the diagonal have a high average rate of 
positive outcomes. Points that project on the low side of the diagonal possess a low 
average rate. The larger the average rate of positive outcomes in both treatment 
groups, the higher is the elevation of the corresponding point along the direction 
of the diagonal. The 'elevation-contrast' diagram allows us to visualize the signifi­
cance of contrasts together with the magnitudes of the outcomes in a battery of 
tests. Hence its name 'elevation-contrasts' diagram. From Fig. 16.5 it appears that 
an optimal choice for the decision level on the scale of SCK may be chosen 
between 360 and 480 lU/ml. This will ensure high sensitivity and high specificity 
together with a manageable number of false positives. The positions of the signifi­
cance bands on the 'elevation-contrasts' diagram depend on the sample size. 
Hence, the contours must be recomputed for each new experiment, but this is a 
practical rather than a theoretical difficulty. A problem arises, however, because 
multiple comparisons are made on the same two samples. The likelihood of 
obtaining a significant result by chance is thus considerably augmented. One may 
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account for this effect of multiple comparisons by lowering the level of signifi­
cance in proportion to the number of comparisons. This procedure is referred to as 
a Bonferroni test (Section 5.2) [19]. 

16.2.5 Large-sample y} test statistic for two independent samples 

In Section 16.2.3 we have shown that a 2x2 contingency table possesses only 
one degree of freedom provided that all marginal totals are fixed. This allows us to 
focus on one particular cell frequency, say nn, since all three others can be derived 
from it using the marginal totals. For example, rin equals {n\+ - riu), etc. 

We define the difference between the observed and expected value (O - £) of a 
cell frequency, say n\u using eq. (16.21): 

O-E^Hu -E(nn) = nu ^—^ (16.25) 

Under the assumption of fixed marginal totals we obtain the variance V of any cell 
frequency from the hypergeometric distribution [13]: 

nUin^- 1) 

From eqs. (16.25) and (16.26) we can derive a test statistic for large values of the 
sample size n++: 

V riu n^\ n2+ n^i 

Note that this result is asymptotically equivalent (when n++ becomes large) to 
Pearson's y^ test statistic (eq. (16.23)). 

16.2.6 McNemar's y} test statistic for two related samples 

A special situation occurs when the same sample is assayed on two occasions. 
For example, the outcome of an assay is recorded in a sample of subjects at the 
beginning and at the end of a period of treatment. Note that Pearson's y} test and 
Fisher's exact test are not applicable here since the observations have not been 
obtained independently from each other. We assume that /ipp subjects remained 
positive from the beginning to the end of the period. Likewise, /inn subjects 
remained negative. But npn subjects which were initially positive changed to 
negative, and Ainp subjects changed from negative to positive. This gives rise to the 
2x2 contingency Table 16.14. 
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TABLE 16.14 

2x2 contingency table for two related samples 

Before After Total 

Positive Negative 

Positive Aipp ripn >^p+ 
Negative «np «nn '̂ n+ 

Total n+n f^+n f^++ 

We test the null hypothesis that the changes from positive to negative and vice 
versa are due to chance. Under this hypothesis we expect that the frequencies n^n 
and Hnp are equal, apart from random variation. Under the null hypothesis of no 
change we must have that the expected values for the changes are equal [14]: 

£(np„) = £(n„p) = ̂ ^ £ ^ ^ ^ (16.28) 

We now set up the %̂  test statistic for goodness of fit for the two occurrences of 
interest (eq. (16.22)): 

E(n^n) E(nnp) 

which becomes after substitution of expected values by eq. (16.28): 

X" ='•'"" •'""' withdf=l (16.30) 

Note that in eq. (16.28) we have only considered the discordances (n^n and n̂p) and 
have deliberately disregarded the concordances (npp and nnn). 

McNemar's %̂  test statistic can be corrected for continuity: 

^ 2 ^ v > - p n --np. v..^, W i t h d f = 1 ( 1 6 . 3 1 ) 
'̂ pn '' ^np 

By way of example, we consider the case of 10 subjects which have been observed 
at the beginning and at the end of a period of treatment, the outcomes (positive or 
negative) of which are shown in Table 16.15. Before treatment, 6 patients were 
found to be positive, of which 2 remained positive and of which 4 changed to 
negative. Before treatment, 4 patients were originally found to be negative, of 
which 3 remained negative and 1 changed to positive. McNemar's x^ l^st statistic 
according to eq. (16.30) for this case is: 
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TABLE 16.15 

Outcomes of an assay before and after treatment 

Before 

Positive 
Negative 

Total 

^ 2 _ ( 4 - l ) ^ 
^ 4 + 1 

9 
5 

After 

Positive 

2 
1 

3 

= 1.80 

Negative 

4 
3 

7 

with df = 1 

Total 

6 
4 

10 

z = Vl.80 = 1.342 and p = 0.090 (one-sided) 

and with correction for continuity according to eq. (16.31): 

, (14-11-0.5)^ 6.25 , ^^^ • u ^^ , 
X = = —7- = 1.250 with df = 1 

z = V 1.250 = 1.118 and p = 0.154 (one-sided) 

On the basis of the probability we must retain the null hypothesis that there is no 
change in outcome between the start and the end of treatment at the one-sided level 
of significance a of 0.05. 

16.2.7 Tetrachoric correlation 

The tetrachoric correlation coefficient r has been proposed as a measure of 
association between two dichotomous variables, for example outcome of treatment 
and outcome without treatment: 

r=i— (16.32) 

where y^ is Pearson's test statistic for two independent samples and where /i++ is 
the total sample size [20]. It may be considered as an estimate of the size of the 
effect produced by treatment. Numerically, the tetrachoric correlation coefficient 
is identical to the product-moment correlation coefficient computed from the two 
dichotomous variables. Using the corrected y^ obtained in the previous example 
we compute from eq. (16.32): 
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Unfortunately, the sampling distribution of the tetrachoric correlation coefficient 
cannot be obtained in a simple way. Hence, it is difficult to derive its variance and 
to produce the corresponding confidence interval. For this reason, the tetrachoric 
correlation coefficient is now only of historic interest [13]. A more tractable 
estimafe of effect size will be discussed in the section devoted to the odds ratio. 

16,2.8 Mantel-Haenszel y^ test statistic for multiple 2x2 contingency tables 

Often a 2x2 contingency table is the result of pooling of outcomes from several 
samples. For example, in a study of the effect of a medication one may pool results 
obtained in subjects from different categories of gender and age. Although simple 
pooling increases the size of the sample and hence improves the statistical power 
of tests of hypotheses, it may also lead to biased conclusions. To illustrate this point 
we consider a hypothetical case where two independent studies (study I and study 
II in Table 16.16) each involving 110 subjects have been pooled into a single large 
study (Table 16.17) with a pooled sample size of 220 subjects. 

We can also represent this case in a graphical way. The vertical axis of Fig. 16.6 
represents the proportion of positive outcomes in the medication group n\\l{n\\ + 
nix) and in the control group rinKnn + ̂ 22). For example, in study I the proportions of 

0. 

M2 

ni2+n22 

Medication Control 
Treatment 

Fig. 16.6. Outcome of an assay (positive or negative) as a function of treatment (medication and 
control) in two studies labelled I and II. The slope of the response line is a measure for the effect of 
treatment. The difference in elevation is due to an effect of study. The response line of the pooled 
study is severely biased. 
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TABLE 16.16 

Two independent studies of the outcome (positive or negative) of an assay as a result of treatment (medication or 
control) 

Outcome 

Positive 
Negative 

Total 

Study I 

Med. 

1 
9 

10 

Contr. 

50 
50 

100 

Total 

51 
59 

110 

Outcome 

Positive 
Negative 

Total 

Study II 

Med. 

50 
50 

100 

Contr. 

9 
1 

10 

Total 

59 
51 

110 

TABLE 16.17 

Pooled study of the outcome (positive or negative) of an assay as a result of treatment (medication or control) 

Outcome 

Positive 
Negative 

Total 

Pooled 

Med. 

51 
59 

110 

study 

Contr. 

59 
51 

110 

Total 

110 
110 

220 

positive outcomes are 1/10 = 0.1 and 50/100 = 0.5 for the medication and control 
groups, respectively. 

From the slopes of the response lines we can judge that the individual studies I 
and II show a marked ejfect of treatment. The proportion of positive outcomes in 
both studies is 40% less in the treatment group in comparison to the control group. 
However, the pooled result indicates hardly any difference between the two forms 
of treatment, as the slope of the corresponding response line is almost flat. Note 
that the control group in study I and the medication group in study II are given a 
10 times larger weight in the pooling, as appears from Table 16.16. 

If we apply the large-sample x^ test statistic (eq. (16.27)) to the pooled data in 
Table 16.17 we obtain: 

AZH n^x 110x110 . 
0-E = n\\ = 51 -—^r:^:;— = - 4 220 

nu n+i n2+ n^i 110x110x110 xl 10 

r= 
nl^{n^- 1) 

{O-Ef {-Af 

220^ X (220-1) 
= 13.813 

13.813 
1.158 d f = l , /7 = 0.141 
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TABLE 16.18 

Statistical results from individual and combined studies from data given in Tables 16.16 and 16.17. Probabilities 
are one-sided. 

Study 

I 
II 

Combined 

N 

110 
110 

220 

0-E 

-3.636 
-3.636 

-7.272 

V 

2.281 
2.281 

4.562 

f 

5.795 
5.795 

11.591 

P 

0.008 
0.008 

0.0002 

This result is not significant at the one-sided level of significance a of 0.05. The 
results of the individual studies, on the contrary, are highly significant as is shown 
in Table 16.18 (p = 0.008, one-sided). The paradox arises, on the one hand, from 
an unbalanced allocation of subjects to treatment groups. On the other hand there 
is a large difference between the proportions of positive outcomes in the two 
studies, as is shown clearly by Fig. 16.6. This latter phenomenon is called the effect 
of study. The effect of study may severely bias an estimate of the effect of treatment 
when data are simply pooled as we have done in this hypothetical case. We state 
that the effect of treatment is confounded by the effect of individual studies, or, in 
other words, that type of study is a confounding factor of the effect of treatment. 

Mantel and Haenszel [21] have proposed a test which accounts for effects of study 
when combining independent 2x2 contingency tables. We use the term 'combining' 
to indicate a procedure which avoids the bias produced by simple 'pooling' of the 
data. Their approach is to combine the individual observed minus expected fre­
quencies into (O - £)c and to combine the corresponding variances into V^: 

{0-E), = l{0-E)k (16.33) 
k 

Ve = £ V , (16.34) 
k 

where the summation extends over all k individual 2x2 contingency tables. 
We know that Vc is the variance of (O - £)c, provided that the individual 

contingency tables are independent. This consideration leads to the Mantel-Haenszel 
y^ test statistic which possesses one degree of freedom: 

^2^{0-E)l ^ithdf=l (16.35) 

The result of the Mantel-Haenszel test in the case of the two independent studies 
is shown on the bottom line of Table 16.18. It is even more significant than in each 
of the individual ones. It is also quite different from the biased result which we have 
obtained from simple pooling of the individual studies. 
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76.2.9 Odds ratio 

So far, we have been discussing tests of hypotheses about 2x2 contingency 
tables. It must be realized, however, that a statistically significant result does not 
necessarily correspond in practice to a relevant effect. Indeed, for any negligibly 
small effect one can find a sufficiently large sample size for which this irrelevant 
effect will become statistically significant. It is felt therefore that a statistical 
analysis of an effect should provide not only the probability of its occurrence under 
some hypothesis, but also provide an estimate of the size of this effect, together 
with its 95% confidence interval [3]. 

A common measure of effect in a 2x2 contingency table is the odds ratio which 
is defined as follows in the notation introduced in Section 16.2.1: 

Odds Ratio = OR = ^^'^= Qdds(n„/(n„+n3.)) ^^^ 3^^ 
2̂1 i^\2 Odds {n\2/(n\2 + riii)) 

Note that the expected value of the odds ratio OR is 1 under the assumption of 
homogeneity. In a comparison of two treatment groups, we can interpret the odds 
ratio as the odds of obtaining a positive outcome in the treatment group divided by 
the odds of obtaining a positive outcome in the control group (eq. (16.36)). In this 
sense the odds ratio can be regarded as a measure of the size of the effect produced 
by treatment. 

Another interpretation can be derived from the notation used in Section 16.1.3 
for sensitivity and specificity: 

OR _ P̂ ^" - ^^^^ ^̂ P̂ ^̂ P ^ "̂̂ ^ _ ^^^^ (Sensitivity) (16 37) 
fn fp Odds (fp/(fp + tn)) Odds (1 - Specificity) 

We find here a striking resemblance between the expression for the odds ratio OR 
(eq. (16.37)) and the one which we have derived above for the likelihood ratio LR 
(eq. (16.13)): 

L/?-
Sensitivity 

1 - Specificity 

In Section 16.1.8 on receiver operating characteristics (ROC) we have made a 
graphical interpretation of the likelihood ratio. The slope of the line which joins the 
origin to a point on the ROC curve equals the likelihood ratio of the assay at the 
corresponding decision limit (Fig. 16.2). We derive a similar interpretation of the 
odds ratio from an ROC plot in which the horizontal and vertical scales are 
expressed in odds rather than proportions. The transformation from odds to propor­
tions has already been defined by eq. (16.15). Figure 16.7 represents the trans­
formed ROC curve of the SCK assay for myocardial infarction [7] which we 
discussed in Subsection 16.1.7. Note that the vertical and horizontal axes now 
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Odds 
(Sensitivity) 

1 2 

Odds (1 - Specificity) 

Fig. 16.7. Receiver operating characteristic curve (ROC) of SCK assay for myocardial infarction (data 
by Radack et al. [7]) on double odds axes. 

express odds of sensitivity and odds of (1 - specificity), respectively. The slope of 
the line through the origin and a particular point of the curve equals the odds ratio 
of the assay at the corresponding decision limit. 

16.2.10 Log odds ratio 

For reasons that will become evident hereafter, it is more convenient to work 
with the natural logarithms of odds, also called logits. According to the definition 
of odds (eq. (16.15)) we obtain for any probability or proportion P: 

Log Odds (P) = In f P ^ 

l-P 
= logit(P) (16.38) 

Using natural logarithms in eq. (16.36) we obtain a definition for the log odds ratio [3: 

(3 = Log Odds Ratio =^ In 
, ^ 2 1 , 

- I n 1 ^ 1 
nil 

(16.39) 

logit ni l 

nil +^21 
- logit nn 

n\2 + n22 

In a study of the effect of a treatment (medication or control) on the outcome of 
an assay (positive or negative) we can interpret the log odds ratio (3 geometrically. 
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Outcome A 
2 

Logit 

^ nii+n2i y 1 

-2 J 

Study n Logit 

I C ^^? "̂  
r V. nj2+n22 

Medication 
Treatment 

Fig. 16.8. Outcome of an assay (positive or negative) as a function of treatment (medication and 
control) in two studies labelled I and II. The vertical scale is expressed in logits. The slope of the 
response line is equal to the log odds ratio P and is a measure for the effect of treatment. 

In Fig. 16.8 we have represented the dichotomous variable treatment along the 
horizontal axis. The variable outcome is represented along the vertical axis on a 
logit scale. 

From eq. (16.39) follows immediately that the slope of the response line is equal 
to the log odds ratio (3. It is natural therefore to consider p as a measure of effect 
size, which can be readily derived from a 2x2 contingency table. Woolf has shown 
that the log odds ratio is approximately normally distributed with variance as 
defined below [3]: 

T//QX 1 1 1 1 V(p)- — + — + — + — 
n\\ Tin AZ21 Un 

(16.40) 

provided that none of the cell frequencies is zero. 
Woolf s formula (eq. (16.40)) allows us to define approximately the lower (1) 

and upper (u) limits of the confidence interval: 

P,,u-p±Zcx/2VV(P)" (16.41) 

where Zoji is the standard normal deviate that corresponds with the one-sided 
probability (xy2. By convention, the level of significance is often defined at 0.05, 
0.01 or 0.001. We are 100 (1 - a)% confident that the log odds ratio of the 
population from which the sample has been drawn lies within the limits of the 
confidence interval. If zero is outside the confidence interval then we reject the null 
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hypothesis of homogeneity at the two-sided significance level a. Otherwise, if the 
confidence interval contains zero then we retain the null hypothesis. 

After exponentiation of (5, together with its lower (1) and upper (u) limits, we 
obtain the estimate of the odds ratio and its confidence interval: 

OR = exp((3) and 0/?,,u = exp(pi,u) (16.42) 

In the case of odds ratios we reject the null hypothesis at the level of significance 
a, if 1 lies outside the confidence limits. Otherwise, if the confidence interval 
contains 1 then we retain the null hypothesis. 

By way of illustration, we compute the odds ratio and Woolf s approximate 
confidence interval for the data of Table 16.12. In this example we related outcome 
of an assay (positive or negative) to type of treatment (medication or control) in 20 
subjects: 

OR = ^ ^ ^ = 0.25 and (3 = ln(0/?) = ln(0.25) = -1.386 
8 x 5 

P,,u = - 1.386 ± 1.96 V 1.025 = (-3.370, 0.598) 

where the factor 1.96 is the standard normal deviate zo.ois- Since zero is contained 
within the 95% confidence interval, we retain the null hypothesis of homogeneity. 
On the basis of this experiment, we have no reason to assume that the proportion 
of positive outcomes is different in the two treatment groups. After exponentiation 
we obtain the confidence interval of the odds ratio: 

0/?,,u = exp(-3.370, 0.598) = (0.034, 1.818) 

Because the value of 1 is within the confidence interval, we retain the null hypothe­
sis of homogeneity. 

The log odds ratio leads to yet another variant of the ROC diagram in which the 
vertical and horizontal axes represent logits of sensitivity and logits of (1 -
specificity), respectively (Fig. 16.9). When sensitivity and specificity are distrib­
uted according to the logistic distribution function, then ROC curves are trans­
formed into straight lines in a diagram of double logit axes. This property 
resembles that of the ROC diagram with double normal deviate axes in Fig. 16.3. 
The quality of an assay operating at a given detection limit can now be estimated 
from the distance between the corresponding point on the ROC curve and the 
diagonal line. We show that this distance is equal to the log odds ratio of the assay. 
Taking natural logarithms on both sides of eq. (16.37) produces: 

p = \n{OR) = logit(Sensitivity) - logit(l - Specificity) (16.43) 
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Logit ^ 
(Sensitivity) 

0 N̂  1 Logit 
Â  (1 - Specificity) 

-2 

Fig. 16.9. Receiver operating characteristic (ROC) diagram with double logit axes. The distance of a 
point on the curve from the diagonal is equal to the log odds ratio. Log odds ratios can be read off 
directly from the axis which is drawn perpendicularly to the diagonal line. The intervals shown are 
the 95% confidence intervals for the log odds ratios. 

Let us assume that X represents logits of sensitivity and that Y represents logits 
of (1 - specificity). The contrast X-Yis equal to (3, according to eq. (16.43). It is 
measured along a line through the point defined by X and Fand drawn perpendicu­
larly to the diagonal line. Points with zero contrast are located on the diagonal line. 
This shows that p is estimated as the distance of a point to the diagonal line in the 
double logit ROC diagram. Using Woolf s approximation to the variance of p (eq. 
(16.40)) we can also display the 95% confidence interval along the same perpendicular 
on which P is measured. The shaded area in Fig. 16.9 has been drawn through the 
endpoints of the 95% confidence intervals of the four experimental points. 

The diagonal line represents the geometrical average of the odds for a positive 
outcome in either of the treatment groups. If the odds in both treatment groups are 
high then the corresponding point will be found high up in the direction of the 
diagonal line. In this case we state that the elevation (along the diagonal) is large. 
Note also that the double logit ROC diagram of Fig. 16.9 is similar to the 
'elevation-contrasts' diagram of Fig. 16.5. In both diagrams the diagonal line 
expresses the average positive outcome (elevation). Both diagrams also represent 
the differential outcomes in two treatment groups (contrasts). The main difference 
is that Fig. 16.5 is constructed from log proportions, while Fig. 16.9 is expressed 
in terms of log odds. The former uses tests of hypotheses, while the latter displays 
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confidence intervals. Both diagrams suggest that an optimal choice for the decision 
level is between 240 and 480 lU/ml on the scale of SCK. 

16,2.11 Multiple 2x2 contingency tables, meta-analysis 

Peto has extended Mantel-Haenszel's approach to the analysis of multiple 2x2 
contingency tables to include effect size [22]. It is assumed that the different tables 
have been observed independently of each other. This method makes straightfor­
ward use of the log odds ratio (3. 

A maximum likelihood estimate for the log odds ratio (3 has been derived by 
Peto under the assumption of homogeneity of effects produced by a treatment in 
two groups. We refer to this estimate by means of the symbol p' and to the 
corresponding odds ratio by OR': 

^^ = l^OR' = ̂ Y^ (16.44) 

where the variance V of 'observed minus expected' cell frequencies (O - E) is 
derived from the hypergeometric distribution and is given by eq. (16.26).From the 
above equation we can derive the variance of p': 

Vm=^ (16.45) 

Using these results we can now define an approximate 100 (1 - a)% confidence 
interval for P' with lower (1) and upper (u) limits given by: 

P'i.u = - ^ + z«^ j ^ (16.46) 

In the case of multiple 2x2 contingency tables we apply Mantel-Haenszel's 
approach which has been described in Section 16.2.8. Here, too, we accumulate the 
{O - E) and V values from the individual 2x2 contingency tables into a combined 
(O - E)c and a combined Vc. Since we may add up individual variances provided 
that the individual tables have been observed independently from each other, we 
obtain: 

P'c = - ^ ^ ^ (16.47) 

V(|3'e) = -^ (16.48) 

( P ' c ) , , u = ^ ^ ^ ± Z a ^ J ^ (16.49) 
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TABLE 16.19 

Result of meta-analysis using the fixed effects model. Combined analysis of individual studies presented in Table 
16.16. The symbol CI means confidence interval. 

Study 

I 
II 

Combined 

0-E 

-3.64 
-3.64 

-121 

V 

2.28 
2.28 

4.56 

p' (95% CI) 

-1.59 (-2.91,-0.28) 
-1.59 (-2.91,-0.28) 

-1.59 (-2.51,-0.68) 

OR' (95% CI) 

0.20 (0.05, 0.75) 
0.20 (0.05, 0.75) 

0.20(0.08,0.51) 

By means of exponentiation (in base e) we can transform eq. (16.49) into the 
maximum likelihood estimates for the odds ratio OR' and its associated confidence 
interval. 

We can compute Peto's maximum likelihood estimates of the odds ratio for the 
case which has been presented in Table 16.16. This analysis shows that effect sizes 
of the two studies (I and II) as well as that of the combined study are equal {OR' = 
0.203). The confidence intervals show that the effect is significant at the level of 
significance a of 0.05 in the individual and combined studies (Table 16.19). Note 
that the value of 1 is outside the 95% confidence intervals of OR\ The confidence 
interval of the combined study, however, is smaller than that of the individual 
studies which demonstrate the utility of combining studies into a single large one 
using appropriate statistical methods. 

Meta-analysis, or overview of studies as it is called by Peto, is the combination 
of 2x2 contingency tables that result from experiments in which two treatment 
groups are selected at random [22]. As meta-analysis combines information from 
several independent sources, it is deemed to be good scientific practice. A similar 
argument has been presented in favour of the Bayesian approach against traditional 
hypothesis testing in Section 16.1.5. In order to avoid recall bias it is mandatory 
that all available studies are included. Serious recall bias occurs, for example, when 
unfavourable results are not included in the meta-analysis. 

Meta-analysis is different from so-called omnibus tests, such as the log P test of 
Fisher [23]. In the log P test one adds up the natural logarithms of the one-sided 
probabilities of the individual studies. After multiplication by the constant -2, this 
produces a y^ test statistic for the significance of the combined study. The number 
of degrees of freedom is equal to twice the number of individual studies in a 
one-sided test of significance. While an omnibus test only produces the signifi­
cance, meta-analysis also estimates the size of the combined effect and provides a 
confidence interval for it. 

Peto's approach to meta-analysis assumes that effects of study are fixed, i.e. not 
subject to random fluctuations, although they can differ from one study to another. 
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For this reason, the approach is called the fixed effects model of meta-analysis [22]. 
A random effects model for meta-analysis has been described by DerSimonian and 
Laird [24]. A similar distinction between fixed and random effects models arises 
in the analysis of variance (ANOVA) and is discussed in Sections 6.3 and 6.4. 

16.2.12 Logistic regression, confounding, interaction 

In the previous section we have discussed the case of a pooled 2x2 contingency 
table in which the effect of treatment was confounded by the type of study. In data 
gathered from subjects whose outcome (positive or negative) was studied under 
different treatments (medication or control), we can also regard age and gender as 
possible confounding factors. In such a case of multiple confounding factors we 
can set up a linear logit model [25] which relates outcome to treatment, age, 
gender, time of study and so on. More generally, in the case of independent 
variables we defined the logit model as: 

y = logit(P) - po + P,x, + P2X2 + ... + (3,x, + ... + %x, (16.50) 

where X/ represents theyth independent variable and where (3/ is the coefficient of 
the yth independent variable which can be estimated by maximum likelihood re­
gression. The coefficient po denotes the constant term of the regression model. 

Note that y represents the maximum likelihood estimate of the log odds or logit 
of the outcome P, hence the name logit model. The dependent variable y takes 
values between minus and plus infinity. A variable Xy, other than the treatment 
variable is determined to be a confounding factor if the corresponding coefficient 
p/ is significantly different at a stated level of significance a (e.g. 0.05 in a 
two-sided test). This information is available from statistical computer programs 
such as provided by SAS [26]. If the independent variable Xy is a dichotomous 
variable, then the corresponding coefficient P, represents the log odds ratio cor­
rected for confounding factors [27]. 

The logit model can also be defined with second degree terms: 

y = logit(P) = Po + pix, + P2X2 + ... + P12X1X2 + ... (16.51) 

The linear terms in eq. (16.51) which represent the treatment variable and its 
possible confounding factors, account for the main effects, while the product terms 
represent interactions [28]. This distinction between main effects and interaction 
terms is illustrated in Fig. 16.10. It has an analogy in the analysis of variance 
(ANOVA) which is covered in Chapter 6. By way of example we assume that the 
two independent variables Xi and X2 are dichotomous and represent treatment 
(medication or control) and age (less than 50 years or 50 years or more). 

In Fig. 16.10a we have the case where X2 is a pure confounding factor of X]. This 
situation has been encountered already in the discussion of Mantel-Haenszel's 
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@ X 2 confounds x (B) X2 interacts with x 

y 
Logit (P) 

0 

y 
Logit (P) 

O - ^ 
1 

Fig. 16.10. Illustration of the cases in which the relation between outcome (y) and treatment (X|) is 
(a) confounded by another variable (X2) and (b) interacting with another variable (X2). Each response 
line represents a particular study. 

method and Peto's approach to the analysis of multiple 2x2 contingency tables. 
Here the response variable y is expressed as logit(P) and appears to be linearly 
related to the design variables Xi and X2 by means of a linear logit model. Note that 
the slope of the response lines in Fig. 16.10a is equal to the log odds ratio p which 
has been defined by eq. (16.39). This so-called common odds ratio can also be 
derived from the simplified linear logit model: 

y = logit(P(x)) = po + PiX (16.52) 

where the dichotomous independent variable x takes the values 0 and 1. We can 
show that the slope of the line is given by: 

p = logit(P(l)) - logit(P(0)) = (po + p,) - po = Pi (16.53) 

The logistic model finds applications in retrospective studies which are also called 
case-control studies in epidemiology [28]. For each case that underwent a specific 
exposure (such as a therapeutic, dietary, environmental or other factor) one 
searches through the historical files for a number of matching controls (1 to 4 
controls for each case). Matching is performed for obvious confounding factors 
such as age, gender and time of exposure. The logistic model then includes all other 
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relevant confounding factors and interactions. This approach has been used for the 
retrospective study of relationships between diseases and possible causative fac­
tors (for example between lung cancer and smoking) which cannot be studied by 
means of designed prospective experiments (or cohort studies). 

16.2.13 Venn diagram 

A 2x2 contingency table defines a relationship between two dichotomous 
variables, say x and y which may represent, for example, treatment (medication or 
control) and outcome (positive or negative). Each variable defines a set on the 
universe of discourse, which is in our case the total numbers of subjects included 
in the assay. Treatment defines the set of subjects with and without medication. 
Outcome defines the set of positives and negatives in the sample. In total there are 
2x2 possible subsets in this sample. John Venn around 1880 has devised a diagram 
which is widely used for representing subsets in the form of connected areas. There 
are two variants of the Venn diagram as shown in Fig. 16.1 la and b. Both diagrams 
represent the same four subsets defined by the dichotomous variables x and y. 
These are identified by different types of shading as indicated in the insert. In the 
Venn diagram of Fig. 16.11a one of the subsets, (not x) n (not y), is represented 
by an unbounded area, while in that of Fig. 16.11b all subsets are bounded. The 
latter idea seems to be attributed to a contemporary of John Venn, the famous 
writer Lewis Carroll [29]. 

(a) One subset unbounded (B) All subsets bounded 

xn(not y) (notx)ny tJJHJ xny I I (not x)n(not y) 

Fig. 16.11. Two types of Venn diagram for the visual display of a 2x2 contingency table. In (a) one 
of the four subsets is unbounded. In (b) all four subsets are bounded. 
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Fig. 16.12. Edwards's map of a 4-set Venn diagram showing the 16 subsets produced by an assay of 
outcome vs treatment stratified by gender and age. The number of subjects is indicated in each subset 
[29]. Numbers within brackets represent the common odds ratios of the four 2x2 contingency tables 
resulting from the stratification by gender and age. 

Extensions of the Venn diagram to higher order sets produce tangled and 
obtrusive displays. Recently, however, Edwards [29] discovered how the Venn 
diagram can be used in a very attractive way to represent multiple sets for the 
illustration of the general case of a 2x2x2x2x... contingency table. In Edwards's 
map of the Venn diagram higher order sets are threaded with increasing periodicity 
around the boundary of a central circular set. 

Figure 16.12 represents the case of a 2x2x2x2 contingency table in which the 
four sets are defined by the variables outcome (positive or negative), treatment 
(medication or control), gender (male or female) and age (old or young). This assay 
of outcome with respect to treatment has been stratified for gender and age. Hence, 
the figure is the equivalent of four 2x2 contingency tables, representing a total of 
16 subsets of a sample of 200 subjects. Each of these subsets corresponds with one 
of the 16 fields of Edwards's map. For example, 16 young and male subjects 
showed a positive outcome with medication, 4 older and male control subjects 
obtained a negative outcome, etc. 

In order to interpret the diagram correctly, one has to pick one number in a 
particular subset and find the corresponding numbers in the three subsets that are 
similarly shaped. For example, the elements of the 2x2 contingency table for older 
males are 10, 15, 21 and 4. In the upper left quadrant of Fig. 16.12 we have added 
(between brackets) the common odds ratio (eq. (16.36)) corresponding to the four 
2x2 contingency tables that resulted from the stratification by gender and age. In 
the case of older males this common odds ratio is (10/15)7(21/4) or 0.13 as 
indicated in the figure. 

An important property of this diagram is that the crossing of the boundaries 
between two subsets changes only one variable at a time. Thus we can observe 
readily that a change from young to old produces a drop in the odds ratio (from 
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Fig. 16.13. Edwards's map of the 7-set Venn diagram showing the 128 possible subsets in a complete 
2"̂  factorial design [29]. 

0.44 to 0.13 for male and from 0.72 to 0.53 for female subjects). Similarly a change 
from female to male also produces a drop in the odds ratio (from 0.72 to 0.44 for 
young and from 0.53 to 0.13 for older subjects). The smallest odds ratio is obtained 
in the case of older males (0.13). 

Edwards's map can also be used for visual exploration of the results of complete 
2^ factorial designs. The 7-set diagram is shown in Fig. 16.13. 

16.2.14 General contingency table 

A general nxp contingency table X is constructed by crossing the n categories 
of one variable with the p categories of another one. Each cell riy of the table 
contains the number of joint occurrences of category / and of category y of the two 
variables. By analogy with eq. (16.21) we derive the expected value of Xij from the 
marginal totals of the table which are assumed to be fixed: 

E(Xij) = -
Ai-u .Â -

X++ 
with / = 1,..., n and J = 1,..., p (16.54) 

where Xi+ and x+j represent the totals of row / and of column; and where x++ is the 
grand total of table X. The Pearson %̂  statistic for the nXp contingency table is then 
defined by means of: 

x^=II 
{Xij - EiXij)f 

E(Xij) 
(16.55) 

which possesses (n - 1) x (/? - 1) degrees of freedom. 
As an example, we analyze the data already presented in Table 16.8 on the 

presence and absence of myocardial infarctions in persons complaining of chest 
pain and from five categories of serum creatine kinase (SCK). The observed 
frequencies Xy, the corresponding expected frequencies E{xij) according to eq. 
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TABLE 16.20 

Observed, expected and observed-expected frequencies of the presence and absence of myocardial infarction for 
various categories of serum creatine kinase (SCK in lU/ml) in persons complaining of chest pain [7] 

SCK (lU/ml) Present Absent Total 

Observed myocardial infarctions 

Expected myocardial infarctions 

Observed-expected myocardial infarctions 

0-120 
121-240 
241-360 
361^80 
>480 

Total 

0-120 
121-240 
241-360 
361^80 
>480 

Total 

0-120 
121-240 
241-360 
361-480 
>480 

23 
6 
7 
6 
9 

51 

32.6 
13.7 
2.0 
1.2 
1.5 

51 

-9.6 
-7.7 

5.0 
4.8 
7.5 

471 
201 
24 
12 
14 

722 

461.4 
193.3 
29.0 
16.8 
21.5 

722 

9.6 
7.7 

-5.0 
-4.8 
-7.5 

494 
207 

31 
18 
23 

773 

494 
207 
31 
18 
23 

773 

0 
0 
0 
0 
0 

Total 

(16.54) and the observed minus expected frequencies are displayed in Table 16.20. 
It can readily be observed from the table that the persons with SCK-values larger 
than 240 (lU/ml) have a greater incidence of myocardial infarction than would be 
expected from the marginal frequencies. The y^ statistic (eq. (16.55)) associated 
with this 5x2 contingency table amounts to 80.9 and is to be tested with 4x1 = 4 
degrees of freedom. From a table of critical values of the y^ distribution we may 
conclude that the SCK assay is capable of predicting myocardial infarction in 
persons complaining of chest pain. The probability that the observed differences in 
the contingency table have arisen by chance is less than 0.001. 

The y} statistic is but a global indicator of interaction between the two variables 
that define the table. It does not reveal which particular categories of the two 
variables are interacting. In a large table this is difficult to perceive without the use 
of multivariate analysis such as explained in Chapters 31 and 32. Two particular 
approaches are useful for the analysis of general contingency tables, namely 
correspondence factor analysis and log-linear models (which includes spectral map 
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analysis). The former can be considered as the multivariate analysis of chi-square 
%̂ , more exactly distance of chi-square J^lx^. The latter can be regarded as a 
multivariate analysis of the sum of squares c of the data after a transformation by 
logarithms: 

c- — S S (y-ij-E(yij)f with / = 1,..., n andy = 1,...,p (16.56) 

^P i j 

where 

yij = In (Xij) or, equivalently, Y = In X 
E(yij) = yi.-^y.j-y.. 

where y,. and yj represent the row and column means and where y^_ is the global 
mean of the logarithmically transformed values in the table Y. 

In Chapter 32 it will be shown that correspondence factor analysis and log-linear 
models yield similar results, unless strong interactions between rows and columns 
are present, i.e. when observed frequencies are far from their expected values. 
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Chapter 17 

Principal Components 

17.1 Latent variables 

This chapter is a first introduction to principal components and principal 
component analysis (PCA). The approach here is mainly intuitive and non-mathe­
matical. It also illustrates some applications of the method. The principal compo­
nents concept is very important to chemometrics. The soft modelling methods and 
the multivariate calibration methods described in Part B are based on it. The first 
sections of this text are based on an audiovisual series about PCA [1]. A more 
systematic mathematical introduction is given in Part B, Chapters 29, 31 and 32. 

One of the reasons for the use of PCA resides in the enormous amount of data 
produced by modern computers and measurement techniques. For instance, in­
ductively coupled plasma emission allows the analysis of many elements simul­
taneously, capillary gas chromatography can easily yield concentrations of 100 
compounds in a single run and near-infrared spectrometry yields absorbances at 
several hundreds of wavelengths in a very short time. If many samples are analyzed 
in that way, so many data result that it is virtually impossible to make intelligent 
use of the data without further treatment. 

One obvious way of organising the data of the kind described earlier is to 
construct a table, in which the n objects constitute the rows and the m variables 
constitute the columns. However if, as in one example that will be discussed later, 300 
air samples (the objects) had been measured and the concentrations of 150 substances 
(the variables) had been determined in each, the table would contain 45000 data entries 
and it would be very difficult to extract meaningful information from it. One would 
like to visualize the information and PCA provides the means to achieve this. 

The data table of Fig 17.1 is, in chemometrical terms, a data matrix and many 
of the calculations will be based on matrix algebra. A first introduction will be 
given in Section 17.6 and a detailed account in Chapter 31. The table can also be 
described as a two-way table. Three-way tables also exist and can be treated by 
three-way PCA. This will be described in Chapter 31. 

A few terms specific to this field should first be defined. One is feature, which 
means variable. When one says that principal components is used for feature 
reduction this means therefore that PCA reduces the number of variables in some 
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Fig. 17.1. The data matrix. 

way. In Section 17.3, we will explain that this is done by making linear combinations 
of the original variables. The term should not be confused with feature selection. The 
latter term means that one selects some variables, e.g. only a few wavelengths from a 
spectrum are used. In feature reduction, as applied in PCA, all wavelengths are used, 
but the number of variables is diminished because of the linear combinations. How 
will be discussed later, but the term makes it clear that PCA in some way simplifies 
the presentation of the data. The data of a data matrix are also called multivariate or 
multidimensional. These last terms merit some further clarification. 

Chemists, like many other scientists, like to draw graphs to understand better the 
data they have obtained. Let us suppose that a chemist has determined the concen­
tration of a single substance in a few samples. The concentration, X], is then considered 
as a variable or feature to be plotted. The resulting plot could look as in Fig. 17.2a and 
in this case would tell the chemist that the samples really belong to two groups. Such 
a one-dimensional plot and the data themselves are called univariate. 

Usually, more than one variable is measured in the hope of obtaining more 
information. When two variables, x\ and JC2, are measured, the chemist can plot the 
samples in a plane of xi versus X2 (Fig. 17.2b). The two-dimensional plot and the data 
are now called bivariate. Plots are still possible in three dimensions (Fig. 17.2c). The 
number of dimensions is equal to the number of variables measured for each sample 
or object. It follows that data from a data matrix in which m variables have been 
measured for each sample, are m-dimensional. They are called multivariate and to 
visualize them we would need m-dimensional plots. As this is not possible for 
dimensions larger than three, we must reduce the number of features to three or less. 

Before investigating how to reduce features from m-dimensional space to two 
or three dimensions, let us consider the simplest possible case of feature reduction, 
namely the situation where only two variables are present and we want them 
reduced to one. We imagine that we are able to see along one dimension only. This 
would mean that we would not be able to perceive visually the structure of the 
two-dimensional data in Fig. 17.3. An obvious solution would be to project the 
points from the two-dimensional space (the plane) to the one-dimensional space of 
the line. The direction of that line is important. In Fig. 17.3a the projections on the 
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Fig. 17.2. Plots in one (a), two (b) and three (c) dimensions. 

line do not yield much information about the structure of the original data set. It is 
for instance not possible to observe from the projections, the crosses along the line, 
that there are two groups in the data. In Figure 17.3b, the projections do allow us 
to observe the most important characteristic of the data structure: two groups of 
crosses are clearly present. A good direction to draw the line is along the axis of 
largest variation in the data. This line is called the first principal component, PCI, 
and one can say that PCI explains the largest possible variation in the data and 
therefore that PCI accounts for most information. The projections of the points 
from the original x\-X2 space on PCI are called the scores (of the objects) on PCI. 
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(a) 

Fig. 17.3. Projections from two to one dimension: (a) the information is lost on projection; (b) the 
information is retained. The line in (b) is PCI. 

The objects are dispersed around the PC line. The residuals, n (Fig. 17.4), 
express the remaining or unexplained variation. We can express that variation on 
a second axis, by definition orthogonal to the first, on which one also projects the 
data from the original space. This is the second principal component, PC2 (Fig. 
17.4a) and the projections are the scores (of the objects) on PC2. 

PCI and PC2 can be considered as the new axes in the same two-dimensional 
space. If we work on mean-centred data (see Chapter 9), at the same time the origin 
of the new coordinate system is translated to a more natural location, namely the 
barycentre or centre of mass of the data (the barycentre is the coordinate corre­
sponding with the mean for each variable). One can plot the scores of the objects 
on PCI against those on PC2. This is done in Fig. 17.4b for the objects originally 
present in the X\-X2 coordinates. The two groups of objects that can be distinguished 
in the X\-X2 space can also be seen in the two-dimensional space PC1-PC2. 

Let us now return to our supposition that we are able to see only along one 
dimension. One would then choose to look along PCI, and obtain the result of Fig. 
17.4c. The crosses are the scores and therefore the projections from the original 
x\-X2 Space on PCI. They tell us almost as much about the original data structure 
as the original X\-X2 graph. The feature reduction is successful, since the number 
of variables was reduced from two {x\ and jci) to one, namely PCI, without 
significant loss of information. PCI can be described as a new and perhaps more 
fundamental variable than the original variables,xi andxi, separately. PCI is called 
a latent variable in contrast to x\ and X2. These are called the manifest variables. In 
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Fig. 17.4. (a) PC2 is orthogonal to PCI. (b) The PC plot: the projections of each object of (a) on PCI 
are plotted against those on PC2. (c) Feature reduction by retaining only one PC. 

this specific case PC2 essentially expresses noise. We can separate information 
(PCI) from noise (PC2). 

Another example is given in Fig. 17.5a. The direction of PCI is determined here 
to a large extent by point 7. This point is an outlier compared to the 6 others and 
therefore it is responsible for a large part of the variation. On PCI it is distinguished 
easily from the 6 other points. This also shows that the principal components plot 
allows us to find outliers in a data set. It also means that outliers can mask the 
structure of the other data. Indeed, the two groups of three points cannot be 
distinguished along PCI. When outliers are found in a PC plot, one should first 
identify and then eliminate the outlier and carry out the PC A again. The PC 1 of the 



524 

'2 i 

PC1 
M (eliminated) 

a) b) 

Fig. 17.5. (a) PC 1 for a two-dimensional data set containing an outlier (point 7). (b) PC 1 for the same 
data set after elimination of point 7. 

six points remaining after elimination of the outlier is shown in Fig. 17.5b. The 
residual structure residing in the remaining data points is now revealed, since one 
observes two groups of three points along the new PCI. 

In Fig. 17.6a a three-dimensional case is presented. The direction of largest 
variation of the data is indicated. This is then PC 1. The projection of the data points 
on PCI is shown on Fig. 17.6b. The data structure is well preserved. However, this 
is only so because the data are more or less linear which means that there is only 
one main direction of variation. 

(a) 

(b) 
21 4 3 

X X X 
7 5 6 PC1 

Fig. 17.6. (a) PCI for a three-dimensional data set. (b) Projection of points on PCI for the data set 
from (a). One PC is sufficient for a good representation of the original data. 
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In Fig. 17.7a, the data are structured to a smaller extent around a straight line. 
The projection of the data on PCI (Fig. 17.7b) shows some differentiation between 
the different categories, but for example the fact that group 5-6-7 is separate from 
8-9-10 cannot be observed. There is quite some residual variation around PCI, so 
that one proceeds by determining PC2. It must be orthogonal to PCI, but, in 
contrast with the two-dimensional case, its direction is not determined a priori 
because there are now three dimensions and PC2 is chosen so that it is drawn in the 
direction of largest residual variation around PCI. The different points can be 
projected on PCI and PC2 and the resulting scores used as the new coordinates to 
picture each point in the PC1-PC2 plane (Fig. 17.7c). 

We have now applied PCA in the way it is used most frequendy, namely to 
present in two dimensions the information present originally in more than two 
dimensions. In this case, the information is well preserved and one can distinguish 
correctly three groups of objects. In fact, three principal components can be 
determined, but PCS would in this case not have added information. One has 
therefore carried out feature reduction, since the number of features was reduced 
from 3 to 2. 

(a) 

5 
6 

•4 
1 • 

• 2 »10 

Fig. 17.7. (a) PC for a three-dimensional data set. 
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(b) 

ninn. 'V *.'̂ °"''"" '̂̂ >-^l^) Projection of points on PCI lor the data set from (a), (c) The PC1-PC2 
plane. Project.ons on th.s plane would yield a good representation of the original data 
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More generally, when one analyzes a data matrix consisting of n objects for 
which m variables have been determined, m principal components can then be 
extracted (as long as m < AZ). PCI represents the direction in the data, containing 
the largest variation. PC2 is orthogonal to PCI and represents the direction of the 
largest residual variation around PCI. PCS is orthogonal to the first two and 
represents the direction of highest, residual variation around the plane formed by 
PCI and PC2. Although it becomes difficult or even impossible to visualize more 
components, one can continue extracting principal components in this way, until 
m principal components have been obtained. These will contain less and less 
variation and therefore less information. The projections of the data on the plane 
of PCI and PC2 can be computed (or sometimes also on the PC1-PC3 or the 
PC2-PC3 plane) and shown in a plot. This plot is called a score plot. 

17.2 Score plots 

A first example comes from the field of food authentication. One would like to 
verify the origin (geographical, plant or animal species, etc.) of a foodstuff by 
carrying out appropriate chemical determinations. One then needs to determine a 
large number of variables and hopes that the resulting patterns of data will permit 
to differentiate between the different samples (objects). Pattern recognition meth­
ods (see Chapter 33) are used in food authentication and PCA is nearly always 
applied to make a preliminary study of the structure of the data. 

The example of Fig. 17.8 concerns 3 Italian wines: Barolo, Barbera and Grigno-
lino [2]. About 100 certified samples of known origin of the three wines were 
analyzed for 8 variables, namely alcohol, total polyphenols and 6 measurements of 
optical densities at several wavelengths. The latter describe the colour of the wine. 
The resulting data matrix consists therefore of 100 by 8 data and to plot the original 
data one would need therefore an 8-dimensional plot. Figure 17.8 shows the plot 
of PC 1 against PC2. One observes that the Barolo wines can be distinguished to a 
large extent from the two others and one concludes that the 8 variables are 
appropriate for the discrimination of this type of wine from the two others. It should 
be noted that the discrimination as such will then be performed using other methods 
such as linear discriminant analysis (see Chapter 33) or perhaps neural networks 
(see Chapter 44). 

Figure 17.9 is a score plot where the objects are 14 tablets for which near 
infra-red (NIR) spectra (1050 wavelengths) were measured [3]. The absorbances 
at these wavelengths are the variables. This is therefore a high-dimensional, 
namely a 1050-dimensional, situation. The final aim of the data analysis was to be 
able to analyze the active substance in the tablet by relating absorbance to concen­
tration in a multivariate calibration model, but the purpose of the score plot was a 
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Fig. 17.8. Score plot of 3 Italian wines (A = Barolo, • = Barbera, x = Grignolino) in the PC1-PC2 
plane (from Ref. [2]). 
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Fig. 17.9. Score plot (PC1-PC2) of 14 tablets characterized by their NIR spectra. The meaning of the 
symbols is explained in the text. 

preliminary evaluation of the data. There are two sets of tablets: the tablets 
indicated with + were obtained from the production line, those indicated with a "' 
were produced in the laboratory to obtain a larger concentration range. It was 
therefore expected that the + objects should fall inside the group of * objects. The 
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14 tablets together would then serve to develop the multivariate calibration model. 
Unfortunately the score plot does not show the expected pattern since the two 
groups are clearly separated along PC 1. This means that there is a difference in the 
NIR spectra of the two sets and it turned out that the reason for this is that the shape 
of the two sets of tablets was not exactly the same. As we will see later, it however 
still proved possible to apply principal components to obtain a multivariate cali­
bration model (see further in this section). 

Another application concerns organic air pollution. At four monitoring stations 
in the Netherlands, air samples were collected every week, once in the morning and 
once in the afternoon during a period of three years [4]. In these samples nearly 150 
volatile organic compounds were analyzed by means of gas chromatography. 
Moreover, 12 meteorological parameters were measured at the same time. Nearly 
half a million data were therefore collected. The interpretation of such a big data 
set absolutely requires visualization and feature reduction. To show how PCA does 
this, a subset concerning data for about one year at one monitoring station will be 
studied and only 26 of the more important substances are considered. Figure 17.10 
shows the air samples plotted in a plane defined by the first two principal compo­
nents. Three clusters of samples can be distinguished: a rather compact cluster 
situated to the left of the figure and two more or less elongated clusters both 
situated in different directions from this central cluster. The central cluster contains 
most of the samples. It therefore defines the most common condition, the normal 
level of pollution situation. The two elongated clusters, on the contrary, determine 
pollution situations that are less frequent. In fact further analysis of the PC plot (see 
Section 17.3) shows that these are samples in which the pollution is larger. It is also 
very instructive to give different symbols to the samples according to some other 
parameter, here the wind direction at the time of sampling. One observes that the 
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Fig. 17.10. Score plot for the air pollution example [3]. The symbols indicate different wind directions. 
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Fig. 17.11. Scores on PC3 in function of concentration for the tablets of Fig. 17.9. 

three clusters correspond with three different wind directions. The first elongated 
cluster corresponds with air samples coming from the industrialised south and 
south west directions; the second elongated cluster represents air samples collected 
when the wind was coming 'from the north, a greenhouse area, and the central 
cluster contains the samples obtained when the wind blew from the urban zone to 
the east of the monitoring station. 

Instead of making two-dimensional plots of scores, it is often useful to plot the 
scores of single PCs against one or other characteristic, such as concentration. This 
was done with the scores of the PCs for the NIR data we described earlier. Plots 
were made of different PCs against the concentration of the active substance. The 
scores on PCI and PC2 are not related to concentration but those on PC3 are (Fig. 
17.11). This fact can be used when building multivariate calibration models (see 
Section 17.8). 

17.3 Loading plots 

The examples in Section 17.2 show that PC A, through feature reduction and 
visual display, allows us to observe the sources of variation in complex data sets. 
It is, however, possible to extract much more information from a PCA. So far, we 
have focused on the score plots and the relationships among objects. In the same 
way, we can wonder about relationships between variables. Some additional theory 
about principal components must first be introduced to be able to do this. 
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As explained in Section 17.1 the value of object / (its projection) along a 
principal component PCp is called the score, Sip, of that object on that principal 
component. In the air pollution example the objects were air samples for which 
many chemical substances were measured. The concentration of these substances 
such as benzene, toluene, etc. constitute the manifest variables. The scores on the 
principal components are a weighted sum of the original variables, the concentra­
tions. They are given by-.̂ ,,, = Vbenzene,/. • [benzene], + Vto\uenc,p * [toluene], + Vdecane,/; 
[decane]/ + ... where [benzene] is the concentration of benzene. The v-values are 
the weights and they contain information about the variables. This can be written 
for each of the principal components that are considered. These weights are called 
loadings and in general one can write the equation as follows: 

Sip = l,vj,r Xij (17.1) 
./ 

where Vjp is the loading of variabley on PCp and Xij is the value of the /th object for 
manifest variable/ The scores are linear combinations of the manifest variables. 

In matrix notation : 

S = X V (17.2) 
nxm nxm mxm 

where S is the matrix of scores, X the matrix of manifest variables and V the matrix 
of loadings. This equation relates the principal components to the original variables. 

Table 17.1 shows the loadings of the more important variables, i.e. those with 
the highest loadings on PCI. A word of warning must be added here. The scores 
of the objects are weighted sums of the manifest variables and the units in which 
original variables are expressed determine therefore the value of the scores. The 
weights or loadings are constrained by mathematical techniques; as will be ex­
plained in Chapter 31 the sum of the squared loadings is equal to 1. There is no 
such constraint on the manifest variables and, if one does not pretreat them in some 
way, this will make the result dependent on the scale of the original variables. 
Preliminary operations on the data are important. Chapter 31 describes methods 
such as column-centring, column-standardization, log column-centring, log dou­
ble-centring and double-closure. In this specific case, column-standardization was 
applied to eliminate scale effects. For the moment, this will not be explained 
further. 

The loadings in Table 17.1 are rather similar and it is striking that all loadings 
have the same sign: they influence PCI in the same direction. This phenomenon is 
often observed. When it occurs, it can be interpreted by considering that PCI is an 
indicator of general size, in this case a variable describing how high the total 
pollution is. Objects with a high score show high pollution. Indeed, a high score 
means that the values of many of the original variables, i.e. the concentrations of 
the pollutants, are also high. 
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TABLE 17.1 

Loadings for PCI of the more important variables of the example of Fig. 17.10 

//i-ethylmethylbenzene 
toluene 
1,2,4-trimethylbenzene 
//-nonane 
^ -̂xylene 
//-decane 
/?-tridecane 

0.300 
0.288 
0.277 
0.265 
0.232 
0.231 
0.231 

ethylbenzene 
/7-dodecane 
/?-octane 
/7-xylene 
styrene 
tetrachloroethylene 

0.230 
0.227 
0.226 
0.216 
0.202 
0.201 

Only loadings with absolute value >0.200 are given. 

TABLE 17.2 

Loadings for PC2 of the more important variables of the example of Fig. 17.10 

Largest negative scores 

r>-xylene 
ethylbenzene 
/^-xylene 
styrene 
//z-xylene 
benzene 

-0.310 
-0.234 
-0.274 
-0.204 
-0.226 
-0.289 

Largest positive scores 

/2-decane 
«-dodecane 
/z-undecane 
/i-nonanal 
isobutylacetate 
acetophenone 

0.260 
0.260 
0.315 
0.281 
0.200 
0.247 

The loadings for PC2 (Table 17.2) yield a very different picture. Some of these 
loadings are positive, while others are negative. One also observes that those 
substances that have the same sign are chemically related: substances with negative 
loadings are all aromatic, while most of the substances with a positive loading are 
aliphatic. 

One concludes that PC2 apparently differentiates between samples with pollution 
of an aromatic nature and samples with a more aliphatic pollution. Highly positive 
scores along PC2 are indicative of aliphatic pollution. The samples with highly 
positive scores on PC2 and those with highly negative scores were obtained for 
different wind directions (Fig. 17.10). It can now be concluded that samples from 
the wind direction, indicated by a cross, are characterized by a higher aliphatics to 
aromatics ratio than the samples taken when the wind comes from the direction 
symbolized with a black dot. PCI tells us that total pollution is higher when the wind 
blows from the cross or dot direction than when it comes from the square direction. 
PC2 shows that when high pollution occurs it is characterized by different aliphatic 
to aromatic ratios and the ratio depends on wind direction. While PCI is a general 
size component, PC2 expresses contrast. It should be noted here that, by using 
certain types of pretreatment (see Chapter 31), the size effect can be eliminated. 
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n-dodecane 

-xylene 
0-xylene 

Fig. 17.12. Loading plot of a few of the variables of the air pollution example. 

The information present in the loadings can of course be displayed also in 
two-dimensional loading plots. One can for instance plot the loading of each 
variable on PCI against the loading of that variable on PC2. The interpretation is 
based on the direction in which the variables lie on this plot as seen from its origin. 
When two variables show a high correlation coefficient, one can predict the values 
for one variable to a large extent from the other one. It also means that when one 
has determined one variable, the other does not yield much additional information 
(see also Chapter 18). It is interpreted in the same way as a vector. Two variables 
are strongly correlated when there is a small angle between the lines connecting 
them with the origin. Figure 17.12 shows a few loadings on PCI and PC2 for the 
variables of the air pollution example. O- andp-xylene are very strongly correlated 
since they fall on the same line from the origin. Styrene is somewhat less, but still 
strongly correlated with the two xylenes. Decane and dodecane are also strongly 
correlated with each other, but not with the three other substances shown. 

In the same way that it is useful to plot the scores of PCs one by one (see the 
preceding section) it can also be interesting to plot the loadings of single PCs. This 
is certainly the case when the variables are wavelengths (or rather an optical 
measurement, such as absorbance, at different wavelengths). In that case the rows 
in the data matrix are spectra and the plots can be described as loading spectra. For 
the tablet example introduced in the preceding section, we plotted the loadings on 
PC2 against wavelength. The result is shown in Fig. 17.13. One observes that the 
highest loadings were obtained in the visible wavelength range: PC2 is largely 
determined by the colouring agent that was added to the tablets, since the wave­
lengths at which this substance absorbs receive the highest weights in determining 
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Fig. 17.13 Loadings on PC2 in function of wavelength for the tablets of Fig. 17.9. 
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Fig. 17.14. Rotation of PCs for the air pollution example to obtain more meaningful factors. 

the scores. Incidentally, it should be noted that we have now interpreted the first 
three PCs of the tablet example. The first describes differences in shape, the second 
in colour and the third in concentration of active substance. 

We have explained the main PCs for both the air pollution and the tablet 
example. However, it should be noted that such an interpretation is not always 
possible and that the PC axes are not necessarily the best way to describe certain 
underlying characteristics of the data. Let us consider again the air pollution 
example. Although PCI and PC2 allow to represent the objects, and the loadings 
can be interpreted to say something about the variables, the new axes introduced 
in Fig. 17.14 would physically be more meaningful. One could then identify an 
aliphatic variable and an aromatic variable and scores of the objects on these 
coordinates would give immediately a value for aromatic and aliphatic character. 
This requires additional rotations of the PCs. The techniques that are used to 
perform this are collectively called factor analysis, while the new meaningful 
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variables are called fundamental variables or factors. Factor analysis is one of the 
more important fields of chemometrics, and is described further in Chapter 34. 

We now know that the scores, s, contain the information about the objects and 
that the loadings, v, contain the information about the variables. A very important 
result in this context is that: 

X - S V^ 
nxm nxm mxm 

(17.3) 

The data matrix X can be decomposed into a product of two matrices, one of 
which contains the information about the objects (S) and the other about the 
variables (V). The decomposition is based on the singular value decomposition 
(see further Section 17.6). An illustration of the usefulness of this decomposition 
is given by Migron et al. [4]. They studied a 28 X 9 matrix consisting of the partition 
coefficients of 28 solutes between 9 solvents and water and decomposed the data 
into a matrix of solute properties and one of solvent properties. 

The S matrix contains the scores of n objects on m principal components or 
latent variables. The V-matrix is a square matrix and contains the loadings of the 
m manifest variables on the m latent variables (see Fig. 17.15). By retaining only 
the significant components PCI to PCk one restricts the information in the two 
matrices to structural information, i.e. one eliminates the irrelevant noise. 

j - l m 
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Fig. 17.15. Decomposition of the matrix of manifest variables in a score matrix and a loading matrix. 
Noise is eliminated by retention of the first k significant principal components, i.e. restricting V and 
S to the vectors to the left of the broken line. 
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17.4 Biplots 

The methods we have described until now allow us to look at plots of either the 
objects or the variables. When variables and objects are displayed on the same plot 
this is called a biplot. 

An example comes from the field of structure-activity analysis [6]. There are 
several biplot methods (see Chapters 31 and 32). The method applied here is called 
the method of spectral maps [7]. The activity investigated is the inhibition of 
rhinoviruses, i.e. the viruses that cause the common cold. Several candidate drugs 
were tested for their activity and one wants to know whether there is any relationship 
between the structure of the chemical compounds and the activity they exert. This is 
not a simple problem to solve because there are so many different rhinoviruses 
(serotypes). One hundred such serotypes were isolated and 15 different chemical 
compounds were tested with all one hundred serotypes. Their minimal inhibitory 
concentration (MIC value) was then measured. This is the minimal concentration 
of the drug required to inhibit a standard culture of a serotype. The reciprocal MIC 
values are a measure of antiviral activity. This yields a table consisting of 100 x 15 
data. The biplot of the serotypes and the drugs is shown in Fig. 17.16. The chemical 
formulas of five of these substances are also given in the figure. 

Let us first look at the objects (the serotypes). They are split up in two groups, 
A and B, along PCI. In this application, a log double-centring pretreatment of the 
data was carried out so that PC 1 is not an indicator of general size (see Chapter 31). 
One then concludes that group A and group B have different patterns for the values 
of the variables; certain substances are more successful in inhibiting group A 
serotypes and others in inhibiting group B objects. 

We should recall that, to interpret the effect of the variables, we must look at 
their direction from the origin. Certain drugs point in more or less the same 
direction, for instance, DCF and MDL. This means that they are correlated, so that 
they must be most effective against the same serotypes, namely the objects of 
group B. Indeed, DCF and MDL have high loadings on PCI. Because scores are 
sums of products of loadings and manifest variables, the scores of the objects along 
PCI will be positive only if the values of the manifest variables, which exhibit 
positive loadings, are generally higher than those of the manifest variables with 
negative loadings. Therefore, DCF and MDL must indeed inhibit group B sero­
types to a greater extent than group A serotypes. More generally, variables that 
point towards certain objects are more important for those objects. One says that 
they interact to a greater extent. 

It is instructive to look at the structure of the substances interacting respectively 
with group A and B serotypes. Two of the chemical substances (SDS and WIN 
51711) shown in Fig. 17.16 point to group A and the other three to group B. The 
general similarity of the structures of substances in group A on the one hand and 
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Fig. 17.16. Biplot of the rhinovirus data set [7]. The dots are the serotypes, the stars the variables and the 
cross is the origin of the biplot. Substances 1 and 2 are respectively SDS and WIN 51711. Substance 3 is 
chalcone and substances 4 and 5 are analogues of chalcone that interact with group B serotypes. 

those in group B on the other is striking. The group A substances can be charac­
terized as having a long aliphatic chain. Those of group B can be characterized as 
bulky and polycyclic. The spectral map analysis strongly suggests two different 
classes of serotypes interacting with different types of compounds. Group A 
serotypes are particularly sensitive to long aliphatic chain molecules. Group B 
serotypes are more sensitive to bulky polycyclic molecules. 
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Before explaining the hypothesis derived from this conclusion, it is necessary to 
explain somewhat more about rhino viruses. The protein envelope of these 
viruses possesses a regular icosahedral structure. Each of the 20 faces of this 
icosahedron is built up of three different proteins. These proteins form canyons 
around each of the twelve symmetry axes located at the twelve vertices of the 
polyhedron and drugs can inhibit the virus by lodging themselves in these 
canyons. They thereby prevent the uncoating of the viral envelope, which is a 
necessary step for its replication inside the host cell. The hypothesis derived 
from the spectral map analysis is that there must be two different forms of 
canyons, which have evolved from a common ancestor. The A class of viruses 
possesses canyons which can accommodate elongated aliphatic molecules. The 
B class accepts only shorter and bulkier polycyclic molecules. The existence of 
two groups of rhinoviruses has recently been confirmed by means of sequence 
analysis of the envelope proteins. 

One can conclude that biplots allow to investigate trends in a data table and that 
they show 

- relationships or contrasts between objects, in our example between serotypes, 
- relationships or contrasts between variables, in our example between com­

pounds, 
- relationships between variables and objects, in our example between sero­

types and compounds. 

17.5 Applications in method validation 

17.5,1 Comparison of two methods 

In Section 8.2.11 we studied the situation in which both the predictor and the 
response variable are subject to error. We concluded that instead of using ordinary 
least squares which minimizes residuals parallel to y (see Fig. 8.15a) we should 
minimize residuals orthogonal to the regression line (see Fig. 8.15b). Clearly, Fig. 
8.15b is very similar to Fig. 17.3b. It should therefore not be a surprise that we 
concluded that computing PCI of a data matrix consisting of 2 columns (the x and 
y values) and n rows {n = number of samples) yields the desired regression line. 
This was applied in method validation in Section 13.5.6 to compare results 
obtained with two different methods or in two different laboratories. 

This application allows us to make an important comment about principal 
components in general. In Fig. 17.3b PCI can be considered as a method to 
carry out regression between x\ and xi by minimizing residuals orthogonal to the 
regression line. In general, therefore, obtaining principal components can be 
described as a regression procedure. 
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17,5.2 Intercomparison studies 

In previous chapters we have often stressed that visual analysis of results should 
as much as possible precede or accompany statistical analysis. In Section 14.3.1 
we described several visual aids in laboratory-performance (proficiency) studies. 
When several materials are analyzed by each laboratory or several methods are 
involved, PCA-based methods can be used for the same purpose. 

An example can be found in the work of Rej et al. [8]. Their aim was to study 
clinical reference materials (CRM). These materials are not always well charac­
terized. One needs to determine the concentration for the analyte for which the 
CRM is used and it frequently happens that there are several alternative methods 
available. It is not clear which of these methods is better or whether they are equally 
suitable for the analysis of different types of material. Rej et al. set up an experi­
ment for the analysis of theophyline. The objects are 35 samples of three types 
(bovine serum CRM, human serum CRM and patient's material). The variables are 
the five different methods used. 

Figure 17.17 gives the result of a correspondence factor analysis, which is a PCA 
after a pretreatment of the data (see Chapter 32). It is not our purpose here to discuss 
this figure in full detail, but merely to point out its usefulness by some examples. 
Along PC 1 we find for instance that fluorescent polarization immuno-assay 
(FPIA), high performance liquid chromatography (HPLC), substrate-labelled 
fluorescent immuno-assay (SLFIA) and the enzyme-multiplied immuno-assay 
technique (EMIT) are separated. It is found that this is due to consistently low 
results of EMIT compared with the others. The bovine and human CRMs, which 
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Fig. 17,17. Biplot for the determination of theophylline with five methods in 35 CRMs of 3 types 
(patient D, human (A) and bovine (O)) (adapted from Ref. [8]). 
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should give the same result, are also separated and one therefore knows that they 
yield different results with at least some of the methods. PC 2 is largely determined 
by NIIA and human serum CRMs. It was concluded that NIIA is sensitive to a 
certain type of background interference. SLFIA also points in the direction of the 
human CRM's and therefore interacts specifically with them. 

Feinberg and Bugner [9] analyzed the results obtained for the determination of 
nitrate by 39 laboratories (the objects) on 7 types of plant material (the variables). 
The laboratories belonged to two different organizations, each organizing collabo­
rative studies for their members, and employed different methods. Figure 17.18 
shows a score plot. We can see that all ion selective electrode methods are found 
on the right and that the laboratories belonging to the two organizations (1-28, 
29-38, respectively) are almost completely segregated along PC 1. The group of 
laboratories 29-38 delivers lower results than the other and the ion-selective 
methods give higher results than the other methods. 

In both examples PC-based methods point out discrepancies or trends. They can 
therefore supplement or replace the visual methods of Chapter 14. 
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Fig. 17.18. Score plot for 39 laboratories characterized by their results for nitrate on 7 materials. 
Methods used: colorimetry (+), ion chromatography (•), distillation (A), ion-selective electrode (x), 
gas chromatography (D) (adapted from Ref. [9]). 
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17.6 The singular value decomposition 

17,6.1 Eigenvalues 

Any data matrix X can be decomposed according to the relationship 

X = U W V^ (17.4) 

where U is related to the scores of the objects, V is related to the loadings of the 
manifest variables and W is related to the variation explained by successive latent 
variables. Equation (17.4) describes what is known as the singular value decom­
position. To understand what this relationship means and what U, W and V are 
exactly, we will consider a simple example. 

The example is the one of Table 9.1. X is therefore a matrix consisting of ^ = 5 
rows (or objects) and m- A columns (or variables). The variables are concentra­
tions of the elements Al, Si, Mn and Fe, respectively. 

X = 

200 300 100 360" 
380 580 420 840 
200 320 400 380 
500 760 250 1060 
50 70 25 10 

(17.5) 

As already mentioned, it is customary to pretreat data before carrying out PCA 
and as we want to apply singular value decomposition to explain PCA, we will do 
this here too. The pretreatment we have chosen is column-centring (see also 
Chapters 9 and 31). This yields: 

Z = 

-66 -106 -139 -188 
144 174 181 292 
-66 -86 161 -168 
234 354 11 512 
-216 -336 -214 -448 

(17.6) 

Z has the same dimensions as X and we can carry out the singular value decompo­
sition on Z: 

z = u w v̂  
nxiu nxm mxin mxm 

(17.7) 

We will not explain how to carry out singular value decomposition but only 
describe the results. Let us first consider W. This is a square diagonal matrix with 
dimensions mx m: 
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w= 
0.6 
0 
0 
0 

0 
285.5 

0 
0 

0 0 
0 0 

47.2 0 
0 3.0 

(17.8) 

Only the elements on the diagonal are different from zero. From top to bottom 
we will call them wi,W2,... ,w^. We observe that they are ranked such that w\ > w^ 
> ... > v^rn- We also remember from Chapter 9 that diagonal matrices are often used 
for weighting purposes and we can therefore describe W as a weight matrix in 
which the weights are ranked in descending order of magnitude along the diagonal 
from top to bottom. This matrix is called the singular values matrix. 

In PCA we will not use W as such but rather A. The matrix A is called the 
eigenvalue matrix and is given by: 

1062000 0 0 0" 
0 81500 0 0 
0 0 2230 0 
0 0 0 9 

(17.9) 

It is a square matrix with as elements the eigenvalues X for which: 

Xi = wf or in matrix notation A = W^ (17.10) 

The eigenvalues Xk are of course ordered in the same way as the singular values 
w .̂ The dimensions are again m x m. The dimension of the square eigenvalue 
matrix is given by the number of manifest variables or, since this is equal to the 
number of latent variables, by the number of latent variables. It turns out that the 
eigenvalues are associated each with a PC. For instance X\ is associated with PCI 
and is called the eigenvalue of PCI. 

The eigenvalues represent the variation of the data along PCI, PC2, respec­
tively. In Section 17.1 it was concluded that the variance along PCI must be larger 
than that along PC2, etc. It can now be seen that the eigenvalue matrix is indeed 
constructed such that X], associated with PCI is larger than X2, associated with 
PC2, etc. In fact, the eigenvalues are the variances of the scores on PCI, PC2, etc. 

The eigenvalues explain successively less information and are therefore associ­
ated with successively less important principal components. The sum of the 
eigenvalues is equal to the sum of all the variances along the principal components. 
In other words, the trace of the eigenvalue matrix is equal to the total variance of 
the data. A measure of the importance of each principal component can then be 
obtained by expressing it as a % variance explained. The % variance explained by 
PCk = (Vtrace(A))100. 

This measure is sometimes used as a criterion to delete principal components in 
a feature reduction process. All components with less than X% explained variance 
(often X = 80, but there is no theoretical reason for that) are considered unimportant 
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and deleted. How to use eigenvalues to decide that PCs are significant is described 
in Section 17.7 and Chapter 34. 

17.6.2 Score and loading matrices 

U and V consist of a set of vectors called the left and right singular vectors. V 
is, in fact, the matrix of eigenvectors associated with the matrix of eigenvalues A. 
For our example it is given by 

V = 

0.3392 -0.0876 
0.5185 -0.0805 
0.2082 0.9775 
0.7568 _o.i744 

0.3684 -0.8611' 
0.6850 0.5055 

-0.0227 -0.0272 
0.6282 0.0471 

(17.11) 

The columns of this matrix are the successive eigenvectors for PCI to PC4 and 
the rows are the loadings for the manifest variables. The loading plot for PCI and 
PC2 is given in Fig. 17.19a. Al, Si, Fe are found in the same direction from the 
origin and are therefore correlated. This can easily be verified by computing the 
correlation coefficient between the columns in Z. For 1 and 2 it is for instance equal 
to 0.997. Mn, on the other hand, is situated in another direction and therefore less 
correlated. Indeed ^Mn, Al) = 0.58. All loadings on PCI are positive: PCI is a size 
component. PC2 is dominated by a high loading for Mn (0.9775) and shows 
contrast, since there are both positive and negative loadings. 

U is the normed score matrix. For our example, it is given by: 

U^ 

-0.2412 
0.3761 

-0.1558 
0.6333 

-0.6124 

0.3108 
0.3572 
0.6982 

-0.4467 
-0.2979 

0.5150 
-0.5578 

0.3951 
0.1443 

-0.4967 

-0.6164 
-0.4689 

0.3635 
0.4225 
0.2993 

(17.12) 

The columns are the normed scores on PC 1 to PC4 for the five objects. The normed 
score plot is shown in Fig. 17.19b. One observes that, as expected, PCI is a size 
component. The order from left to right of the scores on PCI (5-1-3-2-4) is the 
order of the sums of concentrations of the trace elements from low to high. From 
the study of the loadings we expect PC2 to show contrast, mainly due to Mn, and, 
indeed, high scores on PC2 are found for objects 2 and 3 that have relatively high 
Mn concentrations. 

Both V and U are orthonormal matrices. This means that they are orthogonal 
and normed (or normalised). A matrix is orthogonal when the sum of the cross-
products of all pairs of column vectors is zero. One can, for instance, verify for the 



544 

(a) PC 2 + 

hO.5 

'Mn 

0.5 
I 

• •Si 
Al 

PC1 

Fe 

(b) • P C 2 

•1 

PCI 

Fig. 17.19. Loading plot (a) and (normed) score plot (b) for the data of Table 9.1. 

first two eigenvectors of V that ((0.3392 x - 0.0876) + (0.5185 x - 0.0805) + 
(0.2082 X 0.9775) + (0.7568 x - 0.1744) = 0. Two mean-centred vectors, whose 
sum of cross products is equal to zero are uncorrelated: PCA decorrelates the 
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variables (see also Section 17.8). A matrix is normed when the sum of the squared 
elements of a column vector is one. One can verify that, for instance, for the first 
eigenvector of V (0.3392)^ + (0 J185)^ + (0.2082)' + (0.7568)' = 1. 

Multiplying the normed score matrix U with the weight matrix W yields the 
(un-normed) score matrix S 

S - U W (17.13) 
nxin nxm mxm 

SO that we obtain the equivalent of eq. (17.2) 

S - Z V (17.14) 
nxin nXfn mxm 

for the case where the PCA is done on pretreated data (Z instead of X). Since W is 
diagonal, this means that 

s^p^u.j.w,, (17.15) 

For our example, for instance, s\\=ux\- w\=- 0.2412 x 1030.6, so that for object 
1 the score on PCI is -248.6. In practice, "score plots" are often normed score plots 
to take into account the difference in scale that would occur if one were to plot the 
un-normed scores. 

One can summarize now that any matrix X (after transformation, Z) can be 
decomposed into a set of normed and orthogonal projections U, describing the 
locations of the objects in space, the normed and orthogonal vectors V, describing 
the relation between the old and new variables, and W, describing the amount of 
variance present in each eigenvector. The latter are related to the standard deviation 
of the projections on V. 

By replacing U W by S in eq. (17.7) one obtains: 

Z = S V^ (17.16) 
nxm iiXrii mxm 

This is the equivalent for Z of eq. (17.3) which we already proposed and com­
mented on in Section 17.3. By multiplying both sides with V: 

Z V = S V^ V (17.17) 
nXm mxm nxm mxm mxm 

For an orthogonal square matrix such as V one can write V^ = V"' and by replacing 
V^ by V~' in eq. (17.17), we obtain again: 

Z V = S (17.18) 
nxiv mxm nxm 

When not all eigenvectors are included, but only the k eigenvectors that are 
considered significant, eq. (17.16) is no longer correct, and we should write: 
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Z = S V^ + E (17.19) 
nxm nxk mxk nxm 

where E is the matrix of errors, due to not including all eigenvectors. 

17.7 The resolution of mixtures by evolving factor analysis and the HELP 
method 

So far we have focused on PCA as a display method. However, PCA and related 
latent variable methods have found many more uses. In this and the following 
sections an introduction will be given to some of these. They will be discussed in 
much more detail in several chapters of Part B. 

In this section, we will describe applications to the resolution of mixtures. Let 
us consider the case that the variables are wavelengths and the data absorbances 
measured at these wavelengths. Each object is then characterized by a spectrum, 
i.e. each row in the matrix is a spectrum. A possible question is whether all these 
spectra belong to the same substance and, if not, to how many species they belong. 
The problem is not simple because one has very little information to start with. We 
do not know the number of species, nor their pure spectra. How to solve such 
problems is described in Chapter 34. Here we will study a special case in which we 
have one additional element of information, namely that the objects follow some 
logical order. For instance, we are interested in acid-base or complex equilibria in 
function of pH and, to investigate this, we measure optical absorption for samples 
with increasing pH. The complexes have different spectra. This yields a table of 
optical absorption values at different wavelengths versus increasing (or decreas­
ing) pH. The object of the experiment is to detect at which pH-values there is more 
than one species. 

Another situation is found in HPLC with diode array detection (DAD). When a 
pharmaceutical company has produced a new active substance, it is necessary to 
make sure that that substance is sufficiently pure and one wants to develop a 
method to separate all impurities from the main substance. To validate this 
separation, one would like to establish that no impurity is hidden below the main 
peak. The DAD permits measurement of the full absorption spectrum at very short 
time intervals during the elution of a mixture. The data obtained can be written 
down as a matrix with, as rows, the spectra observed at ^i, 2̂, etc., respectively. 

The columns are the chromatograms as they would have been observed with 
fixed wavelength detectors at ^i, Xj, etc. The objects correspond to elution times, 
the variables correspond to spectral wavelengths. The objective of the experiment 
is to decide which rows (spectra) are pure, i.e. at which times only one species is 
present and which rows are not, meaning that there is more than one substance 
present. 
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A. i 

Fig. 17.20. Measurement points for one pure substance. The fat line is the range of scores on PC2. 

To understand how to extract this information from such a data matrix, we will 
first turn to a simpler problem and suppose that there are only two wavelengths, Xi 
and A.2. First we consider the situation where there is only one species in solution 
(Fig. 17.20). In the absence of measurement error or noise, the ratio of absorbances 
at the two wavelengths should be constant. In a plot of the absorbance at X\ against 
the absorbance at X2, the measurement points should therefore fall on a straight 
line. Because of measurement error there will be some spread around the line. A 
PC analysis of the data would yield one significant PC, PCI, as shown in the figure. 
The second PC, orthogonal to the first and having a small variance (see the range 
of scores), would explain only the noise and hence is not considered to be 
significant. The important thing to note is that there is one species and also only 
one significant principal component. 

In Fig. 17.21a measurements for two different species A and B are plotted 
separately. Their spectra are different so that the ratios between absorbance at X] 
and X2 are also different. If we consider each substance separately, the measure­
ment points for each of the two species fall on two different lines. While pure 
species yield measurements situated around one of the two, such as X in Fig. 
17.21b, mixtures of these species, such as point Y, yield points situated between 
them. The PCI scores and PC2 scores obtained by PC A for all the points together 
are shown in Fig. 17.21c. The range of scores on PC2 is now much larger so that 
there are two significant principal components. More generally, if k species are 
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Fig. 17.21. (a) Measurement points for two pure substances, (b) Measurement points for two pure 
substances and mixtures of the two. (c) PCI and PC2 for the data of b. The fat line is the range of 
scores on PC2. 
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present and one measures at at least k wavelengths, then one will obtain k signifi­
cant components. It is now possible to state that more than one significant PC will 
be found if some of the time rows measure mixture spectra, and, more precisely 
that k significant PCs will be found when k species are present. 

If one turns this around, it can be concluded that k significant PCs mean that k 
species are present. This is an interesting result but it leaves one question unan­
swered: namely how to decide that a PC is significant. Moreover, one would like 
to know at which times more than one species is present. This can be done, for 
instance, with evolving factor analysis (EFA) [11]. 

In Fig. 17.22 we give an example. If the major substance and the impurity have 
different absorption spectra then at t(, a change in measured spectrum would occur, 
indicating that an impurity is present. In the simplified synthetic example shown 
here [10], detecting an impurity would not be difficult at all. However, one would 
still like to be able to detect impurities of the order of 0.1 to a few percent and in 
cases where the resolution between both substances is much smaller, so that 
overlap of the substances is complete. Moreover, it is probable that the substances 
are chemically related so that the spectra can be very similar. 

EFA determines the eigenvalues of the first few PCs in matrices that describe 
increasing time windows. Suppose that we analyze first the time window consist­
ing of the times t\-t5 as objects. As only one substance is present, one significant 
PC will be found. We then increase the time window by one unit, i.e. we now have 
6 objects: t] to te. We then observe the emergence of a second significant PC, 
indicating that there is a second substance. This is still clearer when adding t^, etc. 

We are now faced with how to determine how many PCs are significant. The 
basic theory on that subject can be found in Malinowski [12]. However, in the type 
of situation described here, the visual approach of EFA performs better for 
practical reasons (too lengthy to describe here [10]). In EFA, the eigenvalues (or 
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Fig. 17.22. Chromatogram and data table obtained with diode array detection. The broken Hnes denote 
successive matrices analyzed by evolving factor analysis. 
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time 

Fig. 17.23. Evolving factor analysis for the chromatogram of Fig. 17.22. 

the log eigenvalues) of the first PCs are plotted as a function of time (Fig. 17.23). 
The first eigenvalue is not really of interest since we know that at least one 
substance must be present, but its first 3 values are representative for noise, since 
no substance is present yet. From t4 there is a sharp increase: the first substance 
leaves the column. This means that the absorbance is larger, therefore also the 
variance in the data matrix and the first eigenvalue. The value of eigenvalue 2 is 
now representative for noise. At te there is a clear increase out of the noise level of 
eigenvalue 2, indicating the presence of a second substance and noise is repre­
sented by eigenvalue 3. EFA is described more fully in Chapter 34. The method as 
applied originally to chromatography consists of a forward pass yielding the result 
shown in Fig. 17.23 and a backward run starting from the last spectra. The two are 
combined to decide where exactly impurities are found. 

There is another simple way of looking at these data. Until now, we have placed 
the origin of the PCs in the centre of the data. This means that we have centred the 
data as described in Section 17.6. If we do not centre the data, i.e. we work on the 
original data, then the origin of the latent variable coordinate system is the same as 
that of the manifest variables and PCA is a simple rotation of the axes. In this case, 
this can be used to advantage. Figure 17.24 shows another chromatogram. Again, 
the chromatogram is simplified for didactical reasons, it would be very easy to 
decide that there are two substances present, and, again, we will first look at only 
two wavelengths. Points 7-8-9 are pure and therefore fall on a straight line through 
the origin and so do points 16-19. The other points are mixtures. The PCI and PC2 
through the origin (i.e. for uncentred data) are also shown. Figure 17.25 is the score 
plot on PCI and PC2. We see that 7-8-9 and 16-19 are still situated on straight 
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Fig. 17.24. Chromatogram measurement points obtained for two wavelengths and PCI and PC2 for 
the uncentred data. 
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Fig. 17.25. PC1-PC2 score plot for the uncentred data of Fig. 17.24. 
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lines through the origin of this plot. We can again turn this around: points on a 
straight line through the origin indicate a pure zone in the chromatogram and in this 
case we would infer from the PC 1-PC2 plot that there are two pure zones. This can 
be generalized to more than two wavelengths and is the basis of the heuristically 
evolving latent projections (HELP) method of Kvalheim et al. [13]. This method 
will be discussed further in Chapter 34. 

17.8 Principal component regression and multivariate calibration 

In Section 17.2, we studied an example concerning the score plot for a pharma­
ceutical example and we showed that the scores on PC3 are related to the concen­
tration of the active substance. The principal components are latent variables and 
these can be entered into a (multiple) regression instead of the manifest variables. 
In the pharmaceutical example, it was eventually shown [3] that a good calibration 
can be obtained with PC3 and PC6 as the variables. Multiple regression is applied 
with the scores on these two principal components as the X data and the concen­
trations of the calibration samples as the y data. For the rest, one applies the 
techniques described in Chapter 10. For instance, the decision about how many 
principal components to include in the calibration equation is taken using the 
PRESS criterion described in Section 10.3.4. This type of regression is called 
principal component regression (PCR) and the application described is an example 
of multivariate calibration. Multivariate calibration is applied not only for the 
determination of the concentration of certain substances, but also for the direct 
determination of certain quality parameters. For instance, the sensory tenderness 
of beef was determined by PCR using near-infrared spectra as the manifest data 
[ 14]. Chapter 36 describes multivariate calibration in more detail. 

There are two main advantages to PCR compared with multiple regression. The 
first is that the number of variables is reduced to only a few (feature reduction). In 
the pharmaceutical example there are 1050 manifest variables to choose from, but 
only 14 principal components, the number of principal components being limited 
to the number of objects (14 tablets were measured). 

The second advantage is decorrelation. As explained in Chapter 10, the quality 
of prediction by multiple regression is adversely affected by correlation between 
the X variables. As we already stated in Section 17.6 the PCs are orthogonal, i.e. 
not correlated. Because of the fundamental importance of this concept, it is useful 
to elaborate it somewhat further. One of the many ways to describe the mathemati­
cal operations required to obtain the principal components is to state that one 
decorrelates the original variables. In Fig. 17.4a the data are plotted as a function 
of the original variables x\ and xi and we observe that x\ and X2 are correlated. This 
is no longer the case in the score plot of Fig. 17.4b. The transformation from the 
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system of coordinates Xi, X2 to PC 1, PC2 can be described as a decorrelation of the 
variables (see also Section 17.6.2). 

Let us describe this in a somewhat more formal way. Since S = U W (see Section 
17.6.2) and, since for a diagonal matrix W^ = W: 

Ŝ S = WU^UW (17.20) 

Because U is an orthogonal matrix U^U = I and 

S^S-W' = A (17.21) 

S^S is related to the covariance matrix (see Chapter 10) of the scores, so that we 
can indeed conclude, as already stated earlier, that A is related to the covariance 
matrix of the scores. Z^Z is related in the same way to the covariance matrix of the 
manifest (pretreated) variables and therefore one way of describing PCA is to say 
that the diagonal covariance matrix A is derived from the matrix Z^Z by diagonali-
zatlon. That A is diagonal follows from the fact that principal components are not 
correlated, so that the covariances between principal components must be zero. 
The diagonal elements are the variances of the scores along the successive princi­
pal components. All the other elements of the matrix, the covariances, are zero. 

17.9 Other latent variable methods 

The use of latent variables is not restricted to PCA and the factor analytical 
techniques derived from it. In certain cases latent variables can be constructed 
according to different criteria than in PCA. We will briefly discuss two such 
techniques here, namely partial least squares (PLS) and linear discriminant 
analysis (LDA). 

PLS is an alternative to PCR for multivariate calibration. It can be used, for 
instance, in the tablet example. The PLS latent variables are also linear combina­
tions of manifest variables, but the criterion to select weights is that the latent 
variable(s) describing the X data should have maximal covariance with the y data. 
One observes that the criterion is chosen keeping the aim of the method in mind, 
namely to model y as a function of X. 

When the y data consist of a single vector of data (in the tablet example, 
concentrations of an active compound), the method is called PLS J. When one 
relates two data tables to each other, one can apply PLS2. This can be explained 
with the following pharmacological example [15] (Fig. 17.26). The neuroleptics 
are a family of drugs used in psychiatry for the containment of many psychotic 
disorders. Each of these has different therapeutic effects on different disorders, that 
can be studied by clinical trials. This leads to different clinical spectra for each 
drug. These spectra together constitute one table. Such a table was collated for 17 
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Fig. 17.26. Relating two tables that respectively describe the laboratory pharmacology profiles and 
the clinical spectra of 17 neuroleptic drugs. 

neuroleptic drugs (the objects). The variables consisted of scores on a scale ranging 
from 0 to 5 for four different main effects (ability to antagonize delusion, for 
instance) and two side effects. The same neuroleptics were also characterized in 
the laboratory by tests on rats. The activity for five behavioral tests were deter­
mined. This constitutes a second table of 17 objects this time by 5 variables. The 
question then is whether one can relate the two tables and, more particularly 
whether one can predict the clinical spectrum from the laboratory one. In this case, 
latent variables are extracted from each of the tables with as criterion that the latent 
variables should show the highest covariance possible. Such problems are quite 
common. For instance, one can try to predict sensory characteristics of foodstuffs 
from physicochemical observations (see also Chapter 38) or pharmacological 
spectra of drugs from structural characteristics and/or molecular descriptors (see 
Chapter 37). Clearly, this type of problem is of very general importance and, for 
that reason, PLS and other methods that allow to relate two tables are described in 
Chapter 35. 

One of the best known pattern recognition methods is linear discriminant 
analysis (LDA), which is also based on selecting appropriate latent variables. Let 
us go back to the food authentication example which we introduced in Section 17.2. 
Suppose that, instead of merely investigating whether we can distinguish 3 types 
of wine based on the measurement of 8 variables, we had been asked to develop a 
rule or set of rules that would have allowed us to make the discrimination. These 
rules should be based on the results of the 100 certified samples of known origin 
which have been analyzed. This question can be rephrased as follows: Use the 
samples of known origin (the learning samples) to derive a classification rule 
which allows us to classify samples of unknown origin (the test samples) in one of 
the (three) known classes. This is called supervised pattern recognition (Chapter 
33). In LDA, one starts by reducing the number of variables. Consider Fig. 17.27. 
Two known classes are represented in a two-dimensional space and, as in Section 
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X,t 

Fig. 17.27. Canonical variate (CV) describing the discrimination of two classes of objects of known 
classification. 

17.1, we want to reduce the number of features to one. This means that we again 
need to determine a one-dimensional space (a line) on which the points will be 
projected. However, while PCA selects a direction which retains maximal structure 
in a lower dimension among the data, the criterion in LDA is a maximum 
discrimination among the given classes. The so-called canonical variate obtained 
in this way is also a linear combination of the original variables. 

In Fig. 17.28 two canonical variates are plotted against each other for an 
example from clinical chemistry. The example [16] concerns the thyroid gland and 
the distinction between eu-, hypo- and hyperthyroid patients. To make the distinc­
tion five chemical determinations such as serum thyroxine were made. From the 

Fig. 

Canonical Variate 1 

17.28. Plot of the two canonical variates for three classes with different thyroid status (from [16]). 
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five manifest variables, the two canonical variates were obtained. In the two-di­
mensional space boundaries half-way between the centroids of each pair of classes 
can be drawn and new patients can be classified according to the scores on the 
canonical variates in one of the three classes. 
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Chapter 18 

Information Theory 

18.1 Uncertainty and information 

Information theory was initially developed to describe the amount of informa­
tion in signals consisting of zeros and ones. In chemometrics, its initial use was to 
describe the amount of information yielded by a qualitative analysis. In data 
analysis, it is used to describe the uniformity of distributions. To introduce the 
subject, we will consider mainly qualitative analysis. Let us suppose we have a data 
bank with the identity ofn substances described by a binary code (0 or 1), i.e. each 
substance has a binary identification number. How many substances can we 
describe with a single digit or bit? The answer is 2(2'): we can distinguish the 
numbers 0 and 1. If two bits are available, the possible combinations are 00, 01, 10 
and 11, in the decimal system 0, 1, 2 and 3. We can now distinguish 2̂  different 
substances. With Â  bits of 0/1 information we can distinguish n = 2^ substances. 
This reasoning is not restricted to binary numbers. For instance when carrying out 
qualitative tests, we could say that if we have Â  tests available each with two 
outcomes (e.g. blue colour, no colour), then we have 2^ different combinations 
possible and this would allow us to distinguish between 2^ types of compounds. 

Going back to the data bank example we can also state that if we have n 
substances to distinguish, we need Â  = log2 n bits. The information / is a measure 
of the reduction of uncertainty. One of n possible substances can occur with equal 
probability and each is identified by a number from 0 to n. The probability that a 
certain event occurs, i.e. a certain identification number is obtained, is p = \ln. 
Before an observation is done, each of the n instances can occur. After observing 
it, the substance in question is known and only one instance is possible. 

The reduction of uncertainty is equal to: 

/ = log2 n - Iog2 1 = log2 n (bits) (18.1) 

Since/; = IM, we can re-write eq. (18.1) as 

/= l0g2( l / /7)=- l0g2/7 (18.2) 

Thus, we see that information theory is related to classical probability theory. In 
this connection, one also often uses the term entropy (H) and equates this to /. 
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Boltzmann has shown that entropy is a measure of the disorder in a physical 
system. In such systems the numerical value of disorder also measures the uncer­
tainty about the state of an individual particle. To summarize we can therefore 
write that 

/ = // = log2 n = - log2 p (18.3) 

when all instances are equally probable and maximal information is obtained. More 
generally, when there is a set of possible identities before the experiment (x\,X2,..., 
xj,..., Xn), each having a probability p(xj), the uncertainty before the experiment and 
thus also the information that is obtained by reducing this uncertainty to zero is 
given by 

n 

H = l-p(xj)\og2P(xj) (18.4) 

n 

with Z p{Xj) = 1 

which is known as Shannon's equation. 
Qualitative analytical methods are often referred to as "good", "valuable", 

"excellent", "specific", etc., with no further explanation of these terms. An objec­
tive interpretation of such terms is not easy and therefore the resulting choice of a 
method often does not have a fully rational basis. Whereas quantitative methods 
can be evaluated by using criteria such as precision, accuracy, robustness, detection 
limit, selectivity, and others discussed in the preceding chapters, no generally 
accepted criteria exist for qualitative analysis. 

Information theory permits a mathematical evaluation of qualitative methods by 
calculation of the expected or average amount of information obtained from the 
analysis. Information theory can be applied to quantitative analysis but this has led 
to less practical results than its application to qualitative problems. A very com­
plete overview is given by Eckschlager and Danzer [1]. A tutorial review was 
published by Clegg and Massart [2]. 

The aim of an analysis is to reduce the uncertainty with respect to the material 
(and therefore the system) to be analyzed. In qualitative analysis the analysis is 
carried out because there is an uncertainty about the identity of the components in 
the sample. After the analysis, the state of uncertainty is (hopefully) turned into a 
state of certainty (or, at least, of less uncertainty); in other words, the analysis has 
yielded a certain amount of information. 

Let us apply the concepts we have introduced to derive the information yielded 
by a specific signal (or procedure). Again we assume a simple model of the 
analytical problem in which each of the possible identities has the same probability 
before analysis. Before the experiment, the uncertainty can be expressed in terms 
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of the number of possible identities, no, each identity having a probability I/HQ. Due 
to outcome / of the experiment (signal _y/), the number of possible identities is 
reduced to n/, each with probability IM/. The information // obtained from this 
outcome is defined by 

// = initial uncertainty (/before) - reduced uncertainty (/after) = logi ^o - log2 ni = 
\og2(no/ni) = - log2 piyd (18.5) 

// is called the specific information of outcome /; yi is the signal that leads to 
outcome /. When all identities are equally probable, then p(yi) = n/Mo. Therefore 
// = - log2 piyd as indicated in eq. (18.5). 

A numerical example will illustrate the concepts introduced so far. Let us 
assume that the analyte to be identified is known to be one of 100 possible 
substances and that the measurement yields a signal, which is known to be obtained 
with 10 of the possible substances. We will call obtaining this signal a positive (+) 
result. Then, the application of eq. (18.5) leads to the specific information // = 
log2(100/10) or li = - log2(0.1) = 3.32 bits. 

If the test is negative (-), i.e. one does not obtain the signal which is considered 
to be positive, this also yields some information. It excludes that any of the 10 
substances yielding that signal is present and reduces uncertainty in the sense that 
instead of 100 possible identities, there are now only 90 left. The specific informa­
tion when one obtains a (-) result, is therefore // = log2 (100/90) = 0.15 bit. The two 
results are not equally probable: on average the probability of obtaining the (+) 
signal is 0.1, the probability of a (-) result is 0.9. 

The average of the specific information obtained, sometimes also called infor­
mation content of the test {signal, procedure) is then / = (0.1 X 3.32) + (0.9 x 0.15) 
- 0.47 bits (assuming that all 100 substances occur with the same probability). In 
equation form this can be written as 

All no ni no 
1 = — l0g2 — + — l0g2 — 

no n\ no n2 

with values of no, n\ and ^2 of 100, 10 and 90, respectively. It is customary to write 
no in the denominator 

ni n i ^2 , ^2 / l o /:x 

1 = log2 log— (18.6) 
no no no no 

Sometimes it is convenient to write this as 
I = -p^ log2 p^-p~ \og2P~ (18.7) 
where p"̂  is the probability for the (+) outcome. 

After generalization to more than two possible responses, eqs. (18.6) and (18.7) 
become: 

n 

/ = X - - l o g i f - V - X P(yd^og2p(yd (18.8) 
no no 

i=\ 
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where / is the information content of the procedure, n the number of possible 
outcomes (classes), HQ the number of possible identities before the experiment 
(with equal probabilities), n, the number of possible identities after interpretation 
of the experiment with result y„ and p{y^ is the probability of measuring a signal 
yi. This equation has the same form as eq. (18.4). It is Shannon's equation, now for 
the information content of a certain procedure. It should be noted that only those 
classes where /i/ > 0 are taken into account. It should be stressed here that the value 
of the information content is only of interest when used in a relative way, i.e. as a 
means to compare the performance of one qualitative procedure with another. 

A more general model can now be introduced. This model represents a set of 
possible identities before the experiment (xi, X2, ..., Xj, ..., x„), each having a 
probability p{Xj). As explained before, the uncertainty before the experiment, and 
thus the information that is obtained by reducing this uncertainty to zero, /before, can 
be expressed by means of the Shannon equation 

n 

/before = I " p{Xj) log2 p{Xj) ( 1 8 .9) 

After the experiment with result yi 
n 

Ii= 1 -p(xj\yd\og2P(xj\yd (18.10) 

where pixjlyi) is the (conditional) probability (also called Bayes' probability, see 
Chapter 16) of identity jc,, provided that the experiment has yielded a signal y, (/ = 
1, ..., m). The uncertainty, /,, remaining after a signal yi was obtained depends, of 
course, on the signal measured. The difference /before - // is equal to the specific 
information. In order to derive an equation for the information content, we have to 
subtract the weighted average /, from /before, which leads to the expression 

m 

/ = /be fo re - I P O ' , ) / , ( 1 8 . 1 1 ) 
i=\ 

where piyi) is the probability of measuring a signal y,. By making use of eqs. (18.9) 
and (18.10), eq. (18.11) can be written as 

n m n 

1=1- p{Xj) log2 p{Xj) - I /7(y,) I - p{xj\y;) log2 p(x/l>̂ /) (18.12) 

Calculation of the information content generally requires a knowledge of the 
following probabilities. 

(a) The probabilities of the identities of the unknown substance before analysis, 
p{xj). The first term on the right-hand side of eq. (18.12) represents what is known 
about the analytical problem in a formal way, or the prior information. A definition 
of the analytical problem in terms of the probabilities p(x/) is essential for calculating 
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the information content. An infinite number of possible identities each having a 
very small probability (approaching zero) represents a situation without pre-infor-
mation. The uncertainty is infinitely large and solving the analytical problem 
requires an infinite amount of information. 

(b) The probabilities of the possible signals, piyi). These probabilities depend on 
the relationship between the identities and the signals (tables of melting points, Rf 
values, spectra, etc.) and also on the substances expected to be identified, p(xj). If 
an identity is not likely to be found, the corresponding signal is not likely to be 
measured. It should be noted that, in replicate experiments, one identity can lead 
to different signals because of the presence of experimental errors. 

(c) The probabilities of the identities when the signal is known, p{xj\yi). In fact, 
these probabilities are the result of the interpretation of the measured signals in 
terms of possible identities. To this end, the following relationship can be used for 
interpretation. 

. / • 

This relationship shows that the probabilities for the identities after analysis can 
be calculated from the pre-information, p{xj), and the relationships between the 
identities and the signals, piyilxj). Eq. (18.13) is in fact Bayes' theorem, already 
described in Chapter 16. This result again stresses the relationship between infor­
mation theory and probability theory. 

18.2 An application to thin layer chromatography 

If we assume that substances of which the Rf values differ by 0.05 can be 
distinguished, the complete range of Rf values can be divided into 20 groups 
(0-0.05, 0.06-0.10, ...). Such a simplified model leads to a situation where sub­
stances with Rf values of, for instance, 0.05 and 0.06 are considered to be separated, 
which clearly is not true. However, it is not important here to distinguish exactly 
which substances are separated and which are not, as the purpose is rather to see 
how well the substances are spread out over the plate. 

Each of the 20 groups of Rf values can then be considered as a possible signal 
(yi, y2, ..., yio) and there is a distinct probability [p(yi), piyi), •., piyio)] that an 
unknown substance will have an /?f value within the limits of one of the groups. Let 
us consider a TLC procedure that is used to identify a substance belonging to a set 
of no substances; ni substances fall into Rf group 1, n2 into group 2, etc. If all 
substances have the same a priori probability to be the unknown compound, eq. 
(18.8) can be used for calculating the information content. To understand further 
the meaning of the information content, let us investigate some extreme conditions. 
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(a) All substances fall into the same group n,. In this instance n/no = 1 and thus 
/ = 0. As all of the substances yield the same /?f value, the experiment does not 
indicate anything to the observer. No information is obtained because there is no 
uncertainty as to which event (signal, Rf value) will occur: whatever the unknown 
substance, the result will always be the same. 

(b) All Ho substances fall into different groups. The information content is 
maximal as each substance yields a different Rf value. The information content, 
from eq. (18.8) with all n, = 1, is equal to 

1 fl\ 
I = -no — log2 — = log2(no) 

no no 

This is the maximum value which can be obtained. It is equal to the information 
necessary to obtain an unambiguous, complete identification of each substance (eq. 
18.1). In general, the maximum value for / is obtained when the substances are 
spread as evenly as possible over the 20 signal categories, i.e. the distribution is as 
uniform as possible. 

From these extreme conditions, it follows that in order to obtain a maximum 
information content the TLC system should cause an equal spread of the Rf values 
over the entire range. The results for an application [4] concerning DDT and related 
compounds are summarized in Table 18.1. The computation of / for system 13 is 
given as an example in Table 18.2. The results in Table 18.1 were based on sUghtly 
different and more complex definitions of/?f groups, which explains the difference 
between the 2.82 bit of Table 18.2 and the 2.97 bit of Table 18.1. The best 
separations are obtained with solvents 9, 13 and 29. 

TABLE 18.2 

Example of computation of the information content 

Rf groups 

0-0.05 

0.06-0.10 

0.16-0.20 

0.46-0.50 

0.51-0.55 

0.61-0.65 

0.66-0.70 

0.71-0.75 

Substances falling in the group 

DDA,DBH 

BPE 

Kelthane 

p^-DDD 

DBP 

DPE,p,p'-DDT, o,p'-DDE 

o,p'-DDT, DDMU, DDM 
p,p'-DDE 

njno 

2/13 

1/13 

1/13 

1/13 

1/13 

3/13 

3/13 

1/13 

log2(«//n()) 

-2.697 

-3.715 

-3.715 

-3.715 

-3.715 

-2.114 

-2.114 

-3.715 

(-«,/n())l0g2(f2//«()) 

0.415 

0.286 

0.286 

0.286 

0.286 

0.488 

0.488 

0.286 

/ = 2.82 
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18.3 The information content of combined procedures 

The objective of a qualitative analysis is to obtain an amount of information 
permitting unambiguous identification. In practice, this is often not possible with 
a single test and therefore experiments have to be combined. For example, in 
toxicological analysis of basic drugs, one will combine techniques such as UV and 
IR spectrometry, TLC and GLC or one will use two (or more) TLC procedures, etc. 
in order to obtain the necessary amount of information. Hence, the next question 
is how to calculate the information content of two or more methods. 

When the information of two TLC systems is combined, one can consider the 
combination of two Rf values which fall in the range 0.00-0.05 as one event (signal 
jii), an Rf value of 0.00-0.05 for system 1 and 0.05-0.10 for system 2 as a signal 
3̂ 12, etc. As before, one can define a probability piytj) for signal yij so that nij/no = 
piyij). In the general case of system 1 containing nt] classes and system 2 containing 
mj classes, eq. (18.8) can be converted into 

m^ w. 

nu / - -I I^log: fni 
i=\ 7=1 ^0 v̂ ŷ 

(18.14) 

At first sight, one might assume that / is the sum of the information content of the 
systems 1 and 2 

/ = /(l)4-/(2) (18.15) 

This is true only if the information yielded by systems 1 and 2 is not correlated, i.e. 
if no part of the information is redundant. This can be understood more easily by 
considering a simple example represented by the Rf values for eight substances in 
three different solvents (Table 18.3). 

TABLE 18.3 

Rf values of eight substances in three different solvents 

Substance 

A 
B 
C 
D 
E 
F 
G 
H 

Information content (bit) 

Solvent I 

0.20 
0.20 
0.40 
0.40 
0.60 
0.60 
0.80 
0.80 

2 

Solvent II 

0.20 
0.40 
0.20 
0.40 
0.20 
0.40 
0.20 
0.40 

1 

Solvent III 

0.20 
0.20 
0.20 
0.20 
0.40 
0.40 
0.40 
0.40 

1 
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With solvent I, one obtains 2 bits of information, while 3 bits are necessary for 
the complete identification of each possible substance. Solvents II and III each 
yield 1 bit of information. First running a plate with solvent I and then with 
solvent II does, indeed, permit complete identification: 3 bits are obtained with 
this combination. Although solvents I and III have clearly different Rf values, 
the combination of I and III does not yield any more information than that 
obtained with solvent I. The information content of a procedure in which both 
solvents are used is still 2 bits. Both of these cases are extreme. The combina­
tion of two TLC procedures, and in general of any two procedures, will lead to 
an amount of information less than that which would be obtained by adding the 
information content of both procedures but at least equal to the information 
content of a single procedure. In practice, it is improbable that two chroma­
tographic systems would yield completely uncorrelated information and even 
when combining methods such as chromatography and spectrophotometry some 
correlation should be expected. As a result of these correlations, the measurement 
of two (or more) physical quantities yields partly the same information (also called 
mutual information). 

For instance, both melting and boiling points usually increase with increasing 
molecular weight. When a high melting point has been observed, the boiling point 
is also expected to be high. If the correlation between melting point and boiling 
point were perfect, it would make no sense to determine both quantities for 
identification purposes. However, the correlation is not perfect because melting 
and boiling points are not determined solely by the size of the molecule but are also 
governed by factors such as its polarity. From this crude physical description, it is 
clear that the measurement of the boiling point will yield additional information 
even if the melting point is known. However, this additional amount of information 
is smaller than that obtained in the case of an unknown melting point. 

The most important conclusions from this section are that the highest informa­
tion content for individual systems is obtained when the substances are distributed 
evenly over the different classes and that, for combinations of methods, the 
correlated information should be kept as low as possible. 

Neither conclusion is surprising. Analytical chemists know that a TLC separa­
tion is better when the substances are divided over the complete /?f range and they 
also understand that two TLC systems in combination should not be too similar. 
However, information theory allows one to formalize this intuitive knowledge and 
to quantify it, so that an optimal method can be devised. 

Information theory can, for instance, be used as a tool for optimizing combina­
tions of analytical methods [5,6]. For instance, in gas chromatography, many 
different liquid stationary phases have been described (several hundreds). Quite 
clearly, one does not want to keep in stock so many stationary phases because many 
of these have the same separation characteristics or, to put it in the terminology 
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BitS70 1 

o - r - c N c o T r i o c o r ^ - o o o i o 

Number of stationary phases 
Fig. 18.1. Amount of information as a function of the number of gas-chromatographic stationary 
phases applied to a certain separation problem [6]. 

used in this chapter, yield correlated information. Figure 18.1 gives the amount of 
information which can be extracted by using gas chromatography for a particular 
set of compounds. The best stationary phase, i.e. the one with the highest information 
content, yields 7 bits for this particular group of compounds. In fact, in this 
particular instance, many of the stationary phases yield about the same quantity of 
information so that a combination of 5 stationary phases could theoretically yield 
35 bits. However, as the figure shows, only 28 bits are obtained. The 7 bits of 
information lost are due to correlation. The mathematics used to obtain this result 
are quite complex and of minor importance for our purpose. Of greater importance, 
however, are the rules for qualitative analysis which can be derived from them. 
These rules are as follows. 

(1) Optimal combined methods for qualitative analysis make use of individually 
good systems. 

(2) Individually good systems are characterized by high spread of the analytical 
signals (for instance, many different /?f values) and low errors (substances with 
small difference in Rf value can be discriminated). 

(3) Optimal combinations also require that the individual systems should 
yield uncorrected information, or, in other words, show informational ortho­
gonality [7] meaning that very dissimilar systems should be combined. This 
explains the power of combinations of methods with very different principles, 
such as GC/MS (combination of a chromatographic method with a spectro-
chemical one). 
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18.4 Inductive expert systems 

In Chapter 43, we will see that deductive expert systems use rules, given by an 
expert, to make conclusions. We will also see that the requirement that rules should 
be given constitutes a bottleneck. To avoid this problem so-called inductive expert 
systems derive the rules from examples. The best known algorithm, Quinlan's Id3 
algorithm [8], applies information theory for this purpose. It can also be described 
as a method for supervised pattern recognition (see Chapter 33). 

Let us explain it with a simple example based on Ref. [2]. We need to make rules 
to decide whether a certain sample belongs to class A or to class B. One knows that 
the a priori probabilities are equal. A set of samples of known origin, which we 
will call the training set, representative for the population and consisting of 50% A 
samples and 50% B samples, is available to develop the rules. Each sample is 
characterized by a set of variables. The initial uncertainty is given by eq. (18.7) 

/ = - /7(A) log2 p{K) - /7(B) log2 /7(B) 

= - (0.5 log2 0.5 + 0.5 log2 0.5) = 1 bit 

This is the maximum uncertainty possible for a 2 class situation and we want to 
reduce it, if possible, to 0, i.e. we want to develop rules such that we will be able 
to state with certainty (i.e. /7 = 1) that an unknown belongs to a certain class. We 
therefore need to gain: 

7 = 1 - 0 = 1 bit 

Let us suppose that we have selected a certain variable x and a threshold value 
XT, which we think would give us some information. Let us call x+ all values of x > 
xj and x_ all values x < Xj. Using the training set, it is found that 5/8 of the samples 
have the value x+ and 3/8 have the value jc_. Of the x^ class samples 60% are found 
to belong to A (i.e. 3/8 of the whole sample set) and 40% are B (i.e. 2/8 of all 
samples). Of the x_ class samples one third is A (i.e. 1/8 of all samples) and two 
thirds B (i.e. 2/8 of all samples). 

The uncertainty remaining when one has obtained the x+ result is (see eq. 18.10): 

h = - 0.4 log2 0.4 - 0.6 log2 0.6 = 0.971 bit 

When the result was x_ then the remaining uncertainty is: 

/_ = - 0.33 log2 0.33 - 0.67 log2 0.67 = 0.918 bit 

Taking into account that the jc+ result is more probable than the x_ result, the average 
remaining uncertainty would be: 

Ha = (5/8 X 0.971) + (3/8 x 0.918) = 0.951 bit 

and the information gained is 

/ = 1-0.951 =0.049 bit 
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Linolenic acid 
<15 

Oleic acid 
<7870 

Linoleic acid 
<825 

Palmitic acid 
<990 

Fig. 18.2. Decision tree for the classification of East (E) and West (W) Ligurian olive oils, based on 
their fatty acid pattern [9]. 

Quinlan's algorithm sequentially selects variables and thresholds that cause the 
highest gain in information, until complete certainty is obtained or no further gain 
can be reached. First it selects the variable that yields the most information. For a 
continuous variable, this means that it finds the threshold at which the gain in 
information is highest. When this results in + or - classes that do not consist of pure 
A or pure B, that class is further separated in two new sub-classes using the variable 
and the threshold that increase the information most for that class. The result is a 
decision tree. An example is given in Fig. 18.2 taken from Derde et al. [9]. Hopke 
et al. [10] used the algorithm to develop rules for the classification of particles, 
collected during air-pollution studies on the basis of scanning electron microprobe 
results. Scott [11] applied it to classification of compounds of environmental 
interest and Tandler et al. [12] used it for monitoring products from polyethylene 
cracking. An iterative version of the algorithm, which allows among others, 
pruning away unnecessary branches of the tree is known as the C 4.5 algorithm 
[13]. Other tree-based classification methods for exploratory data analysis have 
been described in the statistical literature [14,15]. 



569 

18.5 Information theory in data analysis 

In Chapter 17 we studied PCA and described how it can be applied to display 
multivariate data. One of the main focuses of interest in the visual evaluation is 
then the occurrence of inhomogeneities e.g. clusters or outliers. PCA can detect 
these inhomogeneities, although it is not specifically directed towards it. Indeed, 
its aim is to describe variance. Inhomogeneities are sources of variance. They are, 
however, not necessarily the main source of variance in a data set. Statisticians 
[16-18] have developed a method that is specifically directed towards detecting 
inhomogeneities. The method is called projection pursuit and is similar to PCA in 
the sense that it projects data from multivariate space on what are called "interest­
ing" directions (while PCA projects them on directions explaining maximal vari­
ance). An interesting direction is one that leads to non-uniform distributions of the 
projections. Fig. 18.3 shows a bivariate data set with an interesting and a non-in­
teresting direction. Uniformity can be measured with the (negative) Shannon 
equation. In Section 18.2 we have shown that the Shannon equation leads to 
maximum values for the most uniform distribution. The negative of the Shannon 

Fig. 18.3. An interesting direction (ID) for a bivariate data set, compared to the first principal 
component (PCI). 
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result thus leads to the maximum value when the distribution is "interesting", i.e. 
non-uniform. One can, as we did in Section 18.2, split up the axis indicating a 
certain direction in equidistant classes, note how many points project into each 
class and apply eq. (18.8) to obtain / and multiply by -1 to obtain the negative 
value. Another procedure is to create a potential function (see Chapter 33) around 
each projected point and to apply a continuous version of eq. (18.8). The reader is 
referred to references [14-16] for more details. Incidentally, it can be noted that 
the interesting direction of Fig. 18.3 resembles the canonical variate of Fig. 17.27, 
obtained by linear discriminant analysis. There is a fundamental difference how­
ever. In linear discriminant analysis one knows that there are two classes and which 
points belong to each class (supervised procedure). Here, one discovers that there 
are two classes (unsupervised procedure). 

Another application of the Shannon equation is found in signal processing, 
where the entropy (H) is used as a criterion for the reduction of noise from a 
spectrum. In an iterative way, several possible spectra are calculated from which 
the one with maximum entropy is selected, or the one which contains the maximum 
amount of information (see Chapter 40). 
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Chapter 19 

Fuzzy Methods 

19.1 Conventional set theory and fuzzy set theory 

Fuzzy methods are based on fuzzy set theory which was introduced by Zadeh [1] 
in 1965. It describes a way of deahng with vague statements or uncertain observations. 

In a conventional or crisp set A the elements jc of a given universe X either 
belong to the set A or they do not belong to A. We write xe Aio indicate that x is 
a member or element of A and JC ̂  A to indicate that x is not a member of A. 
Consider for example a universe X containing resolutions of chromatographic 
peaks, /?s, between 0 and 2. A crisp set labelled "well-resolved" would then for 
instance contain all resolutions at least equal to 1.5. They are a member of the set 
"well-resolved" while resolutions < 1.5 are no member of this set. A crisp set can 
be represented in different ways: (i) by listing the elements belonging to the set 
(only useful for finite sets containing a finite number of elements), (ii) by stating 
the conditions for membership; for our example this would be A = {x\X > 1.5} 
where the symbol I means "such that", (iii) by using the characteristic function or 
membership function mA(x) that assigns a value 1 to all elements belonging to the 
set "well-resolved" and a value 0 to all elements that do not belong to this set: 

(lifxeA 
mAix) = \ (19.1) 

[Oif jc^ A 
In Fig. 19.1a the membership function is represented for the crisp set "well-re­
solved". In conventional set theory the transition between membership and non-
membership is abrupt and for the variable well-resolved this might not be the most 
appropriate representation. Indeed an /?s value equal to 1.51 would indicate a good 
separation between the peaks while with an R^ value equal to 1.49 the conclusion 
would be that the chromatographic peaks are ill-separated. A more useful approach 
could be to consider /?s-values larger than 1.8 as really well-separated and those 
smaller than 0.8 as not well-separated at all. In between we would be rather vague 
about the amount of separation by specifying that the peaks are rather well-separated 
or rather ill-separated depending on whether R^ approaches 1.8 or 0.8 respectively. 
Fuzzy sets take this kind of vagueness into account by allowing membership values 
between 0 and 1. The fuzzy set A representing our concept of well-resolved assigns 
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Fig. 19.1. Representation of the variable well-resolved (a) as a crisp set, (b) as a fuzzy set. 

a membership value, m (̂jc), of 1 to /?s-values > 1.8; m^(x) decreases when the 
retention becomes smaller, to reach a value of 0 at /?s = 0.8. The membership value 
thus indicates to which degree two chromatographic peaks are considered to be 
well-resolved. Therefore, as shown in Fig. 19.1b, the transition between member­
ship and non-membership is not abrupt but gradual. This can be generalized in the 
following way: 

where A represents a fuzzy set. 
Fuzzy set theory not only allows us to deal with vague statements but it can also 

be applied with imprecise measurements. A simple analytical example from 
Bandemer and Otto [2] will illustrate this. 

The presence of an element in a sample, analyzed by e.g. atomic spectrometry, 
has to be verified by means of a spectroscopic line. The position of the line is 
compared with a library of reference lines. Due to random variation the experimen­
tally obtained line will not exactly match the tabulated line. Therefore an interval 
around the reference line is taken into account in order to decide whether both lines 
coincide. It will be concluded that they coincide if the observed line is within the 
interval and that they do not coincide if the observed line is outside the interval. 
Consequently only a yes-no or a 1-0 answer is obtained. This can be expressed by 
the membership function m(x) which assigns a value 1 to each line x contained in 
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A. CONVENTIONAL SET: 

1 

m^(x)' 

B. FUZZY SETS: 

Fig. 19.2. Another example of (A) a conventional or crisp set with membership function specified in 
eq. (19.1). (B) fuzzy sets with (a) exponential membership function (eq. (19.4)) and (b) triangular 
membership function (eq. (19.5)). 

the interval. The membership value is 0 for lines that are outside the interval. In 
this way a conventional or crisp set has been defined. Fig. 19.2a shows a general­
ized representation of such a conventional set A. For our example no difference is 
made between a line that is situated close to the border and inside the interval and 
a line that exactly coincides with the reference line. With fuzzy set theory a more 
detailed description of the coincidence of the two lines is possible by allowing 
membership values between 0 and 1. The membership value for a line is then 1 
only if it exactly matches the reference line and it decreases the more the line 
deviates from the reference line. 

The type of membership function to be used depends on the problem. The 
membership function that characterizes the fuzzy set "well-resolved" in the first 
example has the following form: 

rriAix) = { 

0 for x < a 

for a<x<b 
b — a 
1 fovx>b 

(19.3) 

where a = 0.8 and b= 1.8. 
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For the characterization of the imprecision of the position of a spectroscopic line 
in the second example, a symmetrical function, such as the following exponen-
tional membership function: 

niAix) = Qxp(-(x-a)W) (19.4) 

or a simpler triangular function 

mA(x) = [\-\x-a\/b]^ (19.5) 

could be used. In these expressions a and b are constants and the + sign in expres­
sion 19.5 indicates that negative values are equated to zero. In the spectroscopic 
example a represents the wavelength or the position of the reference spectroscopic 
line. The constant /? is a parameter of width of the membership function. The above 
defined membership functions are illustrated in Fig. 19.2b. 

Different sources of information can be used to specify the membership function 
such as personal experience, specific knowledge about the actual problem, litera­
ture data and statistical information. One usually finds that the specific mathemati­
cal form of the membership function chosen has only a minor influence on the final 
conclusions [3]. 

19.2 Definitions and operations with fuzzy sets 

There are two ways of representing a fuzzy set A, either by stating the member­
ship function (m (̂jc)), or as an ordered set of pairs: 

A = {(jc,m (̂x)) \xe X} 

where x represents the elements and m^(x) their membership value. Elements with 
a membership value equal to zero are generally not listed. Examples of the latter 
notation are found below. 

Since fuzzy sets are represented by their membership function, operations with 
fuzzy sets are defined via these membership functions. In what follows some 
simple operations are compared to those applied to crisp sets. They will be 
illustrated by means of the following example. Consider the crisp and finite 
universal set of resolutions X: 

X = {0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2} 

The fuzzy set "well-resolved" will be described as: 

A = {(1.0,0.20),( 1.2,0.40),( 1.4,0.60),( 1.6,0.80),( 1.8,1 ),(2.0,1 )(2.2,1)} 

where the first values between the brackets represent the elements (here resolu­
tions) of the fuzzy set and the second values represent their membership value. 
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The fuzzy set "very well-resolved" could be described for example as: 

B = {(1.8,0.33),(2.0,0.66),(2.2,1)} 

The union of two crisp sets is the set containing the elements that belong to at 
least one of the sets. For the union, L, of two fuzzy sets A and B (L = AuB) the 
membership function is given by the maximum of the membership functions m^(x) 
and mB(x): 

L = AuB: miix) = max[mA(jc), m f̂x)] (19.6) 

The union of the fuzzy sets "well-resolved" and "very well resolved" therefore is 
the fuzzy set defined as: 

L={(1.0,0.20),(1.2,0.40),(1.4,0.60)(1.6,0.80)(1.8,1)(2.0,1)(2.2,1)} 

The intersection of two crisp sets is the set containing all the elements belonging 
to both sets simultaneously. For the intersection, /, of two fuzzy sets, A andfi, the 
membership function is obtained from the minimum of both membership func­
tions, mA{x) and mB{x): 

I = AnB: mi(x) = min[mA(x), m^Cx)] (19.7) 

The intersection of the fuzzy sets "well-resolved" and "very well-resolved" is 
therefore the fuzzy set / defined as: 

/={(1.8,0.33),(2.0,0.66),(2.2,1)} 

The complement of a crisp set contains all the elements of the universe X which 
do not belong to the set. In analogy the complement A of a fuzzy set is defined as: 

mjix) = I - mA{x) (19.8) 

The complement of the fuzzy set "well-resolved" produces the fuzzy set "not 
well-resolved" which is defined as: 

A = {(0.4,1 ),(0.6,1 ),(0.8,1)(1.0,0.80)( 1.2,0.60),( 1.4,0.40),( 1.6,0.20)} 

The number of elements that belong to a finite crisp set is called the cardinality. 
For a fuzzy set A the cardinality is defined as the sum of the membership values of 
all elements of X in A: 

card A = 1 m (̂jc) (19.9) 
XEX 

For infinite X the cardinality is obtained as: 

card A = J mix) dx 
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Thus the cardinality for the fuzzy set "well-resolved" is: 

card A = 0 + 0 + 0 + 0.20 + 0.40 + 0.60 + 0.80 +1 + 1 + 1=5 

The comparison of the cardinalities of different fuzzy sets can be performed by 
considering the relative cardinality. This relative cardinality corresponds to a 
normalization of the cardinality of a fuzzy set to the interval [0,1]. It is the 
cardinality of set A divided by the cardinality of a standard set (/, e.g. the universe X. 

rel^ card A = card A I card U (19.10) 

The relative cardinality represents the fraction of elements of U present in A, 
weighted by their degree of membership in A. To compare fuzzy sets by their 
relative cardinality of course the same standard set U has to be chosen. 

The relative cardinality for the fuzzy set "well-resolved" is: 

relx card A = 5/10 = 0.5 

1 r 

m (̂x) 

union 

intersection 

complement 
c) 

mix) 

cardinch'ty 

Fig. 19.3. Some operations on fuzzy sets. For explanation see text. 
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since the cardinality of the above described universal set X, taken here as standard 
set is equal to 10. 

Finally the support of a fuzzy set A in the universal set X is the crisp set of all 
elements x that have a non-zero membership value in A: 

supp A = (xeX\ niAix) > 0) (19.11) 

The support of the fuzzy set "well-resolved" therefore is 

suppA = {1,1.2,1.4,1.6,1.8,2.0,2.2} 

Some of these operations are also illustrated with another example in Fig. 19.3. 
In this figure A and B represent two fuzzy sets. The union and the intersection of 
the two sets is shown in Fig. 19.3a and Fig. 19.3b, respectively. The complement 
of fuzzy set A is shown in Fig. 19.3c and the cardinality in Fig. 19.3d. 

19.3 Applications 

19.3.1 Identification of patterns 

Fuzzy theory can be applied for identification purposes to account for the 
possible uncertainty in the data patterns. The principle will be explained by a 
simple example concerning the identification of spectroscopic patterns based on 
peak positions. Fig. 19.4b gives the data pattern for an unknown sample with six 
peaks. This unknown sample pattern (f/) is considered to be crisp with mu(x) = 1 
if a peak is present at wavelength x and mu{x) = 0 otherwise. How well does that 
unknown pattern match the reference pattern from Fig. 19.4a? Peak positions are 
not always exactly reproducible due to e.g. measurement noise. Moreover, the 
reference spectrum might not have been recorded under the same conditions as the 
unknown spectrum. Therefore the reference pattern is fuzzified by assigning a 
membership function to the lines of the spectrum. Here the triangular membership 
function of eq. (19.5), in which b is taken equal to 2, is used: 

mi(x) = [\-\x-ai\/2]^ (19.12) 

with a/ the wavelength of the ith peak (/ = 1, ..., n; n being the number of peaks in 
the reference pattern). The membership function of the whole reference pattern, 
miix), is obtained from the union (see Section 19.2) of the fuzzified lines: 

f^Lix) - max rriiix) 
i 

For each wavelength x this corresponds to the maximum of the overlapping 
membership functions. For example 
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16 X 

Fig. 19.4. (a) Reference pattern, (b) unknown data pattern, (c) the fuzzified reference pattern, (d) the 
intersection of the fuzzified reference pattern and the (crisp) unknown pattern. 

for a, =3 m](x) = 0 atjc=l 

mi(x) = 0.5 atjc = 2 

m\{x) =1 atjc = 3 

m]{x) = 0.5 atjc = 4 

m](x) = 0 atx = 5 
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for a2 = 4 m2{x) = 0 at jc = 2 

m2(x) = 0.5 at X = 3 

m2{x) = I at X = 4 

m2{x) = 0.5 at X = 5 

m2(x) = 0 at X = 6 

for ^3 = 6 m3(x) = 0 at x = 4 

m3(x) = 0.5 at X = 5 

m3(x) = 1 at X = 6 

m3(x) = 0.5 at X = 7 

m3(x) = 0 at X = 8 

Therefore m^Cx) is equal to 0; 0.5; 1; 1; 0.5; 1 for x = 1, 2, 3, 4, 5, 6 respectively. 
Fig. 19.4c represents the complete fuzzified reference pattern. 

The comparison between the fuzzified reference pattern and the crisp unknown 
pattern is performed by intersecting (see Section 19.2) both data patterns, yielding 
the membership function for the intersection (/): 

m/(x) = min[mL(x), mu(x)] 

This gives a vector of m/ values that represent how well a peak in the unknown 
sample matches a peak in the reference sample. 

All information necessary to obtain m/(x) is given in Table 19.1 and the 
intersection is represented in Fig. 19.4d. The m/(x) values can be aggregated to a 
single value that characterizes the goodness of fit between the unknown sample and 
the reference pattern by calculating the relative cardinality (see Section 19.2). Here 
this is done by referring the cardinality of the intersection to the cardinality of the 
unknown crisp set: 

relf/ card / = card / / card U 

= 4.5/6 

= 0.75 

This value represents the degree of containment and reflects the quality of coinci­
dence between the fuzzified reference and the crisp unknown sample pattern. The 
larger the relative cardinality the better both patterns match. 

The aggregation of the m/(x) values could also be performed by calculating the 
mean m/(x) value which here is equal to 4.5/16 = 0.28. 
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TABLE 19.1 

Summary of fuzzy set calculations for the example of Section 19.3.1 

Wavelength 
(A) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Reference 
spectrum* 

X 

X 

X 

X 

X 

X 

X 

mdx) 

0 
0.5 
1 
1 
0.5 
1 
0.5 
1 
1 
1 
0.5 
0 
0.5 
1 
0.5 
0 

Unknown spectrum 
muix) 

0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
0 
0 

Intersection 
miix) 

0 
0.5 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

*x means that a peak is present at that wavelength. 

It is also possible to fuzzify the unknown spectrum and to consider the reference 
spectrum as being crisp. This might be a useful approach for the comparison of a 
sample spectrum with reference spectra from a spectroscopic library. The best 
match is searched for by intersecting the fuzzified sample spectrum with the 
different crisp reference spectra from the library. 

The principle outlined above can be extended to complex classification prob­
lems in which several criteria are considered. It has been applied to the classifica­
tion of patients with nephritis disease, based on chromatograms of urine samples 
[3,4]. Since retention data as well as signal response data were used, a two-dimen­
sional membership function of the following form was specified: 

mi{x,y) = (l-[{x- Xif /uj-^iy- yd' /vj]) (19.13) 

in which y is the peak height, x the retention time and w, and v, are the parameters 
of broadness which can be based on the uncertainties in peak height and retention 
time measurements. 

Other applications concern the characterization of gasolines based on their 
capillary gas chromatograms [5], library search in infrared spectroscopy [6,7], 
identification of highly imprecise peaks from HPLC separation of vitamins [8], 
quality control of analgesic tablets based on monitoring their ultraviolet spectra, 
characterized by strongly overlapping and non-additive signals [4]. 
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19,3,2 Regression 

In Chapter 12 the problem of outliers in least squares regression was discussed 
and robust methods which are much less affected by outlying observations were 
introduced. Here it will be shown how a fuzzy approach, which also does not 
necessitate assumptions about the residuals, except for the definition of the mem­
bership function can be used to advantage in regression. 

As an example consider the following x, y values: (1, 1.1); (2, 2.0); (3, 3.1); (4, 
3.8) and (5, 6.5). The data are considered as fuzzy observations, which means that 
the uncertainty is described by a suitable membership function. If only the y-vari­
able is subject to error, as is generally assumed in calibration, a one dimensional 
symmetrical function of the form: 

m(y) = {\ -\y-a\/b\ (19.14) 

could be specified. For the different observations of our example, it is represented 
in Fig. 19.5. The parameter of width, b, could be based on the standard deviation 
of the measurements, s. Suppose s is equal to 0.1 and b is equal to 2s - 0.2. 
Consequently the support of the fuzzy observations is a line segment with length 
equal to 0.4. The meaning of this is the following: a point in the middle of the 
support is an absolute member of the observation and has a membership value 
equal to 1. A point at the extremes of the line or outside the line does not belong to 
the observation and has a membership value equal to zero. In-between the ex­
tremes, membership values between 0 and 1 are obtained. 

To fit a straight line through these observations we look for the line which has 
the highest membership with the fuzzy observations. In Fig. 19.6 two regression 
lines are represented. Line 1 is the least squares line which does not give a good 
approximation to the fuzzy observations since it only intersects the membership 

Fig. 19.5. Illustration of the triangular membership function (eq. 19.14) with a line as support for the 
fuzzy observations in regression. 
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Fig. 19.6. Line 1 represents the least squares line (y = - 0-48 + 1.26 x) while line 2 is the optimal line 
obtained with fuzzy regression 5̂  = 0.19 + 0.91 JC). 

function of a single point. Line 2 obviously has a higher degree of approximation 
since it intersects the membership function of four of the data points. In fact the 
latter is the optimal line since it has the highest membership with the observations. 
The procedure to obtain this line can be summarized as follows: 

1. Obtain the least squares line: 

j = -0 .48+ \26x 

2. At the different jc/ values calculate for the corresponding fuzzy observation 
the membership values of the predicted y values, yi . This characterizes at each x, 
the intersection of the actual straight line Cv = ô + î-̂ ) with the membership 
function of the fuzzy observation: 

mi(boM) = (l-\h-yi\/0.2), (19.15) 

For our example the m/(-0.48,1.26) thus obtained are given in Table 19.2. 
3. Obtain a single value that characterizes the approximation of the whole line 

to the fuzzy observations which here will be denoted as miboM)- As observed in 
Section 19.3.1 this can be obtained as the mean of the mi{bo,b\) values: 

m(-0.48,1.26) = Im,(-0.48,1.26)/5 

= 0.80/5 = 0.16 
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TABLE 19.2 

Some calculations for the fuzzy regression of the data from Fig. 19.5 

1. y--
Xi 

1 
2 
3 
4 
5 

= -0.48 +1.26 X 

m(-0.48,1.26): 

2. y--
Xi 

1 
2 
3 
4 
5 

= 0.00+1.00 

m(0.00,1.00) = 

3. y = 
Xj 

1 
2 
3 
4 
5 

: 0.19 + 0.91 

m(0.19,0.91) = 

yi 
1.1 
2.0 
3.1 
3.8 
6.5 

-0.80/5-0.16 

IJC 

2.00/5 

X 

2.90/5 

1.1 
2.0 
3.1 
3.8 
6.5 

= 0.40 

yi 
1.1 
2.0 
3.1 
3.8 
6.5 

= 0.58 

yi 
0.78 
2.04 
3.30 
4.31 
5.82 

yi 
1 
2 
3 
4 
5 

yi 
1.10 
2.01 
2.92 
3.83 
4.74 

m,(-0.48,1.26) 
0 
0.80 
0 
0 
0 

m,(0.00,1.00) 
0.50 
1.00 
0.50 
0 
0 

m,(0.19,0.91) 
1.00 
0.95 
0.10 
0.85 
0 

4. Optimize m(bo,bi) by varying bo and bi for example by means of a grid search 
in which different combinations of bo and bi values are considered [3] or by means 
of a Simplex optimization procedure [9]. The principle of the latter is described in 
Chapter 26. 

5. The optimum regression parameters are those for which the highest value 
m(bo,bi) is obtained. 

Table 19.2 indicates that the line y = 0.00 + 1.00 x better approximates the fuzzy 
observations than the least squares line since m (0.00, 1.00) = 2.00/5 = 0.40. The 
optimum is obtained for the line j = 0.19 + 0.91 x which yields m(0.19,0.91) = 0.58 
(see Table 19.2). This line is very similar to the least squares line through the first 
four points. Notice that the line does not intersect the membership function for the 
fifth observation since m5(0.19, 0.91) = 0 which means that this point is an outlier 
to the line. This forms the basis of a test to detect outliers in calibration proposed 
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by Hu et al. [9]. Since the selection of the size of the support is critical in the detection 
of outliers, the precision of the measurements has to be known. To account for the 
decreasing precision of the measurements with the concentration in heteroscedastic 
calibration data, the width of the membership function specified for the different data 
points, i.e. the size of the line support, can be varied accordingly. 

By specifying a two-dimensional membership function of the form given in eq. 
(19.13) uncertainties in both the x and the y variable can be taken into account. A 
circle or an ellipse can be used as support for the fuzzy observations [9,10], 
describing a similar or a different error in both variables, respectively. This fuzzy 
approach could for example be applied in the comparison of two methods although 
it is not evident how to compare the slope and intercept with 1 and 0, respectively. 

1933 Other applications 

Besides the above mentioned applications, fuzzy methods can also be applied to 
clustering data (see Chapter 30). A potential application of fuzzy theory is the use 
of fuzzy rules [ 11,12] in artificial intelligence (see Chapter 43). The incorporation 
of fuzzy rules in neural networks (see Chapter 44) has also been described [13]. 
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Chapter 20 

Process Modelling and Sampling 

20.1 Introduction 

Knowledge about the composition of a sample yields information on an object 
or a process, such as soil, a river, a chemical reactor. With this information a 
decision is made about, for instance, the necessity of cleaning the soil or perform­
ing a corrective action on the chemical process. Because the amount or concentra­
tion of the measured constituent may vary in time or with position, it is clear that 
making decisions on the composition of the sampled object based on a single 
sample is not possible. Instead, several samples should be taken according to a 
well-defined sampling scheme. Processes or objects may be sampled for three 
reasons: (i) to describe the composition or state of an object or a process, i.e. the 
concentration of a particular constituent at a specific position in the object or at a 
certain time; (ii) to monitor a state, e.g. when the state of a system varies in time, 
one may want to know whether the state of the system is drifting away from the 
target value and risks to cross a given threshold; (iii) to control a state. By control, 
which is a consecutive series of actions, one aims to diminish the system (e.g. 
process) fluctuations in order to manufacture a product within certain specifica­
tions. Monitoring and control lead to an action immediately after the measurement 
is finished. The aspect of time is thus important. When describing or modelling the 
fluctuations of a process, one may first collect all results. Because the modelling 
step is carried out afterwards, the time aspect is of less importance. It is obvious 
that the sampling plan together with the accuracy and precision of the measurement 
device define how well the process fluctuations are known. Monitoring and control 
of time-varying processes are daily practices in manufacturing. Therefore, ade­
quate sampling strategies in combination with appropriate chemical or physical 
measurements are very important. They allow efficient process management and 
the production within narrow product specifications. 

In Chapter 2 we discussed the influence of the measurement error on the ability 
to observe process fluctuations. Moreover, control charts were introduced in 
Chapter 7 to check whether a process is statistically in control (no drift, time 
invariant standard deviation). In this chapter we will discuss the situation in which 
we want not only to observe the process fluctuations but also to reduce those 
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fluctuations by control. In this case the time aspect is important. Control is ideally 
performed on the basis of the current value of the process. However, because it 
takes some time before the measurement is available and the control action is 
executed, the process value may be different from the value at the time the sample 
was taken. When the process is sampled at regular intervals, the process value 
between two samples is not known and needs to be estimated. In addition the 
imprecision of the measurement adds some uncertainty about the process value. As 
a result not all process fluctuations are removed by control causing some residual 
variation. The magnitude of these remaining variations depends on our knowledge 
of the true value (or state) of the process at the time that the control action is carried 
out. This knowledge of the process state is usually represented by a model, by 
which unobserved process states are estimated. 

In this chapter we discuss a number of issues which influence our ability to 
estimate or to predict a system or process state. Such estimations are based on a 
number of observations (in time or space). Depending whether the process fluctua­
tions are described or controlled with the model, unobserved process values are 
estimated either by (i) interpolation between two consecutive sampling points or 
by (ii) extrapolation from the last to the next analytical result. In the first case the 
analysis time is not important. Measured values are attributed to the sampling 
points. On the contrary, in process control the dead time, which is the time between 
the sampling and control action, and the sampling interval determine how far ahead 
a process value has to be forecast. With these estimates a plant manager or operator 
may intervene in the process. 

20.2 Measurability and controllability 

Uncertainty about process states is related to the difference between the true (but 
unknown) state and the estimated state (Fig. 20.1). If one controls a process 
according to the estimated state, the shaded area in Fig. 20.1 represents the 
prediction error, which are the fluctuations left after control. These residual 
fluctuations are the result of our imperfect or uncertain knowledge of the process 
fluctuations. The uncertainty before any observation has been done is expressed by 
the variance of the process fluctuations, si and the uncertainty after a series of 
observations is the residual error si. If process states are perfectly forecast, si = 0. 
If no information at all is obtained by the observations, the best prediction is the 
process mean and, therefore, si = SQ. Van der Grinten [1^] and Leemans [5] 
introduced the concept measurability (m), to express the ability of a measuring 
system to follow the process fluctuations: 

m = -J(sl - si)/si =^(\-sl/si) (20.1) 
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true 

Jmated 

Fig. 20.1. True and estimated process values. The shaded area represents the unmodelled process 
fluctuations or prediction residuals. 

A measurability equal to 1 means that the process value is perfectly known at 
any time. The measurability is zero when process values are not known at all. 
Measurability is thus a measure for the amount of information which is obtained 
by sampling a process and analyzing the samples. Perfect knowledge should allow 
a perfect monitoring or control. However, due to imperfections in the control 
system, not all process fluctuations will be removed and therefore controllability 
(r) is usually a fraction of the measurability: 

r = im (20.2) 

where 0 < f < 1 
When designing a control or measuring system one should choose the most 

cost-effective measuring system. A high measurability may require a costly meas­
uring/control system, which should be paid back by higher revenues from a better 
product or fewer situations which are outside specification. This will be illustrated 
with a fictitious industrial process for the production of a nitrogen fertilizer with 
the following specifications: the long term average N-content over all batches 
(kegs or bags) should be at least 23.0%, and the amount in an individual keg should 
not be below 22.3%. Let us suppose that the standard deviation (5*0) of the naturally 
occurring fluctuations of the N content between the kegs is 1.2%. To meet the 
specifications in 99% of all products sold, an overdose (to 23.0%) of (22.3 + 2.33 
X 1.2 - 23.0 =) 2.1 % N is required (zo,oi = 2.33). If by control the standard deviation 
{s^ of the statistical fluctuations can be reduced to 0.7% N, this overdose can be 
decreased to (22.3 + 2.33 x 0.7 - 23.0) = 0.9% N. The marginal return is the value 
of the 2.1 - 0.9 = 1.2% N which should be balanced against the marginal cost of 
putting a control system in place. From eq. (20.1) the required measurability of the 
measuring system can be calculated, which is: 

m = Vl-(0.7/1.2)' =0.812 

In order to meet the specifications without overdosing, the fluctuations should 
be further reduced to a standard deviation equal to (23.0 - 22.3)72.33 = 0.30%, and 
the measurability of the measuring system should be: 
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m = V]-(0.3/1.2)^ =0.968 

The next decision is to select a suitable analytical method with an appropriate 
sampling scheme. That this is not a trivial problem is reflected by the fact that at 
least seven candidate methods are available (see Table 20.1) for measuring the 
N-content in the mixing tank, each with a specific precision and analysis time. A 
possible approach is to select the method with the best balance between analysis 
time (Td) and precision (̂ a) by the Pareto optimization procedure of Fig. 20.2. The 
Pareto method is a multicriteria optimization method and is further explained in 
Chapter 26. In this particular instance methods 6 and 7 are the Pareto optimal 
choices. The approach described here does not take into account the characteristics 
of the object or process, nor does it provide an optimal sampling frequency based 
on cost considerations. Therefore, a more complex approach is appropriate, based 
on a process model by which system states can be predicted. This model should 

TABLE 20.1 

Methods for the analysis of nitrogen (adapted from Ref. [5]) 

Method 

1. Total N by distillation 
2. Total N by automated distillation 
3. NO3 by autoanalyzer 
4. NO3 by ion selective electrode 
5. NH4N03/CaC03 by X-ray 
6. Total N by neutron activation 
7. y-Ray absorption 

Analysis time (min) 

(T^d) 

75 
12 
15.5 
10 
8 
5 
1 

Precision (%N) 

(̂ ^a) 

0.17 
0.25 
0.51 
0.76 
0.80 
0.17 
0.64 

20 40 
Td(min) 

Fig. 20.2. Plot of the precision (5a) vs. analysis time (To) of analytical methods for the analysis of N 
in a fertilizer (see Table 20.1). Methods 7 and 6 are Pareto optimal. 
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provide a relationship between the measurabiUty and the characteristics of the meas­
uring system: i.e. precision, sampUng plan and measurement time (analysis time). 
Intuitively, we know that this will depend on some properties of the process fluctua­
tions and also on the adequacy of the algorithm to estimate/predict process states. 

20.3 Estimators of system states 

Because physical or chemical measurements require time, the analytical result 
obtained for a sample does not necessarily represent the current state of the system 
or process at the moment that the result is obtained. Between sample taking and 
receipt of the analytical result, the system state may have changed (Fig. 20.3). The 
probability that the state is changed depends on the velocity of the process 
fluctuations. Therefore it is necessary to make assumptions on the evolution of the 
system state during that period. The simplest assumption is that the system state 
does not change between two analytical results. This situation is shown in Fig. 
20.4. The points S and R on the time axis in this figure represent the sampling 

process i 
value 

x(t) 

Ts Tr time (t) 

Fig. 20.3. Prediction error caused by the measurement (analysis) time (T^i). T, is the sampHng time, 
Ty is the time at which the result is available, ex, is the prediction error. 

x(t) 

Fig. 20.4. True and estimated process states for a control system, where the estimated process value 
is the last analytical result (until the next one is obtained). The shaded area represents the remaining 
fluctuations after control. 
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Fig. 20.5. A slow (a) and fast (b) process with equal probability distribution. 

Fig. 20.6. The forecast of process states from the last observation at time t. Lines 1,2 and 3 are negative 
exponential functions. 

points, respectively the reporting times. The horizontal lines represent the esti­
mated states and the shaded area is the error of estimation, which represents the 
unobserved and therefore uncompensated fluctuations. The estimation can be 
improved by taking into account that the process fluctuations follow a certain 
pattern. They may be slow or fast (Fig. 20.5). Extreme values are less probable than 
the average process state. In any case and certainly after a long period without 
observation, the most probable process state is the mean process value and not the 
last measured value. One can imagine that the process forecast may evolve as 
shown in Fig. 20.6. Just after the last measurement has been obtained it is unlikely 
that the system has changed (point t] in Fig. 20.6). The longer we have to wait, 
however, the more likely it is that the process value is changed. As the mean is the 
most probable process value, this is the best prediction after a long time (rs in Fig. 
20.6). Between t\ and 3̂ (^ in Fig. 20.6) one may assume process values between 
the last measured value and the mean process value. For fast fluctuating processes 
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the mean process value is the most probable already after a short time (line 1 in Fig. 
20.6), whereas it takes some more time for slow processes (line 3 in Fig. 20.6). The 
exact curve can be derived by modelling these process fluctuations, as we explain 
in the next section. 

20.4 Models for process fluctuations 

Process fluctuations are the result of the dynamics of a system (in time or in 
space) and can be modelled by several approaches! directly, by applying a step or 
impulse response, or indirectly by analyzing the properties of the observed fluctua­
tions. The application of a step or impulse is usually undesirable because it requires 
that the process is disturbed. Therefore, the indirect approach is more appropriate. 
We can choose between an analysis in the time domain and in the frequency 
domain (see Chapter 40). Although both types of analysis essentially provide the 
same information, the analysis in the time domain is preferred as it directly 
provides a model which allows to interpolate or extrapolate between two sampling 
points. Therefore, we need to introduce some new concepts, namely time series, 
autocorrelation and autoregression. 

20,4.1 Time series 

Any discrete process or sampled continuous process can be represented by a 
time series. For instance, the weekly averages of the Dow Jones index of the 
American Stock Exchange is a time series of a discrete process. The daily 
measurement of the temperature in a river is a time series of a sampled 
continuous process. Implicitly we have assumed that the process values are 
equidistant in time (or in space), which is a condition for a time series. A time 
series is said to be stationary when the statistical parameters, mean and standard 
deviation are time-invariant. Figure 20.5 illustrates that the dynamics of two 
time series with identical mean and standard deviation may be completely 
different. That difference will be quantified by the autocorrelation and autore­
gression function (Sections 20.4.2. and 20.4.3). 

Let us first introduce the formalism which will be used in the next sections. 
Process values at discrete sampling points will be represented by x(r), where the 
index t refers to t sampling intervals (At) since time ^(0). Thus x{t) is the value of 
the series at a time r(0) + rAr. In some instances we will need to indicate pairs of 
observations with the same distance T, which is equal to an integer number of times 
the sampling interval. Thus T = 2 for the pair {jc(2),x(4)}, which corresponds to a 
distance in time equal to 2Ar. 



594 

20.4.2 Autoregressive models 

In the same way one can fit a regression model through the measurements y as 
a function of jc, or to use the formalism applied here, through pairs of observations 
{y(l),x(l)},... {y{n)yX{n)] one can also fit a model through the process values of a 
time series with equal time-distance, T, between each other. For instance for x = 1, 
a regression model is fitted through the pairs {JC(1),JC(2)}, {X(2),X(3)}, {x{t - 1), 
x{t)], ..., [x{n - \)^{n)] or in general between the pairs {x(l),^(l + T)}, {X(2),Z(2 + 
T)},..., {x{n-x)Xn)}, 

Equation (8.65) derived in Chapter 8, expresses the regression line in terms of the 
correlation coefficient iix,y) and the standard deviation of the two variables x and y\ 

iyi -y) = r{x.y) ^ te -x) + e, (20.3) 

Substituting the observation pair (JC,,);,) by [x{i)^{t +1)} and replacing Sy by s^ and 
>̂  by JC because there is only one mean and one standard deviation for stationary 
processes, we find: 

[x{t + 1) - Jc] = r(l) [x{t) - Jc] + ^(r + 1) (20.4) 

r(l) is the correlation coefficient between all pairs {jc(r+ \)yX{t)] forr= 1 tOAi- 1. 
Expressed in words, eq. (20.4) states that the deviation from the mean at time {t + 
1) can be predicted from the observed deviation from the mean at a time t multi­
plied by the correlation coefficient r(l) at T = 1. Equation (20.4) can be calculated 
for any T. For example, for two sampling intervals we find 

[x{t + 2) - x] = r(2) [jc(0 -x\ + e{t + 2) 

and in general: 

[jc(r + T) - x] = r(T) {x{t) - Jc] + e{t -h T) (20.5) 

Equation (20.5) represents 3. first-order autoregressive model. It is said to be 
first-order because the model contains only one parameter r(T). The noise term 
e{t + T) represents white noise (see Chapter 40) which is independent of all process 
values x{t), 

20.4.3 Autocorrelation function and time constant 

The values r{x) constitute an autocorrelation fi^nction, giving r(T) as a function 
of T. In the previous section we derived that the parameter of a first-order autoregres­
sive model is the correlation coefficient r(T). For any x this correlation coefficient is 
calculated from the process values according to: 

Kx) = • I WO-^)(f-^x)-^) (20.6) 
( n - x - l ) ^1 s. 
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TABLE 20.2 

Calculation of the autocorrelation function of x(t) at T=l and 2 

t x{t) 

1 -4.5 
2 3 
3 4.2 
4 6.9 
5 -^.8 
6 -11.0 
7 8.4 

,2 = 7;jc = 0.03; 

^ ^ (7-1-

^ (7-2-

•1) 

1) 

x{t+\) 

3 
4.2 
6.9 

-6.8 
-11.0 

8.4 

-

si = 55.38 

-36.33 _ 
55.38 ~ 

-159.92 
55.38 

xit)-x 

-4.53 
2.97 
4.17 
6.87 

-6.83 
-11.03 

8.37 

-0.13 

= -0.72 

x{t+\)~x 

2.97 
4.17 
6.87 

-6.83 
-11.03 

8.37 

-

x(t+2)-x 

4.17 
6.87 

-6.83 
-11.03 

8.37 

-
-

1 = 

[{x{t)-x)][xit+l)-^ 

-13.45 
12.38 
28.65 

^6 .92 
75.33 

-92.32 

-

-36.33 I = 

[x{t)-xl[x(t+2)-x] 

-18.89 
20.40 

-28.48 
-75.78 
-57.17 

-
-

-159.98 

For T = 1,2,..., n-2 this gives r(l), r(2),..., r(n -2). These values constitute the 
autocorrelation function. For T = 0, r(x) = 1. How to calculate an autocorrelation is 
illustrated with a hypothetical numerical example given in Table 20.2. 

Autoregression and autocorrelation can be visuaHzed by plotting all pairs {x(t + x), 
x(t)} for various values of x. The results obtained for the process shown in Fig. 
20.5a are plotted in Fig. 20.7 for the x-values 1,3,5, 7 and 10. In addition the best 
fitting regression line is plotted. As one can see, the correlation decreases with 
increasing distance between the pairs of observation. Moreover, the correlation 
values are statistically identical to the slopes of the regression lines as expected 
from the fact that the autocorrelation value is the slope parameter of the autoregres­
sion function (eq. (20.5)). A plot of the values of the autocorrelation at x = 1, 3, 5, 
7 and 10 constitutes an autocorrelogram (Fig. 20.8). 

Autocorrelation functions or autocorrelograms of the two processes given in 
Fig. 20.5 are shown in Fig. 20.9. The faster the process fluctuates, the quicker the 
autocorrelogram decays to zero. For a first-order process this decay can be ex­
pressed by a single parameter, the time constant T, T is small for fast fluctuating 
processes and large for slow processes. To derive an expression for 7 we need to 
model the autocorrelation function. Let us recall the autoregressive model which 
predicts the process value at a time {t + 2) from the value measured at a time (t): 

[x{t -\-2)-x] = r(2) [x(t) -x] + e(t + 2) 

with e(t + 2) the residual between model and process value at a time (t + 2). 
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Fig. 20.7. Scatter plots of jc(0 vs x{t + x) of the process in Fig. 20.5(a) for i = 1, 3, 5, 7 and 10. The 
line is the regression line x{t + x) = ^o + hxx{f). (a) r(l) = 0.904, ^, = 0.908; (b) r(3) = 0.812, /?, = 
0.831; (c) r(5) = 0.697, b^ = 0.771; (d) r(7) = 0.591, bi = 0.611; (e) r(10) = 0.171, ̂ , = 0.159. 
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Fig. 20.8. Autocorrelation function (r(T)) of the process given in Fig. 20.5(a). 
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Fig. 20.9. Examples of autocorrelograms with a large (a) and small (b) time constant. 
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For a first-order process, x(t + 2) can also be predicted by first predicting x{t + 1) 
from jc(0, followed by the prediction of x{t + 2) from x(t + 1), which gives the 
following sequence of equations: 

[x(t + 2) - x ] = r(l) [x{t+ 1) - x ] + ^(r + 2) 

[4^+ 1) -x] = r(l) [jc(0-^] +^(^+ 1) 

which gives 

[x{t + 2)-x] = r{lf [jc(0 - x ] + ^(r + 2) 

We note that the residual e(t + 2) in the above equations may have different values. 
Consequently, r(2) = r(lf or in general r(T) = r(l) \ This demonstrates that a 
first-order autoregressive function is fully defined by one parameter r(l). The 
autocorrelation function of a first-order process is therefore an exponentially de­
caying function (because r{l) < 1), modelled by 

p{x) = e''^ (20.7) 

containing only one parameter 7, the time constant. In Fig. 20.10 an experimentally 
obtained autocorrelation function is fitted with an exponential function illustrating 
the validity of the exponential model. Because the autocorrelation r{x) is calculated 

• T 

Fig. 20.10. Autocorrelogram of a first-order random process (T= 7), fitted with exp(-T/7). The dashed 
line gives the T-value corresponding to r = 0.37, which is the time constant T. 
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from a finite number of observations equal to {n - T), it is an estimate of the true 
value. A rule of thumb based on the exact equations derived by Bartlett [6] is that 
the standard deviation of the autocorrelation r(T) is proportional to k ^[T/(n - x)] 
when T is not excessively small (7 > 5 sampling intervals) where k = 0 for x = 0, k 
- 0.3 for T = r/2, k = -0.7 for T = 7 and it = 1 for x > 1.57. Typically, 500 
observations are needed to estimate r(x) with a standard deviation equal to 0.1 at 
x = 7=10. 

Before we discuss the time constant, two examples of an autocorrelation analy­
sis are presented. In the first example, the fluctuations of the concentrations of 
NO3 and NH4 in the river Rhine measured over a period of 468 weeks (Figs. 
20.1 la,b) were subjected to an autocorrelation analysis [7]. The autocorrelograms 
of the NOi and NH4 concentrations are given in Figs. 20.1 lc,d. In both autocorre­
lograms we see some deviations from the exponential shape which are explained 

52 104 156 208 260 312 364 416 468 50 100 150 200 250 300 350 

Fig. 20.11. Time series of the weekly NO3 (a) and NHJ (b) concentrations in the river Rhine over a 
468 weeks period and their respective autocorrelograms (c) and (d) (T) is given in days. (Reprinted 
from Ref. [6]). 



600 

Fig. 20.12. Autocorrelogram of flame-ionization detector noise. (Reprinted from Ref. [7]). 

below. The second example concerns a noisy base line obtained with a flame-ioni­
zation detector for GC [8]. The autocorrelogram is shown in Fig. 20.12. The 
detector contains a periodicity. From this example we intuitively see that auto­
correlation functions and the Fourier transform are related as both provide information 
on the frequencies present in the signal (see e.g. the textbook by Priestly [9]). 

The time constant can be calculated from the autocorrelation function in three ways: 
(1) from r(l) = e-^''^ it follows that 7 = -1/ln r(l) 
(2) for T = r, liT) = e~^^ = e~^ - 0.347. Thus the x-value which corresponds to 

an autocorrelation value equal to 0.347 is equal to 7 (see Fig. 20.8). 
(3) from a fit of eq. (20.7) through the autocorrelogram by non-linear regression 
Although in principle the time constant of a process can be calculated from r(l), 

it is advisable to calculate the autocorrelation over an extended T-range (about 5 
times the guessed time constant) in order to observe possible deviations from the 
exponential model. Such deviations may be informative as they indicate deviations 
from a first-order behaviour, e.g. a drift of the mean value, a periodicity, or several 
time constants: 

{I) Drift of the mean: Drift of the mean introduces a positive (or negative) 
correlation with respect to the overall mean of the process (see Fig. 20.1 Id). This 
is reflected in the autocorrelogram by the fact that the values do not asymptotically 
approach the zero correlation line, but some other value. Because for large T-values 
noise is uncorrelated, small drifts are more easily detected from the autocorrelogram 
than from the original data. 
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(2) Periodicity: Periodicity of process values introduces a periodic autocorrelo-
gram. For the same reason as explained for drift, periodicities are more easily detected 
in the autocorrelogram than in the original process values (see Fig. 20.1 Ic). 

(3) Several time constants'. The slopes of the autocorrelograms of Fig. 20.11 
show a stepwise change at T = 1. The initially steep drop of the value of the 
autocorrelation from 1 at x = 0 to 0.8 at T = 1 is followed by a less steep exponential 
decay. This is a typical shape for processes with two time constants (second-order 
process). The first part of the autocorrelogram describes a fast process with a small 
time constant, whereas the second part of the autocorrelogram describes the slower 
part of the process. This situation may occur if the noise (or other source of 
variation) of the measuring device contributes substantially to the measured proc­
ess variations. Because noise is a fast process compared to the signal two time 
constants are found. In some instances it is possible to derive the relative contribu­
tion of measurement noise {s^ to the observed process fluctuations. For instance 
when the stepwise change in the autocorrelogram occurs at r{x) = 0.8, it means that 
the variance of the process (̂ o) is 80% of the total observed variance which is equal 
io {sl + s^^,ox sl = 025sl 

20.4.4 The autoregressive moving average model (ARMAX) 

In Section 20.4.3 we introduced an autoregressive (AR) model for the prediction 
of the process variable, x(t) (process output) at a time t from its past values (x(t - 1), 
x(r-2),...): 

x(t) = b{l) x(t - 1) + b(2) jc(r - 2) + ... 

We have also shown that for a first-order autoregressive model b(2) = b(l)^. When 
b{2) is independent of 7̂(1) the model is second-order, which provides satisfactory 
representations for a wide variety of applications in business and industry. In the AR 
model only past values of the output are employed to predict its present value x(t). 

If we assume that the process variable, x{t), is regulated by a certain control 
variable u(t) (see Fig. 20.13), the process output, x(t) can be predicted taking into 
account all settings of that control variable in the past at (t - 1), (t - 2),... giving 

x{t) = b{l)x{t - 1) + b{2)x(t - 2) + ... + d(l)u{t - 1) + d{2)u(t - 2) +... 

This is called a controlled autoregressive model ARX, where AR refers to the autore­
gressive part and X to the extra deterministic input, called the exogenous variable. 

Each prediction is subjected to a prediction error e(t). The moving average (see 
Chapter 7) of these prediction errors {c{l)e{t - 1) + c{2)e(t - 2) + ...), which are 
assumed to have a zero mean and to be uncorrelated can be included in the model 
to improve the process output predictions as follows: 
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Settings of the control variat)le 
u(t) 
u(t-1) 

Process values 

x(t-1) 
x(t) 

ARMAX 
Regulated 
process values 

x(t) 
v(t) 
v(t-1) 

e(t)[ 
Random Uncontrolled 
disturt>ance external factor 

Fig. 20.13. The ARMAX process control model. The regulated process value x{t) at a time t depends 
on: past values of the regulated process variable, past and current settings of the control variable, past 
and current values of any uncontrolled variable, and random noise. 

^(0 = b(l)x(t- 1) + b{2)x{t-l) + ... + d{\)u(t- 1) 
+ d(2)u{t-2) +...+ c(l)e(t- 1) + c{2)e(t-2) +.... 

A controlled autoregressive model combined with a moving average term is called 
a controlled autoregressive moving average model (ARMAX). Clearly this class 
of models includes the AR model (if all d() and c() are zero), the moving average 
model, MA (if all fe() and dQ are zero), the ARX model (if all c() are zero) and the 
autoregressive moving average model, ARMA (if all di) are zero) as special cases. 
Assuming a first-order behaviour of the process (see Section 20.4.2), the ARMAX 
model reduces to: 

x{t) = b{\)x{t- 1) + d{\)u{t- 1) + c{\)e{t- 1). 

The problem of estimating the parameters, b{\), c{\) and d{\) of an ARMAX 
model from n past observations of the output variable (x), control variable (w) and 
prediction error {e) can be transformed into the problem of solving n - \ linear 
equations with 3 unknowns, which can be solved by multiple linear regression (see 
Chapter 10). 

x{2) = b{\)x{\) 

xO)^b{\)x{2) 

+ J(l)w(l) 

+ d{\)u{2) 

+ 

^c{\)e{\) 

^c{\)e{2) 

+ 

x{t) =b{\)x{t-\) +d{\)u{t-\) -\-c{\)e{t-\) 

+ + ... 

x{n) = b(l)x(n - 1) + d{l)u{n - 1) + c(l)e(n - 1) 



or in matrix notation: 
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x{3) 

x(N) 

41) 
x{2) 

uil) 
u{2) 

e{l) 
e{2) 

x{N-l) uiN-l) e(N-l) 

d{l) 
c(l) 

A numerical example given in Table 20.3 illustrates the way model parameters 
are estimated. These Â  process observations constitute a training set to identify the 
process model. In practice model parameters can be continually updated by adding 
a new observation and dropping the first one. This allows to catch up with changes 
in process behaviour. During this updating procedure the estimated model parame­
ters may change. Such changes indicate which part of the process deviates from the 

TABLE 20.3 

Modelling of a time series with an ARX-model 

x(0 u(0 x(/+l) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1 
0.558 
0.280 
0.088 

-0.083 
0.056 

-0.024 
0.038 

-0.040 
0.050 

-0.109 
0.059 

-0.081 
0.073 

-0.027 
0.037 

-0.115 
0.015 

-0.119 

-1 
-1 
-1 
-1 
+1 
-1 
+ 1 
-1 
+1 
-1 
+1 
-1 
+ 1 
-1 
+1 
-I 
+1 
-1 
+1 

0.558 
0.280 
0.088 

-0.083 
0.056 

-0.024 
0.038 

-0.040 
0.050 

-0.109 
0.059 

-0.081 
0.073 

-0.027 
0.037 

-0.115 
0.015 

-0.119 
0.063 

Process values are simulated with: 
xit+[) = bil)x{t) + d(l)c{t) + e(t+{) with b{l) = 0.7; J(l) = 0.1 
e(t) is uniformly distributed in the interval [-0.05 + 0.05] 
4 0 = 1 
The settings of the control variable u{t) are: 
if 4 0 > 0 then M(0 = -1 else u(t) = +1 
The parameters estimated by solving equation x(r+l) = ^(l)x(O + ^(l)u(O for ^(1) and d{{) are: 

^(1) = 0.662; J ( l ) = 0.103. 
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Normal Operating Conditions (NOC) of the process. For instance a change in the 
correlation structure of the process output is indicated by a change of the parameter 
Z?(l) of the autoregressive part of the model. Such changes may be monitored by 
plotting the value of each model parameter in a Shewhart control chart, according 
to the rules explained in Chapter 7. Possible model deviations (e.g. from first-order 
to second order) are checked by inspecting the residuals e{n + t) obtained by 
substituting a new process observation in the model equation derived from the 
training set and plotting this residual in a Shewhart control chart. The residual 
e{n -\-t)ofdi new process value at time n 4- r is given by: 

e{n-¥t)=x{n + t)- {b{\)x{n-^t- \) ^ d{\)u{n-\-1 - \) + c{\)e{n ^ t - 1)} 

Because the autoregressive parameter fo(l) is equal to the autocorrelation of jc(r) at 
T = 1, the residual plot, e{t) is called the autocorrelation control chart. In this chart 
warning and action lines are constructed according to the rules of the Shewhart 
control chart (see Chapter 7). Crossing of the action line indicates that the process 
model is no longer valid. No indication, however, is obtained about which part of 
the process is disturbed. 

ARM A models are suitable for fitting stationary time series. A steady increase 
of the prediction error indicates the presence of drift, which is a deviation from the 
stationary state. In this situation an Autoregressive Integrated Moving Average 
(ARIMA) model [6,10,11] should be used. 

20.5 Measurability and measuring system 

As explained before, the specifications of the measuring system define the 
ability to observe and to regulate a process. These specifications should be consid­
ered in relation to the process characteristics, e.g. the time constant 7, which can 
be derived from the autocorrelation function of the process. There are four relevant 
specifications: 

sl/sl: Variance of the measuring system relative to the variance of the process 
fluctuations. 

TJT: Dead time (relative to the time constant), which is the time between the time 
when the sample is taken and the point when the correction is made (this 
includes the analysis time). 

TJT: Time (relative to the time constant) between two consecutive sampling 
times (sampling interval). 

TJT\ Time (relative to the time constant) during which the sample is collected 
(sampling time). 
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Leemans [5] derived a relation between the measurability (m) (eq. (20.1)) and 
these four specifications of the measuring and control system, using the autocorre­
lation function as a predictor in the case of control or as an interpolator in the case 
of description (or reconstruction). For process control this relation is: 

m = e 
LL 

'IT 
LL 
37 (20.8) 

Equation (20.8) shows that the dead time (Td) has the largest effect on the 
measurability and the sample collection time (7m) the smallest. For process recon­
struction by modelling, there is no dead time and therefore eq. (20.8) reduces to: 

m-
V 

•^0 T 
^ 

(20.9) 

Figure 20.14 illustrates how the autocorrelation function is applied to interpolate 
between the sampling points [SI, S2, S3,...] (Fig. 20.14a) or to extrapolate from the 
last to the next reporting time [Rl, R2,...] (Fig. 20.14b). The graphical representation 
(see Fig. 20.15a,b) of eq. (20.8) (with Tm = 0) can be applied to derive the best 
measuring strategy in practice, as we will now proceed to describe. Measurabilities 

(a) 

Fig. 20.14. Process interpolation (a), between sampling points and extrapolation (b) from one 
reporting time to another with an autocorrelation function. • represents the measurements at time 5, 
Td is the dead time, T^ is the time between two samples, the soHd line represents respectively (a) the 
interpolated process values and (b) the extrapolated process values. 
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(a) 

(b) 

0.001 0.003 

Ta^ 

Fig. 20.15. Measurability as a function of the properties of the measuring system. (Adapted from Ref. 
[5]). (a) Measurabihty as a function of the analysis time (7^) and the sampling interval (T̂ a), relative 
to the time constant 7 of the process, (b) Measurability as a function of the precision of the analysis 
(̂ a) relative to the standard deviation of the process variations (̂ o) and the sampling interval (ra). 

below 0.9 are not very practical. From eq. (20.1) it follows that for m = 0.9 the 
standard deviation of the process fluctuations left after control is still about half the 
value of the uncontrolled process (Se/so = 0.43). As one can see there is a large area 
in the space of the specifications of the measuring device where the measurements 
are ineffective (m < 0.9 in Fig. 20.15). One also observes that actions to improve 
or replace an ineffective measuring system may fail. For example in situation A, 
the decision to increase the sampling frequency (A —> B) has no noticeable effect 
on the performance of the measuring system. 

Equation (20.8) can also be used to estimate the effect of replacing a slow but 
precise method by a faster and less precise measurement device, which can be 
operated with a larger sample throughput, e.g. a Near Infrared Analyzer. Because 
of the shorter analysis time and the in-line continuous monitoring capabilities, high 
measurabilities are obtainable. 
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20.6 Choice of an optimal measuring system: cost considerations 

When designing a control system two relationships have to be considered for all 
the analytical methods under consideration: 

(1) the measurability of the measuring system as a function of the sampling 
frequency; and 

(2) the cost of analysis as a function of sampling frequency. 

10.000 

o 
o 

a 
c 
o 

1000 

100 

10 

^ 

1 Activation 
1 analysis 
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Automated 

^ analyzer ^ 
t" J 

r Technicon 8 
1 AutoAnalyzer t 
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r ^ electrode 

- I - - 1 — 1 — ' « ' ' « 

)0 y Wi 

J ^ 500 

1 1 1 1 1 1 M 1 1 
10 100 1000 

• analyses per day 

Fig. 20.16. Analysis cost of the methods listed in Table 20.1 as a function of sampling rate. (Adapted 
from Ref. [5]). 
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With these two relationships the measurability-cost relationship can be derived 
for each candidate method. Process and/or marketing engineers should provide the 
return obtained by reducing process variations (better specifications, less rework), 
by which the return can be calculated as a function of measurability. Cost of 
analysis as a function of sampling frequency should be provided by the laboratory. 
An example of such relationships is given (see Fig. 20.16) for labour intensive 
methods (e.g. classical distillation) and high-capacity analyzers (e.g. activation 
analysis). By plotting the effective return as a function of measurability, the most 
cost-effective control system can be selected. 

Let us illustrate this procedure with the fertilizer plant, introduced in Section 
20.2. Suppose that by an autocorrelation analysis a time constant has been found 
equal to 66 minutes. By substitution of the method specifications given in Table 
20.1 into eq. (20.8) (with Tm = 0), and by varying T^, the measurability is 
obtained as a function of the sampling rate. Sampling intervals which are 
smaller than the dead time are not considered as at that point the measurability 
reaches a constant value. From the curves obtained (see Fig. 20.17) one can 
observe that the methods 1 to 5 hardly reach measurabilities above 0.7, even at 
the highest possible sample throughput. Method 6 performs better, whereas 
large sample throughput are possible with method 7 giving a high (but still 
lower than 0.9) measurability. However in this particular case these high 
sample rates could only be achieved by replacing the manual sampling proce­
dure by an at-line operation. The final decision should be based on the cost of 
running a control system and the return obtained by the better quality of the 
product. The plots which relate the measurability to the sampling rate (Fig. 
20.17) and the analysis cost to the sampling rate (Fig. 20.16) can be combined 
to give the relationship between the analysis cost and measurability (Fig. 
20.18). The solid lines in Fig. 20.18 are the cost for manual operation, whereas 
the arrows indicate the measurability/cost value for at-line operation. When 

10 50 100 
8ample8/24 hr 

1000 

Fig. 20.17. Measurability of the methods listed in Table 20.1 as a function of the sampling rate to 
control a process with T= 66 min and ô = 1.2% N. 
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Fig. 20.18. Analysis cost of the methods Hsted in Table 20.1 as a function of the measurability. The 
arrows indicate the measurability and associated cost for at/in line analysis. (Reprinted from Ref. [5]). 
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Fig. 20.19. Lower boundary line of the cost functions and the best at/in line point in Fig. 20.18. The 
dashed line represents the process costs. (Reprinted from Ref. [5]). 

plotting the process cost and the analysis cost (boundary line in Fig. 20.18) in a 
single graph (Fig. 20.19), it is obvious that method 7, the at-line y-ray absorption 
method, is the preferred method. 
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20.7 Multivariate statistical process control 

When discussing measurability we assumed that the process is statistically in 
control, i.e. the mean and standard deviation of the regulated variable are time 
invariant. However, in practice deviations from the stationary state may be ob­
served, for example, because the process average value drifts away from the target 
value. It can be considered as a slow source of variation with a large time constant. 
Drift can be detected by inspecting the autocorrelation function of a set of historical 
process observations (see Fig. 20.11). The correlation is positive at high T-values, 
where one would expect a value near to zero. This indicates an up-slope drift. In 
that case the Shewhart control chart of the parameters of the ARMAX process 
model (see Section 20.4.4) will indicate that the autoregressive parameter, b(l), is 
outside the normal operating conditions. 

Real-time flagging of out-of-control situations is important in a manufacturing 
environment. The number of false positive alarms should be avoided as they lead 
to unnecessary inspection of the plant or rework of the product. For a conventional 
control chart this will happen in about three out of 1000 situations. Matters become 
different when several process values are monitored at the same time, e.g. the 
solids content of a margarine at six different temperatures. If these six values are 
independent and are monitored in separate control charts, the probability of a false 
alarm is 0.018 (1-0.997^), which is unacceptably high. If all quality parameters 
were perfectly correlated, it would be sufficient to monitor only one, and the false 
alarm rate would remain three out of 1000. In reality process variables are neither 
perfectly dependent nor perfectly independent. Therefore, the false alarm rate will 
lie somewhere in between these two extremes. A more desirable approach is to fix 
the risk of a false alarm at a given level, e.g. five out of 1000 regardless of the 
correlation between the process variables. This can be achieved by defining a 
multivariate control chart. It is also possible that all individual control charts 
indicate an in-control situation, but that the small deviations from the target have 
a cumulative effect and may result in an overall out-of-control situation. Therefore, 
one should consider the joint probability of finding a certain combination of 
process values. For two process variables the joint iso-probability is given by the 
elliptical function (see Chapter 8) shown in Fig. 20.20. In terms of process control 
it would mean that the square area indicates an in-control situation when the two 
control charts are considered individually, whereas the smaller area inside the 
ellipse is the true in-control situation. The larger the correlation between the two 
variables the more the ellipse is stretched and deviates from the square. In process 
control the centre of the figure represents the combined target value of the two 
parameters, e.g. [̂ 1,̂ 2], or t. By multivariate control one considers the distance of 
any observation [jci,jC2]i or X/ from the target value, thus the distance between X/ and 
t. However this distance cannot simply be the Euclidean distance. For example the 
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Fig. 20.20. A bivariate probability distribution of two variables (xi^z)- The in-control point A and 
out-of-control point B are at the same Euclidean distance from the target value t. 

points A and B in Fig. 20.20 have the same Euclidean distance from the target 
whereas A is in-control and B is not. Therefore, a measure for distance is necessary, 
that takes into account the correlation between the variables. Such a measure is the 
Mahalanobis squared distance, which is defined as (see Chapters 9, 10 and 31): 

d?, = ( x , - t f Cov-^(x,-t) (20.10) 

Cov is the variance-covariance matrix estimated from a sample of n past multivari­
ate observations. 

When dl exceeds a defined critical value, the process is out of control. Because 
the Mahalanobis distance follows the Hotelling T^-distribution [10], the critical 
value TucL is defined by: 

T? UCL • 
in-l)p 

n —p 
' a,p,n-p (20.11) 

where n is the sample size used to calculate Cov(x), p is the number of process 
variables, F is the F-statistic with (p,n - p) degrees of freedom, and a is the 
accepted risk of false alarms. 

By plotting T̂  in a control chart with an upper control limit (TUCL) a multivariate 
control chart is obtained. Because the distance is always a positive number, the 
chart only contains an upper control limit. It has the same interpretation as a 
univariate control chart: a point outside the limit corresponds to an out-of-control 
situation. This indicates that the process has to be investigated for a possible cause 
(Fig. 20.21). 

The calculation of the Mahalanobis distance from eq. (20.10) requires the 
inverse of the variance covariance matrix of n past multivariate observations. 
When the number of measured process variables is large, they may be highly 
correlated and lead to a nearly singular variance covariance matrix. In Chapter 17 
we discussed principal components analysis (PCA) as a technique to decompose 
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observation number 

Fig. 20.21. A multivariate T^ control chart. UCL is the upper control limit; T^ is the Mahalanobis 
squared distance from the target value. 

a nearly singular matrix into a product of a loading matrix (V), a score matrix (U) 
and a diagonal matrix A containing the singular values which are the square roots 
of the eigenvalues of X X^, giving X = U A V^. 

As discussed in Chapter 17, the first a PCs are associated with structure in the 
data, whereas the remaining PCs are associated with random variations. Instead of 
calculating the Mahalanobis distances in the original data space we can calculate 
the distance between the scores of the target vector, t and the observation X/ in the 
space defined by the first a PCs. Usually the target value coincides with the mean 
value of the data. After mean centring of the data, the Hotelling Tj of observation 
/ with respect to the target value is then given by: 

TNT. ^ 
k^i 

2 

where s\ is the variance of the scores on VCk (this variance is equal to }il{n - 1) 
when the scores are defined as UA). 

For a = 2, TUCL describes an ellipse in the PC-space defined by PCi and PC2. For 
T^ > TUCL points are situated outside the ellipse and indicate an out-of-control 
situation. This procedure is equivalent to the standard Hotelling T̂  control chart 
with the exception that the distance between the data is not measured in the original 
data space but in the reduced PCA space. If all PCs are included in the process 
model both give exactly the same outcome. The optimal number of PCs to be 
included in the PCA model is determined by cross-validation as discussed in 
Chapters 10 and 31. Cross-validation is, however, less performable for nearly 
random data. Therefore we prefer to apply a randomization test described in [12]. 
The predictive error sum of squares (PRESS) obtained by the cross-validation 
procedure is a measure for the magnitude of the residuals. For each new observa­
tion a squared prediction error (SPE) can be calculated with respect to the PCA 
model: 
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SPE = I I {Xij-xjf 

(n = number of observations, p = number of variables). 
Normal Operating Conditions of a process with two significant PCs are now 

defined by a cylinder with its base in the plane defined by the principal components 
and with a height equal to SPE. The base of the cylinder is equal to TUCL (eq. 
(20.11)) and the height of the cylinder is proportional to the residuals with respect 
to the process model (Fig. 20.22). We can therefore follow the evolution of the 
process by monitoring two control charts [13]. The first one is the ordinary T^ chart 
based on a principal components and the second one is a chart which plots SPE for each 
new observation and compares it with an upper warning and upper control limit. 

A number of different types of deviations from NOC can be observed. 
- The observation falls outside Tucb but SPE is within the normal limits. In the 

case of a = 2 this means that the point falls outside the cylinder, but remains within 
the allowed distance from the PC-model (points 'x' in Fig. 20.22). The principal 
components model is thus still valid, implying that the model relation is un­
changed. Because one or more scores of the observation must be the cause for 
T^ > TUCL, the process is apparently upset in one or more variables. 

- The observation falls inside TUCL and SPE is outside its normal limits (points 
'+' in Fig. 20.22). This is an interesting case as this situation would not be detected 
by using a T^ chart alone. A too large SPE indicates that a process disturbance is 
introduced which makes the principal components model invalid (by the appear­
ance of a new source of variation). 

In order to be able to intervene in the process, we should be able to assign 
deviations from NOC to a possible cause (one or a combination of process 

SPEt 

PC2 

Fig. 20.22. A multivariate control chart in the plane defined by two principal components (PC-1 and 
PC-2) of the control data. SPE represents the squared prediction error, NOC is the normal operating 
condition. * are in-control points, x and + are out-of-control situations, • are the projections of x on 
the PC 1-PC2 plane. (Adapted from Pvcf. [13]). 
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Fig. 20.23. Representation of the values of 6 process variables in a star. Dashed lines are the lower 
and upper univariate action limits. Each point of the star represents the value of one of the 6 process 
variables. See text for further explanation of the three situations. 

variables). An approach which can be used with regular T^ charts constructed in 
the space of the original variables is to combine the multivariate and univariate 
control charts in a so called Star Chart [14]. At each point of the control chart two 
concentric circles are constructed with a radius equal to the standardized univariate 
upper and lower control limits. A star is constructed with the corner points 
representing the values of the individual quality parameters. The distance of the 
corner (i) from the centre is equal to: 

{Xi - X/) /Si (20.12) 

In Fig. 20.23 three such stars are shown. In star I all six variables lie within their 
limits. In star II the third variable is out-of-control. In star III two variables are 
out-of-control; x^ is too low and x\ is too high. In a next step the stars are plotted 
in the multivariate control chart. The centre of the circles is at the Mahalanobis 
distance from the target, and the stars show the position of each variable with 
respect to their own control limits. Several situations may occur. Fig. 20.24a shows 
a process that is in-control in both the multivariate and univariate sense. The star 
chart in Fig. 20.24b indicates which variable may cause the multivariate out-of-
control situation (point indicated clO). Fig. 20.25a illustrates the situation where 
the process is in-control although one univariate parameter {riiS) is out-of-control. 
It may also occur that the process is out-of-control without any univariate parame­
ter being out-of-control (Fig. 20.25b). 

A second approach is to evaluate the variance of the PCA residuals for each 
variable 7 separately by [14] 

^ H I v%Xl/{n-\) 
h=a+\ 

where v,i is the loading of the jth variable in the k\h principal component, Xk is the 
singular value associated with this principal component, a is the number of PCs 
included in the PCA model. One should realize that the calculation of sj requires 
at least a window of a+2 new observations to retain 1 degree of freedom to test 
changes in s] by an F-test: 
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Fig. 20.24. Two Star Charts: (a) Univariate and multivariate in-control, (b) Univariate and multivariate 
out-of-control (clO). 

F = ^/(new) Ay (old) > Fa;v„,,,v.,, 

with Void = n-a- 1, Vnew = [window size] - a - 1; 5y(new) is the variance of the 
PC A residuals of variable y in the selected window of observations, and sJ(old) is 
the variance of the PC A residuals of variable) in all previous (in-control) observations. 

Multivariate control charts are applicable to check whether an analytical method or 
instrument is statistically in control (see e.g. [15]). Let us for instance consider the 
example of the determination of two triglycerides of the type SOS and SSO by HPLC 
(S = Saturated fatty acid, O = oleic fatty acid). Figure 20.26 gives the two individual 
univariate control charts obtained by plotting the values of a check sample measured 
at regular intervals. Strictly speaking the independent use of these two control charts 
is only allowed when the variation in the SOS and SSO concentrations is uncorrected. 
In this particular instance however significant correlations are found between SSO and 
SOS (r = -0.4), which indicates that the usage of a multivariate control chart shown 
in Fig. 20.27 is appropriate. In this example none of the univariate and multivariate 
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UCL 

Target 

UCL 

Target 

Fig. 20.25. Two Star Charts: (a) Multivariate in-control but n35 out-of-control, (b) Univariate 
in-control but multivariate out-of-control. 

control charts exceeds the action limits. The two univariate control charts also stay 
within the warning limits. The multivariate charts warn at three occasions (days 16 
and 17, and day 31). These are the situations where both SOS and SSO values are 
high, which is improbable due to the negative correlation. 

When discussing ARMAX models (see Section 20.4.4) we related the value of 
a regulated variable to its own past values and the past values of a control variable. 
In case that several process variables are regulated by a number of control vari­
ables, we can model the relationship by a partial least squares (PLS) model 
(Chapter 35) and use that relationship to design a T̂  chart in the PLS factor space 
to monitor the stability of that relationship [17]. Additional reading on multivariate 
statistical process control can be found in the tutorial by Kourti and MacGregor 
[17], and in the papers by MacGregor and coworkers [13] and by Wise et al. [16]. 
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Fig. 20.26. Shewhart control charts of the relative concentrations of the SOS (a) and SSO (b) 
triglycerides in a check sample. The dotted line represents the learning data and the solid line 
represents the control data. 
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Fig. 20.27. T^ chart and VSPE chart of the relative concentrations of the SOS and SSO triglycerides 
(data from Fig. 20.26). The dotted line represents the learning data and the solid line represents the 
control data. 

20.8 Sampling for spatial description 

As discussed in Section 20.1, systems or objects can also be sampled to obtain 
a more or less detailed description of a certain property (e.g. the concentration of 
a given compound) in a static situation. The objectives are different from those 
described in earlier sections since no time variations are considered and henceforth 
different sampling and estimation strategies are necessary. This will be the subject 
of the remainder of this chapter. Two main kinds of requests may be involved: (i) 
global description in which the goal is to obtain an overall (global) estimate of a 
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property over the whole object and (ii) prediction or interpolation when a more 
precise description is required. It is important to pay proper attention to the 
required precision of the obtained information, since this will determine to a great 
extent the size of the sampling scheme. It is therefore necessary that the objectives 
of the study are clearly stated and translated in terms of required precision of the 
outcome. 

It should be emphasized at the outset that many methods and strategies for 
spatial description contain a considerable empirical component. Much research is 
still necessary to improve these sampling strategies. 

20.9 Sampling for global description 

To obtain an overall estimate of a property an estimate of the population mean 
value is required. A statistical summary parameter such as the mean value, together 
with a confidence measure, is normally used. To obtain this estimate a sample that 
is representative for the whole system must be taken. Classical statistical sampling 
theory treats this problem extensively. A good textbook on this subject is Cochran 
[18]. Basically one distinguishes probability or random sampling, non-probability 
sampling and bulk sampling. The first two approaches assume that the object 
consists of distinct identifiable units (also called sample units) such as tablets, 
packaged items or persons. Bulk sampling involves taking samples of an object 
that does not consist of such identifiable units. They may consist of a single pile 
such as coal, fertilizer or it may be a large object such as a lake. 

20.9,1 Probability sampling 

When probability sampling is applied the sample units are selected according to 
statistical sampling principles and probability. In probability sampling each sample 
unit has equal chance to be selected. The appropriate number of sample units 
depends on the required precision of the estimate. The basic principles for this are 
given in Chapter 3. A key assumption in this approach is the normal distribution of 
the mean estimated from the sample. When the sample size is large enough this 
condition can be assumed to be fulfilled. The standard deviation of the estimated 
mean depends on the standard deviation of the property in the parent population 
(the object). Prior information on this population standard deviation is required to 
estimate the required sample size. 

One can distinguish simple random sampling and stratified random sampling. 
In simple random sampling any sample unit of the whole object has an equal 
chance of being selected. In stratified random sampling the parent object is first 
subdivided into non-overlapping subpopulations of units, called strata. Simple 
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random sampling is then applied on each subpopulation. There may be many 
reasons for stratification. If, for example, different precisions are required for the 
different subpopulations, the stratification approach allows to treat the separate 
subpopulations in their own right. Suppose for example that one wants to assess 
the alcohol percentage in a batch of beer bottles. These bottles are meant for export 
to different countries. The legislation in the different export countries, however, 
requires different precision of the alcohol content. Subdividing the bottles into 
different groups is then advisable, according to their export destination. The simple 
random sampling strategy can then be applied on the separate groups or subpopu­
lations and precision requirements can be taken into account. 

20,9,2 Non-probability sampling 

The selection of the units can also be done on a non-probabilistic basis because 
sometimes it is not feasible or desirable to apply probability sampling. Not all units 
may be readily accessible for sampling and the units are then selected according to 
their accessibility, or sampling cost. Examples of such strategies are systematic 
sampling, judgement sampling and convenience sampling. 

In systematic sampling the units are selected on a systematic basis. A first unit 
is selected at random and thereafter e.g. every 5th or 10th unit is taken. Systematic 
sampling is often applied because it is easier to carry out without mistakes. The 
systematic selection may, however, cause bias in the result, especially if an 
unexpected periodicity is present in the object (see Fig. 20.28). For example, the 
measured values will be sytematically too high when the sampling strategy repre­
sented by the crosses (x) is applied. This effect is avoided when simple random 
sampling is used. Systematic sampling is also applied for predictive purposes (see 
Section 20.10). 

fv 

LOCATION 

Fig. 20.28. Two systematic sampling strategies (0 and x) in one dimension that yield wrong results. 
V is the value of the property of interest. 
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In judgement sampling the units are selected based on the sampler's own 
experience on what representative units are. In convenience sampling the units are 
selected in a pragmatic way, based on their accessibility or sampling cost. Al­
though the results of these selection strategies cannot be used to judge the object 
statistically, they can be quite useful, e.g., to guide future investigations. It is 
however dangerous to generalize the conclusions. 

20,93 Bulk sampling 

Bulk sampling involves the sampling of an object that does not consist of 
identifiable units. Each single portion (unit) that is taken from the bulk material is 
called an increment. The term increment may be confusing because it is not used 
in the meaning of 'addition'. It is, however, a well established term in sampling 
theory and it is used there as an incremental portion to be combined to form the 
eventual sample. An increment, taken from bulk material has the same meaning as 
a sample unit, taken from a packaged material. The terminology as recommended 
by lUPAC is used in this chapter [19]. 

When the object to be sampled is homogeneous, such as a bottle of whisky in 
which the alcohol has to be determined, it is clear that one sample of whatever size 
is representative. The determining factor is then the minimum amount that is 
needed for the analytical determination, e.g. the limit of determination or quantifi­
cation of the analytical method. 

When the object to be sampled is heterogeneous, additional aspects such as 
the size of the increment that is sampled, where they should be collected and 
how they should be reduced to a suitable laboratory size must be considered. 
The basis for this sampling research was laid by Baule and Benedetti-Fischler 
[20], Visman and colleagues [21,22] and Gy [23,24]. They considered objects 
consisting of two or more types of particles of equal size but with different 
composition. An increment is then a number of particles and the collection of a 
number of increments constitutes the sample. This situation can be compared 
with a bag containing red and white balls, from which a number of balls is 
taken. The difference between the composition of the increment and that of the 
whole object, i.e. the sampling error, depends on the size of the increment. It is 
possible to estimate the uncertainty (standard deviation) of the composition of 
the increment. This standard deviation depends on the overall composition of 
the object and on the size of the increment. For an object that consists of two 
types of particles, A and B, in a ratio PA and PB the standard deviation of the 
sample composition of the object, 5, can be estimated from the binomial 
distribution (see Chapter 15): 
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5 = (AZPA/^B)''' (20.13) 

100 inn 
So = s= 100 

n 

PAPB^^^ % 

where 5g = relative standard deviation (in %) of the composition of the increment, 
PA = fraction of particle A in the whole object, PB = 1 - ^A = fraction of particle B 
in the whole object, and n = number of particles in the increment. 

Suppose the object consists of 50% A particles and 50% B particles. Increments, 
consisting of 10 particles will have a composition whose mean will be 50% A with 
a standard deviation, s^. 

-.1/2 

^ . - 1 0 0 
0.5 0.5 

10 
= 16% 

This means that about one out of three of those increments will have a compo­
sition outside the interval (50 ± 16)%. The probability of finding an increment with 
only A particles is in this case about 0.1%. From eq. (20.13) it follows that the 
standard deviation decreases with increasing n. The increment is considered to be 
representative for the object when no distinction can be made between different 
increments. This is the case when the standard deviation due to the sampling, Sa is 
negligible compared to the standard deviation of the analytical method (̂ a) or: 

100 ^PAPB-^^ 

I n 
<s. 

Therefore the number of particles required for a representative increment is: 

^ PAPB 10^ 
n > ^ 

Different approaches to estimate the standard deviation and the required sample 
size are possible. Ingamells [25,26] proposed an experimental approach. Based on 
the knowledge that the uncertainty decreases with increasing sample size, he 
derived that in many cases the relation WR^ = K, is valid. Here, W is the weight of 
the sample and R is the relative standard deviation (in percentage) of the sample 
composition. K, is the sampling constant and can be interpreted as the weight of 
the sample, required for a relative standard deviation of 1%. The value of K, may 
be determined from a diagram as in Fig. 20.29. Such a diagram is obtained by 
measuring a number of samples with different sample weights, W. For each series 
of measurements the mean and the standard deviation are determined. The two 
solid curves represent the upper and lower limits of the 68% confidence interval, 
i.e. the mean plus or minus one standard deviation. By extrapolation or interpola­
tion Ks can then be estimated as the sample weight where the width of this 
confidence interval is about 2% of the mean measurement value. 
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Fig. 20.29. Sampling diagram to determine Ks. See text for explanation. 

Gy [23,24] described the most important approaches and derived experimen­
tally an estimate of the standard deviation, that includes shape effects of the 
particles, especially useful in the mining area. Minkkinen [27,28] developed a 
computer program based on this approach. 

20.10 Sampling for prediction 

When investigating the quality of aquatic sediments in a lake it is important to 
have an estimate of the concentration of the substances at each location. This 
means that a prediction of the concentration must be possible at locations that are 
not sampled. The sampling itself is usually done along a systematic grid in contrast 
to the random selection of probability sampling. These kinds of problems are 
treated extensively in the field of geostatistics. 

In fact there are some strong analogies between the approach for time-series 
analysis (Section 20.4) and sampling strategies for prediction: 
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- The starting point of both methods is the fact that no deterministic model can 
be formulated and a probabilistic approach must be used. For this purpose the 
so-called random-function models are used. In these models the sample data are 
viewed as being generated by a random process. It is clear that this is not a realistic 
view but the underlying processes that determine the value are not known and 
therefore, the property of interest appears as being randomly generated. 

- Both methods assume that points that are situated close together (in time for 
time-series analysis or in space for sampling purposes) are more alike than points 
that are far away from each other. In sampling terminology this property is called 
spatial dependency or spatial continuity 

- Another important underlying assumption of both strategies is the stationarity 
of the random function. This means that the relation between points separated by 
a certain distance (in time or in space) does not depend on their location. This 
assumption has been made implicitly when generating the time-lag scatter plots 
x{t) versus x{t + T). All pairs of points, separated at a time lag, T, are included in the 
graph, regardless of their position. 

- An important step in the sampling strategy, as it is in time series analysis, is 
to obtain a model for the spatial continuity. In time series analysis the autocorrela­
tion function or autocorrelogram and time constant are commonly used. When 
developing a sampling strategy it is common to use besides the autocorrelogram 
also the covariogram and the variogram (see Section 20.10.1). 

In sampling for prediction purposes the goal is to obtain estimates at non-sam­
pled locations by means of interpolation. Several interpolation techniques are 
possible to obtain estimates at non-sampled locations. The better techniques take 
into account the knowledge of the spatial dependency (Sections 20.10.3 and 
20.10.4). A good textbook on this subject is written by Isaaks and Srivastava [29]. 

20.10.1 h-Scatter plots, autocorrelogram, covariogram and variogram 

The spatial location of every point can be represented by a vector and so can 
their differences, h, also called the lags. This is shown in Fig. 20.30. hy is the vector 
going from point / to pointy. Sometimes it will be important to distinguish it from 
the opposite vector hjj the vector going from pointy to point /. In an h-scatter plot 
the values of the property of interest for pairs of points are plotted. The pairs consist 
of two data points that are located a lag, h, apart, thus at a certain distance in a 
particular direction. This is in contrast with the time lag in a time series, h = {a,b) 
means a distance a in the jc-direction and a distance b in the y direction. In Fig. 
20.31 some possibilities are shown of pairing the data in a certain direction at a 
certain distance. 

In practice, it is often not possible to locate the sampling points so regularly, 
because of accessibility problems or because of uncertainties in sample point 
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(0,0) 

Fig. 20.30. The location vectors and the difference vector, h, of two points, / and/ x and y represent 
the 2-dimensional spatial coordinates. 

Fig. 20.31. Two ways of pairing sample points (+) in two dimensions for the construction of an 
h-scatter plot. 

locations. It is therefore in practice not possible to use h as a crisp vector, with a 
well defined length and direction. It is often necessary to define tolerances on h. In Fig. 
20.32 an illustration of a tolerance on h = (10,0) of 1 meter and 20 degrees is given. 



626 

A 

x,y <^^^^^ 
Wm 

I m ^ 
I n w ^ - ' ' ^ 

\\V A 
1 1 

llj^ 
^-

Fig. 20.32. The h-vector (10,0). The shaded area represents its tolerance zone (20 degrees and 1 m). 

All points in the shaded area are considered to be separated by a lag h =(10,0). 
The h-scatterplot (Fig. 20.33) is the analogue of the time-lag scatterplots in Fig. 

20.8. In an h-scatter plot the jc-axis corresponds to V(l), the value of the property 
at position I and the y axis to V(I+h). From the shape of the clouds of points in the 
h-scatter plot the spatial relationship at a lag h can be derived. The correlation 
coefficient between V(l) and V(I + h) can be used to measure the relationship (see 
Fig. 20.33). It is then possible to derive a correlation function (an autocorrelogram) 
or a CO variance function as a function of h. It is thus possible to display the autocorre­
logram as a contour map that displays the value of the correlation coefficient as a 
function of the length and of the direction. This sort of display is, however, unusual. 
One prefers to display the correlogram as separate graphs of the correlation coefficient 
versus the length of h for various directions. This autocorrelogram can be modelled 
in the same way as the autocorrelogram of time series data (see Section 20.4). 

Alternative measures of spatial relation that are often used in geostatistics are 
the covariance, C(h) and the semivariance, ^(h), which are defined in eq. (20.14): 

C(h) = p(h)av,av,̂  = p(h)a2 
(20.14) 

y{h) = \E[vr V/+hJ 
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Fig. 20.33. Example of different h-scatterplots at increasing separation distances, Ihl in the jc-direction. 
As the separation distance increases, the similarity decreases and the correlation coefficient, r 
decreases. 

p(h) is the correlation coefficient for a lag, h, a^ is the variance of the property, v, 
E is the expectation value and Vj and Vj+h are the values of the property of interest 
of a pair of points at a lag h, apart. The semi variance can be estimated by: 

y(h) = ^ I [v,-v,.h]' 

Hh is the number of pairs of data points a lag h apart. In this book we normally do 
not use Greek symbols for estimated values, but the Roman counterparts. However, 
to remain in accordance with the sampling terminology we use here the Greek letter 
with a hat to denote the estimated semivariance. The semivariance can be inter­
preted as the mean of the perpendicular squared distances, d̂ , of the points in the 
scatter plot from the 45 degree line. 

In Fig. 20.34 the three measures of spatial continuity: the autocorrelation 
coefficient, the covariance and the semivariance are plotted as a function of Ihl for 
a typical stationary random function. The value of p(0) in the autocorrelogram 
(Fig. 20.34a) equals 1. It is the correlation coefficient between v(/) and v(/ + 0). 
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Fig. 20.34. (a) a theoretical autocorrelogram: the correlation coefficient as a function of h. (b) A 
theoretical covariogram: the covariance as a function ofW.(c) A theoretical variogram: the semivari-
ance as a function of h. 

When the distance increases, the correlation coefficient decreases asymptotically 
to p(oo) = 0. In the covariogram (Fig. 20.34b) C(0) equals the variance of the 
property, a^, according to eq. (20.14). When the distance increases, the covariance 
decreases to C(oo) = 0. In the semivariogram or more shortly the variogram the 
semivariance is plotted as a function of Ihl (Fig. 20.34c). The 'semi' in the word 
semivariogram comes from the factor 1/2 in eq. (20.14). It is often omitted and the 
term variogram is used instead. When the stationarity condition holds it can be 
shown that the relation between the covariance and the semivariance can be written 

as: 

y(h) = a^- C(h) = C(0) - C(h) (20.15) 

The value of 7(0) equals 0. Although this is theoretically true, the value of y for a 
lag value approaching zero, is not necessarily zero in experimentally obtained data, 
due to different sources of error. This effect is called the nugget effect and is shown 
in Fig. 20.35. When the distance increases the semivariance reaches an asymptotic 
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Fig. 20.35. An example of a variogram with a nugget effect. The nugget is the T(0) value. 

value, y(c>o), called the sill. According to eqs. (20.14 and 20.15), the value of y(oo), 
the sill, equals a^,the variance of the property. The lag distance beyond which the 
value of the semivariance remains constant is called the range, a. 

The variogram can be modelled in different ways. The models must however 
satisfy some restrictions because they will be used in the estimation step. Some 
often used models will be given in Section 20.10.5. 

20,10,2 Interpolation methods 

Estimation of the value of the property of interest at non-sampled locations 
requires a model about how the system behaves at the non-sampled locations. 
When the underlying mechanisms that cause the value of the property of interest 
are well understood, a deterministic model can be used. In geostatistics however 
this knowledge is rarely available. Most methods are based on a weighted linear 
combination of the available data: 

n 

V{)- X vv,: v, (20 .16) 
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with vo the estimated property at a non-sampled location, v/ the values for the 
available sample points, and w, the weights assigned to v,. 

When the stationarity assumption holds it is possible to derive the unbiasedness 
condition for the weights which is also intuitively acceptable [29]: 

n 

Iw,= l 

The unbiasedness condition is introduced to assure that the average prediction 
error, i.e. the difference between the predicted value and the true value, equals zero. 
The weights assigned to the data points may differ for estimates at different 
locations. Different approaches for assigning these weights give rise to different 
estimation methodologies. Basically two classes of methodologies can be distin­
guished: those that use criteria that are based solely on geometric information of 
the sample point locations (e.g. the inverse distance) and those that make use of the 
spatial continuity that is described in the previous section. The Kriging method (see 
Section 20.10.4) is the most popular of the latter category. 

20.10.3 Interpolation methods using only location information 

The simplest interpolation method is to use the value of the closest available 
sample point as an estimate for the value. This method is called the polygon 
method. It leads to discontinuities in the estimated values and this is usually not 
desirable. The triangulation method makes use of the three nearest neighbours. 
First the plane is calculated that fits the values of these three neighbours. The 
equation of the plane is then used to estimate the value at the unknown location. 

Example: 
A sampling scheme has been carried out on the points with coordinates as given 

in Table 20.4. The values of a property of interest, v, are also given in the table. 
Suppose that one wants to estimate v( 1.8,1.8), the value of v at the unsampled 
location with coordinates jc = 1.8 and y= 1.8. The three nearest neighbours of this 

TABLE 20.4 

Example of triangulation interpolation method 

Sample point JC y VCJCJ) 

1 
2 
3 
4 

1.0 
1.0 
2.0 
2.0 

1.0 
2.0 
1.0 
2.0 

26.2 
39.2 
27.4 
40.4 
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point are the sampled locations 2, 3 and 4. The equation of the plane through these 
three points is given by v(x,y) - 1.2 jc + 13 >̂  + 12. From this equation it can be 
readily derived that v(1.8,1.8) = 37.56. 

Other techniques use the information in more data points. The method of 
smoothing splines discussed in Chapter 11 belongs also to this category. Still other 
methods assign the weights according to the inverse distance to all data points, that 
are situated in a certain window around the unknown location. 

n 

1 
X^"' 

V = 

I' di 
/=1 

di is the Euclidean distance between the rth sample location and the point where an 
estimate is wanted. The numerator in the equation is introduced to satisfy the 
unbiasedness condition of the weights. Variants of this method use a power of the 
inverse distance. In general when the data points are evenly distributed, the estimate 
improves when more data points are included. When one includes many points the 
danger of violating the underlying first order stationary model increases. It is 
indeed more likely that in a smaller window the stationary model is locally valid. 
Defining the search window for neighbourhood is one of the steps of the procedure. 

lO.lOAKriging 

None of the previous methods makes use of the spatial continuity present in the 
dataset. Krige proposed a method, called Kriging that became the most popular 
method that does take information on spatial continuity into account [29,30]. 
Kriging is often called the BLUE method (Best Linear Unbiased Estimation). It is 
designed to minimize the variance of the estimation error (eq. (20.17)), by means 
of a weighted linear combination of the available sample points. The minimization 
of the error variance distinguishes Kriging from the previous methods. Three 
different variants can be distinguished: ordinary Kriging, block Kriging and co-
Kriging. We will discuss only ordinary Kriging, since it is the most used variant. 

The estimation error, CQ, at a non-sampled location is defined as: 

^0 = Vo - Vo 

combined with eq. (20.16), this becomes: 
n 

eO = Zw/V/-Vo 
/=1 
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Using the properties of the variance of the weighted sum of variables the following 
equation for the error variance at the unsampled location (GI)Q can be derived: 

(ol)o = Coo + I 
/=1 

X WiWjCij-

7=1 

2X w/C/o (20.17) 
i=\ 

Cij is the covariance between v, and v,. C/o is the covariance between the ith sample 
and the unknown location and Coo is therefore the variance of the value at the 
non-sampled location. It is assumed to be the same as the variance at any location, 
o^ in eq. (20.15). The covariances for the different /- and y-locations must be 
established first. They can be derived from the variogram or covariance function, 
usually for different directions. To make this possible it is necessary to model the 
variogram or covariance function in order to be able to derive covariance values 
for all possible distances (see Section 20.10.5). The next step is to minimize the 
error variance with respect to the weights. Since the unbiasedness condition re­
quires the sum of the weights to be one, a constrained minimization must be 
applied. This can be done with the Lagrange technique. It can be shown that this 
minimization procedure leads to the following equation: 

n 

Z "^jCij + A, = C,o for / = 1.. .n 

Wi 1 

where A, is the Lagrange parameter. This system of equations is called the ordinary 
Kriging system. In matrix notation this equation becomes: 

'Cn . 

Cn\ ' 
1 . 

c 
. C\n 

c 
1 

f 

1 
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W\ 

w„ 

X 

= 

= 

Co 

Cio 

CnO 

1 

where C is the matrix containing the covariances, augmented with a column and a 
row of ones, w is the vector that contains the weights and A, and Co is the vector 
containing the covariances between the sampling points and the unsampled location. 

Solving this equation for the weights gives: 

w = C-̂  Co 

To obtain all coefficients of the C-matrix, also those that are not measured, and 
the CQ-vector the covariance function must be modelled. It is clear that the matrix 
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C must be non-singular. When the weights are obtained eq. (20.17) can be used to 
estimate the actual prediction error variance, (cl)o. 

20.10.5 Modelling the variogram 

From the previous section it is clear that the covariances at non-sampled 
distances must be estimated in order to solve the Kriging system. These covari­
ances can be obtained by modelling the covariogram. In this way any Q can be 
derived using the model at the appropriate h value. In geostatistics however it is 
common use to model the variogram instead of the covariogram. The use of eq. 
(20.15) immediately yields the conversion between the semivariance and the 
CO variance: 

C(h) = a^ = Y(h) = Y(-)-Y(h) 

Thus one only has to subtract the value of the estimated semivariance at a lag h 
from the sill value of the variogram to obtain the corresponding estimated covari-
ance value (see also Fig. 20.36). 

In theory any model can be used to fit the variogram, but since the resulting C 
matrix must be non-singular it is common practice to use one of the basic models 
given below, which are assured to yield a non-singular C matrix 

- The linear model with sill (see Fig. 20.37a) 

Y(lhl) = Co + c/alhl for Ihl < a 

Y(lhl) = b = co + c for Ihl > a 

Co is the nugget, b the sill, c is the difference between the nugget and the sill, a is 
the range and c/a the slope of the linear part. 

- The spherical model (Fig. 20.37b): 

Y(lhl) = Co + c[(1.5 Ihl/a) - 0.5(lhl/a)^] for Ihl < a 

Y(lhl) = Co + c for Ihl > a 

The spherical model is the most commonly used variogram model in geostatistics. 

- The exponential model (Fig. 20.37c): 

Y(lhl) = Co + c[l - exp(-3 Ihl/a)] 

This model reaches the sill asymptotically. 

- The Gaussian model (Fig. 20.37d): 

Y(lhl) = Co + c[l - exp(-3 IhP/a^)] 
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Fig. 20.36. Estimation of the covariance from the variogram. The solid line represents the modelled 
variogram; the dashed line is the covariogram derived from the variogram. 

These are the basic models. More elaborate models have been developed which 
take into account anisotropic effects, i.e. the effect that the variogram is not the 
same in all directions. These models are however beyond the scope of this book 
(see Isaaks [29] for further details). Examples of the use of variograms can be 
found in [31,32]. 

20.10.6 Assessing the uncertainty of the prediction 

Assessing the uncertainty of the predictions involves basically two aspects: 
judging whether the prediction method that is used is acceptable and deriving 
estimates of the uncertainty of the predicted value, e.g. a standard deviation. 
Evaluation of the prediction method that is used can be done using cross-validation 
techniques (see Chapter 10). The second aspect involves again the basic assump­
tions. The variance of the predictions, that are weighted sums of sample data points 
is given by eq. (20.17). We assume that the variance, Coo, is equal for all locations 
and equals a^, the variance of the property of interest. The first term thus accounts 
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for the errors present in the data. In eq. (20.17) Q in the second term is the 
covariance between Vj and Vj. It is a weighted sum of the covariances between the 
various sample pairs. It increases when the selected points / and j are close to each 
other, i.e they are clustered. This term thus takes the negative effect on the 
precision of clustered data points into account. A regular sampling scheme mini­
mizes this term. C,o in the last term of eq. (20.17) is the covariance between the /th 
sample and the unknown location. This term accounts for the spatial continuity of 
the data. As a consequence the precision increases when large covariances are 
present. 

The estimate of the precision given by eq. (20.17) is valid for all prediction 
methods, based on a weighted sum of sample points. It can thus be understood that 
when the spatial continuity is not taken into account for the derivation of the 
weights (e.g. for the methods of the first category) the predictions are less precise. 

Ordinary Kriging is in many aspects the preferred method, since it takes many 
aspects into account. It is however not always straightforward to apply. The basic 
problem is the estimation of the spatial continuity and selecting an appropriate 
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model to describe it. Since in practice the values of the semivariances for the 
available sample points are noisy this is a difficult task. This is certainly the case 
in environmental sampling problems. Several studies have been carried out in this 
field, e.g. by Einax et al. [35], by Domburg [31,33] and by Brus [34]. Wehrens et 
al. [32] described a sampling strategy that includes a preliminary sampling scheme 
from which the variogram is estimated. Using this variogram the final sampling 
scheme is determined based on the required precision of the estimates. The effort 
of doing additional sampling may be worthwhile, considering the influence of a 
correct model on the predictions. If from the predictions decisions must be taken 
on e.g. the parts of lakes that must be cleaned, then a decrease in prediction errors 
may yield a considerable saving. The extra sampling effort is in that case negligible 
compared to the overall cost. Moreover, when enough information is available on 
the spatial continuity it is possible to estimate beforehand the prediction error of 
the intended sampling scheme. In that way it is possible to avoid selecting sampling 
schemes that are too small or too large [32]. 

20.11 Acceptance sampling 

An important issue in quality control is the acceptance or rejection of a lot or 
batch of products. As it is impossible to analyze all units of the batch one has to 
base ones decision on the inspection of a few units of the lot. A process which is 
under statistical control produces a certain constant rate of defectives. As a result 
each lot delivered to the customer will also contain a number of defectives. When 
the number of defectives in a lot is within the specifications, the level of noncon­
formances is considered to be acceptable. A sampling plan that will assure both the 
buyer and the producer of a well founded decision for delivery or acceptance is 
called acceptance sampling. 

Acceptance sampling is generally used to protect against accepting lots that may 
have levels of nonconformances that are too large [36]. Therefore the percentage 
of defective (Pd) units in a lot is estimated by taking a sample of a number of units 
{n) and determining the number of units (/id) of this sample which are defective. 
Let us consider a sampling plan where a sample of 5 units is taken from a lot which 
contains 5% defectives. The probability of finding no defectives (/td =0) is given 
by the binomial distribution (Chapter 15) 0.95^*0.05^ = 0.77. In general the 
probability (P(/id)) of finding n^ defectives in a sample of n units taken from a lot 
with a defective rate equal to P^ is given by 

with 

nd!(n-nd)! 
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The probability (Pa) of finding no more than an accepted number of defectives 
equal to ric in a sample of n units taken from a batch with P^ defectives is therefore 
given by: 

Pn = c^n (i-P^TPUC {i-P,r' /^U... + Q (1 -Pd^"^P3^ 

20,11,1 Operating characteristic curve 

A curve, which relates the probability Pa of finding no more than an accepted 
number of defectives equal to n^ in a sample of n units taken from a lot, to its 
defective rate P^ is called the operating characteristic curve (OC). This term 
comes from statistical decision theory and was already introduced in a similar 
context in Chapter 4. Figure 20.38 shows a family of operating characteristic 
curves when the batch is accepted if no defectives are found in a sample of 
respectively 1, 2, 4 and 10 units. From that figure one observes that under a 
sampling plan which includes acceptance of a lot only when no units out of ten are 
found defective, the consumer or buyer still has about a chance of 43% of accepting 
lots with 8% defectives instead of zero defectives as he would wish. On the other 
hand the producer runs the risk that when a true defective rate of 5% is acceptable 
to the consumer, he will under the same sampling plan reject such a lot with a 
probability of 25%! The true defective rate which is acceptable to the consumer is 
called the acceptable quality level (AQL). AQL is defined as the maximum 
percentage of defective units in a lot or batch, that can be considered satisfactory 
on the long run as a process average [36]. This means that a lot with a defective 
rate equal to the AQL should have a high probability (usually about 95%) of being 
accepted. Lots with a higher defective rate should have a very low probability (e.g. 
5%) of acceptance. The poorest quality in an individual lot which has such a desired 
low probability of acceptance is called the lot tolerance percent defective (LTPD). 

P(number of defectives 
in sample = 0) 

0 8 

0.6 

0.4 

Â  ̂  

\ n = 4 \ ^ ^ 

s^=io^^^^:::^^J^^^'^ ̂ - U ^ D ^ ^ 

% defectives in batcii 
(Pd) 

Fig. 20.38. Family of Operating Characteristic curves when a batch is accepted if no defectives (HC = 
0) are found in a sample of n units. AQL is the accepted quality level obtained for P{n^ in sample -
0) = 0.95, LTPD is the lot tolerance percent defective obtained for F(«d in sample = 0) = 0.20. 
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Fig. 20.39. Family of Operating Characteristic curves when «c = 1, 2, 3, 5 defectives are accepted in 
a sample of 10 units. 

The producer's risk and consumer's risk in acceptance sampling correspond 
with Type I (a) and Type II (p) errors in hypothesis testing (see Chapter 4). The 
producer's risk for any given sampling plan is the probability (a) of rejecting a lot 
that is within the AQL. Consider, for instance, the AQL = 2.2% situation. When 
one sample out of twenty is found to be defective on inspection, a lot with a true 
defective rate of 2.2%, which is the accepted quality level, has a probability of 
acceptance of 95% or, in other words the producer runs the risk that 5 times out of 
100, a lot with an accepted quality level of 2.2% is rejected. On the other hand, the 
consumer has a 5% probability of accepting a lot with somewhat more than 20% 
true defectives. This consumer's risk for any given sampling plan is the probability 
(p) of accepting a lot which is below the LTPD. Both risks depend on the sampling 
plan which is completely described by the sample size, the acceptance number and 
the lot size. As can be seen from Fig. 20.38, the probability of acceptance of the lot 
changes considerably with the sample size. When sampling 10 units, the probability 
of acceptance of a lot with 10% defectives is 35% whereas for a sample of 2 units, 
82% of such lots are accepted. All above conclusions are independent of the lot size 
itself. This is important to realize as this means that a large fraction of small lots 
has to be sampled to obtain the same probability of acceptance as for large lots. For 
instance when the OC curve for n = 10 and nc = 0 is used, it means that 10% of a 
lot containing 100 units has to be inspected, whereas for a lot of 250 units only 4% 
of the lot should be inspected. The effect of the acceptance number (nc) (see Fig. 
20.39) for a given sample size is of about the same order of magnitude as the effect 
of the sample size. 

20,11.2 Sequential sampling plans 

When the tests are destructive or cosdy, one will not decide to sample large 
fractions of a lot. Instead a sequential approach is applied until the lot can be 
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Fig. 20.40. Sequential sampling plan, a = 0.05, (3 = 0.1, AQL is 5% defectives, RQL is 30% defectives. 

accepted or should be rejected. A sequential sampling plan is based on the 
producer's risk (a), the consumer's risk ((3), the acceptable quality level (AQL) and 
the rejectable (or unacceptable) quality level (RQL). It is then possible to design a 
graph in which we plot the number of nonconforming units detected versus the 
number of units inspected. This graph is divided in three zones (Fig. 20.40), a 
rejection zone, a continue testing zone and an acceptance zone The two lines which 
separate the zones have the same slope (s) which is given by: 

log[(l-AQL)/(l-RQL)] 

log 
RQL(l-AQL) 
AQL(l-RQL) 

The acceptance zone has a negative abscissa which is equal to: 

log ( i - g ) 

RQL(l-AQL) 
log 

AQL(l-RQL) 

The abscissa of the rejection zone is equal to: 

(1-P) 
log-

a 
RQL(l-AQL) 

log 
AQL(l-RQL) 

Consider now a sampling plan that will have a 5% probability of rejecting a lot with 
5% true defectives and a 10% probability of accepting a lot with 30% true defec­
tives. In this case a = 0.05, p = 0.1, AQL = 0.05 and RQL = 0.3. 
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Substituting these values in the above equations gives the following lines (see 
Fig. 20.40): 

Reject line: number of nonconforming units = 0.1960 n + 1.073 

Accept line: number of nonconforming units = 0.1960 n - 1.378 

In this particular case we will accept the lot if e.g. no nonconforming units have 
been found in the first 8 units (> 1.378/0.1960 = 7.03). Otherwise we continue 
testing, unless the number of nonconforming units exceeds the reject line, which 
would already happen when the two first sampled units are nonconforming (2 > 
0.1960*2+1.073=1.465). 
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Chapter 21 

An Introduction to Experimental Design 

21.1 Definition and terminology 

This chapter introduces some terminology and concepts of experimental design. 
A more detailed description of the methods is given in Chapters 22 to 26. Many 
books and reviews have been written about experimental design; the books by Box, 
Hunter and Hunter [1] and Daniel [2] are classics. In the chemometrical literature 
there are books by Morgan and Deming [3], Carlson [4], Goupy [5,6] and 
Atkinson and Donev [7]. Some of the following chapters are, to a great extent, 
based on courses prepared by Phan-Tan-Luu [8]. Unfortunately, these courses 
are written in French and available only as course notes. A book [9] and a 
review [10] by Morgan provide simple introductions to the subject. Another 
useful introductory review is by Grize [11]. Many other books and reviews will 
be cited in Chapters 22-26. 

The term experimental design is used in two contexts. The first is to describe the 
set of experiments that is carried out with the intention of developing a model, e.g. 
a regression model or an ANOVA model. We have seen in Chapters 8 and 10 that 
the selection of the experiments, i.e. the experimental design, has an influence on 
the quality of the model (e.g. on the precision with which the regression coeffi­
cients are determined). The term is also used in the context of optimization of 
products or processes: experimental design is applied to determine in an effi­
cient way the set of conditions that are required to obtain a product or process 
with desirable, often optimal, characteristics. Chapters 22-26 are written essen­
tially with the second context in mind. However, modelling is one of the main 
techniques applied to optimize, so that many of the concepts, e.g. the D-opti-
mality principle of Chapter 24.4.1, can also be applied to obtain optimal 
models. Since the second context is the more important in what follows, let us 
analyze its definition. 

We would like to determine a set of conditions, or values of factors. Factor is 
the name given in this field to variables that are changed in a controlled way to 
study their effect on the process or product and which have (or may have) an 
influence on the characteristics studied. The fact that the definition refers to a set 
of conditions means that one will nearly always be interested in several factors. 
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Typically, experimental design is multivariate in its approach. The characteristics 
of the product or processes to be optimized are often called the response(s). They 
can be considered as variables describing the performance. 

We can see that there are two types of variable: the responses and the factors; 
the responses are the dependent and the factors the independent variables (see 
Chapter 10). Responses will be symbolized by the letter}' and factors by the letters: 

iyx.yi. ....yp) = Kx^^2, ...,^n) (21.1) 

In most of the cases described in the literature each of the responses are treated 
separately. Equation (21.1) then reduces to: 

y = i{x\^2. -.Xn) (21.2) 

The model relating the response to the effect of the factors is called the response 
function or, because of its multivariate character, the response surface. Figure 21.1 
shows some typical response surfaces. 

The models are obtained from experiments. The word design means that these 
experiments are carried out not in a haphazard way, but in a carefully considered 
and planned way. 

21.2 Aims of experimental design 

Experimental design is used to obtain a product or process with desirable 
characteristics in an efficient way. This means one aims to 

- understand the effect of the factors and/or 
- model the relationship between y and x 

with a minimum of experiments. This requires an orderly and efficient mapping of 
the experimental space. Experimental design, well applied, is therefore cost-saving. 

In many applications one combines these aims (Fig. 21.2). One starts by 
determining which factors influence the response and to what extent. The next step 
often is to obtain a model describing in a quantitative way the effect of these factors 
on the responses. Eventually, one wants to define the optimum settings of the factor 
levels, i.e. the combination of factor values yielding the best characteristics of the 
product, process or procedure investigated. One then uses experimental design to 
optimize responses. The optimum may for instance be the highest or lowest value 
of the responses, but, as we will show later, there are other possibilities. It is also 
possible that one is not interested in the optimal result, but in a region where the 
results are sufficiently good. 

Applications of experimental design are found in many areas of the chemical or 
related sciences. In analytical chemistry one could maximize for instance the 
absorption of a colorimetric procedure with as factors the amount of reagent, pH 
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temperature 

b) 

Fig. 21.1. Typical response surfaces, (a) Retention (^0 as a function of pH and % methanol [12]; (b) mass 
of ribonuclease fixed to a silica support as a function of pH and temperature (adapted from Ref. [13]). 

and type of buffer and, in organic chemistry, the yield of organic syntheses while 
minimizing the amount of certain byproducts. In food science one could optimize 
the sensory characteristics of food products according to their composition; in 
pharmaceutical technology one minimizes the friability of a granulate as a 
function of composition. In industrial chemistry one may optimize the rheologi-
cal properties of a plastic as a function of factors related to the preparation 
process or the smoothness and soil release of a bedsheet in function of the type and 
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Fig. 21.2. The main steps in experimental design. 

the amount of resin additives. These and other examples will be used to illustrate 
the following chapters. 

As mentioned in the preceding section, experimental design is not only applied 
to obtain optimal responses but also optimal models. We have seen in Chapter 8 
that the selection of the points to be used for the construction of a calibration line 
is important (Section 8.2.4.3) and allows us to optimize the quality of the prediction 
of concentrations. In Chapter 10.4 we have seen that the confidence intervals of the 
model parameters largely depend on the experimental design used. In Chapter 36 
on multivariate calibration, we will see that typical experimental designs, such as 
those described in Chapters 24 and 25, are also applied to obtain multivariate 
calibration models. 
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21.3 The experimental factors 

Factors in experimental design can be qualitative or quantitative. If one is 
interested to know whether the use of different catalysts or the type of a solvent has 
an effect on the yield obtained by a certain organic synthesis, then the factors are 
qualitative. If the factor is pH, then it is quantitative. The different values one gives to 
the factor are called levels. If the experimental design requires experiments at pH 
values of 5 and 9, then there are two levels of pH. The term level, which has a 
quantitative connotation in everyday use (high or low level) is also used for qualitative 
factors. When investigating the effect of a solvent on a certain process, one would 
for instance indicate that two levels were investigated, e.g. methanol and acetoni-
trile. Mixed situations are also possible. For instance, one can investigate the effect 
of solvent (qualitative) and pH (quantitative) on a chromatographic response. 

The selection of the factors is generally the very first step in an experimental 
design application (see Fig. 21.2). Sometimes one knows which factors have an 
effect, but frequently one does not have this information. In this case, one starts by 
writing down all the factors that might have an effect and then carries out a screening. 
Screening designs can be applied for this purpose (see Section 21.7 and Chapter 23). 

Once the variables have been selected, one needs to define the boundaries of the 
experimental domain, i.e. the extreme levels at which the factors will be studied. 
The experimental domain is bounded by the levels taken by a certain factor. 
Consider the simplest possible experimental design: a response is measured at two 
levels of one factor (see Fig. 21.3a). This design defines a one-dimensional space 
bounded by the levels at which the experiments are carried out. A two-dimensional 
design is shown in Fig. 21.3b. It is a two-level factorial design in two dimensions. 

b) 
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Fig. 21.3. Mapping the multivariate space, (a) One-dimensional space bounded by two levels of the 
factor; (b) two-dimensional rectangular space bounded by the two levels of two factors. {Continued on 
next page) 
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d) 

Fig 21.3 continued, (c) Three-dimensional spherical space bounded by 12 of the 13 experimental 
points of the Doehlert design; (d) an irregular experimental domain for the optimization of pH and % 
methanol of the HPLC separation of chlorophenols [12]. 

Experiments are carried out at two levels for each of the two factors. This type of 
design will be discussed in more detail in Chapter 22. One notes that 4 experiments 
are carried out. Together they define a rectangular two-dimensional space, while 
the 13 experiments of the Doehlert design (Fig. 21.3c, discussed further in Chapter 
24) define a three-dimensional spherical space. The examples define symmetrical 
regions. However, as will be shown for the D-optimal designs of Chapter 24 and 
the mixture designs of Chapter 25, this is not always possible or even recom­
mended. Figure 21.3d gives as an example the irregular experimental domain for 
the optimization of a separation of some dichlorophenols [12]. 
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A correct definition of the boundaries and the levels is necessary. Boundaries 
that are too wide often require us to carry out experiments in useless conditions and 
lead to insufficient precision of the model in the area investigated. Boundaries that 
are too narrow can miss the optimum. Aids to defining boundaries for useful 
experiments exist in some domains; for instance, gradient elution methods for 
chromatographic optimization [14,15] allow selecting of boundary conditions at 
which solutes are eluted in an acceptable retention domain. 

21.4 Selection of responses 

A very important step in experimental design is the selection of the response(s) 
to be investigated. Usually, one models each response separately and tries to find 
the factor values yielding the highest or lowest response. 

In real life it is common that there is more than one response and that the results 
obtained are conflicting. In HPLC, separation usually becomes better when the 
retention increases. However, it also means that the time required for the analysis 
becomes longer and, for many chromatographers, time is an important criterion 
which should be minimized. One observes that quality of separation (response 1) 
may be opposed to analysis time required (response 2). One does not need to find 
the optima of the two responses separately, but rather an adequate compromise. 
Techniques for treating conflicting responses, multicriteria methods, are described 
in Chapter 26. 

A frequent error is to try and model composite responses. Consider for instance 
Fig. 21.4. Figure 21.4b describes the separation coefficient a = k\lk\ (for k\ > k\) 
or k'2/k\ (for k\ < k'i), where k\ and /:'2 measure the retention of two substances, 
as a function of solvent strength. Figure 21.4a does this for log k\ While Fig. 21.4a 
can be modelled by a (quadratic) function, the function for the composite criterion 
a can be modelled less easily. Therefore, if at all possible, one should model the 
basic responses (in this case retention, (log) k') and obtain in a second step the 
complex response function (here a) from the model(s) derived in the first step. 

Optimization in its classical sense consists in finding the factor values for which 
the highest response (e.g., highest yield of main product) or lowest response (e.g., 
lowest yield of an undesirable byproduct) is obtained. However, this is not neces­
sarily the best choice. Consider, for example, the response surface of Fig. 21.5. The 
highest point is situated on a narrow ridge. Small changes in the value of a factor 
will lead to an immediate change (and in this case, decrease) of the response. It may 
be much better to choose point B. The response is not as high, but it is much more 
robust. Small changes in the factors do not lead to big changes in the response. 
Methods that optimize at the same time the magnitude of a response and its 
robustness were first proposed by Taguchi and will be described in Section 26.5. 
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Fig. 21.4. (a) Capacity coefficient k' for two substances (1 and 2) as a function of solvent strength; 
(b) separation coefficient a as a function of solvent strength. 

Fig. 21.5. Robustness. Point A has a high response but is not robust; point B has a response that is 
somewhat lower but is more robust (adapted from Ref. [16]). 



651 

21.5 Optimization strategies 

For simplicity, we will suppose in the following sections that it is the highest 
value of the response that is needed. This is given by the maximum in the response 
surface. Instead of using a response surface graph, one often uses a contour plot. 
This translates the response surface in the same way as a geographical map for a 
mountainous area. The isoresponse lines can be viewed as the contour lines in the map. 

As stated earlier, experimental design is usually multivariate in nature. Let us 
first compare a multivariate approach with the classical one-factor-at-a-time (uni­
variate) strategy. Consider for instance Fig. 21.6a. This is an optimization with two 
factors. The starting point is A and the optimum to be reached is O. As a first step, one 
would carry out a certain number of experiments to optimize factor xi at constant value 
of X2 and obtain B. Subsequent optimization oixi at the value of B foxx\ would yield 
O, as desired. This would not be the case in Fig. 21.6b. The univariate approach would 
yield here C as the assumed optimum. However, clearly C is far from optimal. The 
optimum could have been obtained by repeating this procedure (i.e. again keeping X2 
constant and optimizing x\ anew, which would yield D and so on), but this would be 
inefficient because of the large number of experiments required. If more than two 
factors had been involved the situation would have been even worse. The inefficiency 
of this procedure is due to interaction between factors x\ and X2. The existence of 
interaction is demonstrated in Fig. 21.6c. Suppose one wants to investigate the effect 
of X2 at the levels a and b of X| and at the levels c and d oixi. One would then measure 
the response at locations A, B, C and D. The difference in response between the 
experiment at locations A and B would indicate that, when X2 increases, the response 
decrease. However, when we would do the same for experiments C and D, we would 
observe an increase when X2 increases. In other words, the effect of X2 on the response 
depends on the value of xi: this is what was defined in Chapter 6 as an interaction. This 
situation would not occur with the response surface of Fig. 21.6a: there is no 
interaction in that case. We also conclude that the univariate optimization strategy 
is efficient when there is no interaction and that it is not when there is interaction. 
In practical cases, interactions occur more often than not, so that multivariate 
approaches are usually more efficient than univariate ones. 

There are two main multivariate optimization strategies. These are often called 
sequential and simultaneous optimization strategies. Some mixed approaches can 
also be used. The simultaneous strategies entail carrying out a relatively large 
number of experiments according to a pre-arranged plan. The factorial and mixture 
designs described in Chapters 22 to 25 belong to this group of designs and, as they 
are the more important ones, we will introduce them further in Sections 6 and 7 of 
this chapter. The experimental results are used to obtain models, such as those 
described in eqs. (21.3 to 5) and from these models the optima, i.e. the values for 
which y is highest can be derived. 
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Fig. 21.6. Optimization of one factor at a time in a two factor experiment; (a) when there is no 
interaction; (b) when there is interaction; c) the interaction: the effect of .xa is different at levels a and 
b of xi. 
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X^ 

Fig. 21.7. Simplex optimization for two factors xi and X2. 

A sequential strategy consists in carrying out only a few experiments at a time 
and using these to determine the experiment to be carried out next. The best known 
sequential method is called the Simplex method. Figure 21.7 explains the principle 
of the simplest such method, the fixed size Simplex method, for the optimization 
of a response as a function of two factors, xi and X2. In this example one would start 
with three experiments (1,2,3) situated in a triangle. Experiment 1 yields the worst 
result and, therefore, it is concluded that this point is situated in the wrong direction 
and that one should move in the opposite one. A new triangle is therefore con­
structed consisting of experiments 2,3 and the new one, 4. In this triangle the 
process is repeated: 2 is worst, it is replaced by 5. The Simplex methodology is 
described further in Chapter 26. Its application would have led to the selection of 
experiments 6 to 10, successively. The decision on the experiments to be carried 
out was made in a sequential way: only 1, 2 and 3 were decided simultaneously at 
the beginning. 

A more complete description of the sequential and some mixed approaches is 
given in Chapter 26. Sequential designs are chosen when the optimum of a single 
response is the only information desired, i.e. when a model relating response and 
variables is not desired. Thanks to their hill-climbing algorithms, the sequential 
methods are usually very efficient in this respect. When not only the optimum is 
required, but also a model of the response surface, simultaneous methods would be 
preferable. Although the results obtained during the sequential design would allow 
us to map part of the response surface, that model would not necessarily be a good 
one. It can be shown that the quality of a model depends on the design chosen (see 
Chapters 10 and 24). In the sequential method the design depends on the route 
followed to reach the optimum and it would therefore be a matter of luck to have 
a good design. There are several situations where sequential methods are not 
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indicated. For instance, they cannot be used easily when there is more than one 
response, as will be explained in Chapter 26. For all these reasons, more attention 
is paid in this book to simultaneous than to sequential methods. 

Experimental design is usually applied to multiple factor situations. In some 
cases, experimental design can be useful for the optimization of a single factor. 
Strategies for such situations also exist: one — window programming — is 
described in Chapter 26. 

A special case of optimization is numerical optimization. This was applied in, 
e.g.. Chapter 11 where hill-climbing methods such as steepest ascent and Simplex 
were used to estimate the coefficients in a non-linear equation. This is an optimi­
zation problem, since it requires to find the combination of coefficients that yields 
the minimum of the squared residuals to the model (least squares). In more 
complex cases, special techniques such as genetic algorithms or simulated anneal­
ing are required. These are described in Chapter 27. 

21.6 Response functions: the model 

Experimental design is used to develop empirical models. This means that it is 
used in situations in which one is not able to derive the response function from 
theory. In practice, this is nearly always the case. Theory often allows us to predict 
that there should be a relationship between a certain factor and a response, it 
sometimes permits us to derive what type of function (linear, quadratic, etc.) 
should be obtained, but is it rarely able to give the coefficients in that function. 

Typical response functions are given below for two factors, X] and X2, and the 
single response y: 

y = bo + b]X\ + biXi + b\2X]X2 (21.3) 

y = bo-\- b\X\ + b2X2 + b\\xi + /722-̂ 2 + b\2X\X2 (21.4) 

One notes that they consist of the following. 

- A constant term i>o, which is the value of >' when X\ and X2 are zero. Very often 
one works with coded factors. Suppose that one of the factors is a concentration of 
a reagent and that the two levels at which experiments are carried out are 0.1 M and 
0.3 M. These are then coded, for instance, as -1 and +1. The 0 level is in between 
those -1 and +1 levels and is therefore the centroid. In our simple example the 0 
level would be 0.2 M; b^ then describes the value oiy at that location. 

- First-order (eq. (21.3)) and second-order (eq. (21.4)) terms for xi and X2 

- The last term in both eqs. (21.3) and (21.4) is the interaction term (see also 
Chapter 6). 
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This type of model is valid only for so-called proc^^i" variables. The term is best 
understood in contrast with the term mixture variables or factors. Mixture factors 
are components of a mixture and are characterized by the fact that they add up to 
1. This is not the case for process variables. Temperature, pH, type of machine used 
are typical process variables and the fractions of acetonitrile, methanol and water 
in a ternary mixture of those three solvents are mixture variables. It should be noted 
here that one uses mixture designs (Chapter 25) for mixture variables and factorial 
designs (Chapter 22 to 24) for process variables. 

One notes that the model for process variables is second order: it contains 
squared terms and binary interactions. In principle, one could think of third and 
higher order polynomials, but this is rarely necessary. Ternary interactions are 
rarely relevant and third-order models or non-linear models (in the statistical sense 
of the term non-linear — see Chapter 10) do not often occur. In practice, nature can 
often be approximated, at least locally, by smooth functions such as second-order 
equations. Exceptions exist; for example, pH often leads to sigmoid curves when 
the measured response is due to the cumulated response of the ionized and the 
non-ionized species of the same substance. Responses that are bounded between 0 
and 1, e.g., a sieve fraction in pharmaceutical technology, also often lead to 
sigmoid relationships that have a lower and upper plateau. Figure 21.8 gives an 

k* 

pH 

Fig. 21.8. Example of a response that would be difficult to map with a quadratic function. The response 
is k' as a function of pH in reversed phase partition chromatography. While it would not be possible 
to model the function over the region A-B, the more restricted region C-D can be approximated with 
a quadratic function. 
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example of a response that would be difficult to model over the whole experimental 
domain with a second order equation: as stated in Chapter 11.3.1, polynomial 
functions are unsuitable for fitting curves that have horizontal asymptotes (or 
plateaus). Quite often, one will not be interested in the whole domain, but in a more 
restricted region such as indicated in the same figure. In that case it becomes 
feasible again to model the response by a quadratic function of the independent 
variable. 

The model for mixture variables does not include the quadratic terms for the 
individual factors such as x\, nor the constant bo. An example is given below for 
three factors 

y = biXi + b2X2 + ^3^3 + &12-̂ l-̂ 2 + ^13^1^:3 + ^23^2-^3 ( + ^123^1^2^3) ( 2 1 . 5 ) 

Although eq. (21.5) does not contain the squared terms, it is a second-order 
model. In Chapter 25, it is explained why the squared terms have disappeared. In 
contrast with process factors, mixture factors are sometimes modelled with cubic 
models. In the example of eq. (21.5) this would require us to add the term between 
brackets. 

The models described by eqs. (21.3) to (21.5) are regression models. The 
/^-coefficients are obtained by multiple regression, at least when the number of 
experiments is higher than or equal to the number of coefficients. When multiple 
regression is required the knowledge gained from Chapter 10 should be applied. 
For instance, one could: 

- check whether all terms in the model are required using the techniques of 
Section 10.3.3; 

- validate the model; 
- try to obtain the most precise possible estimate of the coefficients; and 
- try to obtain the smallest prediction error of the optimum or other regions of 

interest. 
In some cases more advanced regression techniques may be useful such as PLS 

which can use the correlation structure between the variables or between the factors 
on the one hand and the responses on the other. This type of application will be 
discussed in Chapter 35. 

21.7 An overview of simultaneous (factorial) designs 

Simultaneous designs are often collectively called factorial designs. The follow­
ing main classes of designs can be distinguished. 

- Designs in which the emphasis is on detecting which factors have an influence 
or on estimating that influence. The basic design used here is the full two-level 
factorial design. In such a design one considers each factor at two levels and the 
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experiments are carried out at each possible combination of the two levels. These 
designs permit the estimation of the effect of all the factors and their interactions 
and the making of a first-order model including binary interactions (eq. (21.3)). 
The two levels are the boundaries of the experimental domain and because of the 
linear nature of eq. (21.3) the optimum response will necessarily be found along 
that boundary. Two-level factorial designs are described in Chapter 22. 

When the number of factors increases, so does the number of experiments. For 
instance, for 10 variables, one would require 1024 experiments. In such cases one 
carries out only a fraction of these experiments, for instance 1/2, 1/4, 1/8. These 
designs are called fractional factorial designs. Because one carries out fewer 
experiments, one also loses some information about some or all of the interactions. 
This is described more in detail in Chapter 23. 

In some cases, one is not at all interested in interactions. This typically occurs 
when the only aim is to determine which factors are relevant. When studying a new 
process, it can be the case that it is not known which of many possible factors affect 
the results. One wants to screen the candidate factors to select those that do. In such 
cases the smallest possible fraction of a two-level design (a saturated fractional 
factorial design) or the related Plackett-Burman designs can be used. They are 
described in Chapter 23.7. Such designs are also used to determine the collective 
influence of a large number of factors on the variance in the results of a process 
without necessarily trying to distinguish which factors have most effect. This is 
what is used in the determination of robustness (Chapter 13) or in Taguchi-type 
designs (Chapter 26). 

- Designs in which the emphasis is on modelling. This requires that one is able 
to describe curved relationships and therefore one needs the second-order model 
of eq. (21.4). Therefore at least three levels of each factor have to be considered. 
Typical designs are the central composite design and the Doehlert uniform net­
work. These designs are described in Chapter 24. The main reason for using them 
is to be able to derive models such as those given by eq. (21.4) and the correspond­
ing response surfaces. Usually two-level designs will be applied first to decide 
which factors are important and only these important factors will be studied with 
more than two level designs. 

There are two special cases. One is the case of mixture factors, as explained 
already in Section 6. These do not only yield specific models, but also require 
specific designs which are described in Chapter 25. The other special case is that 
in which process factors are used for which it is not possible to control the levels, 
because nature does. Suppose one wants to study the influence of functional groups 
situated at two locations of a lead molecule used as the substrate for some organic 
or biological reaction. The two factors are considered to be the hydrophobicities of 
the substituents at the two locations. It will not be possible to synthesize molecules 
with exactly the levels of hydrophobicity at the two sites required by, for instance. 
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the central composite design. Rather, one will have available or will be able to 
synthetize a certain number of molecules from which one will pick a few with 
convenient hydrophobicity values of the two substituents to derive the model 
describing reactivity in function of hydrophobicity. The best set of substituents is 
selected by a D-optimal design or a mapping design. This is described in Section 24.4. 
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Chapter 22 

Two-level Factorial Designs 

22.1 Terminology: a pharmaceutical technology example 

Full two-level factorial designs are carried out to determine whether certain 
factors or interactions between two or more factors have an effect on the response 
and to estimate the magnitude of that effect. This is the object of this chapter. These 
designs require an experiment to be carried out at all possible combinations of the 
two levels of each of the k factors considered. The experiments are sometimes 
called runs or treatments. The latter term comes from agronomy, a science in which 
much of the experimental design methodology was originally developed. One 
would for instance investigate the effect of applying phosphorus and nitrogen to 
the yield of a crop. In its simplest form this requires that the crop be treated with 
four different treatments (low P-low N, low P-high N, high P-low N, high P-high N). 

Two-level two-factor experiments can be represented as shown in Fig. 22.1. Of 
course, more factors can be included. This is shown in Fig. 22.2 for three factors. 
The number of experiments is equal to 4 (= 2̂ ) in Fig. 22.1 and to 8 (= 2̂ ) in Fig. 22.2. 
In general, the number of experiments required is 2 ,̂ where k is the number of factors. 
Consequently, a two-level /:-factor design is called a (full) 2'^ factorial design. 

The levels can be represented in different ways. A much used method is to 
indicate one level as + (or + 1) and the other as - (or - 1). When the factors are 
quantitative the + level indicates the higher value, the - level the lower value and 
0 then indicates the centre, the value in between. This 0 value will not be required 
in this section, but there is a use for it in Sections 22.6.3 and 22.9.3. The notation 
is also applied to qualitative factors. The + level is then not higher than the - level, 
but simply different from it and there is usually no 0 level. A commonly used 
method is also to indicate one level as 0 and the other as 1. The combinations of + 
and - or 0 and 1 identify an experiment. For instance, experiment + - means that factor 
A was at the + level and factor B at the - level. However, it is useful to identify 
them in a shorthand way, particularly in view of the application of Yates' method 
(see Section 22.3) and fractional factorials (see Chapter 23). This is explained by 
an example adapted from Malinowski and Smith [1]. They studied the effects of 
four spheronization process variables on tablet hardness. The design is therefore a 2^ 
design and requires 16 experiments. The factors are given in Table 22.1. One 
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Fig. 22.1. A two-level two-factor design. The factors are solvent strength (levels 1.0 and 1.2) and pH 
(levels 3 and 5). Four experiments are carried out, yielding the responses >̂i to ^4 (retention of a 
chromatographed compound). 
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Fig. 22.2. A two-level three-factor design with factors A, B and C. 

should note that, in keeping with the usage of the field, a factor is shown with a 
capital letter. The results are shown in Table 22.2. The experiments are shown in 
the order they were executed. The order is random to prevent artefacts in the 
conclusions (see further Section 22.9.2), so that it is not so easy to verify that 
indeed all combinations of + and - levels are represented. This is easier to verify 
in Table 22.3, which contains the same information, but grouped in another way. 
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TABLE 22.1 

Factors and factor levels studied in connection with a spheronization process (adapted from Ref. [1]) 

Factor Level 

Low (-) High(+) 

Water content (ml) (A) 
Extruder speed (rpm) (B) 
Screen size (mm) (C) 
Spheronizer speed (rpm) (D) 

250 
39 
0.8 

700 

325 
59 

1.5 
1010 

TABLE 22.2 

Experimental results for a full factorial design with the factors of Table 22.1. The response is tablet hardness. 

Experiment 

a 
ac 

(1) 
acd 
b 
d 
abed 
ab 
c 
bed 
abd 
ad 
cd 
abc 
be 
bd 

A 

+ 
+ 
-
+ 
-
-
+ 
+ 
-
-
+ 
+ 
-
+ 
-
-

B 

-
-
-
+ 
-
+ 
+ 
-
+ 
+ 
-
-
+ 
+ 
+ 

C 

+ 
-
+ 
-
-
+ 
-
+ 
+ 
-
-
+ 
+ 
+ 
-

D 

-
-
+ 
-
+ 
+ 
-
-
+ 
+ 
+ 
+ 
-
-
+ 

Response 

4.2 
4.8 
6.1 
3.7 
6.4 
4.7 
3.7 
4.4 
6.5 
6.6 
3.4 
3.9 
6.7 
5.4 
8.3 
6.3 

TABLE 22.3 

The results of Table 22.2 presented in an ordered format 

c-

c+ 

D -

D + 

D -

D + 

A -

B -

6.1 

4.7 

6.5 

6.7 

(1) 

d 

c 

cd 

B + 

6.4 

6.3 

8.3 

6.6 

b 

bd 

be 

bed 

A + 

B -

4.2 

3.9 

4.8 

3.7 

a 

ad 

ac 

acd 

B + 

4.4 

3.4 

5.4 

3.7 

ab 

abd 

abc 

abed 
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In Tables 22.2 and 22.3 the experiments are identified with small letters. For 
instance, the first experiment in Table 22.2 is identified as a. This label is obtained 
by writing down in small letters all factors for which the level is + in that 
experiment. The level of A is + and it is - for B, C, D. The last experiment in Table 
22.2 has positive levels for B and D and consequently is labelled bd. The experi­
ment, where all levels are negative, is labelled (1). 

22.2 Direct estimation of effects 

We will return to the example of Tables 22.1 to 22.3 later, but to explain how to 
determine the effect of a factor we will first consider a somewhat simpler example. 
Suppose therefore that we want to estimate the effect of 3 factors (A, B and C) on 
a response y. The design matrix is given in Table 22.4. The order of these 
experiments clearly is not random. Randomization would be needed for practical 
applications, but for ease of explaining we will not take this into account. 

Consider, for example, the effect of factor A. If one compares experiments 1 and 
5, one observes that in both experiments the levels at which B and C are measured 
are the same but that A is once at level + and once at level - . The difference 
between the results y\ and >'5 is therefore an estimate of the effect of A when B and 
C are both at the + level. The difference between the results y2 and y(, constitutes 
another estimate of the effect of A, this time at the + level for B and the - level for 
C. In total, four estimates for the effect of A can be obtained and the average effect 
of A can therefore be estimated as: 

Effect A = [Cy, - y^) + (ji - ye) + CV3 - >̂7) + (j4 - y%)]l^ or 
Effect A = (y, + };2 + }̂3 + ^4 - y s - ^6 -y? -y8)/4 (22.1) 

It is important here to note that one has averaged estimates. By performing more 
than one estimate statistical evaluation becomes possible (see further Sections 22.6 

TABLE 22.4 

Design matrix for a 2^ factorial experiment 

Run A B C Response 

1 + + + >'i 

2 + + - >'2 

3 + - + >'3 

4 + - - >'4 
5 - + + y5 
6 - + - >'6 
7 - - + >'7 
8 - - - ^8 
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to 22.8). Moreover, the experiments are chosen so that they map the experimental 
domain in an efficient way. The average estimate is as representative for the whole 
domain as is possible without further knowledge of the process. 

There is an easier way to write eq. (22.1). One merely has to sum the results of 
all the experiments carried out at the + level and to subtract those carried out at the 
- level of the factor considered. 

Effect = (X positive level runs - S negative level runs) / 4 (22.2) 

In other words, the main effect of a factor is the difference between the average 
responses at the high level and the average responses at the low level. For instance, 
the effect of C is given by: 

Effect C = (y, + 3;3 + 375 + 3̂ 7 - 3̂ 2 - J4 - }̂ 6 - ys)/^ (22.3) 

Indeed the experiments 1, 3,5 and 7 are carried out at the + level of C and the others 
at the - level. In general, for k factors, one can write: 

Effect = (X positive level runs - S negative level runs) / (2̂ "̂ ) (22.4) 

or 

Effect = mean of positive runs - mean of negative runs 

When the effect is not described as the mean difference between + and - levels, 
but rather as the difference between one of these levels (sometimes called extreme 
levels) and the intermediate 0 level (sometimes called the nominal level) as is the 
case when one describes the results with regression models (see Section 22.8), then 
the effect as defined in eq. (22.4) must be divided by 2 or the nominator in eq. 
(22.4) must become 2̂  instead of 2^-\ 

Equation (22.4) can be applied to any table, where the + and - levels are 
identified, as is the case in Table 22.3. Indeed one can estimate the effect of, for 
instance A, by taking all the results of experiments performed at a positive level 
for A minus the results obtained at the negative level and dividing this by 8. 

A = [(4.2 + 4.4 + 3.9 + 3.4 + 4.8 + 5.4 + 3.7 + 3.7) -

(6.1 + 6.4 + 4.7 + 6.3 + 6.5 + 8.3 + 6.7 + 6.6)]/ 8 

= -2.26 

In other words, one estimates that by changing the content of water from 250 ml to 
325 ml the hardness decreases on average with 2.26 units. 

The interaction effects can be estimated in exactly the same way, but some 
additional computations on the design matrix are required. Let us compare the 
evaluation of the effect of A from y\ - y^ and from y-i - yq in Table 22.4. Both 
differences estimate the effect of A at the same (+) level of C. However the former 
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does this at the + level of B and the latter at the - level. By subtracting one from 
the other and dividing by 2, one estimates to what extent the effect of A is affected 
by this difference in B value. In other words, one estimates the interaction effect 
of B on A: 

Interaction of B on A = [Cy, - ^5) - 0̂ 3 - ^7)1/2 = [(y\ + yi) - Cvs + y5)V2. 

The interaction effect of A on B can also be estimated. At the high level of C 
and A, the effect of B is estimated as >'i - ^3 and at the same high level of C but at 
the low level of Ahyy^- y-j, so that: 

Interaction of A on B = [(y^ - y^) -(ys- yi)V2 = [(yy + y^) - CV3 + ysW^. 

One finds that the estimates of the interactions of A on B and B on A are really 
the same, so that one can state that, at the high level of C, the interaction between 
A and B, written as AB or A x B is: 

[(y\+yi)-(y3 + y5)V2 

It can be verified that, at the lower value of C, a second estimate of the A x B 
interaction can be obtained by 

[(y2 + ys)-(ye + y4)V2 

Averaging the two estimates, one obtains: 

A X B = (ji + 2̂ + 7̂ + ys-y^-yA-ys-ye)/"^ (22.5) 

In principle, it is not difficult to write down all the interactions in this way, but 
it requires attention and becomes very tedious when one needs to write down triple 
interactions or has more than three factors to consider. Fortunately, there is a much 
easier method, similar to the easy way of deriving main effects with eq. (22.4). 
How to do this is explained in Table 22.5. 

TABLE 22.5 

Computation of interaction levels for 3 variables 

B AB AC BC ABC Run 
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TABLE 22.6 

Computation of interaction levels for 4 variables (only some interactions are given as an example) 

A 

+ 
+ 

-
+ 

-
-
+ 
+ 

-
-
+ 
+ 

-
+ 

-
-

B 

- _ 
-
-
-
+ 

-
+ 
+ 

-
+ 
+ 

-
-
+ 
+ 
-1-

C 

_ 
+ 

-
+ 

-
-
+ 

-
+ 
+ 

-
-
+ 
+ 
+ 

-

D 

_ 
-
-
+ 

-
+ 
+ 

-
-
+ 
+ 
+ 
+ 

-
-
+ 

AB 

-
+ 

-
-
+ 
+ 
+ 
+ 

-
+ 

-
+ 
+ 

-
-

ABC 

+ 

-
-
-
+ 

-
+ 

-
+ 

-
-
+ 
+ 
+ 

-
+ 

ABCD 

_ 
+ 
+ 

-
-
-
+ 
+ 

-
-
-
+ 
+ 

-
+ 
+ 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

The three first columns of Table 22.5 are the same as those of Table 22.4. They 
constitute the design matrix; together they completely describe the experiment. 
The other columns (the interaction matrix) are needed only for computational 
purposes. They are obtained by simple multiplication. For instance the sign of the 
first row of AB = sign A x sign B = (+) x (+) = + and for row 6: (-) x (+) = -. In 
the same way the sign of row 8 for ABC is given by: (-) x (-) x (-) = -. 

The computation of the interaction effect is now simple: one uses eq. (22.4). It 
can be verified that this leads to eq. (22.5) for the interaction AB. In Table 22.5 
runs 1, 2, 7 and 8 have positive signs for this interaction and the other runs have 
negative signs. In Table 22.6 the computations are performed for some of the 
interactions that can be computed from Table 22.2. From Table 22.6 one concludes 
for instance that interaction ABC is computed as follows: 

Effect ABC = [(yi +y5-^y7 + y9 + yn + yi3 + y\4 + >'i6) -iyi + y^ + y^ + ye + ys-^ 
yw + yu + Ji5)]/8 = [(4.2 + 6.4 + 3.7 + 6.5 + 3.9 + 6.7 + 5.4 + 6.3) - (4.8 + 6.1 + 
3.7 + 4.7 + 4.4 + 6.6 + 3.4 + 8.3)] / 8 = 0.1375 

22.3 Yates' method of estimating effects 

Although the calculation of effects as described in Section 22.2 is straightfor­
ward, it does require many manipulations and therefore a simpler computing 
scheme can be valuable for the user who does not have software available. Such a 
scheme was proposed by Yates [2]; it is explained in Table 22.7. It requires the 
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TABLE 22.7 

Computation of the effects for the design of Table 22.2 with Yates' method 

(1) 
Run 

(1) 
a 
b 
ab 
c 
ac 
be 
abc 
d 
ad 
bd 
abd 
cd 
acd 
bed 
abed 

(2) 
y 

6.1 
4.2 
6.4 
4.4 
.6.5 
4.8 
8.3 
5.4 
4.7 
3.9 
6.3 
3.4 
6.7 
3.7 
6.6 
3.7 

(3) 

10.3 
10.8 
11.3 
13.7 
8.6 
9.7 

10.4 
10.3 
-1.9 
-2.0 
-1.7 
-2.9 
^ . 8 
-2.9 
-3.0 
-2.9 

(4) 

21.1 
25.0 
18.3 
20.7 
-3.9 
-4.6 
-3.7 
-5.9 

0.5 
2.4 
1.1 

-0.1 
-0.1 
-1.2 
-2.1 

0.1 

(5) 

46.1 
39.0 
-8.5 
-9.6 

2.9 
1.0 

-1.3 
-2.0 

3.9 
2.4 

-0.7 
-2.2 

1.9 
-1.2 
-1.1 

2.2 

(6) 

85.1 
-18.1 

3.9 
-3.3 
6.3 

-2.9 
0.7 
1.1 

-7.1 
-1.1 
-1.9 
-0.7 
-1.5 
-1.5 
-3.1 

3.3 

(7) 
Effects 

5.32 
-2.26 

0.49 
-0.41 

0.79 
-0.36 

0.09 
0.14 

-0.89 
-0.14 
-0.24 
-0.09 
-0.19 
-0.19 
-0.39 

0.41 

(8) 
Factor 

T 
A 
B 
AB 
C 
AC 
BC 
ABC 
D 
AD 
BD 
ABD 
CD 
ACD 
BCD 
ABCD 

experiments to be first written down in what is called the standard order. This 
order is obtained as follows. One first writes down experiment (1), then a, b and 
ab. Then one adds experiments that include c by writing down all the experiments 
that were already included in the standard order and multiplying them by c. The 
fifth experiment is therefore (1) x c = c, then follow ac, be and abc. The standard 
order for the experiments with d is then obtained by multiplying the 8 experiments 
already written in the required order and multiplying this by d. The ninth experi­
ment is therefore (1) x d = d and the last one abc x d = abed. 

The experiments are written down in their standard order in column (1) and 
column (2) contains the responses. It must be stressed that this order is only used 
for the computation 2ind not for the experimentation, where the order of the 
experiments must be randomized. Then for the computations one prepares a 
number of columns equal to the number of factors. For the example of Table 22.2 
this requires 4 columns, i.e. columns (3) - (6). Column (3) is obtained from column 
(2) in the following way. One first adds the numbers in column (2) two by two and 
writes those down in column (3). In the example, one first adds 6.1 and 4.2 and 
writes down the resulting 10.3 in column (3). Then one sums 6.4 and 4.4 and writes 
down 10.8. This is continued until one has added together 6.6 and 3.7 and has 
written the resulting 10.3 in row 8 of column (3). One then subtracts the first 
number of column (2) from the second. The result (4.2 - 6.1 = -1.9) is used to 
continue filling up column (3). Then one does the same for the two following 
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numbers in column (2) (4.4 - 6.4 = - 2.0), etc. Once column (3) has been filled up, 
one repeats the whole operation to obtain column (4) from column (3), column (5) 
from column (4) and eventually column (6) from column (5). One can verify that 
this yields the (X positive level runs - X negative level runs) of eq. (22.4) for each 
of the effects. One then still needs to divide by 2^"\ in this case by 8 (except for the 
first row, see further). The result is written down in column (7) and is the effect of 
the factor, with the same description as the experiment in that row. For instance the 
result in row 2 (-2.26) is the effect of A and the number in row 16 (0.41) is the 
effect of ABCD. These factors were written down in column (8). One notes that in 
row 1, one has obtained in column (6) the sum of all responses and in column (7) 
the average value. The symbol T is customary and is derived from total. The same 
table can be used to compute sums of squares as a first step towards analysis of 
variance of the data. This is described further in Section 22.7. 

22.4 An example from analytical chemistry 

A second example comes from analytical chemistry. It was described in a book 
published by the AOAC [3], which describes several applications of experimental 
design applied to analytical method development. It concerns the determination of 
acetone in cellulose acetate in water by distilling the acetone and determining it in 
the distillate after reaction with hydroxylamine hydrochloride by acid-base titra­
tion of the liberated HCl. One wanted to know whether the distillation could be 
avoided by disintegrating the cellulose acetate and performing the determination 
in that suspension. As factors one considered the components of the disintegration 
solvent (A-: acid, A+: basic, B-: water, B+: methanol) and the disintegration time 
(C-: 3 minutes, C+: 6 minutes). Each of the determinations was replicated. The 
results are shown in Table 22.8. The original distillation method was also carried 
out and yielded the result 4.10. This can be considered as the correct result. One would 
therefore probably conclude that it is worthwhile investigating further the A-, B-, C-
experiment yielding an average value of 4.05 in Table 22.8 or the A-, B-, C+ (4.06) 
or A-; B+, C- (4.14) experiments. Experimental design is often used merely to map 
in an efficient way the experimental domain with the aim of selecting suitable 
conditions directly from the experimental results. In the present case, one might 
stop here. However, we will not do so and try to quantify the effects of the factors. 

Yates' method applied to the totals in column >'T yields the results of Table 22.9. 
To obtain the effects in column (7) from the results in column (5), one divides by 
16 (for T) or 8 because one used the sum of two observations in column (2) and the 
effects are obtained by 2^~^ - 4 comparisons. We decided to use the sum of the two 
replicates, but it would have been possible to obtain the same result with the mean 
of the replicates instead. In this case, the divisors in column (6) would be 8 and 4. 
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TABLE 22.8 

The determination of acetone in cellulose acetate: the analytical example (adapted from Ref. [2]) 

Run 

(1) 
a 
b 
ab 
c 
ac 
be 
abc 

TABLE 22.9 

Yates' 

(1) 
Run 

(1) 
a 
b 
ab 
c 
ac 
be 
abc 

y\ 

4.04 
7.02 
4.16 
5.68 
4.08 
7.23 
4.26 
5.72 

yi 

4.06 
6.82 
4.12 
5.80 
4.04 
7.20 
4.20 
5.86 

method applied to yr of Table 22.8 

(2) 

8.10 
13.84 
8.28 

11.48 
8.12 

14.43 
8.46 

11.58 

(3) 

21.94 
19.76 
22.55 
20.04 

5.74 
3.20 
6.31 
3.12 

(4) 

41.70 
42.59 

8.94 
9.43 

-2.18 
-2.51 
-2.54 
-3.19 

(5) 

84.29 
18.37 

-4.69 
-5.73 

0.89 
0.49 

-0.33 
-0.65 

yj 

8.10 
13.84 
8.28 

11.48 
8.12 

14.43 
8.46 

11.58 

(6) 

16 
8 
8 
8 
8 
8 
8 
8 

y 

4.05 
6.92 
4.14 
5.74 
4.06 
7.21 
4.23 
5.79 

(7) 

5.27 
2.30 

-0.59 
-0.72 

0.11 
0.06 

-0.04 
-0.08 

(8) 
Effect 

T 
A 
B 
AB 
C 
AC 
BC 
ABC 

22.5 SigniHcance of the estimated effects: visual interpretation 

22.5.1 Factor plots 

In Fig. 22.3 the results are given in a visual form for the analytical example and 
in Fig. 22.4 the results are given in a form similar for the pharmaceutical example. 
In these examples, one describes the value of the response at the different locations 
in multivariate space at which the experiments were carried out. 

Figure 22.3 immediately shows that, for C, all + levels yield a higher result than 
their corresponding - levels (5.79 > 5.74; 7.21 > 6.92; 4.23 > 4.14; 4.06 > 4.05): 
there probably is an effect of C. The same is true for A and the effect is larger than 
for C (6.92 > 4.05; 5.74 > 4.14; 7.21 > 4.06; 5.79 > 4.23). A is clearly significant 
and its effect is large compared to C. 
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A • 

Fig. 22.3. Factor plot for the analytical example. 

The interpretation is less evident for B. At the lower level of A, there might be 
a small effect since 4.14 > 4.05 and 4.23 > 4.06, but one might hesitate to make this 
conclusion on the basis of only two comparisons for this small effect. On the other 
hand, there is a large effect at the higher level of A. There the results are clearly 
higher at the B - level than at the B+ level. One concludes that there is an effect of 
B that depends on the level of A. This yields, in this case, both a significant effect 
of B and of the interaction AB. 

It is not necessarily the case that one must find an effect of both main factors 
when the interaction is significant: if the effect of B at the lower level of A had the 
opposite direction and the same magnitude as that at the higher level of A, one 
would have found a significant effect of AB and none of B itself. Usually, however, 
at least one of the main factors is found to be significant. 

This example also shows that when there is an interaction, one should not try to 
interpret a factor by its main effect alone. Conclusions about the effect of the 
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AA 

D* 

Fig. 22.4. Factor plot for the pharmaceutical example. The upper figure shows the responses in 
function of A, B and C at the D- level, the lower does the same at the D+ level. 

solvent alone would be quite erroneous, as it would lead in this case to the 
conclusion that the solvent has an effect in all experiments, while clearly it has 
none or only a small one in acidic medium. 

In the pharmaceutical example of Section 22.1 it is clear that there is a large 
influence of A. Its value at the lower (-) level is always higher than the correspond­
ing one at the higher (+) level. There also seems to be an effect of C. In 7 out of 8 
cases, the higher level yields a higher result than the lower level. For D too there 
is an effect as the (-) level (the upper cube) yields in 7 out of 8 cases a higher result 
than the (+) level. For B the situation is less clear. On the basis of the figure, one 
would probably not be able to come to a conclusion, but decide to carry out a more 
complete statistical analysis. 

22.5.2 Normal probability plots 

The effects obtained in Sections 22.2 to 22.4 are estimates. They are the average 
differences of 2^"' pairs of observations and if the effects were not real, they would 
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Fig. 22.5. Normal probability plot of the effects for the analytical example. 
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Fig. 22.6. Normal probabiHty plot of the effects for the pharmaceutical example. 

be dispersed around zero according to a normal distribution. Turning this argument 
around, the effects that are found to be part of this normal distribution cannot be 
considered to be significant. One ranks the effects from the most negative to the most 
positive and then proceeds to visualize the distribution, as described in Chapter 3. 

In the analytical example the ranking is -0.72, -0.59, -0.08, -0.04, 0.06, 0.11, 
2.30. The resulting normal probability plot is shown in Fig. 22.5. Very clearly, AB 
and B deviate at the negative end and A at the positive end of the straight line on 
which fall the points that are part of the normal distribution. These effects are 
therefore considered significant. The analytical example is based on observa­
tions at only 8 locations in space and one must therefore be careful about the 
conclusions made. 

Rank of Effect
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Figure 22.6 gives the results for the pharmaceutical example. At the negative 
end A (-2.26) is identified very clearly as an effect and D (- 0.89) too is considered 
significant. One would be hesitant, however, about C. 

22.6 Significance of the estimated effects: by using the standard deviation of 
the effects 

The computations in the preceding sections give an estimate of the effects. An 
estimate is subject to error and one can then wonder whether these estimates are 
statistically significant. In many practical examples, effects will either be so large 
that the experimenter will be able to decide that the observed effect does indicate 
that the factor in question is important in determining the response or it will be so 
small that he can decide he does not want to bother considering it further, even 
though it may be statistically significant. However, in many other cases this is not 
possible and the decision about whether a factor is really significant or not must be 
based on more statistical considerations. 

The effects determined by the procedures described in the foregoing sections are 
estimates of the true effects. If one is able to determine the standard deviation of 
that estimate (the standard deviation of the effect), then one can also decide 
whether or not it is significant. One can apply a r-test to compare it to 0, using either 
the confidence interval approach or the critical level approach as described in 
Chapters 4 and 5. 

One should be aware that there are two standard deviations that can be com­
puted. The first is the standard deviation of an experimental measurement, i.e. the 
experimental uncertainty, and the other is the standard deviation of an effect. It is 
the latter one needs, but it can be computed from the former. In some situations we 
know the standard deviation of the experimental measurements or have an estimate 
of it. In the analytical example, for instance, one investigates effects on the basis 
of an existing analytical procedure and one might have determined its precision. If 
one does not know the standard deviation, one must estimate it. Three different 
ways to achieve this are described below. 

22.6.1 Determination of the standard deviation of the effects by using 
dupUcated experiments 

In Chapter 2.1.4.4, we learned that the pooled variance of duplicated experi­
ments is given by 

s'-^Y,d}nn (22.6) 

where s^ is the estimated variance of experimental error, d/ is the difference be-

Eng-Yahya
Highlight
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tween the two duplicate experiments yn and j/2 and n = 2 ,̂ the number of different 
experiments. The number of the degrees of freedom is also n. 

The effects are computed from eq. (22.4), which, for duplicated experiments 
becomes: 

Effect = (X positive level runs - X negative level runs) / {N/2) 

where N is the total number of experiments (i.e. N = 2n), or 

Effect = mean of positive level runs - mean of negative level runs 

The variance of an effect, .̂ effect, equals 

êffect = s^ for (mean positive levels - mean negative levels) 

= 5^1 - + 1 W 4s ,2 

, M (22.7) 
[n n \ N 

where s^ is obtained from eq. (22.6). 
From eq. (22.7) one can derive êffect and therefore complete the table of effects 

by adding a standard deviation or else, one can compute the confidence limits at 
the 1 - a level by writing: 

ef fec t ± taJ2\n ' ^effect 

Let us apply this to the analytical example, where all experiments were dupli­
cated. The d-values are obtained from Table 22.8. For instance y\ - y^ for the first 
experiment is di = 0.02. Because Id? = 0.0821, it follows that s^ = 0.0821/16 and 
4fect = 0.00513 X (1/4) = 0.00128 and êffect = 0.036. The confidence limits are: 
Effect ± 2.30 X 0.036 = Effect ± 0.083 where 2.30 is the r-value for a = 0.05 and 
18 degrees of freedom. For all effects with an absolute value larger than 0.083, the 
confidence interval will not include 0 and all such effects must considered significant. 
This is the case for A, B, AB and C. The others are not significantly different from 0. 

22.6.2 Determination of the standard deviation of the effects by neglecting 
higher interactions 

Although it is relatively easy to understand the physical significance of a 
two-factor interaction, it is often difficult to understand what a three-factor or still 
higher interaction means. For this reason the estimates of these interactions are 
often considered to be due to experimental error and one can derive from them an 
estimate of the standard deviation êffect- This is applied in Table 22.10 for the 
pharmaceutical example. One first obtains the sum of squares by summing the 
squared effects and divides by the number of effects to obtain the variance of the 
effects. 
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TABLE 22.10 

Estimation of the standard deviation of the effects from the higher interactions for the pharmaceutical example 

Factor Effect (Effect)^ 

0.0196 
0.0081 
0.0361 
0.1521 
0.1681 

ABC 
ABD 
ACD 
BCD 
ABCD 

Sum of squares = 0.3840 
%tect = 0.3840/5 = 0.0768 
-̂ effect = 0-277 

0.14 
-0.09 
-0.19 
-0.39 

0.41 

One can use these standard deviations in combination with the critical value of 
a r-distribution, in this case with 5 degrees of freedom. At the level of 95% 
confidence, this then leads to the conclusion that all effects larger in absolute value 
than 2.57 x 0.277 = 0.73 are significant. This would be the case for A, D and C. 
The conclusion for C is not very clear since the estimate of the effect is 0.79. This 
explains why we were not able to draw a clear conclusion in Section 22.5.2. 

Box et al. [4] state that when one has the choice, it is preferable to take an 
additional factor into account than to duplicate experiments, both leading to the 
same number of experiments. This also means that they advocate the procedure 
described in this section to determine the significance of effects. Of course, when 
higher interactions are really meaningful, then this procedure will lead to error. 

22.6.3 Determination of the standard deviation of the effects by using the 
centre point 

In some cases it may be useful to determine a high, a low and a medium level. 
This is possible only with quantitative factors and is useful particularly when the 0 
level can be considered as a starting or nominal level. For instance, one has a 
certain process available, but wants to investigate what the effect of changing the 
level of factors is. The existing values for the factors are called the zero levels and 
one can define + and - levels at equal distances from this starting point (see Fig. 
22.7). This starting point then becomes the centre point of the design. This centre 
point has several uses (see also Section 22.9.3) and by replicating it, one can obtain 
an estimate of the experimental uncertainty, which can then be used to obtain 5̂effect. 
This approach has the disadvantage that s is estimated only in the centre point but 
is considered to be an estimate for the whole experimental domain. 
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Fig. 22.7. A 2^ design with centre point. 

22.7 Significance of the estimated effects: by ANOVA 

Since three factors are studied in the analytical example, acid/base (A), solvent 
(B) and disintegration time (C), the data can be rearranged as in Table 22.11. This 
is a three-way ANOVA with somewhat fewer replicates than we were used to in 
Chapter 6. In the terms of Chapter 6, it is a fixed effect ANOVA and the techniques 
described in that chapter can be used to determine the significance of each of the 
effects. This also includes r-tests, but attention should be paid to whether one 
decides to do this comparison-wise or experiment-wise. ANOVA, in fact, is the 
most evident way of carrying out the statistical analysis. This is done in Table 
22.12 for the analytical example. There is one degree of freedom for each of the 
seven effects, since there are two levels for each of the factors. It is concluded that 
all main effects are significant and that this is also the case for the interaction AB. 

Turning now to the pharmaceutical example, one realizes that this is a four-way 
ANOVA. There is, however, a problem, namely that there are no replicates and in 

TABLE 22.11 

A simple three factor duplicated design 

Factor C 

A -

B -

replicate 1 

replicate 2 

replicate 1 

replicate 2 

B + 

replicate 1 

replicate 2 

replicate 1 

replicate 2 

A + 

B -

replicate 1 

replicate 2 

replicate 1 

replicate 2 

B + 

replicate 1 

replicate 2 

replicate 1 

replicate 2 
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TABLE 22.12 

ANOVA for the data of Table 22.{ 

Effect df SS MS 

A 
B 
AxB 
C 
AxC 
BxC 
AxBxC 
Residual 

21.091 
1.375 
2.052 
0.050 
0.015 
0.007 
0.026 
0.041 

21.091 
1.375 
2.052 
0.050 
0.015 
0.007 
0.026 
0.0051 

4136 
269.6 
402.3 

9.8 
2.94 
1.37 
5.18 

TABLE 22.13 

ANOVA for the data of Table 22.3. The column with header (6) is taken over from Table 22.7. 

Factor 

A 
B 
C 
D 
AB 
AC 
BC 
AD 
BD 
CD 
ABC 
ABD 
ACD 
BCD 
ABCD 
Triple + quadruple 

interactions 

(6) 

-18.1 
3.9 
6.3 

-7.1 
-3 .3 
-2 .9 

0.7 
-1.1 
-1 .9 
-1 .5 

1.1 
-0.7 
-1 .5 
-3.1 

3.3 

SS 

20.48 
0.95 
2.48 
3.15 
0.68 
0.53 
0.031 
0.075 
0.225 
0.14 
0.076 
0.031 
0.14 
0.60 
0.68 
1.527 

df 

5 

MS 

20.48 
0.95 
2.48 
3.15 
0.68 
0.53 
0.031 
0.075 
0.225 
0.14 
0.076 
0.031 
0.14 
0.60 
0.68 
0.305 

F 

61A 
3.11 
8.13 
10.33 
2.23 
1.74 

-
-
-
-

Section 6.6 it was seen that this means that one cannot test the significance of all 
the interactions. This is very often the case in experimental design. In such a case 
one does what was already described in Section 22.6.2, namely one supposes that 
the higher interactions are not significant and one incorporates the sum of squares 
for these interactions into the residual sum of squares. This is shown in Table 
22.13. One sums the relevant SS (0.076 + 0.031 + 0.14 + 0.60 + 0.68) and divides 
by the 5 degrees of freedom to obtain the MS. There is, of course, a problem with 

(N/4) Effect^2

(N/4) Effect^2

/df=

/df=

/Res.=

/Res=
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this approach, i.e. that it occasionally happens that third-order interactions are 
significant. One will then overestimate residual variance and consequently it is 
possible that one will not detect some significant factor. 

In the pharmaceutical example, the ANOVA leads to the conclusion that there 
is a significant effect of A, C and D. None of the interactions is significant. It should 
be noted that the sums of squares can be obtained, either by the use of appropriate 
ANOVA or experimental design software, or else from Yates' table. Indeed one 
can use the column containing the estimate of the effects not yet divided by the 
number of experiments. The sum of squares is obtained by squaring this result and 
dividing by the number of experiments represented. This was applied in Table 
22.13. For instance, (- 18.1)^/16 = 20.48. For the analytical example too, one needs 
to divide by 16 because of the replication. The F-values are the ratios between the 
relevant MS and the MS comprising all triple and quadruple interactions. Only 
F-values higher than 1 are given. The critical values are: Fo.o5;i,5 = 6.61 and Fooi;i,5 
= 16.26. 

ANOVA can be recommended as the most convenient method of analyzing the 
significance of effects in the analysis of two-level factorial designs. When one does 
not replicate the experiments, it is good practice to determine also the normal 
probability plots of Section 22.5.2 (to avoid incorporating a significant triple 
interaction as explained higher). One should, in any case, perform the visual 
analysis of Section 22.5.1 and it is usually a good idea to determine also the centre 
point when this is relevant. 

22.8 Least-squares modelling 

For a 7} design, ANOVA leads to a linear fixed effects model of the type 

>; = |l + a + Z7 + {ah) + e (22.8) 

which we applied in Chapter 6. 
The effects a, b and ah are associated with the main effects due to xi, x^ and the 

interaction between x\ and x^, respectively, so that one can also write the above 
relationship as: 

}̂  = Z?o + h\X\ + hiX2 + b\2X\X2 + e (22.9) 

This is a regression equation. In this equation, b] estimates Pi and (3i is a measure 
of the effect of JCi. In fact, it describes the effect on y when x\ goes from 0 to + 1. 
It should be noted that in this definition all effects are half those obtained 
according to the definition of an effect applied in the preceding sections. Indeed, 
in those sections, an effect was defined as the difference of the value ofy at the + 1 
and - 1 level of a factor. 
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"8 0 0" 
0 8 0 
0 0 8 

= 8 
'1 0 0' 
0 1 0 
0 0 1 

From the point of view of regression, the designs introduced in this chapter, 
present the advantage that the variables are not correlated (see Section 10.5). They 
are orthogonal. This means that the matrix (X^ X) is diagonal. This can be verified 
by substituting + 1 and - 1 for + and - in Table 22.4 and calling A, B and C, 
respectively x\, X2 and x^. The correlations (and the covariances) between all x-pairs 
are 0. If we consider here only a simple model y = b\X\-\-b2X2 + b^ X3, the (X^ X) 
matrix is 

X^X = 

orX^X = 8 I 

From eq. (10.18) it follows that 

V(fo) = s] (X X)-' = 1/8 s] I 

so that the co variance terms between the regression coefficients in V(fe) are zero. 
In other words, the estimates for b\, 62, ̂ 3 do not influence each other. In the same 
way, the confidence limits for the true regression parameters (eq. 10.15) are inde­
pendent of each other, which means that tests on the significance of a factor can be 
carried out by testing each fc-coefficient separately. The coefficients are considered 
significant if the confidence interval does not include zero. As we will show in 
Chapter 24, after introducing some more theory, all estimates for ^-coefficients in 
the equation: 

y = /70 + b\X\ + b2X2 4- ^3X3 + b\2X\X2 + ^13 :̂1X3 + Z?23̂ 2-̂ 3 + i^l23^1-^2-^3 

are uncorrelated, so that the design is indeed orthogonal. 
The regression coefficients are usually computed for the scaled variables (i.e. on 

the scale -1 to +1). It is possible to re-express the coefficients as a function of the 
original variables. This is done as follows. Let us call the coded value xi and the 
original value x*. It can be verified that: 

^i — {X,i — Xi^o) /{Xi+\ — X^Q) (22.10) 

where x*,o = value for jc* for which jc, = 0, i.e. the centre of the design, and x*+i value 
for X* for which jc, = +1, i.e. the extremum of the design. 

To re-express the regression equation in the original variables, one substitutes 
eq. (22.10) in eq. (22.9). Suppose that it has been computed that: 

3̂  = 20+10x1 + 30 X2 + 5 X] X2 

If the levels + 1 and - 1 for factor 1 are jcj = 100 and 80 and for factor 2, x\ = 50 
and 40, then X\^Q = 90 and jC2,o = 45. Consequently: 
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^ = 20 + 10 (jct - 90)/10 + 30 (4 - 45)/5 + 5[(x] - 90)/10] [(4 - 45)/5] or 

y = 65 -3.5 X*] -3 X2 + 0A x\ xl 

It is now possible to obtain y for any value of jcj and xt Of course, the computed 
response is valid only for values of jct and xl between 80 and 100 and 40 and 50, 
respectively; one should not extrapolate outside the experimental region. 

We should note here that the regression notation is the only one that will be used 
when more-than-two level designs will be described in Chapter 24. This notation 
might therefore be preferred in the present chapter and also in Chapter 23. How­
ever, as in the literature it is more usual to apply the ANOVA-approach of Section 
22.7 to two-level designs, we preferred to conform to usage and apply it ourselves. 
It is important, however, to understand that two-level designs can be interpreted 
with linear regression models and that one can apply linear regression methodol­
ogy to interpret the result. It is possible, for instance, to determine confidence 
intervals around the Z^-coefficients. The coefficients for which the confidence 
intervals include zero, indicate which variables are not significant. Using the 
regression approach is especially useful in some cases, for instance when one 
wants to predict y for intermediate values of some or all of the factors or when one 
is not able to apply exactly the levels - 1 and -H 1 in all cases, as may happen in an 
industrial environment. An example of the latter is given by Goupy [5]. 

22.9 Artefacts 

In the preceding sections we have illustrated full two-level factorial designs with 
two real examples that give good results. Experimental design and the interpreta­
tion of the results of factorial experiments are not always so straightforward. In this 
section, we will discuss some problem situations leading to artefacts and how to 
detect or avoid them. 

22,9,1 Effect of aberrant values 

An aberrant value leads to many artificially high interaction effects. To show 
this let us suppose that as mean value of experiment b in Table 22.8 one obtains 
8.14 instead of 4.14. The result is that all calculated effects, where this experiment 
has a + sign in eq. (22.4) are increased by 1 and all effects where it has a - sign are 
decreased by 1. The following calculated effects are then obtained: 

A: + 1.30, B: + 0.41, AB: - 1.72, C: -0.89, AC: + 1.06, BC: - 1.04, ABC: + 0.92. 

If we use the duplication of the experiments to estimate êffect all effects will 
probably be found to be significant. When this happens and certainly when it 
happens with third and higher order interactions, one should suspect that an 
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aberrant value is present. Examples can be found in Sundberg's review [6], where it is 
also explained how to detect the aberrant value. For three variables there is only one 
higher interaction, so that one cannot apply the determination of ^̂effect based on 
neglecting higher interactions of Section 22.6.2. When there are more variables and 
one applies this method, aberrant values lead to higher values of the interactions, 
so that êffect becomes larger and significant main effects may go undetected. 

Another possibility, also illustrated by Sundberg, is that a few points were 
determined outside the normal range of operation, so that very different responses are 
obtained. These responses are not aberrant in the sense that they are wrong, but they 
are in the sense that they belong to a domain that should not have been investigated. 

22.9.2 Blocking and randomization 

Factorial experiments can be described as ANOVA experiments as shown in 
Section 22.7. Therefore the interpretation of such factorial experiments is affected 
by the same sources of error as described in Chapter 6.2. In particular, we have seen 
that blocking may be required and that randomization is usually needed. Blocking 
is described to some extent in the context of the description of Latin squares in 
Chapter 24. However, it cannot be described in sufficient detail in a general book 
on chemometrics. The reader should realize, however, that it is an important topic 
and consult the more specialized literature on experimental design, such as Refs. 
[1-9] of Chapter 21. 

Let us consider the analytical example and suppose we cannot carry out all 8 
duplicated experiments on the same day but carried out 4 duplicated experiments 
per day. As analytical chemists well know, there is a danger that a between-day 
effect occurs. Suppose that our measurements on day 1 are systematically higher 
by an amount d compared to day 2 and suppose that we carry out the experiments 
in the order given by Table 22.5. Then the effect of A would be overestimated by 
the amount d\ 

Effect of A = [y, (+J) + y2 (+J) + y^ (-HJ) + y^ (+J) -y^-y^-yi- >̂ 8]/4. 

There would be no such error for the other effects as there are two experiments at 
the + level and two at the - level for all other effects. A better arrangement is shown 
in Table 22.14. As should become clear after reading Chapter 23, one has con­
founded the blocking effect with that of the interaction ABC, i.e. the average 
difference between the experiments in block 1 and 2 is also what one would 
compute for the interaction ABC. 

Time and spatial order often lead to the presence of additional sources of 
variation. An interesting example, where the time effect does not occur between 
days or blocks, but within blocks can be found in Sundberg [6]. In that example, 
the first measurement within a block of four was always too low. 
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TABLE 22.14 

A two-block arrangement for a 2^ design 

Run 
1 

2 

3 

4 

5 

6 

7 

A 

+ 

-1-

-

+ 

-
_ 

B 

block (day) 1 

block (day) 2 

22.9.3 Curvature 

In Section 22.6.3 it was explained that including a centre point is sometimes 
useful. It can be used also to obtain a better idea about the way an effect of a factor 
evolves over the experimental domain investigated. Suppose one obtains the 
results of Fig. 22.8. Clearly the behaviour of factor B is non-linear. On going from 
the - level (mean y=\\)ioQ{y = 20) there is a much larger increase than in going 
from 0 to the + level (mean >' = 21). 

If there was no curvature, then the centre point should be equal (within experi­
mental uncertainty) to the average of the four corner points of the design. A 95% 
confidence interval for this difference is obtained by applying eq. (5.3): 
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Fig. 22.8. Factor plot for a 2^ design with centre point. 
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hi 
(mean of responses at +1 and -1 levels - response of centre point) ± 1.96 a 

4 
where a is the experimental standard deviation common to centre and corner 
points. If an estimate s was obtained, then 1.96 should be replaced by a r-value for 
the appropriate number of degrees of freedom. If zero falls in the confidence 
interval, then one concludes there is no curvature. Of course, replicating the centre 
point leads to a more precise conclusion. 

One can also determine the significance of b] \ and 2̂2 in 

y = bo-\- biXi + b2X2 + 612-̂ 1̂ 2 + &i 1-̂ + ^22-̂  (22.11) 

We do not have enough experimental points to determine separately b\ \ and ̂ 22 
but it has been shown [4] that: 

b\\-\-b22 = yf-yc (22.12) 

where yf = average of the corner points, and ĉ = average of the centre points. 
If bu + 2̂2 is significantly different from zero, this is considered to mean that 

curvature exists. To determine whether significant curvature exists, one again 
needs to know the experimental error a, or to obtain an estimate, s. 
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Chapter 23 

Fractional Factorial Designs 

23.1 Need for fractional designs 

The number of experiments in a full factorial design increases in an exponential 
manner with the number of factors, k. For k = 2, the number of experiments n = 4; 
for /: = 3, n = 8; for fc = 4, n = 16 and for k = l,n= 128. The 128 experiments for 7 
factors are used for the estimation of the mean value, 7 main effects and 21 
two-factor, 35 three-factor, 35 four-factor, 21 five-factor, 7 six-factor, 1 seven-fac­
tor interactions. Three and more factor interactions are usually considered to be 
unimportant, so that the 128 experiments are used to determine the mean, 7 main 
effects and 21 binary interactions. Clearly there is a large redundancy and one 
might expect that it is possible to define smaller experimental designs. 

To achieve this one takes one half, one quarter, one eighth, etc. of a full factorial 
design. The resulting designs are called fractional designs. They are symbolized 
by subtracting from the exponent in the 2̂  design a number such that the resulting 
computation yields the number of experiments. For example, a 2^^ fractional 
factorial design is a design for 4 factors. Of the 16 experiments required for the full 
factorial design only half are carried out, i.e. 8 experiments, 2"̂ ^ = 8. A 2̂ "̂  
fractional factorial is a design for 7 factors, consisting of 8 experiments (instead of 
the 128 required for a full design). 

The designs must be balanced and chosen so that the experiments map the 
experimental domain as well as possible and orthogonality is preserved. A 2^'^ 
factorial design is shown in Fig. 23.1 and Table 23.1. It consists of half the 
experiments of the 2̂  design. The data concern an optimization study for the 
separation of fluoride and phosphate in capillary zone electrophoresis [1]. The 
authors wanted to know whether the resolution (Rs) between the two anions is 
affected by the pH (-: 8.0 and +: 9.0), the concentration of background electrolyte, 
BE (-: 0.008 M and +: 0.010 M) and the concentration of an electroendosmotic 
flow modifier, CEM (-: 0.0008 M and +: 0.0025 M). 

The experiments in this design are located such that they describe a tetrahedron, 
which is the most efficient way of mapping the experimental domain with only 4 
experiments. Each factor is twice at the + level and twice at the - level, so that a 
balanced design results. The authors concluded that resolution is indeed affected 
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Fig. 23.1. A half-replica of a three factor design (2^ design) 

TABLE 23.1 

A 2 ^ ' experiment for determining effects on resolution in capillary zone electrophoresis [1] 

Experiment PH CBE CEM Rs 

2.75 
2.53 
1.95 
2.36 

by one or all of the factors, but that in all cases Rs was larger than the minimum 
required, so that they were able to stop their investigation at that stage. 

To explain how fractional factorial designs are developed we will first consider 
a 2̂ "* design. This is called a half-fraction or a half-replica (of a full factorial) 
design. Similarly a 2̂ "̂  design is called a quarter-fraction or a quarter-replica 
design. The discussion of 2^"' designs will be followed by 2̂ "̂ ' designs and 
eventually by so-called saturated fractional factorials. The latter term will be 
defined in Section 23.7.1. 

23.2 Confounding: example of a half-fraction factorial design 

Table 23.2 describes a half-fraction design for the spheronization example 
described in Chapter 22. If we compare Table 22.3 with Table 23.2, we observe 
that indeed half of the original experiments were deleted and half remain. 
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TABLE 23.2 

Half-replicate of the full factorial design of Table 22.3 

A- A + 

B+ B- B+ 

C- D- 6.1(1) 4.4 ab 
D+ 6.3 bd 3.9 ad 

C+ D- 8.3 be 4.8 ac 
D+ 6.7 cd 3.7 abed 

TABLE 23.3 

A 2^ design and some interactions. The first 8 rows are the experiments selected for a half-fraction design (2"^') 

A 

+ 
+ 
+ 
+ 

-
-
-
-

+ 
+ 
+ 
+ 

-
-
-
-

B 

+ 
+ 

-
-
+ 
+ 

-
-

+ 
+ 

-
-
+ 
+ 

-
-

C 

-1-

-
+ 

-
+ 

-
-1-

-

+ 

-
-1-

-
-1-

-
-1-

-

D 

+ 

-
~ 
+ 

~ 
+ 
+ 

-

-
+ 
+ 

-
-1-

-
-
+ 

BC 

-1-

-
-
+ 
-1-

-
-
+ 

+ 

-
-
+ 
+ 

-
-
+ 

AD 

+ 

-
-
+ 
+ 

-
-
+ 

_ 
+ 
+ 

-
-
-1-

+ 

-

ABC 

+ 

-
-
+ 

-
+ 
+ 

-

+ 

-
-
-1-

-
+ 
+ 

-

BCD 

+ 
+ 
+ 
+ 

-
-
-
-

_ 
_ 
-
-
+ 
+ 
+ 
+ 

ABCD 

+ 
-1-

-H 

+ 
+ 
+ 
+ 
+ 

_ 
-
-
-
-
-
-
-

>' 

-1-

+ 
-1-

+ 
+ 
+ 
-1-

+ 

+ 
+ 
+ 
+ 
+ 
-1-

+ 
+ 

Expt. 

abed 
ab 
ac 
ad 
be 
bd 
cd 
(1) 

abc 
abd 
acd 
a 
bed 
b 
c 
d 

Resp. 

yi 

y2 

y3 

y4 

ys 
y6 

y? 

y8 

y9 
yio 
y i i 

y i2 

y i3 

y i 4 

y]5 

y i6 

The eight experiments of Table 23.2 were of course not selected at random: they 
are spread out over the experimental domain so that they map it as efficiently as 
possible. In Section 23.3 we will describe how to perform this selection, but let us 
first investigate how to interpret the results. To do this we have reproduced a 
complete 2^ design in Table 23.3. As already stressed in Chapter 22, experiments 
in a factorial design, whether a full or a fractional design, should be carried out in 
random order. The experiments are presented here in an ordered fashion to help 
understanding. The eight first rows are the experiments selected for the half-replica 
design of Table 23.2. It should be remembered that in Table 23.3 the experiments 
are determined completely by the columns A, B, C and D. The columns for the 
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interactions are obtained by the multiplication rules explained in Chapter 22 and 
are needed only for the computation of the interaction effects. To avoid making the 
table too large, only a few of all possible interactions are given (not included are 
AB, AC, BD, CD, ACD, ABD). We have also added a column for the mean 
response, y. This is, of course, obtained by summing all responses and dividing by 
the number of experiments. To be able to compute it from the adapted eq. (22.4) 

y = [I(+ levels) - I ( - levels)] / (n/2) (23.1) 

which is used for the computation of all main and interaction effects, we filled in 
+ signs for the whole column. Because of this formalism the mean response is also 
called the mean effect. 

The interpretation of the half-fraction design is similar to that described in 
Chapter 22 for full factorials. For instance, the effect of A is computed as follows 

Effect A = \/4(yi + j2 + J3 + ̂ 4 - >'5 - 6̂ - J? - >̂8) (23.2a) 

and, to give another example 

Effect BCD = l/4{y, + 3;̂  + ̂ 3 + ̂ 4 _ 5̂ _ ^̂  - 7̂ - 3̂8) (23.2b) 

By comparing the two equations, we observe that we use the same equation for 
both effects, because they both have the same pattern of + and - signs in the first 
half of Table 23.3. To understand what exactly is computed with the right part of 
the eqs. (23.2a) and (23.2b) let us go back to the full factorial design and compute 
the effects of A and of BCD from that design: 

Effect A = l/8Cy, +y2 +^3 +3̂ 4 +>'9 +>̂ io +y\ 1 -^yn -ys -ye -yi -y^ -yu -yi4 -y\5 -y\6) 

Effect BCD = l/8Cy, +y2 +y^ +3̂4 +3̂13 +3̂ i4 +3̂15 +J16 -ys -ye -yi -Js -3̂ 9 -3̂ 10 -y\ 1 
-3̂ 12) 

and adding them: 

Effect (A + BCD) = XIAiy^ +J2 +y3 +J4 -3̂ 5 -ye -yi -y^) (23.3) 

What we computed to be the effects of A or of BCD from the half-fractional 
factorial with eqs. (23.2a and b) is now seen to be what we would have obtained 
for the sum of the effects A and BCD from the full factorial. We now also see that 
several other columns show the same pattern of + and -. We observe for instance 
that AD and BC on the one hand and ABC and D on the other hand have the same 
pattern. One says that ABC and D, AD and BC, A and BCD are confounded. It can 
be verified also that the mean effect is confounded with the ABCD interaction. One 
also says that the confounded effects are aliases of each other. In general, each 
effect in a 2^"' design is confounded with one other effect or, to say it in another 
way, there are pairs of aliases. This should not surprise us: one cannot expect to 
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determine the mean effect, 4 main effects, 6 two-factor, 4 three-factor and one 
four-factor interaction with 8 experiments. 

The practical meaning of this is that we no longer obtain estimates of single 
effects, but the sum of two. For instance 

[(yi +y2 +>̂3 +J4) - Cvs +J6 +J7 +}'8)]/4 = effect (A + BCD). 

One usually assumes that the triple interaction is unimportant compared to the 
effect of the main factor and if the effect (A + BCD) were to be found important or 
significant, this would in a first instance be assigned to the effect of A. Of course, 
there is a danger that the assumption that BCD is much less important than A is 
wrong, but this is the price one pays for doing less experiments. Another consequence 
is that pairs of two-factor interactions are confounded and there is no simple way to 
decide whether a significant effect of (AD + BC) is due to AD, to BC or to both. 

The calculations for the spheronization example of Table 23.2, performed here 
with the Yates algorithm, are given in Table 23.4. To apply this algorithm, it is 
necessary to view the 2̂*"̂  design as derived from the 2̂  one. Why this is done so 
will become clear from the discussion of the generation of half-fraction designs. 
One writes down the experiments in standard order for a 2̂  design (see Section 
22.3), i.e. without taking into account the D factor. The standard order is then (1), 
a, b, ab, c, ac, be, abc. For the experiments carried out at the level D"̂ , i.e. experiments 
described by a letter combination including d, the d is then added without changing the 
order already obtained. One starts with (1). The second rank in the standard order is a. 
Since there is an experiment ad, one gives this the second rank, etc. 

One observes that the main conclusion of the full factorial design (see Chapter 
22), the large effect of A (+ BCD, but ascribed to A alone) is found again. The fact 
that B is unimportant is also observed. One would note that the effects D and C are 
larger than the effects for interactions and conclude that they may be significant. 
The normal probability plot is shown in Fig. 23.2. The effect of A is clear and the 
fact that B is unimportant too. One would hesitate about C and D. 

TABLE 23.4 

Interpretation of the half-fraction factorial design of Tables 23.2 and 23.3 

Run 

(1) 
ad 
bd 
ab 
cd 
ac 
be 
abed 

>' 

6.1 
3.9 
6.3 
4.4 
6.7 
4.8 
8.3 
3.7 

(3) 

10.0 
10.7 
11.5 
12.0 
-2.2 
-1.9 
-1.9 
-A.6 

(4) 

20.7 
23.5 
-4.1 
-6.5 

0.7 
0.5 
0.3 

-2.7 

(5) 

44.2 
-10.6 

1.2 
-2.4 

2.8 
-2.4 
-0.2 
-3.0 

Effect 

5.52 
-2.65 

0.3 
-0.6 

0.7 
-0.6 
-0.05 
-0.75 

Factor 

>̂ -i-ABCD 
A+BCD 
B+ACD 
AB+CD 
C+ABD 
AC+BD 
BC+AD 
D+ABC 
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Fig. 23.2. The normal probability plot for the responses in the half-fractional spheronization design 
(Table 23.2). 

23.3 Defining contrasts and generators 

In the preceding section we selected 8 out of 16 experiments from a 2"̂  design. 
In this section we explain how we decided which experiments to select. To 
understand this, we first need to redefine some algebraic rules, which we will first 
apply to find all aliases and later to generate fractional factorial designs. As before, 
an interaction, such as AB, is obtained by multiplying A and B (see Table 23.3). 
More exactly, to obtain the level for AB for a particular experiment, one multiplies the 
levels for A and for B for that experiment. Now, if one multiplies A by A, i.e. A ,̂ it is 
easy to verify that all levels for A^are equal to +, the same is true for B, etc. 

A 
+ 
+ 
+ 

Â  
+ 
+ 
+ 

+ 
+ 

ABCD 
+ 
+ 
+ 
+ 
+ 
+ 

The column A^ is also equal to ABCD and it corresponds to y (see Table 23.3). 
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We now define a new algebraic rule stating that a squared effect has a value of 
1 and at the same time, for ease of notation, we equate the squared effects to I. It 
follows that: 

A' = B^ = ABCD = 1=1 

We call the defining contrast or defining relation: 

I = ABCD 

The confounding patterns can be obtained by multiplication of the defining 
contrast with the effect for which one wants to know what the alias is. For instance 
the alias of A is obtained by 

AI = A^BCD = BCD 

which means that A is confounded with BCD. 
For AC, it is 

ACI = A'BC'D = BD 

so that AC is confounded with BD. 
Summarizing, one obtains the aliases: 

ABCD = I, A = BCD, B = ACD, C = ABD, D = ABC, AB = CD, AC = BD, AD 
= BC. 

It is now possible to generate designs. To do this, it is necessary to note that the 
first 3 columns of the upper half of Table 23.3 constitute the full factorial design 
for 3 variables. We could say that to derive the 2^' from the 2̂  factorial, we have 
added to the 2̂  factorial a 4th column for factor D and that we have chosen it such 
that the levels for D are the same as for ABC. This is equivalent to saying that, to 
make the 2^^ design, we have deliberately sacrificed ABC by confounding it with D. 

To generate the design we have first written D = ABC. This is called the 
generator. The generator leads to the defining contrast, since we can derive that 
D' = ABCD = I. 

This procedure can be applied to construct any 2̂ "̂ ' factorial from a full 2̂  factorial 
(q = k~p). To show how this is done let us construct a 2^~^ factorial from a 2̂  one, i.e. 
a quarter-replica of a 2̂  design. We start by writing down the generator. 

First, we decide to sacrifice two of the higher interactions to accommodate D 
and E. For instance, it seems logical to sacrifice the ternary interaction ABC by 
putting it equal to D, as we already did for generating the 2"̂ ^ design. We still need 
another such decision to include E and we decide that BC = E. This kind of decision 
should be made on the basis of a knowledge of the system. Usually the experts 
deciding on the factors to be studied know that certain interactions are less likely 
to be important than others. These can then be confounded with a main factor. 
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TABLE 23.5 

A 2̂ "2 design 

Effects 

A + BCD + ABCE + DE 
B + ACD + CE + ABDE 
C + ABD + BE + ACDE 
D + ABC + BCDE + AE 
E + ABCDE + BC + AD 

AB + CD + ACE + BDE 
AC + BD + ABE + CDE 
y + ABCD + BCE + ADE 

Experiments 

1 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

2 

+ 
+ 
-
-
-

+ 
-
+ 

3 

+ 
-
+ 
-
-

_ 
+ 
4-

4 

+ 
-
-
+ 
+ 

_ 
-
+ 

5 

_ 
+ 
+ 

-
+ 

_ 
-
+ 

6 

_ 
+ 

-
+ 

-

_ 
+ 
+ 

7 

_ 
-
+ 
+ 

-

+ 

-
+ 

8 

_ 
-
-
-
+ 

+ 
+ 
+ 

The quarter-replica design 2̂ "̂  is now obtained by writing down the 8 experi­
ments of the 2̂  design such that A, B, C are taken over from the 2̂  design, the D 
levels are written in the way one would write the levels for ABC in Table 23.3 and 
the E levels in the way one would write BC. This yields Table 23.5. The first 5 rows 
in that table define the experiments. The two two-factor interactions AB and AC 
were not used for adding main factors and therefore their levels can be computed 
in the usual way. It turns out that these interactions are confounded with other 
interactions. For all these factors we added all aliases and for good measure we also 
added the levels for computing y and its aliases. To obtain the aliases we derive the 
defining contrasts from the generator ABC = D, BC = E 

ABC = D, or ABCD = D^ = I or 

I = ABCD 

and BC = E or BCE = E^= I or 

I = BCE 

Moreover, we should now compute Î . This yields an additional defining con­
trast. Indeed, if I = 1, Î  = I. It follows that 1x1 = 1 = ABCD x BCE = AB^C^DE = 
ADE so that I = ADE. 

In summary, there are three defining contrasts 

I = ABCD = BCE = ADE 

which also means that the mean obtained from the 8 experiments is confounded 
with the effects ABCD, BCE and ADE (y = I). We can now write all the aliases by 
multiplying each effect with the 3 defining contrasts. For instance A is confounded 
with 
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A X ABCD = BCD 

A X BCE = ABCE 

A X ADE = DE 

It should be noted that other plans would have been obtained if we had chosen 
to write the E levels as the AB or AC interaction. The confounding pattern is 
important, since it decides which factors or interactions can be evaluated without 
interference. If certain specific interactions are of interest to the experimenter, we 
will try not to confound them with each other. 

23.4 Resolution 

As explained in the preceding section, the fractional factorial design chosen 
depends on the generator. Certain factorial designs are better than others. For 
instance, we would prefer a design that does not confound main factors with 
two-factor interaction rather than one that does. To describe the quality of a 
fractional factorial design, we use the concept of resolution. The resolution is 
described by Roman numbers and is defined as follows: a design has resolution R 
if no /7-factor effect is confounded with an effect containing less than R-p factors. 
A design with R = III then has the property that no p = I {= main) effect is 
confounded with interactions containing less than 3 - 1 = 2 factors. In other words, 
an R = III design is such that it does not confound main effects with effects that 
contain less than two factors, i.e. with other main effects. 

The resolution depends on the generator and therefore on the defining contrasts. 
It is equal to the shortest defining contrast. In the 2^'^ design of Section 23.3, the 
shortest defining contrast has length 3 (BCE or ADE), so that the resolution is III. 
This is appended to the description of the design. The design of the preceding 
section is therefore a 2̂ "̂  (III) design. 

The following general rules apply: 
- In designs of R = III the main effects are not confounded with other main 

effects, but they are confounded with two-factor interactions. Table 23.6 shows a 
2'-^ (III) design. 

- In designs of R = IV the main effects are not confounded with each other, nor 
with two-factor interactions. However two-factor interactions are confounded with 
other two-factor interactions. 

- In designs of R = V the main effects and the two-factor interactions are not 
confounded with each other. 

In all cases main effects and two-factor interactions are confounded with higher 
order interactions. 
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Computer programs for experimental design are usually able to propose designs 
with the highest resolution possible. It is possible to do this manually by careful 
consideration of the generator, but it is not very easy. One useful procedure is then 
to apply folding-over. As an example, let us consider the construction of a 2^" (̂IV) 
design from a 2^̂ (111) design (Table 23.7). We first add a column of + signs for the 
additional factor (H) and then "fold over", meaning that we add 8 experiments by 
reversing all signs. 

TABLE 23.6 

Saturated fractional factorial design for 7 factors: 2'̂ -^(III). Generators: D = ABC, E = AB, F = AC, G = BC 

Experiment 

I 
2 
3 
4 
5 
6 
7 
8 

Factors 

A 

_ 
+ 

-
+ 

-
+ 

-
+ 

B 

_ 
-
+ 
+ 

-
-
+ 
+ 

C 

_ 
-
-
-
+ 
+ 
+ 
+ 

D 

_ 
+ 
+ 

-
+ 

-
-
+ 

E 

+ 

-
-
+ 
+ 

-
-
+ 

F 

+ 

-
+ 

-
-
+ 

-
+ 

G 

+ 
+ 

-
-
-
-
+ 
+ 

TABLE 23.7 

A 2^~^ (IV) design obtained from a 2^^ (HI) design by folding-over 

Experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 

A 

_ 
+ 

-
+ 

-
+ 

-
+ 
+ 

-
+ 

-
+ 

-
+ 

-

B 

_ 
-
+ 
+ 

-
-
+ 
+ 
+ 
+ 

-
-
+ 
+ 

-
-

C 

_ 
-
-
-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-
-
-

D 

_ 
+ 
+ 

-
+ 

-
-
+ 
+ 

-
-
+ 

-
+ 
+ 

-

E 

+ 

-
-
+ 
+ 

-
-
+ 

-
+ 
+ 

-
-
+ 
+ 

-

F 

+ 

-
4-

-
-
+ 

-
+ 

-
+ 

-
+ 
+ 

-
+ 

— 

G 

+ 
+ 

-
-
-
-
+ 
+ 

-
-
+ 
+ 
+ 
+ 

-
— 

H 

+ 
+ 
4-

+ 
+ 
+ 
+ 
+ 

-
-
-
-
-
-
-
— 



693 

23.5 Embedded full factorials 

In Section 23.2 we concluded that factor B was not important for the spheroni-
zation process and we could therefore decide not to consider it. The first 8 
experiments constituting the 2"̂ ^ design then constitute a full 2̂  design for A, C and 
D, as can be verified from looking at the + and - signs. One says that the full 
factorial for A, C and D is embedded in the half-fraction factorial design. This also 
means that we can now interpret the experiment as a full factorial design without 
any confounding between interactions of the remaining factors. Although this 
would not be of interest in this specific case, we can verify that it is also possible 
to eliminate factor A from consideration, which would leave a full factorial design 
for B,C and D. Similarly, full factorial experiments for A,B and D are obtained by 
eliminating C, or A,B and C by removing D. As a rule a full factorial can be 
obtained for every set of R-1 factors. The 2" '̂ design constituted by the first 8 
experiments of Table 23.3 has R = IV and therefore we should indeed find 
embedded full factorials for each combination of R - 1 = 3 factors. 

23.6 Selection of additional experiments 

The conclusion of the pharmaceutical example of Section 23.2 was that A and 
perhaps C and D have an effect. No interactions were found to be significant. 
However, suppose now that we had found that AC + BD have an important effect. 
We would then like to know whether the interaction AC is responsible or BD or 
perhaps even whether AC and BD both have an effect. If this is important enough 
we would decide to carry out the 8 experiments at the bottom of Table 23.3, thereby 
completing the full factorial so that we would now be able to decide unambigu­
ously which interactions are important. The second half of Table 23.3 is also a 
half-replica of the full factorial. In other words, if we have carried out a half-replica 
factorial design and find that we should really have carried out the full factorial 
design, we can simply carry out the other half-replica factorial design. It is clear 
that such a strategy saves work and time: with some luck the first eight experiments 
will tell us what we want to know and, if not, we can still carry out the rest of the 
experiment without loss of information (or, at least, with very little loss as will be 
explained later). In general, the use of fractional factorial experiments as a starting 
design is to be recommended. Indeed, the first experimental design often serves to 
point out deficiencies in the setting up of the experiments. They may show, for 
instance, that the levels were not well chosen. If there is a doubt about whether a 
factor is indeed of interest, beginners in the practice of experimental design will 
often have the reflex to start with a full factorial design of what they think to be the 
more important factors. They will then have many experiments to do in order to 
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include the additional factor at a later stage. Carrying out a half-fraction design 
with n + 1 factors is more economical than carrying out the full factorial design 
with n factors. 

The strategy outlined in this paragraph leads to a problem, namely that a block 
effect has to be included in the analysis of the full factorial. Indeed, we carried out 
the experiments in two blocks (in our example two blocks of eight experiments) 
and we might expect that this could also have an effect. The block effect is obtained 
from Table 23.3, by subtracting the results obtained within block 2 from those 
obtained within block 1. 

Block effect = 
fS 16 >̂  

/ 8 

It can be verified that the block effect is confounded with that of interaction 
ABCD. Since it is quite probable that this is negligible, the loss of information 
referred to earlier in this section is indeed very small. 

When the number of variables is large or the cost of an experiment high, this 
strategy can be taken further. For instance, we could first carry out a quarter-frac­
tion design, then as a second stage add a second quarter-fraction design, etc. 
Blocking then becomes a more important issue and more attention has to be paid 
to avoid loss of information. We refer to the literature for more details on how to 
choose the blocking pattern and select the second quarter-fraction [2]. In fact, it 
may be necessary, just as for full fractional factorial designs, to carry out the 
experiments of a fractional factorial design in blocks. Again, we refer to the 
literature [2] for indications of how to select the blocking pattern. 

23.7 Screening designs 

23.7,1 Saturated fractional factorial designs 

When starting with an investigation there are often so many factors that it is 
desirable to first carry out a screening to know which are the most important, i.e. 
those that have a clear effect, and continue further work with those factors. From 
the way we explain this, it is clear that, at this stage, we are not interested in 
interactions. From our definition of resolution, it follows that we need at least an 
R = III design, since in such designs main effects are not confounded. Moreover, 
we would like to obtain the information we want with the minimum of experi­
ments. This restricts the designs that are applied to a R = III design, since these are 
most economical. In practice, we often apply 2^" (̂III) or 2^" (̂III) designs (Table 
23.6). These designs allow us to study (up to) 3 or 7 factors with 4 or 8 experiments. 
They are called saturated because they are designs with the smallest fractional 
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experiment possible. Indeed, the 2^" (̂III) design is a 1/16 fractional factorial 
design. A 1/32 design for 7 factors is not possible since this would require 2̂ "̂  = 4 
experiments for 7 factors. 

We do not necessarily need to carry out a 2̂ "̂  or 2̂ "̂  design. Highly fractional, 
but not necessarily saturated, designs can also be used. For instance, if we were to 
study 6 factors, we could use the 2 '̂̂ (III) design, with a dummy factor (see further), 
but might prefer a 2^^(IV) design, because of its higher resolution. On the other 
hand, the use of supersaturated designs has also been described [3]. These designs 
use fewer experiments than there are main factors. This means, of course, that some 
main factors are confounded. They are used when many factors (sometimes more 
than 100) are considered and only a few are likely to be important. 

A particular application of screening designs is the measurement of the rugged-
ness of a process [4] (see also Chapter 13). In this case, one has developed a 
process, for instance a measurement procedure, and wants to know whether small 
departures from the process parameters (when the process is a measurement 
procedure, these are factors that describe the analytical procedure) have an influ­
ence on the quality of the process. An example is given in Table 23.8. The 
procedure concerns a determination of tetracycline by HPLC [5]. The mobile phase 
contains an aqueous solution containing ammonium salts (0.1 M ammoniumox-
alate/0.2 M ammoniumphosphate) and dimethylformamide (270 ml), the pH of 
which is adjusted to 7.65. The flow rate is 1 ml/min and the integration parameter 
is 2. The sixth factor, the age of the column, has no nominal value. Table 23.9 
shows the design (a 2^~ (̂IV) design). Table 23.10 gives the effects. They are 
obtained in the usual way, i.e. by applying eq. (23.1). Clearly, there is one overriding 
effect: the age of the column. The design allows the evaluation of the main effects 
(confounded with higher order effects, not mentioned in the table), while the 

TABLE 23.8 

Factors and their levels for the determination of tetracycline HCl [5] 

Factors Levels 

A. Inorganic substances in mobile phase 

„ , M(ammoniumoxalate) 
Ratio ^ — 

M(ammoniu nphosphate) 

B. Dimethylformamide in mobile phase 

C. pH of mobile phase 

D. Flow of mobile phase 

E. Integration parameter (SN-ratio) 

F. Age of column 

-

0.0975 M 
0.195 M 

260 ml 

7.50 

0.9 ml/min 

1 

new column 

+ 

0.1025 M 
0.205 M 

280 ml 

7.80 

1.1 ml/min 

3 

2 weeks used 
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TABLE 23.9 

A 2^2(1 Y) design. Application to the example of Table 23.8 [5]. The response, y, is the capacity factor of 
tetracycline. (E = ABC, F = BCD) 

Experiment A B C D E F y 

1 
2 + 
3 
4 + 
5 

6 + 
7 
8 + 
9 

10 + 

11 

12 + 

13 

14 + 

15 

16 + 

TABLE 23.10 

Evaluation of the results of the quarter-fraction factorial design for the example of Tables 23.8 and 23.9 

-
-
+ 

+ 

-
-
+ 

+ 

-
-
+ 

+ 

-
-
+ 

+ 

-
-
-
-
+ 

+ 

+ 

+ 

-
-
-
-
+ 

+ 

+ 

+ 

-
-
-
-
-
-
-
-
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-
+ 

+ 

-
+ 

-
-
+ 

-
+ 

+ 

-
+ 

-
-
+ 

-
-
+ 

+ 

+ 

+ 

-
-
+ 

+ 

-
-
-
-
+ 

+ 

1.59 

1.48 

1.12 

1.13 

1.28 

1.18 

1.42 

1.69 

1.21 

1.24 

1.36 

1.37 

1.58 

1.70 

1.20 

1.21 

Factors Capacity factor effect 

A 0.030 

B -0.094 

C 0.097 

D -0.004 
E 0.021 

F -0.328 

AB+CE 0.043 
AC+BE 0.045 
AD+EF 0.014 

AE+BC 0.040 
AF+DE -0.042 
BD+CF -0.050 
BF+CD 0.034 

Ecntical 0 . 0 9 4 
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two-factor interactions are pairwise confounded. Since in screening designs, we 
consider only the main effects, we also consider that the interaction effects are 
negligible and use them to determine êffect in the same way as higher order 
interactions were used in Section 22.6.2. This allows us to compute Ecriticai. Effects 
larger than Ecriticai are considered significant. 

23.7.2 Plackett-Burman designs 

For more than 7 factors, we would need to carry out a design based on 16 
experiments. Plackett and Burman [6] have proposed experimental designs for n x 
4 experiments, i.e. 4, 8, 12, 16, 20, etc., that are suitable for studying up to 3, 7,11, 
15, 19, etc. factors, respectively. In some cases where n x 4 = 2 ,̂ the Plackett-Bur­
man design is a specific fraction of a full factorial design and saturated fractional 
factorial designs can be used just as well. However, this is not the case for multiples 
of 4 that are not equal to a power of 2. Let us consider the case of 12 experiments 
for 11 factors. 

The Plackett-Burman designs have the particularity that they are cyclical. 
Consider, for example, the 11-factor, 12-experiment design. It is obtained from a 
first line given in their paper and which in this instance is 

+ + - + + + + -

and describes the first experiment. Experiments 2 to 11 are obtained by writing 
down all cyclical permutations of this line. The last experiment, 12, always con­
tains only minus signs. The complete design is therefore given in Table 23.11. We 
can verify that in this way each factor is measured at 6 + and 6 -- levels and it is 
also possible to verify that the main factors are not confounded when the effects 
are determined in the usual way, i.e. 

Effect = 1 [X Cv at + levels) - X (y at - levels)] 

When fewer than the maximum possible number of factors are to be studied, 
dummy factors are added. Suppose that 8 factors must be investigated. This 
requires an n = 12 design and such a design accomodates 11 factors. The solution to 
this difficulty is to carry out the AZ = 12 design where 3 factors are dummy factors. As 
Youden and Steiner [7] stated, we should "associate with such factors some 
meaningless operations such as solemnly picking up the beaker, looking at it 
intently and setting it down again". In Table 23.11 this means we would derive 
effects only for the first 8 factors (A-F). However, we can also compute effects for 
dummy factors dl-d5, although these effects are meaningless. Nevertheless, the 
computation is useful. Indeed, these dummy effects can be used in the same way as 
the interaction effects of Table 23.10 to compute an -̂effect- This is done for the 
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ruggedness example of Table 23.8 (see Table 23.12). Here, the author could have 
chosen to carry out a design with 8 experiments; however, he preferred to carry out 
12, so that he would have five dummy factors and be better able to determine the 
significance of the estimated effects. 

TABLE23.il 

Plackett-Burman design for eleven factors. Application to the example of Tables 23.8 and 23.9 [5]. The response, 
V, is the capacity factor of tetracycline. d\ stands for dummy 1. 

Experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Factor 

A 

+ 

-
+ 

-
-
-
+ 
+ 
+ 

-
+ 
-

dl 

+ 
+ 

-
+ 

-
-
-
+ 
+ 
+ 

-
-

B 

_ 
+ 
+ 
-
+ 

-
-
-
+ 
+ 
+ 
-

d2 

+ 

-
+ 
+ 
-
+ 

-
-
-
-H 

+ 
-

c 

+ 
+ 
-
+ 
+ 

-
+ 
-
-
-
+ 
-

d3 

+ 
+ 
+ 
-
+ 
+ 

-
+ 
-
-
-
-

D 

_ 
+ 
+ 
+ 

-
+ 
+ 
-
+ 

-
-
-

J4 

_ 
-
+ 
+ 
+ 

-
+ 
+ 

-
+ 

-
-

E 

_ 
-
-
+ 
+ 
+ 

-
+ 
+ 

-
+ 
-

d5 

+ 

-
-
-
+ 
+ 
+ 

-
+ 
-1-

-
-

F 

_ 
+ 

-
-
-
+ 
+ 
+ 

-
4-

+ 

-

>' 

1.84 
1.16 
1.45 
1.64 
1.44 
1.21 
1.15 
1.27 
1.46 
1.13 
1.24 
1.53 

TABLE 23.12 

Effects on the capacity factor of tetracycline from the Plackett-Burman design 

Factors Capacity factor effect 

A 0.048 
B -0.128 
C 0.071 
D -0.067 
E 0.000 
F -0.367 

Dummy I 0.080 
Dummy 2 0.086 
Dummy 3 0.035 
Dummy 4 -0.060 
Dummy 5 -0.010 

Ecritical 0-157 
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Chapter 24 

Multi-level Designs 

24.1 Linear and quadratic response surfaces 

Two-level designs allow the estimation of the effect of all the factors and their 
interactions. Multi-level designs are used in different contexts. For qualitative 
factors, one often has no other choice but to create as many levels as there are different 
values for that factor. Designs used in this context are described in Section 24.7. 

In this chapter the emphasis will mainly be on the multi-level designs for 
quantitative factors. The two-level designs of the preceding chapters can describe 
only lines, planes or hyperplanes. Consider, for example. Fig. 24.1. This describes 
the situation for a one-factor design. In Fig. 24.1a two levels were measured. This 
allows the drawing of a straight line through the measurement points. In Fig. 24. lb 
three levels were included and a second-order model, a parabolic curve, can then 
be drawn through the three points. Curved models therefore require measurements 
at three or more levels. This is true for each of the factors that are expected to show 
a curvilinear relationship. Designs with more than two levels for quantitative 
factors are described in Sections 24.3 and 24.4. 

As explained for non-linear regression (Chapter 11), one has in general a choice 
between so-called mechanistic and empirical modelling. In the context of experi­
mental design, empirical models are nearly always used and the models are mainly 
second-order, i.e. quadratic. Higher-order models are rare and are used only when 
quadratic models are clearly inadequate, for instance when a sigmoid relationship 
must be described, such as when pH is involved. One might then choose a 
third-order model, an appropriate transform (such as the logistic transform [1]) or 
a mechanistic (physical) model [2]. In the latter case the non-linear regression 
techniques of Chapter 11 are required (see further Section 24.6). However, as 
already stated, in an experimental design context this is unusual and most of this 
chapter will therefore be devoted to using quadratic models. 

Such a quadratic model includes a constant term, first and second-order terms 
and the interaction between factors (usually limited to the two-factor interactions). 
For two variables, the model is: 

r| = po + PlX, -h p2-̂ 2 + Pll-X? + P224 + Pi2X]X2 (24.1) 
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y i 

a) 

y A 

b) 

Fig. 24.1. (a) Univariate linear model derived from measurement at two levels; (b) univariate quadratic 
model derived from measurement at three levels. 

The design leads to the estimation of the p-coefficients, by fc-values, resulting 
in the following equation 

y = bo + b]X\ + b2X2 + b\ ix? + 622-^ + ^12^1-̂ 2 (24.2) 

For three variables the quadratic equation is 

y = bo + b]X] + b2X2 + b^i, + b\ \x] + ^22-^+ ^33^+ 1̂2-̂ 1-̂ 2 + ^13^1^3 + ^23^2^3 (24.3) 

How well the ^-coefficients are estimated depends on the experimental design. 
Quality criteria for these designs are described in Section 24.2. Readers for whom 
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this chapter is a first introduction to multi-level designs may prefer to skip this 
section and read Section 24.3 first in which the more usual designs are described. 

When the /^-coefficients have been obtained by multiple regression, one can use 
them to predict the response >̂  as a function of the x-factors. This leads to the 
construction of so-called response surfaces. Some typical quadratic response 
surfaces for two factors are shown in Fig. 24.2. As said above, models of order 
higher than two are rarely used, because in many cases the true response surface 
can be approximated by a second-order model. When this is not the case (see also 
Chapter 21.6), this is often due to an inadequate choice of response. An example 
of the use of response surfaces is given in Section 24.5. 

Several books or review papers on response surface methodology have been 
published. Apart from the books already cited in Chapter 21, one can refer for 

(a) 

Xi 

Xi 

(c) (d) 

sa 30 

Xi 

Fig. 24.2. Some quadratic bivariate response surfaces and the resulting contour plots (adapted from 
Ref. [3]): (a) mound, (b) saddle surface, (c) stationary ridge, and (d) rising ridge. 
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instance to books and articles by Atkinson [3,4], Draper and Box [5], Phan-Tan-
Luu [6], Frantz et al. [7], Morgan et al. [8] and Fernandes de Aguiar et al. [9]. 

24.2 Quality criteria 

24,2,1 D-, M- and A-optimality 

In Chapter 10.2 we derived that the /7-coefficients in equations such as (24.2) 
and (24.3) are given by 

b = (XTX)-'X^y (24.4) 

where b is the column vector of coefficients, y is the column vector of n measure­
ments, and X is the independent variable matrix, sometimes also called model 
matrix. For instance, for eq. (24.2): 

b = 

r^o" 
^1 

b2 

bu 
bji 

b\2 

x = 

1 X\\ X\2 X\\ X\2 X\\X\2 
1 2 2 
1 X2\ ^22 X2\ X22 -^21-^22 

1 2 2 
1 Xfi\ Xn2 Xn] Xn2 ^nl^nl 

(24.5) 

and 

yn 

X is derived from the model and from the design matrix D. The latter contains 
the factor combinations at which one should carry out the experiments. Here the 
design matrix would be 
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X\\ 

•^21 

_Xn\ 

•^12 

-^22 

•^n2_ 

D = 

In Section 10.5 it was pointed out that the (X^X)"^ matrix determines the 
variance of the regression parameters, i.e. the quality of the model that will be 
obtained. X depends only on the model and on the values chosen for X\, ... x^, i.e. 
on the design. This means that for a given model the distribution of the experi­
ments, i.e. the values of the x-factors over the experimental domain, determines the 
quality of a model. 

It is very important to note that (X^X)~^ does not include information about the 
response. In other words, all the information required to evaluate the effect of the 
design on the quality of the estimated model is present before any experiment has 
been carried out. This leads to the important conclusion that, for a given experi­
mental error, the quality of the estimation of b and of the prediction of y is 
determined exclusively by the experimental design. 

The ideal situation is when the design matrix is orthogonal This means that 
there is no correlation between the factors and that the estimation of b is best. This 
is obtained when the matrix (X^X)~^ is diagonal. Often this is not possible and one 
will then try to approach this situation as closely as possible. More generally, it can 
be shown that the estimation of b is best, when the determinant of (X^X)"' is 
minimal or in other words the volume of the joint confidence interval for the b's is 
minimal. Since: 

det((X^X)-^) = l/det(X^X) 

the determinant of (X^X) should be maximal. As det(X^X) generally increases 
with the number of experimental points, it follows that the estimation will be better 
when there are more points. For designs with the same number of points, one can 
compare the determinants of (X^X) to decide which one will give the best estima­
tion of b. A design is called D-optimal compared to other designs with the same 
number of experimental points, when its det(X^X) is largest. The classical two-
level factorial designs (both the full design of Chapter 22 and the fractional facto­
rial ones of Chapter 23) are both D-optimal for first-order models and, in fact, 
orthogonal. One should note again that D-optimality has to do with the quality of 
estimation of a certain set of /?'s. This set depends on the model and therefore one 
computes D-optimality for a given model. 

In Section 24.4 we will see that in certain cases the usual symmetric designs 
cannot be used. It is then necessary to apply explicitly the D-optimality principle 
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to select the best design. A general property of D-optimal designs [3] is that they 
concentrate experimental effort on only a few sets of conditions. For instance, for 
a single factor x and a model y = Ẑo + ^i Jc + foi i JĈ  it is shown that 3 levels of jc are 
optimal i.e. the two extreme levels of JC ( 1 and + 1) and a value at the centre of this 
region (0). If 3 experiments are carried out, they should be performed at these 
levels; if a fourth experiment is performed, D will be optimal when it is carried out 
by replicating one of these three levels and not, as one might perhaps expect, by 
introducing a fourth level so that measurements are carried out at - 1 , -Vs, +V3 
and +1. 

Several other criteria exist. For instance the M-criterion is given by det (M) = 
(X^X)/AZ. It compares designs with different numbers of experiments. The A-crite-
rion is based on the trace of (X^X)"^ In eq. (10.18) the variance-covariance matrix 
of the b coefficients is introduced. The variances of the coefficients are the 
diagonal elements of V(Z?) and, therefore, these diagonal elements should be small. 
The values of the elements are determined by (X^X)"^ (see eq. (10.18)). The 
variance s] can be considered a constant depending on the quality of the measure­
ment, and not on the design. The influence of the design on the variance of the 
estimates is therefore determined by the trace or sum of the diagonal elements of 
(X^X)"*, which should be small: in that case the average variance of the fe's is small. 
This leads to the formulation of the A-optimality criterion (with the "A" of 
"average"). A design is called A-optimal compared with other designs with the 
same number of experimental points, when its tr(X^X)~' is smallest. 

Let us consider as an example the following situation [9]. Six experiments 
described by two variables could be carried out: 

D = 

From these six candidate points, we would like to use only four. The question then 
is which set of four should we select: will e.g. the set {(1), (2), (3), (4)} perform 
better than any other set of four experiments. This question can be answered only 
with respect to a model. Let us suppose this model is: 

y = bQ + b\X\ 4- b2x\ 

This, of course, is an unusual model, which is applied here only for illustration. It 
should be noted that we do not give a vector of responses y: the idea is to choose 
the best set of 4 experiments i.e. the best design, and this must be done before 
experiments are carried out. 

2.1 
3.5 
4.9 
5.1 
5.7 
7.0 

3.0 
1.5 
4.0 
2.6 
1.0 
2.4 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
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The model matrix can now be determined for each of the combinations of four 
experiments. For example for the set {(1), (2), (3), (5)} it is given by: 

Xi235 — 

1 2.1 9.00 
1 3.5 2.25 
1 4.9 16.00 
1 5.7 1.00 

The D-criterion is given by det(X^X) = 4.285 x lOl 
It should be noted that D can take on large values. To avoid numerical problems, 

one often first scales the variables. 
The A-criterion, for the same example would be 

(X'X)-^ = 
2-99 _o.57 -0.06 

-0.57 0.13 0.00 
-0.06 0.00 0.01 

tr(X^X)-^ = 2.99 + 0.13 + 0.01 = 3.13 

In the present case, it is found that the best combination according to the 
D-optimality criterion is {(1), (2), (3), (6)}. This is also the best for the A-criterion. 

24,2.2 Rotatability, uniformity and variance-related criteria 

A design is called rotatable, when the variance of the prediction does not depend 
on the direction in which one looks starting from the centre point, but only on the 
distance from the centre point. The two-level designs, applied in Chapters 22 and 
23 are both orthogonal and rotatable. A design is rotatable only when the experi­
ments are roughly situated on a (hyper)sphere. However, not all spherical designs 
are rotatable (e.g. the Doehlert design, Section 24.3.4). By adequate selection of 
the number of centre points, it is possible to arrange that the precision of the 
response of a predicted design is similar over the whole domain. Such a design is 
said to have uniform precision. 

The variance function is a measure of the uncertainty in the predicted response. 
From eq. (10.19), one can derive that: 

Var( yO = xj (X'X)-' x, si = d(xd si 

where 5̂/ is the predicted response in point /, x,- is the vector describing a certain 
experiment, Se is the experimental standard deviation and dixi) is the variance 
function at point /. Of course, one wants Var(5'/ ) to be as small as possible, but, in 
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general, one considers d(Xi) = 1 acceptable, because this means that Var(y/) = si, 
i.e. that the prediction uncertainty is equal to the experimental uncertainty [6]. 
From the variance function, one derives the G-optimality criterion. Designs are 
considered G-optimal when, for the same number of experiments n, the maxi­
mal value of the variance function in the experimental region is minimal. To 
compare designs with different n, one can compute the G-efficiency as G-eff = 
p/(d(x)n) where d(x) is the maximal value of d(xi) and p is the number of coeffi­
cients in the model. 

In the preceding section, we saw that it is possible to evaluate the quality of 
designs, for which the model is known. Moreover, as will be stressed further in 
Section 24.6, these models have to be linear in the regression sense (see Section 
11.1) to be able to apply such criteria in a simple way (quadratic and in general 
polynomial models are linear in the regression sense). Several experimental design 
specialists such as Scheffe, Plackett and Doehlert [10] have stated that in cases, 
where the criteria of Section 24.2.1 cannot be (easily) applied, the experimenter 
ought to look for designs with an equally spaced distribution of points. Designs 
which show this property are said to show uniformity of space filling. 

24.3 Classical symmetrical designs 

In this section we will introduce the most often used designs. These designs are 
all highly symmetrical. Most of them score very well on the criteria described 
earlier. The experimental domain they describe can be (hyper)spherical or (hy-
per)cubic. Most of the designs described later are spherical. This is the case for the 
central composite designs (except the face-centred central composite design), the 
Box-Behnken and the Doehlert design. Cubic designs are the 3-level factorial 
design and the face-centred central composite design. It should be noted that the 
terms cubic and spherical are used even for a two-variate situation. One should 
consider what experimental domain exactly one wants to describe and take good 
care not to extrapolate outside the region described when making predictions. The 
prediction error then becomes much larger and the model may not be correct 
outside the experimental region. 

It should be noted that the experimental design describes the experiments that 
have to be performed to obtain the model relating y to x. It can be useful to do 
additional experiments for various reasons. For instance, one can replicate the 
centre point in the design to have an idea of the experimental error. Replication 
of experimental points allows validation of the model (see Section 10.3.1) and 
the determination of additional points, different from the experimental design 
points allows validation of the prediction performance (see Section 10.3.4). 
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A two-factor three-level (3^) design 
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Experiment Xi X2 

-1 
-1 
-I 
0 
0 
0 

+1 
+1 
+1 

-1 
0 

+1 
-1 
0 

+1 
-1 
0 

+1 

x̂ ^ 

*1 -

0 -

- 1 -

i 

•3 

•2 

•1 

1 1 

•6 

•5 

•I. 

1 

• 9 

•8 

•7 

1 •> 
-1 0 *1 X̂  

Fig. 24.3. A 3^ factorial design. 

24.3.1 Three-level factorial designs 

The full three-level factorial design, 3 ,̂ can be used to obtain quadratic models, 
but except for very small k, it requires rather many experiments (9 for k-2,21 for 
fc = 3, 81 for k = 4). The ik = 2 design is given in Table 24.1 and Fig. 24.3. When 
one has the resources to do more than 9 experiments and k = 2, then it has been 
shown that good D-optimality is obtained for n = 13. The 4 additional experiments 
are not situated at additional levels (see Section 24.2.1) but are used to replicate the 
four comer points of the design. 

The three-level factorial design is the only often applied multi-level design that 
is completely orthogonal. It is, however, not rotatable. For the two-factor design of 
Table 24.1 the X-matrix for the model of eq. (24.2) is 
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+1 
+1 
+1 
+ 1 
+1 
+ 1 
+1 +1 
+ 1 +1 

-1 
-1 
-1 
0 
0 

-1 
0 +1 
+1 

+1 +1 
0 

+1 +1 

1 
0 

0 +1 
-1 +1 
0 +1 
+1 

+1 +1 
0 +1 
0 0 
0 +1 

+1 
0 

+1 +1 

+1 
0 
-1 
0 
0 
0 
-1 
0 
+1 

and 

X^X = 

9 0 0 6 6 0 
0 6 0 0 0 0 
0 0 6 0 0 0 
6 0 0 6 4 0 
6 0 0 4 6 0 
0 0 0 0 0 4 

We notice that most covariance coefficients are 0, except for some coefficients 
related to bo and the term for (bu, b^i), i.e. the term that describes the covariance 
between the quadratic terms. The parameter bo does not describe a factor and by taking 
the average of the columns into consideration, the covariance between the quadratic 
terms vanishes: by subtracting 6/9 (the average for the fourth and fifth columns in X) 
from all values in those columns, the covariance for {bw, bji) becomes zero. 

Fractional factorial designs have also been proposed. These so-called orthogo­
nal arrays are described with the same notation as in Chapter 23 for two-level 
fractional factorials. For instance, a 3*"̂  fractional design is the (1/3^) part of a 3'* 
design. It therefore consists of 9 experiments (Table 24.2). These designs have not, 
however, been applied very often. 

TABLE 24.2 

A 3''"^ design 

Experiment 

I 
2 
3 
4 
5 
6 
7 
8 
9 

X\ 

-1 
-1 
-1 

0 
0 
0 

+1 
+1 
+1 

X2 

-1 
0 

+1 
-1 

0 
+1 
-1 

0 
+1 

X3 

-1 
0 

+ 1 
0 

+1 
-1 
+1 
-1 

0 

X4 

- i 
0 

+i 
+1 
-1 

0 
0 

+1 
-1 
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24.3.2 Central composite designs 

To solve the problem of economy so-called central composite designs have been 
proposed. Examples are given in Tables 24.3 and 24.4 and in Figs. 24.4 and 24.5. 
Central composite designs always consist of the following three parts (Fig. 24.4): 

- A two-level factorial design. In Table 24.3, the first four experiments consti­
tute a full 2^ design and in Table 24.4 the first eight a full 2̂  design. 

- A star design. To add more levels so as to be able to describe curvature one 
adds points, which are described as a star. Points 5-8 in Table 24.3 and points 9-14 

TABLE 24.3 

A two-factor central composite design 

Experiment X2 

1 
2 
3 
4 
5 
6 
7 
8 
9 etc. 

-1 
+ 1 
-1 
+ 1 

+V2" 
0 
0 
0 

-1 
-1 
+1 
+1 
0 
0 

-<2 
+V2 
0 

TABLE 24.4 

A three-factor central composite design 

Experiment xi X2 -̂ 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 etc. 

-1 
-hi 
-1 
-1-1 

-1 
-Hi 
-1 
+ 1 

-1.682 

+ 1.682 

0 
0 
0 
0 
0 

-1 
-1 
-hi 
+ { 

-1 
-1 
-hi 
+ 1 

0 
0 

-1.682 

-hi.682 

0 
0 
0 

-1 
-I 
-1 
-1 
+ 1 

+ 1 

+ 1 

+ 1 

0 
0 
0 
0 

-1.682 

-hi.682 

0 
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a) 

0 i 

-1 1 

• m 

• i • 

• b) 

Fig. 24.4. Two-factor central composite design, (a) The design consists of a 2̂  factorial design plus 
a star design and the centre point, (b) The composite design. 

in Table 24.4 are the star points. They are situated in general at a distance a (here 
1.404 and 1.682, respectively) from the centre of the design. How to decide on the 
value of a is described further. 

- The centre point. This is often replicated. For this reason it is designed as 9, 
etc. and 15, etc. in Tables 24.3 and 24.4. 

In general, there are therefore 
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Fig. 24.5. Central composite design for 3 factors. The levels are indicated only forxi. 

Ale = 2̂  cube points (for a full factorial) with levels of - 1 and + 1 

Hs = 2̂  star or axial points with levels of - a and + a 

no 1.68 centre points with all levels equal to 0. 

Each factor is encountered at five levels (- a, - 1, 0, + 1, + a) or at three (for a 
= 1, which is however unusual). The number of experiments is much less than for 
a 3-level factorial design. For four factors, one needs 16 (= n^ + 8 (= n^ + at least 
1 (= no) = at least 25 experiments (compared with 3^ = 81). In Tables 24.3 and 24.4 
the most usual value of a(= ^2^= 1.414 for fc = 2 and '̂ V8̂ = 1.68 for fc = 3) is given, 
but other values are possible as explained below. 

Three types of central composite design are sometimes considered. Those of 
Tables 24.3 and 24.4 are then called central composite circumscribed (CCC) 
because lal is larger than 1. One thinks of the - 1 and + 1 levels as the boundaries 
of the experimental design set by the user and the axial points come outside this 
region. When these boundaries should not be exceeded because it is not possible 
for experimental reasons, one employs the central composite inscribed (CCI). One 
sets + a and - a equal to the boundaries, so that the design is completely included 
within the experimental boundaries. If one were to set + a = + 1 for x\, then (for k 
= 2), one could set the levels of the 2̂  design at 1/V2̂ = 0.712 and - 0.712 instead 
of + 1 and - 1. A third type is the central composite face-centred (CCF), for which 
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• j i ^ • 

0 / 

-1 

Li; 
^1 

Fig. 24.6. Face centred central composite design. The levels are indicated only for JC|, 

|a| = 1. The result is a face-centred cube (see Fig. 24.6). It is a cubic design, in 
contrast with the two others which are spherical. It is, however, used much less than 
the spherical CCC designs and in what follows, we will discuss the latter designs. 

In Fig. 24.7 all points, both the cube and the star points, are situated on a circle 
so that the design is rotatable, with a = r and <i = + 1 or - 1. Since sin y = dir, it 
follows that a = ± (1/sin y). Since sin y = sin 45° = 1/V2̂ , a = V2^= 1.414. More 
generally, it can be shown that rotatability is achieved when a = (AIC)'̂ "̂  Table 24.5 
gives the values of a required for the lower values of k, both for full factorial and 
fractional factorial cubic parts of the design. 

The centre points are often replicated. There are good practical reasons for this 
(see also Chapter 22). The replicated centre points give an immediate idea of 
experimental precision. When one blocks the designs, comparing the results of 
centre points in each block gives an indication of whether block effects occur. Of 
special interest is the value of no required to achieve (near) orthogonality. In this 
case one achieves both (near) orthogonality and rotatability. These values of no are 
given in the third column of Table 24.5. As an example, for ^ = 3, a = 1.68 and no 
= 9 yield both an orthogonal and rotatable design. If orthogonality is considered 
less important than uniform (prediction) precision, then smaller no numbers are 
usually recommended. These numbers are given in the fourth column of Table 24.5. 
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Fig. 24.7. Central composite (circumscribed) design. All points, except the centre point, are situated 
on a circle of radius r. The meaning of d and y is explained in the text. 

TABLE 24.5 
Starpoint distances a and number of centre points no for central (circumscribed) composite designs (adapted from 
Ref [8]) 

k 

2 
3 
4 
5 
5* 
6 
6* 

a for rotatable central 
composite 

1.40 
1.68 
2.00 
2.38 
2.00 
2.83 
2.38 

no for combined 
and 

8 
9 

12 
17 
10 
24 
15 

rotatability 
orthogonality no for uniform 

precision 

5 
6 
7 

10 
6 

15 
9 

• The factorial design is fractional. 

The cubic part of the design usually is a full factorial design. It is however also 
possible to use fractional factorial designs for this purpose. A biotechnical application 
is given in [11]. This study is concerned with among others the yield of S. cerevisiae 
as a function of the content of glucose, NHJ, K"̂ , H2PO4 and Mg^ ,̂ in the culture. The 
design is described in Table 24.6. The first 16 points constitute a 2̂ "* design. 
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TABLE 24.6 

Central composite design with half-fractional cubic part for a biotechnological example [11] 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 

[Glucose] 

-1 

_1 

-1 

-1 

-1 

-1 

-2 
2 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

[NHJ] 

-1 

_1 

-1 

-1 
-1 

0 
0 

-2 
2 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

[K1 

-1 

-1 

-1 
-1 
-1 

0 
0 
0 
0 

-2 
2 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

[H2P0^ 

-1 

-1 

-1 

0 
0 
0 
0 
0 
0 

-2 
2 
0 
0 

0 
0 
0 
0 
0 
0 

[Mg^T 

-1 

-1 

-1 

-1 
-1 

-1 

-1 
0 
0 
0 
0 
0 
0 
0 
0 

-2 
2 

0 
0 
0 
0 
0 
0 

24.3.3 Box-Behnken designs 

The Box-Behnken design for /: = 3 is shown in Fig. 24.8 and in Table 24.7. It is 
a spherical, rotatable design. Viewed on a cube (Fig. 24.8a), it consists of the centre 
point and the middle points of the edges. It can also be viewed (Fig. 24.8b) as 
consisting of three interlocking 2̂  factorial designs and a centre point. It is 
economical, since it requires 13 experiments for k = 3, It should be stressed that, 
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Fig. 24.8. Box-Behnken design, (a) The design, as derived from a cube, (b) Representation as 
interlocking 2^ factorial experiments. 

although the design can be derived from a cube, it is spherical, so that part of the 
cubic domain is not covered by the resulting model. The prediction in this part is 
then an extrapolation, which should be avoided. 
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TABLE 24.7 

The Box-Behnken design for k = 3 

Expt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 etc. 

Xi 

+ [ 

+ 1 
-1 
-1 
+ 1 
+ 1 
-1 
-1 

0 
0 
0 
0 
0 

X2 

+ { 

-1 
+ 1 
-1 
0 
0 
0 
0 

+1 
+1 
-1 
-1 

0 

X3 

0 
0 
0 
0 

+1 
-1 
+1 
-1 
+1 
-1 
+1 
-1 

0 

24.3A Doehlert uniform shell design 

A less well known, but very useful type of design is the uniform shell design 
introduced by Doehlert [10]. It is sometimes called the Doehlert uniform network 
or, simply, Doehlert design. It describes a spherical experimental domain, but with 
less points than the central composite design and it stresses uniformity in space 
filling (see Section 24.2.2). For two factors, the central composite design can be 
viewed as consisting of one central point and eight points situated at equal intervals 
on a circle. The Doehlert design for two factors consists of one central point and 
six points forming a hexagon, i.e. also situated on a circle (see Fig. 24.9a). In three 
dimensions it consists of a centred dodecahedron (Fig. 24.9b). It can be verified 
that the distances between all neighbouring experimental points in a Doehlert 
design are the same. 

The respective design matrices are given in Tables 24.8 and 24.9. They are 
generated as follows. One starts with a simplex in the space considered. For a 
two-factor space, this means that one starts with an equilateral triangle. The points 
forming the simplex are labelled S in Fig. 24.9a. Its coordinates are (0,0) (1,0) and 
(0.5, 0.866) (expts. 1, 3 and 7 in Table 24.8). The other points can be obtained 
easily using a simple rule. One must subtract each point from each other. Subtrac­
tion of point 1 from 3 yields for instance (0.5 - 1,0.866 - 0) = (- 0.5,0.866) (point 
4) and 3 from 1 (1 - 0.5, 0 ~ 0.866) = (0.5, - 0.866) (point 5). 

To construct the Doehlert design for k factors, one needs the simplex for the 
same number of factors. The coordinates for /: = 3 to 10 are given in Chapter 26, 
where the simplex is discussed. Let us apply this for /: = 3. From Section 26.2.2 it 
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Fig. 24.9. The Doehlert design. The points indicated with S constitute the generating simplex for (a) 
two variables, (b) three variables. 

is derived that the coordinates of the vertices of this simplex are (0, 0,0); (1, 0, 0); 
(0.5, 0.866, 0); (0.5, 0.289, 0.817). In Table 24.9, they constitute the first four 
experiments. All other experiments can be derived by pairwise subtractions of the 
coordinates of one point from the other, for instance: 0.5 - 0.5 = 0; 0.866 - 0.289 
= 0.577; 0 - 0.817 = - 0.817 (point 10). 
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TABLE 24.8 

Doehlert design for 2 factors 

Expt. ^2 

1 
-1 

0.5 
-0.5 

0.5 
-0.5 

0 

0 
0 
0.866 
0.866 

-0.866 
-0.866 

0 

TABLE 24.9 

Doehlert design for 3 factors 

Expt. x\ X2 X3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 
1 
0.5 
0.5 

-1 
-0.5 
-0.5 

0.5 
0.5 
0 

-0.5 
-0.5 

0 

0 
0 
0.866 
0.289 
0 

-0.866 
-0.289 
-0.866 
-0.289 
0.577 
0.866 
0.289 

-0.577 

0 
0 
0 
0.817 
0 
0 

-0.817 
0 

-0.817 
-0.817 

0 
0.817 
0.817 

The Doehlert design is not rotatable. This is not surprising, since xi is measured 
at a different number of levels compared to JC2. For the two-factor design there are 
5 levels for JC, (- 1, - 0.5, 0, 0.5, 1) and 3 for X2 (- 0.866, 0, 0.866). There are, 
however, several advantages. A first advantage is that the design is efficient, where 
efficiency is defined as the number of /^-coefficients estimated divided by the 
number of experiments. Table 24.10 describes the efficiency of the central com­
posite design compared to the Doehlert design. For all k, the Doehlert design is 
more efficient. The Doehlert design is also more efficient in mapping space: 
adjoining hexagons can fill a space completely and efficiently, since the hexagons 
fill space without overlap. 
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TABLE 24.10 

Comparison of efficiency of central composite and Doehlert design 

k 

2 

3 
4 
5 
8 

Number of b 
coefficients 

0̂ ) 

6 
10 
15 
21 
45 

Number of expts. with 
central 
(fc) 

9 
15 
25 
43 

273 

composite* 
Number of expts. 
Doehlert 
(fd) 

7 
13 
21 
31 
73 

with p/fc 

0.67 
0.67 
0.60 
0.49 
0.16 

p/fd 

0.86 
0.77 
0.71 
0.68 
0.62 

" One centre point only. 

Apart from its uniformity characteristics, the most important advantage is, 
however, its potential for sequentiaiity. For instance, one can easily re-use experi­
ments when the boundaries were not well chosen. Suppose one has carried out a 
Doehlert design and, from the responses one has observed, that it would be 
useful to investigate outside the original area in the direction of the arrow 
in Fig. 24.10. One would then carry out experiments 8, 9 and 10 and obtain 
a new hexagon in that direction. Similarly, it is possible to look at two 
variables first and add the third afterwards, if this is felt necessary. Indeed, 
in Table 24.9 one observes that there are 7 experiments with X3 = 0. Their xi and 
X2 levels coincide with the levels for the fc = 2 design. One could therefore carry 
out a design for jci and X2 with 7 experiments at a constant X3 = 0. If a sufficiently 
good response is obtained in this way, one can stop here. Otherwise, one might 
consider these 7 experiments to be part of a /c = 3 design and add points 4, 7, 9, 
10, 12 and 13. These points convert the circle described by the A: = 2 hexagon 
into the sphere described by the /: = 3 cubooctahedron. 

In a number of cases it is difficult to make decisions at the start of the 
investigation about certain aspects. For instance, it may be difficult to decide on 
the variables to include and on the experimental boundaries (should one limit the 
pH range to 3-7 or rather to 5-7?). As multi-level designs are rather costly in the 
number of experiments to be carried out, this decision has important consequences. 
One could then decide on sequential strategies. For instance, one could decide to 
investigate first the pH domain 5 to 7 and, depending on the results obtained, decide 
later whether or not to include also the domain between 3 and 5. Or, one could 
decide to optimize a chromatographic experiment with as variables solvent 
strength and pH and decide later to add ionic strength or temperature. In all those 
cases, one would not like to have to start a completely new set of experiments in 
the second or later stages of the investigation but prefer to be able to re-use as many 
experiments as possible from the first or prior stages. 
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1 

a) 

b) 

Fig. 24.10. Sequentiality in space, (a) The first Doehlert design was carried out and the results 
indicated that there may be an optimum outside the original experimental domain in the direction of 
the arrow, (b) Experiments 8, 9, 10 are added to obtain a new design in that direction. 

24.4 Non-symmetrical designs 

24,4.1 D-optimal designs 

It may happen that it is not possible to carry out one of the classical symmetric 
designs of the preceding section. Bourguignon et al. [12], for instance, have 
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PH 

9 
Fig. 24.11. Non-symmetrical experimental domain. Preliminary HPLC experiments at the pH - and 
+ level indicate that the percentage of methanol ((p) at which adequate retention is obtained is included 
between respectively a and b and c and d. Lines between a and c and b and d delimit the feasible 
experimental area for subsequent separation optimization. 

described irregular experimental domains in chromatography, when optimizing at 
the same time pH and percentage of methanol in the mobile phase. The possible 
experimental domain is delimited first by a retention boundary map (see Fig. 
24.11), i.e. one determines with a few experiments the area in which it is possible 
to have suitable retention. The resulting area can be very irregular in form. 

A common reason for irregularly shaped experimental regions is that one of the 
combinations of extreme levels of the variables is practically not possible. For 
instance, if a reaction is being studied, the combination of high concentration of 
the reactant and high temperature may make the reaction explosive. As an example 
suppose that the experimental domain to be investigated is rectangular with 
boundaries of JCi and X2 equal to + 1 and - 1. Then a logical choice would be the 3^ 
design. However, suppose also that the experiment with x\ = 1 and X2 = 1 is not 
possible and that this leads to a constraint X] + X2 < 1 (see Fig. 24.12a) [13]. One 
might try to include the 3^ design within the practically possible experimental 
domain, but this would exclude from consideration an important part of the domain 
(Fig. 24.12b). To avoid this, one selects a number of candidate points, for instance 
using a grid over the whole experimental domain (Fig. 24.12c). From this candi­
date set, one then has to select a number of experiments. If the decision was to 
select 8 experiments, one would then compute D (or some other quality criterion 
from Section 24.2) and select the set of n = 8 experiments with smallest D. In Fig. 
24.12d the resulting selection is shown. Of course, computing D for all possible 
combinations of 8 out of 27 experiments (more than 2 million) would require much 
computation time and so-called exchange algorithms have been proposed to 
shorten this time [14, 15]. Genetic algorithms (Chapter 27) can also be applied 
[16]. As explained further, one should determine whether the number of experi­
ments selected allows to determine the model sufficiently well. 
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Fig. 24.12. D-optimal design selection (adapted from Ref. [13]). (a) A 3̂^ design in a rectangular 
domain; (b) a 3^ design in an asymmetrical domain; (c) 27 candidate points; (d) the 8 experiments 
selected from the 27 candidate points. 

It is interesting to consider the solution of Fig. 24.12d in somewhat more detail. 
In the preceding chapters and sections, we have seen that confidence intervals for 
the true fo-coefficients are smallest when the experiments are situated as far from 
each other as possible. This conclusion was already reached in Section 8.2.4 on 
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univariate regression. This principle is systematically applied in experimental 
design. Indeed, in Chapter 22, except for a possible centre point, the experiments 
are situated on the corners of the experimental domain (a square, cube or hyper-
cube) and in Section 24.3, the experiments are situated most often on a circle, a 
sphere or a hypersphere and again these experiments are situated on the boundaries 
of the experimental domain. The D-optimal design selected here also consists of 
points that characterize the boundary (and a central point). 

Other non-standard situations are those where qualitative variables have to be 
tested at many different levels. Broudiscou et al. [16] describe such a situation in 
which 6 factors are investigated at 3 to 7 levels for each factor, in total 30 levels, 
with 28 experiments. 

One of the interesting features of D-optimal designs is the flexibility they 
give. Not only do they allow to work in experimental domains that are not 
cubical or spherical, but also one can impose that certain experiments must be 
included (for instance, because in a preparation phase certain experiments were 
already carried out) and then compute which additional points are needed to 
complete a design. 

The D-optimality strategy is also used for the selection of experiments when the 
levels are set by nature. Let us explain this with an example from organic chemistry. 
The example was described by Phan-Tan-Luu et al. [6]. They describe the influence 
of the substituent on the reaction rate in the Menschutkin reaction. The factors are the 
inductive effect, Gi, and the resonance effect, GR, of the substituents. Fourteen substi-
tuents are chosen. They are given in Table 24.11. The experimenter would prefer not 

TABLE24.il 

Factor levels for the study of the Menschutkin reaction [7] 

No. Substituent Ci OR 

-0.18 
-0.23 
-0.25 

0 
-0.21 
-1.75 
-0.30 
-0.86 
-1.02 

0.16 
0.14 

-0.30 
-0.36 

0.13 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

tBu 
Et 
Me 
H 
Vinyl 
NMe2 
Phenyl 
NHCOMe 
OMe 
COMe 
C02Me 
Br 
CI 
CN 

-0.07 
-0.05 
-0.04 

0 
0.05 
0.06 
0.10 
0.26 
0.27 
0.28 
0.30 
0.44 
0.46 
0.56 
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TABLE 24.12 

Best (D-optimai) experiments for a first order model with interactions for the Menschutkin reaction [7] 

det(X'^X) Combination 

4 
5 
6 
7 
8 
9 
10 

0.061 
0.121 
0.389 
0.339 
0.487 
0.662 
0.850 

l_6-14-4 
1-6-14-4-13 
1_6- 14-4- 13-2 
1 -6- 14-4- 13-2-9 
1-6-14-4-13-2-9-12 
1-6-14-4-13-2-9-12 
1 -6-14-4-13-2-9- 12 10 

to have to carry out the reaction with all 14 substituents for reasons of economy: 
an experimental design with the minimum of experiments involved is desired. 
However, it is not possible to freely choose levels of C\ and GR, SO as to conform with 
the designs given above. The levels are not determined by the experimenter, but by 
nature. All the experimenter can do is to make a selection from the 14 possible 
experiments. 

In Table 24.12 the selection of n = 4, 5, etc. experiments based on the D-opti-
mality criterion is given for the first-order model with interaction. For instance, the 
D-optimal selection for AZ = 4 is obtained by selecting substances 1,6, 14 and 4. In 
Fig. 24.13 one observes that one selects experiments that characterize the boundary 
of the experimental region. Before starting this selection it should be verified 
whether a solution with sufficient quality can be obtained. One way to do this is to 
compute the inflation factors. In Section 10.5 it was explained that the inflation 
factors (VIF) allow to decide whether ^-coefficients can be estimated sufficiently 
well. For the first-order model with interaction and for all 14 substances VIF (xi) 
= 1.35, VIF (xj) = 2.36, VIF (x\X2) = 2.50, which is below the rejection limit of 
VIF = 5. For a second-order model VIF (jc,) = 20.0, VIF (xj) = 64.6, VIF (xix,) = 
14.7, VIF (x?) = 13.3, VIF (xl) = 36.0; so that one concludes that the design 
including all 14 compounds does not allow to obtain a sufficiently good quadratic 
model. 

24.4,2 Uniform mapping algorithms 

As was already explained in Section 24.2.2, in cases where no model is known 
or where it is known but D-optimality and related criteria are not easily computed 
(e.g. non-linear models), one prefers uniform spacing algorithms. In Section 24.3.4 
the Doehlert uniform shell design was proposed for filling in a uniform way a 
spherical domain. In a non-symmetrical region a uniform mapping algorithm such 
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Fig. 24.13. The 14 experiments of Table 24.11 in the GI-OR plane. 

as that of Kennard and Stone [17] can be applied. Their reasoning can be under-
stood as follows. Different experiments chosen should contain different informa­
tion. They should therefore not occupy similar locations in the multidimensional 
space described by the factors. On the contrary, one would like to cover the space 
as uniformly as possible, making sure at the same time that the experiments are as 
far from each other as possible. The Kennard and Stone algorithm consists of 
maximizing the minimal distance between each selected point and all the others. 
The distance is the Euclidean distance (see Chapters 9 and 30) and is given by: 

*'=A/5 X {Xii — Xji) (24.6) 

where / (ranging from 1 to k) identifies the variables and / and j identify the two 
points. An example of how to compute the distance between two points in multi­
dimensional space is given in Chapter 30. 

One can initiate the algorithm in two ways. In practical instances, one might 
already have performed some experiments and could decide to include these as 
starting points. When this is not the case, one would determine the distance 
between all pairs of points and select the largest one 
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Fig. 24.14. Kennard and Stone design selection, (a) From a grid of possible experiments in a 
rectangular domain; (b) from a grid of possible experiments in an irregular domain. 
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^selected = HiaX (dij) 

This leads to the selection of the first two points. In the example of Fig. 24.14a, 
this would result in the selection of either 1 and 25 or 21 and 5. Let us opt for the 
former combination. One now enters consecutively additional points by computing 
for each point /o not yet selected the distance to each selected point / and select the 
/o for which 

ŝelected = max (miu {dij)) (24.7) 

In words, one measures the distance for a not included io to each already selected 
/ and determines to which / it is closest (min (dij)). This distance is obtained for 

all io and the point is included for which it is highest: one maximizes the 
distance to the closest point already included. In Fig. 24.14a this would lead to 
the inclusion of point 21 or 5. If 5 were chosen and the whole operation 
repeated, one would then select 21. A possible series of selected points, would 
then be 

1,25,5,21, 13,3, 11, 15,23, 19, etc. 

This makes sense since the first 4 together form the 2^ factorial best suited to 
describe this experimental domain, the first 5 form a centred 2^ factorial, the first 
9 the 3^ design (which for fc = 2 is also the face-centred central composite), which 
would be the most sensible way of choosing an experimental design for a second 
order model. 

In Fig. 24.14b, we see how to apply the algorithm in an irregular domain. The 
first two points to be selected would be points 1 and 2, while the third point to be 
added would be point 3. It should be added that several variants of the algorithm 
can be distinguished. For instance, one could decide that one needs the centre point 
and select this as point 1. 

24.5 Response surface methodology 

Let us consider an example from Morgan et al. [8]. They want to optimize burner 
height (JCH) and lamp current (JCL) with as criterion the signal-to-noise ratio (y) of an 
atomic absorption spectrophotometer. They decided to apply a central composite 
design. Instead of applying the rotatable design of Table 24.3, they preferred an 
orthogonal design with a = 1.267 and 5 centre points. The design is shown in Table 
24.13. The information matrix is then given by: 
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X = 

XQ 

+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 

^H 

-1 
+ 1 

-1 
+ 1 

-1.267 

+1.267 

0 
0 
0 
0 
0 
0 
0 

XL 

-1 
-1 
+1 
+1 
0 
0 
-1.267 

+1.267 

0 
0 
0 
0 
0 

XH 

+1 
+1 
+1 
+1 
+1.605 

+1.605 

0 
0 
0 
0 
0 
0 
0 

xl 
+1 
+1 
+1 
+1 
0 
0 
+1.605 

+1.605 

0 
0 
0 
0 
0 

XHXI 

+1 
-1 
-1 
+1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

and 

bo bu bL ^HH ^LL ^HL 

T V -

13 
0 
0 
7.21 
7.21 
0 

0 
7.21 
0 
0 
0 
0 

0 
0 
7.21 
0 
0 
0 

7.21 
0 
0 
9.154 
4 
0 

7.21 
0 
0 
4 
9.154 
0 

0 
0 
0 
0 
0 
4 

X'X 

(a few errors in the article were corrected). This yields: 

(X^X)-' = 

0.196 0.000 0.000 -0.108 -0.108 0.000 
0.000 

0.000 

•0.108 

O.108 

0.000 

0.139 

0.000 

0.000 

0.000 

0.000 

0.000 

0.139 

0.000 

0.000 

0.000 

0.000 

0.000 

0.194 

0.000 

0.000 

0.000 

0.000 

0.000 

0.194 

0.000 

0.000 

0.000 

0.000 

0.000 

0.250 

(24.8) 

and, eventually, this leads to the model: 

y = 87.39 + 8.18 JCH + 9.05 JCL - 3.97 JĈ  - 18.92 xl - 5.00 JCHJCL (24.9) 

Much information about the effects can be obtained by visual observation of the 
results as given in Fig. 24.15a. Comparison of the results for the two-level factorial 
inscribed in the design shows that, by applying the methods of Chapter 22, one 
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-1 
+1 
-1 
+1 
-1.267 
+ 1.267 
0 
0 
0 
0 
0 
0 
0 

-1 
-I 
+1 
+1 
0 
0 

-1.267 
+ 1.267 
0 
0 
0 
0 
0 

41 
71 
64 
74 
76 
91 
44 
75 
80 
83 
97 
75 
100 

TABLE 24.13 

Central composite design for the optimization of the signal-to-noise ratio (from Ref. [8]) 

Expt. Height Lamp current Signal-to-noise 

UH) (XL) y 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

expects that both xu and JCL may have an effect (although this is not evident, because 
the precision on the measurement as derived from the replicates of the centre point 
is rather low). The effect of XL at the high level of JCH seems smaller than that at the 
low level, so that an interaction is possible. All values at the centre point are higher 
than those at the corner points, so that curvature in both directions may occur. In 
summary, it seems possible that all coefficients in eq. (24.9) are significant. 

These coefficients can be tested by applying eq. (10.15) or (10.16). We will 
apply the latter: 

t = bjsi,^ 

To compute 5/,, we apply eq. (10.18) 

V,, - (5 , )^ = (5,)^(X^X)-^ 

In this equation Se is the experimental standard deviation. This can be obtained 
from the ANOVA of the multiple regression model described in Section 10.3.1.1: 
the mean squares, MS, are estimates of variance. If there is no lack-of-fit, then the 
residual mean square provides a value for si. The ANOVA results are given in 
Table 24.14. One finds that the lack-of-fit term is not significant, so that one 
concludes that s] - 86.80. Incidentally, one can note that the pure error term is 
obtained from the 5 replicates of the centre point. The pure error mean square could 
have been used as value for s]. However, this is obtained with only 4 degrees of 
freedom, while the residual mean squares has 7 degrees of freedom, so that the 
latter is considered to be the better estimate of experimental variance. 



732 

\ * 

.75 

^H 64f- •74 

Oi 76^ *75-100 '91 

-1 1 • -
41 

44 

71 

a) 

-1 

b) 

Fig. 24.15. (a) Response for the central composite design of Table 24.13 in thexH-A'L plane; (b) contour 
plot for eq. (24.9). 

One can now apply eq. (10.18), using matrix (24.8). This yields for Sf,; 

^̂ „ = V(0.196)(86.8)=4.12 

Similarly, /̂,„ = /̂,, = 3.47, 5/,,̂ ,, = 5'/,„ = 4.10, Sf,,, = 4.65. 
The calculated r-value for bo is: 87.39/4.12 = 21.2, which is much larger than the 

tabulated value ro.o25,n-p (n = 13, p = 6) = 2.365; parameter bo is therefore significant. 
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TABLE 24.14 

Analysis of variance for the central composite design of Table 24.13 

Source of variation SS df MS 

Due to regression 3101 5 620 7.15 
Residual 608 7 86.8 

Lack of fit 129 3 42.9 0.36 
Pure error 479 4 119 

It can be verified that this is also the case for all parameters, except ^HL and bun, 
while the significance of bn is on the limit. It is instructive to compute 5̂ , first 
without the Xu term and then without the XHJCL term. The results are, respectively, 

j) = 85.18 + 9.05 XL + 8.18 JCH-18.92 jc^-5.00 XH XL 

and 

y = 85.18 + 9.05 XL + 8.18 XH - 18.92 xl 

Comparison with eq. (24.9) shows that omitting XH has an effect only on the bo 
term. This could be expected from the (X^X)~^ matrix, which shows that bo and bun 
are correlated to some extent. Omitting XHXL has no further effect, which is due to 
the fact that in the (X^X)'' matrix all cross terms involving ^HL are zero. 

Although one can eliminate non-significant terms from the model, this is often 
not done, because one reasons that the conclusion, that there is no significance, is 
based on relatively few degrees of freedom and that the Z?-value obtained is still the 
best estimate available. For similar reasons, one usually does not apply the step­
wise techniques described in Chapter 10. 

Additional statistical analysis can be carried out. For instance, one can validate 
the fit of the model. This is in practice usually done by analyzing the residuals 
(Section 10.3.1.3), or by testing the significance of the lack-of-fit term in the 
ANOVA of Table 24.14. The validation of the prediction accuracy requires that 
additional experiments are carried out, which are then predicted with the model as 
such. In experimental optimization, the model is often considered only a means to 
an optimization end and one will usually proceed by selecting optimal conditions 
from the response surface and restrict prediction validation to these optimal 
conditions, i.e. carry out the experiment at those conditions and observe whether it 
fulfils expectations. 

The selection of the optimal conditions is often, but not necessarily, done with 
the aid of visual representation of the response surface or contour plot, describing 
>̂  as a function of pairs of variables. In the present case, Fig. 25.15b leads us to 
conclude that the optimal values of XH and XL are around + 1 and + 0.2, respectively. 
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24.6 Non-linear models 

In reversed phase chromatography the capacity factor of a substance with 
mobile phases with different pH follows a sigmoid relationship. An acidic com­
pound for instance, is not ionized at low pH and therefore strongly retained; at high 
pH it is ionized and badly retained. Considering only pH as a factor leads to the 
relationship of Fig. 24.16. The location of this sigmoid relationship is described by 
the pK of the substance. Quadratic models might be adequate over small pH ranges 
but the relationship can never be modelled with a quadratic curve over its whole 
range. In such cases, one can apply non-linear regression. Marques and Schoen-
makers [2] developed a model for In k\ 

In k' = InC ôa "̂̂ ^ + '̂ob ̂ "̂ ^ Ky""' • lOP") 

- l n ( l + 10-^^10P") (24.10) 

where k' = capacity factor, the In of which is to be modelled as a function of two 
variables, the pH and (p, the volume fraction of organic modifier; k'on and k'ob are 
the capacity factors of fully protonated and dissociated species; 5 is the so-called 
solvent strength factor; pK^ has its usual meaning, i.e. the negative logarithm of the 
acidity constant of the acid being studied. 5, /:'oa, '̂ob and pK^, are generally not 
known in the mixed organic-aqueous media being studied and must be derived: 
they are the coefficients to be estimated in the non-linear model. 

The designs to be applied are not evident. In principle, when the model is known, 
as is the case here, one can apply D-optimal designs. However, it turns out that the 
D-optimality principle here applies to the Jacobian matrix (Section 11.2.3). The 
practical consequence is that one needs to know the values of the model parameters 
(here S, etc.) to compute optimal designs [3]. This leads to a circular reasoning: one 

Ink' 

pH 

Fig. 24.16. Sigmoid (non-linear) relationship between In k' and pH. 
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needs the design to determine the coefficients and the coefficients to determine the 
optimal design. For that reason, D-optimahty is not often applied in this situation, 
although iterative approaches are possible. 

24.7 Latin square designs 

A multi-level design of a very different nature is the Latin square design. It is 
used to study a single factor at k levels under circumstances that require blocking 
(see Chapter 6.9 and 22.9.2). It is convenient to introduce the Latin square method 
using an example originating from agricultural experimentation. Suppose that five 
varieties of some economically valuable plant are to be compared in terms of their 
yields. Planting the five varieties in five plots next to each other may lead to error 
because the location of the plot may influence the result. To avoid this effect, the 
field is divided into 25 plots arranged in five rows and five columns. The varieties 
are planted so that they appear once in each row and once in each column. If the 
varieties are called a, b, c, d and e, this could lead to the following design 

d c e b a 
c a d e b 
a e b c d 
e b a d c 
b d c a e 

The row and the column direction are two factors, that are blocked, while the 
effect of the variety is the factor that one wants to study. The same design can be 
applied without a geometrical context. Suppose we want to study an extraction 
yield with different solvents but are concerned that environmental factors related 
to the days and the instrumentation may confuse the effect. Table 24.15 would then 
be a possible design. One would measure on day 1 the extraction yield of solvent 
d with instrument I, of solvent c with instrument II, etc. 

TABLE 24.15 

A latin square arrangement for measuring an extraction yield with solvents a to e 

Day 

1 
2 
3 
4 
5 

Instrumentation 

I 

d 
c 
a 
e 
b 

II 

c 
a 
e 
b 
d 

III 

e 
d 
b 
a 
c 

IV 

b 
e 
c 
d 
a 

v 

a' 
b 
d 
c 
e 
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The analysis of the results is carried out by ANOVA. An example for a 3x3 
design is given below. The design is the following 

I II III 
1 a b c 
2 b c a 
3 c a b 

The results of the experiments are given by: 

I II III 
1 16 7 6 
2 6 9 17 
3 7 14 8 

The grand average, y, is 10. The average values for the rows, y/, the columns, _y,, 
and the levels, yt, are the following. 

1: 
2: 
3: 

9.67 
10.67 
9.67 

I: 9.67 
II: 10 

III: 10.33 

a: 15.67 
b: 7 
c: 7.33 

The estimates of the effects of individual columns and rows and of the treatments 
are then obtained as yi - y for the rows, jy - y for the columns and y, - y for the 
factors, i.e. 

1: 
2: 
3: 

-0.33 
+0.67 
-0.33 

I: 
II: 

III: 

-0.33 
0 
0.33 

a: 
b: 
c: 

5.67 
-3 
-2.67 

These estimates are used to predict the individual results as: 

y--^ - grand average + effect row, + effect column^ + effect level, 

= 3̂  + 0̂ ,- - y) + 0̂ / -y)^(yt-y) 

and the residuals as 

eiit = y-iit -y-(yi-y)- 6̂ / -^)- (yt - y) (24.11) 

One can now compute the ANOVA. The total number of degrees of freedom is 
9 - 1 r= 8, the number of degrees of freedom for the columns 2, for the rows 2 and 
for the effects 2, so that 2 degrees of freedom are left for the residual. The sums of 
squares are the following 

Rows: (10 - 9.67)^ + (10.67-10)^ 4- (9.67 - 10)̂  = 0.6667 
Columns: (10 - 9.67)^ + (10 - 10)̂  + (10.33 - 10)̂  = 0.2178 
Factor: (15.67 - 10)̂  + (7 - 10)̂  + (7.33 - 10)̂  = 48.27 
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The residuals are obtained from eq. (24.11) and the residual sum of squares is given 
by: 

For instance: 

^n 1 = 16 - 10 - (-0.33) - (-0.33) - 5.67 = 1 

2̂12 = 6 - 10 - 0.67 - (-0.33) - (-3) = - 1.33 

The residual sum of squares is 8.64 and the mean square 4.32. The mean square 
for factors is 24.13 and F = 5.59. The tabulated F-value (a = 5%) for 2 degrees of 
freedom for the effects and for 2 degrees of freedom for the residual is 19.0, so that 
there is no significance. To obtain significance in small Latin square designs 
replication is usually necessary. 

To avoid confusion, it should be stressed that these designs have in common 
with the other designs described in this chapter only the fact that they are multi­
level. They are used to determine whether a certain treatment has an effect or not. 
This effect can be fixed or random (see Chapter 6). The Latin square design is the 
simplest of a family to which belong the Graeco-Latin square (3 blocking vari­
ables), the hyper-Graeco-Latin square (more than 3 blocking variables) and the 
balanced incomplete block designs (designs with unequal number of rows and 
columns). 
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Chapter 25 

Mixture Designs 

25.1 The sum constraint 

In many cases we need to optimize the composition of mixtures. Typical 
situations are those where different excipients are mixed to obtain optimal charac­
teristics of a tablet, such as hardness or dissolution time, or the optimization of 
HPLC separations by finding the best solvent composition of the mobile phase. To 
introduce the problem we will consider a simple example due to Phan-Tan-Luu and 
colleagues [1]. French wines are often made by mixing ("assemblage") of wines 
from different grape varieties ("cepages"). The Coteaux d'Aix wines are assem­
bled from Cabernet (C), Syrah (S) and Grenache (G). Suppose now that one has 
those three wines available and one is set the task to find the optimal composition 
from the sensory point of view. An experimental design approach would consist of 
making a restricted set of mixtures that map the experimental domain well. At first 
sight one could consider the %C, %S and %G as the three factors and apply, for 
instance, a 2̂  design with as levels 0 and 100%. This would require (see also Fig. 
25.1) the combinations of Table 25.1. 

Clearly, several of these compositions are impossible. The first one, for 
instance, would consist of 0% in total and the last one of 300%. Of course, only 

TABLE 25.1 

The impossible factorial design for optimizing a wine with three grape varieties (C = Cabernet, S = Syrah, G = 
Grenache) 

C (%) G (%) S (%) 

0 0 0 
0 0 100 
0 100 0 
0 100 100 

100 0 0 
100 0 100 
100 100 0 
100 100 100 
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'/oS 

Fig. 25.1. The wine assemblage problem treated as an (impossible) 1? design. 

A%C 

100 

% G 

% S 

Fig. 25.2. The triangle is the domain in which the mixture experiments of the wine assemblage 
experiments are possible. 

those combinations are possible where the sum of the components is exactly 
equal to 100%. This constraint is typical for mixture problems. The feasible 
domain is shown in Fig. 25.2. The constraint that the sum should be 100% has 
other consequences. Consider for instance an equation such as in Chapter 24: 
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y = bo + biXi + b2X2 + b^x^ + b]iX] + bjixl + ^33^3 + bi2X]X2 + ^13^1^3 + ^^23^2-̂ 3 

This equation is not well suited for mixtures. It is easy to verify that, for instance, 
there is no need for a bo term. To do this let us consider the simpler first-order 
model y = bo + b\X\ + b2X2 + 3̂:̂ 3. Since xi + JC2 + JC3 = 1, one can re-write this as 

y = bQ {x\ + ̂ 2 + X'i) + b\X\ + b2X2 + by)c^ 

= (bo +bi)xi + (bo + b2) X2 + (bo + b^) X3 

= b']X\ + b'2X2 + 7̂̂3X3 

Other consequences for the response surface equation will be described in Section 
25.3. 

25.2 The ternary diagram 

The domain in Fig. 25.2 where experiments can be carried out is an equilateral 
triangle. This is preferably represented as a ternary diagram. An example of a 
trilinear or ternary diagram is shown in Fig. 25.3. Each comer of the diagram 
consists of 100% of one of the three components or, expressed in fractions, Xi = 1 
(/ = 1, 2 or 3). The sides represent binary mixtures. The xi-coordinate takes on 
values from Xi = 0 at the bottom to JCi = 1 at the apex, the X2-coordinate runs from 
the right side to the bottom left comer and the X3-coordinate runs from 0 at the apex 

Fig. 25.3. A ternary diagram with binary mixtures A (jci = 0.8, X2 = 0.2), B {x\ = 0.8, X3 = 0.2) and C 
{X2 = 0.2, JC3 = 0.8). 
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X3=0.3 

X-, = 0.5, 

Fig. 25.4. A ternary diagram with ternary mixture A (x\ = 0.5, X2 = 0.2, JC3 = 0.3). 

to 1 in the bottom right comer. Point A represents then a mixture of Xi = 0.8, and 
since it is situated on the axis between X] and jci, X2 = 0.2 and x^ = 0. In point B, the 
amount of JC3 = 0.2 and X2 = 0. 

It is somewhat more difficult to derive the compositions for ternary mixtures. 
One notices that points A and B both havexi = 0.8. By connecting them one obtains 
a line parallel to the bottom side of the triangle. All mixtures on that line have X] = 
0.8 and in the same way other lines parallel to the bottom line can be drawn for 
other values of x\. In the same way lines parallel to the right side of the triangle 
give mixtures of the same composition in X2 (in the figure X2 = 0.2). It can be 
verified that point A is jci = 0.8 and X2 = 0.2, since it falls on the intersection of the 
lines describing such compositions. Compositions of equal X3 (in the figure X3 = 
0.2) are given by lines parallel to the left side of the triangle. 

It is now possible to depict ternary mixtures. Figure 25.4 shows the lines for 
x\ = 0.5, X2 = 0.2, JC3 = 0.3. The intersection point A of the three lines is the mixture 
with that composition. 

It is useful to note that the line connecting a particular point on a side of the 
triangle to the apex opposite to it describes constant proportions of two compo­
nents. Figure 25.5 is a ternary diagram for mixtures of the microcrystalline 
cellulose avicel, a-lactose monohydrate and water [2]. The response is a quality 
parameter for pellets made with the mixtures. One observes that there is a better 
chance of obtaining good quality pellets around a line with a ratio water: Avicel 
= 43:57. When there is more than 50% lactose present the quality degrades. 
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a-LACTOSE 

100 ^ 0 

AVICEL 100 90 

100 

WATER 

Fig. 25.5. A ternary diagram with the quality of pellets as a function of the components of a tablet 
( • good quality, + not acceptable, * non pelletizable mixtures). Adapted from Ref. [2]. 

25.3 Introduction to the Simplex design 

By far the most often used designs are Simplex designs. For a three-component 
mixture, a Simplex is a triangle, for a four-component mixture, it is a tetrahedron, 
etc. A definition of the general term simplex is given in Section 26.2.2 and a more 
precise terminology of Simplex mixture designs will be introduced in later sections 
of this Chapter. In this section an intuitive introduction is given. It should be noted 
here immediately that mixture design is a very traditional field, with customs of its 
own. This section intends to give a flavour of it. A more detailed account is given 
in Section 25.4. 

One of the most often used experimental designs for three components is given 
in Table 25.2. For reasons that we will explain in the next sections, this is called a 
(3,3) design. The first 7 points are used to compute the coefficients in eq. (25.1): 

y = b\X] -H b2X2 + ̂ 3^3 + b\2XiX2 + b\yK:]X3 + b23X2X3 + /7i23̂ 1-̂ 2-̂ 3 (25.1) 

This is a typical mixture design equation. It is called the reduced cubic model and 
is explained in Section 25.4.2. 
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TABLE 25.2 
Three-component simplex design for a wine assemblage optimization 

Experiment 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 

^1 

1 
0 
0 
0.5 
0.5 
0 
0.33 

0.67 
0.165 
0.165 

^2 

0 
1 
0 
0.5 
0 
0.5 
0.33 

0.165 
0.67 
0.165 

-̂ 3 

0 
0 
1 
0 
0.5 
0.5 
0.33 

0.165 
0.165 
0.67 

Response 

y\ 
yi 
^3 

^12 

yi3 

^23 

ym 

ys 
y9 
yn) 

Fig. 25.6. Simplex centroid design. The first 7 points are used to estimate the model, the 3 following 
to validate it. 

The indices of the response refer to the composition of the mixtures. For 
instance, response 1̂23 means that components x\, X2, JC3 are present in equal 
proportions. The distribution of the experimental points in the ternary diagram is 
shown in Fig. 25.6. Eq. (25.1) contains 7 coefficients so that one requires a 
minimum of 7 experiments to estimate them and one uses experiments 1 to 7 from 
Table 25.2 to do so. Table 25.3 explains how this is done for the (3,3) design, which 
we introduce in this section, and some related designs, that will be described in 
later sections. 
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TABLE 25.3 

Simplex lattice designs: (3,1), (3,2) and (3,3) reduced designs 

The (3,1) design 

Experimental points: 1-3 of Table 25.2 

Canonical equation: y = biXi + b2X2 + byK^ 

Coefficients: bi =yi, b2 = y2, b^ = y^ 

The (3,2) design 

Experimental points: 1-6 of Table 25.2 

Canonical equation: y = biX] + b2X2 + byKT, + /7i2JCi-«2 + 1̂3X1X3 + /?23̂ 2-̂ 3 

Coefficients: bi = )̂ i, ̂ 2 = }'2' ^3 = )̂ 3 

t>i2 = ^y\2-2(yi+y2) 

bi3 = 4yi3-2(yi-\-y3) 

^23 = 4^23 - 2CV2 + ̂ 3) 

The (3,3) design, reduced cubic model 

Experimental points: 1-7 of Table 25.2 

Canonical equation: y = b^xi + b2X2 + b^^^ + b\2X\X2 + 1̂3X1X3 + 2̂3Ĵ 2-̂ 3 + ̂ 123̂ 1̂ 2̂ 3 

b\ =yi bi2 = ^yi2-'^(yi+y2) 

h = y2 ^i3 = 4};i3-2Cyi+>;3) 

^3=)^3 ^23 = 4y23-2(>'2 + y3) 
1̂23 = 27^123 - 12Cvi2 + >'i3 + ̂ 23) + 3Cyi + ̂ 2 + y^) 

It is easy to understand how one arrives at the values of Table 25.3. For instance, 
for X] = \,y = yi and since X2 = 0 and X3 = 0, all the terms in eq. (25.1) except the 
first become 0, so that: 

For 3; = y\2,xi = 0.5,^2 = 0.5,X3 = 0, eq. (25.1) yields: 

3;,2 = biX 0.5 + /72X 0.5 + bn X 0.5 x 0.5 

and since bi = y] and i>2 = yi-

b\2 = 4yn-2(yi +>'2) 

In a similar way, one obtains the &123 value in Table 25.3. 
Equation (25.1) can be used to predict the response over the whole experimental 

domain, i.e. the whole ternary diagram. To verify that the prediction is good, it is 
usual in traditional mixture design to carry out some additional experiments. In this 
case, one would carry out the experiments 8 to 10 and compare the experimentally 
obtained 8̂ to 3̂10 with the responses predicted from eq. (25.1). 
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25.4 Simplex lattice and centroid designs 

25,4,1 The (3,2) Simplex lattice design 

Simplex mixture designs were first introduced by Scheffe [3]. In many cases the 
simplex mixture designs proved remarkably successful and they are used very 
often. The simplex described in the foregoing section is called a Simplex centroid 
design. It will be described in more detail in Section 25.4.3. The original simplex 
designs are called Simplex lattice designs and these will now be discussed further. 
The lattice is the equivalent of the factorial design for process variables, in the 
sense that experimental points are also taken at the border of the experimental 
domain and, for more than 2 levels, are evenly spaced along the coordinates 
representing the factors. 

An example is shown in Fig. 25.7b. This is called a (3,2) lattice which is a special 
case of the general {k, m) lattice. This terminology will now be explained. In the 
Simplex lattice design each of the k components can take on m + 1 equally spaced 
levels from 0 to 1. For a first-order equation (m = 1) the levels are 0 and 1. For a 
second-order model (m = 2) these levels are 

X/ = 0, */2, 1 

and more generally: 

x , - 0 , - , - , . . . , 1 (25.2) 
m m 

The first-order model requires that one should form all combinations of 1 and 0. 
They are (1,0,0), (0,1,0) and (0,0,1), i.e. the three comer points in the triangle, 
consisting of the three pure components (Fig. 25.7a). This is a rather simple and 
unchallenging case. Let us therefore consider the second order model. This can be 
treated with the use of the design of Fig. 25.7b. This is a (3,2) lattice with /: = 3 
components, 3(= m + 1) equally spaced experiments along each side of the simplex 
and in total 6 experiments. They are obtained by performing all the combinations 
of 0, 0.5 and 1, so that the sum is always 1. The experiments are therefore (1,0,0), 
(0,1,0), (0,0,1), (0.5, 0.5,0), (0.5, 0,0.5) and (0,0.5,0.5), i.e. experiments 1 to 6 of 
Table 25.2. The 6 experiments are sufficient to describe an m = 2 polynomial: 

y = b\X\ + bjXi + 63X3 + bx2X\X2 + ^1^1X3 + ^23^2-̂ 3 (25.3) 

This is the canonical form of the general quadratic equation for three compo­
nents given by eq. (25.1), which we rewrite here as: 

y-b^Q-^ b\Xx + b'2X2 + fcVs + '̂l2-^l-^2 + &'l3^1-̂ 3 + ^^23^2 :̂3 + b'\ \x] + 
b\2xl^b',^l (25.4) 

Consider the term x{. This can be rewritten as: 
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Fig. 25.7. Simplex lattice designs for 3 components: (a) first-order model; (b) second-order model; 
(c) reduced cubic model; (d) complete cubic model. 

xf = X](l - JC2 -X3) = Xi - %iX2 -X\X3, so that 

b ]\X\ = b \\Xi — b \\X\X2 —b UXIXT, 

This means that one does not need an xi term, but can include it in the xu X1X2 and 
X1X3 terms. This is true for all squared terms and also for the bo term. The net result 
is that one reduces the 10-term polynomial of eq. (25.4) to its 6-term canonical 
form of eq. (25.3). In mixture designs one often determines as many coefficients 
as there are experiments so that regression is not needed. This has to do with the 
time at which the theory of mixture design originated. At that time no computers 
where available, so that much emphasis was put on the simplicity of the calcula­
tions. Computations of the b coefficients are made in a way similar to that ex­
plained in Section 25.3 (see also Table 25.3). 
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The reader will have noticed that we do not follow the same path as we did with 
process variables. With process variables, one often first tries to understand which 
variables have an effect. In mixture design, this is very difficult. It is easy to 
understand that one cannot change a mixture variable without changing at the same 
time at least one other mixture variable. It is also apparent in the equations given 
above, since e.g. the interaction coefficient b'n is confounded with the coefficients 
of the quadratic terms b'\ i and b'22' 

25.4.2 (ky m) Simplex lattice designs 

Let us now look at Simplex lattice designs in general and first at the (3,3) design. 
The polynomial equation is: 

y = b'o-h b\xi + b'2X2 + fc'3^3 + b\ ]jcf + b\2X2 + ^ ' 3 3 ^ + b'n M^i 

+ ^'13^1X3 + b^-x, X2X3 + b'\ nxUl + b']22 X\ xl + /?'l 13 X]X3 

+ ^'133 X]Xi + b\23 -̂ 2-̂ 3 + ^'233 X2X3 + ^'123 -̂ 1-̂ 2-̂ 3 

+ fo'l, ,X̂  + b\22 xl + Z7'333 x] (25.5) 

From this equation, one can derive two canonical models. The first is called the 
complete cubic (canonical) model. 

y = biXi + b2X2 + ^3^3 + bnX]X2 + bi^XlXs + /?23^2-^3 + gl2^1-^2 (^1 - X2) + 

^ , ^ 1 X 3 (Xi - X3) + g2^2.^3 {X2 - X3) + bn3XiX2X3 (25.6) 

The experimental design is described in Table 25.4 and shown in Fig. 25.7d. It 
is obtained by making all possible combinations between 0, 1/3, 2/3 and 1, so that 
the sum is always 1. The coefficients are given in Table 25.4. 

The second (canonical) model is called the reduced or special cubic model. It is 
a simplification of the model of eq. (25.6) and is given by 

y - b\X\ + b2X2 + ^3^3 + ^12-^1^2 + ^13^1^3 + ^23^2-^3 + ^123^1-^2^3 ( 2 5 . 7 ) 

The model is in fact that of eq. (25.1). The experimental design is that of Table 
25.2 and Fig. 25.7c and the coefficients are computed as in Table 25.3. 

Let us now — without further explanations — apply the principles we have 
learned for the three-component design to mixtures with four components. The 
simplex is now a tetrahedron and the (4,1), (4,2) and (4,3) complete and reduced 
models are given in Tables 25.5 to 25.8 and Figs. 25.8a to d. The (4,1) simplex 
consists of all combinations with levels 0 and 1, the (4,2) simplex of all possible 
combinations including 0,1/2 or 1, the complete (4,3) of all combinations of 0,1/3, 
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TABLE 25.4 

Simplex lattice (3,3) design: complete cubic design 

Expt. 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

x\ 

1 
0 
0 
0.33 
0.67 
0.33 
0.67 
0 
0 
0.33 

X2 

0 
1 
0 
0.67 
0.33 
0 
0 
0.33 
0.67 
0.33 

^3 

0 
0 
I 
0 
0 
0.67 
0.33 
0.67 
0.33 
0.33 

Response 

yi 

yi 

ys 
y\ii 

y\n 
ym 
y i i 3 

y233 

3̂ 223 

>'123 

Canonical equation: y ~ YhxX\ + U)\jx\i + l,gijXiXj(xi - xj) + J^bjjkXjXjXk I <i<j <k<3 
Coefficients: bj = y, 

bij = (9/4) [yuj + yiji - (yi + yj)] 

gij = (9/4) [3yiij-3yijj-(yi + yj)] 

bm = 27^123 - (27/4)(yii2 + ^122 +yil3+ yi33 + y223 + y233) + i9/2){yi +y2 + y3) 

TABLE 25.5 

The (4,1) Simplex lattice design 

Expt. 

I 
2 
3 
4 

Xi 

1 
0 
0 
0 

X2 

0 
1 
0 
0 

X3 

0 
0 
1 
0 

X4 

0 
0 
0 
1 

Response 

yi 
y2 

y3 
y4 

Canonical equation: 
Coefficients: /?, = y/ 

^ = blXi+ b2X2 + i>3̂ 3 + b^XA 

2/3 and 1 and the reduced (4,3) of all combinations of 0 and 1, all combinations of 
0 and 1/2 and all combinations of 0 and 1/3. 

For the general case of k components and degree m the number of experiments 
for a full design is 

fm-\-k-\ 
m 

{m + k-\)\ 

{k-\)\m\ 
(25.8) 

This yields the numbers of experiments of Table 25.9. Of course, the numbers in 
the lower right comer are impractical, so that such designs are not, or very rarely, 
applied in practice. 
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TABLE 25.6 

The (4,2) Simplex lattice design 

Expt. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

XI 

1 

0 

0 

0 

0.5 

0.5 

0.5 

0 

0 

0 

X2 

0 

1 

0 

0 

0.5 

0 

0 

0.5 

0.5 

0 

-^3 

0 

0 

1 

0 

0 

0.5 

0 

0.5 

0 

0.5 

X4 

0 

0 

0 

1 

0 

0 

0.5 

0 

0.5 

0.5 

Response 

>'! 
yi 

y^ 
^4 

^12 

^13 

^14 

y23 

^24 

^34 

Canonical equation: y = b\xi + b2X2 + ^3x3 + Z74JC4 + b\2X\X2 + î3JCiJC3 + bi4XiX4 + b23X2X3 + b2^2M + 3̂4̂ 3̂x4 
Coefficients: bi = y, 

bij^Ayij-liyi-^yj) 

TABLE 25.7 

The (4,3) Simplex lattice design: complete cubic design 

Expt. 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

X\ 

1 

0 

0 

0 

0.33 

0.33 

0.33 
0 

0.33 

0.67 

0.33 

0.67 

0.33 

0.67 
0 

0 

0 

0 

0 

0 

X2 

0 

1 

0 

0 

0.33 

0 

0.33 

0.33 

0.67 

0.33 

0 

0 

0 

0 

0.33 

0.67 

0.33 

0.67 

0 

0 

^3 

0 

0 

1 

0 

0.33 

0.33 

0 

0.33 

0 

0 

0.67 

0.33 

0 

0 

0.67 

0.33 

0 

0 

0.33 

0.67 

XA 

0 

0 

0 

1 

0 

0.33 

0.33 

0.33 

0 

0 

0 

0 

0.67 

0.33 

0 

0 

0.67 

0.33 

0.67 

0.33 

Response 

y\ 
yi 

y?> 
yA 

>'123 

^134 

^124 

>'234 

^122 

y i i 2 

^133 

>'113 

^144 

^114 

y233 

^223 

^244 

^224 

^344 

^334 

Canonical equation: y = YJbiXj + X/JJ/JC/, + Y^ijXiXjf^Xj - xj) + YbijkXjXjXk 1 <i<j <k<4 

Coefficients: bj = yi 

bij = m[yiij + yijj-(yi + yj)] 

gij = 9/4[3yiij-3yijj-{yi + yj)] 

bijk = llyijk - {21/4)iyiij + yijj + yuk + yikk + yjjk + yjkk) + (9/2)Cy/ + yj + yk) 
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Fig. 25.8. Simplex lattice and centroid designs for /: = 4; (a) m = 1; (b) m = 2; (c) m = 3; (d) w = 3, 
reduced; (e) centroid design. 
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TABLE 25.8 

The (4,3) Simplex lattice design: reduced cubic design 

Expt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

^1 

1 
0 
0 
0 
0.5 
0.5 
0.5 
0 
0 
0 
0.33 
0.33 
0.33 
0 

^2 

0 
1 
0 
0 
0.5 
0 
0 
0.5 
0.5 
0 
0.33 
0 
0.33 
0.33 

•^3 

0 
0 
1 
0 
0 
0.5 
0 
0.5 
0 
0.5 
0.33 
0.33 
0 
0.33 

^4 

0 
0 
0 
1 
0 
0 
0.5 
0 
0.5 
0.5 
0 
0.33 
0.33 
0.33 

Response 

yi 

yi 

>'3 

>'4 

y\2 

yn 
y\A 

yi^ 
yiA 

^34 

^123 

>'134 

y\2A 

yi3A 

Canonical equation: >' = Z6,jc, + Y^b^jXiX, -\- YJ)ijkXiXpCk 
Coefficients: bi = >•, 

bij = 4yij-2(yi-hyj) 

bijk = 21{yij + yik + yjk) + 3(>'/ + >', + yk) 

\<i<j<k<4 

TABLE 25.9 

Number of experiments in the {k,m) Simplex-lattice design 

Degree 

in 

1 
2 
3 
4 

Number of 

2 

2 
3 
4 
5 

components {k) 

3 

3 
6 

10 
15 

4 

4 
10 
20 
35 

5 

5 
15 
35 
70 

6 

6 
21 
56 

126 

7 

7 
28 
84 

210 

8 

8 
36 

120 
330 

25.4.3 Simplex centroid design 

When applying the Simplex lattice designs, one uses for each combination a 
maximum of m different compounds. Thus when one carries out the (4,2) simplex 
lattice designs of Table 25.6 only binary mixtures are considered, which seems 
somewhat strange for a quaternary problem. Also in some of these designs (see for 
instance experiments 9 to 20 in Table 25.7) the components appear in unequal 
proportions, which does not help interpretation of the results. Scheffe [4] developed 
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the so-called Simplex centroid designs to avoid this. He developed a polynomial 
equation consisting of product terms, such as (for k = 3): 

k k-\ k 

>' = X biXi+ X Y.bijXiXj + bn?>XxX2X'>, (25.9) 

In general, the design points are the k permutations of (1, 0, ..., 0), the rA 

permutations of (0.5, 0.5, 0,.., 0), the f^lpermutations of (1/3, 1/3, 1/3, 0,.., 0) and 

the centre point {Ilk, Ilk,..., \lk). The total number of design points is then 2̂  - 1. 
Let us apply this for the /: = 3 and /: = 4 mixtures. For the /: = 3 design, one first 

makes the 3 permutations of (1,0,0) yielding experiments 1-3 of Table 25.2, the 3 
permutations of (0.5, 0.5, 0) yielding experiments 4 to 6 of the same table and 
eventually point (1/3, 1/3, 1/3), i.e. point 7 of Table 25.2. The Simplex centroid 
design is also equal to the reduced cubic (3,3) lattice design. The polynomial is 
given in eq. (25.1), the computation of the coefficients in Table 25.3 and Fig. 25.7c 
shows the design. 

For the quaternary design, we can refer for a large part to Table 25.8. This gives 
the 4 permutations of (1,0,0,0) (experiments 1-4), the 6 permutations of (0.5,0.5, 
0, 0) (experiments 5-10), the 4 permutations of (1/3, 1/3, 1/3, 0) (experiments 
11-14). One needs to add to this a fourth type of point, namely (0.25,0.25,0.25,0.25). 

The polynomial is: 

y = b\X\ + i>2^2 + ^3^3 + ^4^4 + b\2X\X2 + ^^13^1 :̂3 + b\4X\X^-\- /723^2-^3 + î 24^2-^4 + 

6734X3X4+ b]23X\X2X2> + b\24X]X2X4-\- b 1-7,4X1X2X4+ t7234^2-̂ 3-̂ 4 "̂  ^1234-^1 •^2-̂ 3^4 

The coefficients are computed as described in Table 25.8, to which one must add 

&1234 = 256 3^1234- 108(yi23 + y\24 + y234) + 32(yi2 + y\3 + y\4-^y23 + ^24 + }̂ 34) -

4(yi +^2 + ^ 3 + ^4) 

The design is shown in Fig. 25.8e. It is interesting to note that this design 
contains all the centred simplexes from fc = 1 to 4. Indeed, points 1 to 4 plus the 
extra point are the centred tetrahedron (simplex of degree 4). Each plane forming 
the tetrahedron is a triangle (simplex of degree 3), centred with the (1/3, 1/3, 1/3, 
0) points. The vertices are lines (simplex of degree 2), centred with the (0.5, 0.5, 0, 
0) points and the corner points can be considered as centred simplexes of degree 1. 

25 A A Validation of the models 

With 6 experiments one can determine the 6 coefficients of eq. (25.3), but, of 
course, it is not possible to determine how good the resulting equation is at 
predicting the response for all possible mixtures. It is then useful to determine the 
response for some additional mixtures. 
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A strategy which is often adopted in this field is to carry out the experiments for 
a simple model and some additional points that are needed for a higher order or 
more complete model. The coefficients of the simple model are determined and 
one predicts the response for the additional points. If the result is acceptable, so is 
the model and one stops. If this is not the case one incorporates the additional points 
into the model and determines some new additional points, that may lead again to 
a higher order model. For instance, let us consider the situation that one has decided 
initially on a (3,2) Simplex lattice design. 

One reasons that, if the model of eq. (25.3) is not good enough, a model of higher 
degree (m = 3) must be determined and that this will require carrying out additional 
experiments. One can then carry out some of the experiments needed for the (3, 3) 
lattice design that are not part of the (3, 2) design and predict the values of these 
additional points to see how good the prediction power of the m = 2 model is. If it 
proves not good enough, at least some of the additional experiments needed to go 
to a m = 3 model have already been carried out. 

In practice, this means that one would carry out the first 6 points of Table 25.2 
and use these to obtain the quadratic model of eq. (25.3). At the same time, one 
would determine as additional points, point 7 which would allow to compute the 
reduced cubic model if the quadratic one is not good enough, or, else, all or some 
of points 4 to 10 of Table 25.4, which are missing to make it a complete cubic 
design. 

For k = 4, one could start with the (4,1) model and determine 4 points (expt. 1 
to 4 of Table 25.8), and determine additionally experiments 5 to 10. If the 
validation shows that the m = 1 model is not good enough, one incorporates these 
experiments in the model m = 2 and determines additionally experiments 11 to 14. 
If the model is still not good enough one can then determine the m = 3 model and, 
eventually, one can go to the m = 4 model. If the model is still not good enough, 
one should investigate the possibility that discontinuities occur (see also next 
section). 

25.4.5 Designs based on inner points 

In some cases, it is necessary that all components should be present in each 
experiment. Cornell [5,6], for instance describes an example where the composi­
tion of a bleach for the removal of ink is optimized. The bleaching agents are 
bromine, hypochloric powder and dilute HCl and the bleach functions only when 
all three components are present. The designs in the preceding sections all require 
a majority of experiments performed with mixtures that do not contain all compo­
nents. For example the complete cubic design consists of 3 experiments with 
one-component "mixtures", 6 with binary mixtures and only one with a mixture 
containing all components. Clearly the designs discussed until now are not adapted 
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Fig. 25.9. Designs with inner points only according to (a) Draper [7,8] (the centre point is duplicated, 
so that 13 experiments are required) and (b) Lambrakis [9]. 

for situations where one needs all components present in all the experiments. In 
some cases, mixtures without one or more components are physically possible and 
functional, but their performance is influenced by the missing component to such 
a degree, that discontinuities in the neighbourhood of the boundaries of the simplex 
occur. In this case, too, the designs of the preceding sections are not acceptable. 

There are two general ways out of this problem. One is to introduce lower 
bounds below which the concentration of the components is not allowed to 
descend. This leads to the use of pseudocomponents as explained in Section 25.5. 

The other possibility is to apply designs with only interior points, i.e. where no 
points are situated on the boundary of the designs. Interior points always consist of 
mixtures with all components. Draper and Lawrence [7,8] situate all points in an 
interior triangle (Fig. 25.9a). It is noteworthy that they transform the 3-component 
problem to a 2-factor one by introducing the axes z shown in the figure. They then 
obtain the ^-coefficients in the usual quadratic polynomial 

y = bo + biZ\ + b2Z2 + buz] + foiid + bnZiZi 

by least-squares fitting. 
Lambrakis [9] starts from the usual Scheffe {k,m) lattice designs and projects the 

experimental points into the interior of the simplex. An example is given for the 
(3,1) lattice in Fig. 25.9b. The design points 1, 2 and 3 of the lattice become T, T 
and 3' in the Lambrakis design. This transformation can be carried out for some, 
but not for all the lattice designs. 

It should be noted here that discontinuities can exist not only in the neighbour­
hood of the boundaries. For instance, ternary diagrams are often used to study 
phase transitions and it is clear that, when more than one type of phase can exist 
within the experimental domain, strong discontinuities can be observed at the 
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borderline between two different phases. This is one of the reasons why a model 
can fail and, if one finds that a good model cannot be obtained, one should always 
wonder whether discontinuities can occur [10]. 

25,4.6 Regression modelling of mixture designs 

Of course, the models described so far can be derived equally well with 
regression and using regression is necessary when more experiments were made 
than there are coefficients in the model. Let us return to the wine example of 
Section 25.1. Sergent et al. [ 11] describe the optimization of an assemblage where 
the design of Table 25.2 was carried out. All 10 experiments are considered design 
points and their results (Table 25.10) are used to derive the model coefficients. The 
model postulated is that of eq. (25.1). Regression leads to the equation: 

y = 2.81 X, + 3.87 X2 + 5.87 X3 + 13.37 JC,JC2 + 49.37 Xix^ + 35.46 X2X3 -
106.41 JC1JC2X3 

This leads to the isoresponse curves (contour plots) of Fig. 25.10. 
It is sometimes necessary to apply the optimality criteria of Section 24.2, such 

as D-optimality. As in Chapter 24, one first defines the experiments that are 
possible, for instance all experiments on a certain grid covering the experimental 
domain, the model and the number of experiments one accepts to carry out. This 
approach is more often used, when there are constraints, such as those described in 
Sections 25.5 and 25.6. When one first defines the number of experiments one is 
willing to carry out and then needs to distribute them over the experimental region 
in the best possible way, one can also use these criteria. In mixture design the 
regression approach is applied less often, mainly for historical reasons, but we feel 
that more use of regression should be made. In the same way, the application of 
criteria such as D-optimality is to be recommended. 

TABLE 25.10 

Optimization of a wine "assemblage" 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-̂ 1 

1 
0 
0 
0.5 
0.5 
0 
0.33 
0.66 
0.17 
0.17 

X2 

0 
1 
0 
0.5 
0 
0.5 
0.33 
0.17 
0.66 
0.17 

^3 

0 
0 
1 
0 
0.5 
0.5 
0.33 
0.17 
0.17 
0.66 

y 

3 
4 
5.5 
7 

16.5 
13.5 
11 
9 
8.5 

14 
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Fig. 25.10. Response surface for the wine assemblage problem described in Table 25.10 (adapted 
froniRef. [11]). 

25.5 Upper or lower bounds 

As explained in Section 25.4.5 it often happens that, for practical reasons, one 
has to limit the experimental domain. In the example of Fig. 25.5 it would not be 
possible to use the simplex design as such because it is not possible to make pellets 
with pure lactose (x\ = 1, X2 = 0, X3 = 0) or water (jci = 0, X2 = 0, X3 = 1). In some 
cases, one can define upper and/or lower bounds i.e. the fraction of xj must be, at 
least, a certain percentage or it should not exceed a certain percentage. In this 
section we will consider first the situation that some or all factors have a lower 
bound or, else, some or all have an upper bound. The situation where some 
compounds have an upper bound and, at the same time, others have a lower bound 
is described in Section 25.6. 

Let us consider a numerical example. A mixture of three compounds is to be 
studied and we require that jci > 0.1, 2̂ > 0.2, X3 > 0.3. This is shown in Fig. 25.11. 
The three bounds delimit a new simplex. This is again an equilateral triangle and 
the apexes can be considered to be new "pure" components and have compositions 
x'l = 1, ^2 = 0, X3 = 0; X] = 0, x'2 = 1, X3 = 0 and X] = 0, X2 = 0, ̂ 3 = 1. Of course, 
these new components are not really pure and for this reason they are called 
pseudo-components. They have the following compositions: 
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X - , = 1 

Fig. 25.11. The shaded area is the experimental area defined by the lower bounds xi > 0.1, X2 > 0.2, 
JC3>0.3. 

Pseudo-component 1: jci = 0.5, X2 - 0.2, JC3 = 0.3 
Pseudo-component 2: jci = 0.1, X2 = 0.6, x^ = 0.3 
Pseudo-component 3: xi = 0.1, X2 = 0.2, x^ = 0.7 

One can relate x\^'2^'^ to JCî 2r̂ 3 by the following equation 

X i — I 

l - I c , 
i=\ 

(25.10) 

where cid > 0 and Xc, < 1) is the lower bound for component /. For example: 

. ^1-0-1 
^ ' 1-(0.1+0.2 + 0.3) 

We can verify that at the apex of the new simplex {x'\ = \): 

xi = 1[1 - (0.1 + 0.2 + 0.3)] + 0.1 = 0.5 



759 

and at position ^2 = 1, where x'l = 0: 

xi = 0[1 ~ (0.1 + 0.2 + 0.3)] + 0.1 = 0.1 

The pseudo-components can form a new simplex design of the appropriate type 
and order. In Table 25.11 a (3,2) Simplex lattice design is shown for the boundaries 
given before. The responses yi to ye obtained with this design can then be used to 
determine the model of eq. (25.3) with x replacing x. The ^^-coefficients are 
computed as described in Table 25.3. Once this model has been obtained, we can 
use the relationship of eq. (25.10) to predict >; as a function of JCi, X2 and X3 in the 
original experimental domain. 

When upper bounds are given, i.e. if some or all of the X] < c, where c is the 
upper bound, the simplex is not retained. Figure 25.12 gives examples for the 

TABLE 25.11 

(3,2) Simplex lattice design for pseudo-components with jci > 0.1, JC2 > 0.2, X3 > 0.3 

Expt. Pseudo-component levels Original component levels Response 

1 
2 
3 
4 
5 
6 

x'l 

1 
0 
0 
0.5 
0.5 
0 

x'l 

0 
I 
0 
0.5 
0 
0.5 

•̂ '3 

0 
0 
1 
0 
0.5 
0.5 

Xi 

0.5 
0.1 
0.1 
0.3 
0.3 
0.1 

X2 

0.2 
0.6 
0.2 
0.4 
0.2 
0.4 

•̂ 3 

0.3 
0.3 
0.7 
0.3 
0.5 
0.5 

yi 
yi 
y3 
y4 

ys 
y6 

c=0 .4 

Fig. 25.12. Two situations with upper bounds: (a) xi < 0.4; (b) xi < 0.8. 
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situations where X] < 0.4 and X] < 0.8. We observe that the shaded area that 
describes the feasible experimental domain is now no longer a simplex. In choos­
ing the experiments to be carried out, it should be remembered that one needs at 
least the same number of experiments as the number of coefficients to be estimated 
in the modelling equation and that these experiments should map the experimental 
domain efficiently. 

One will usually look at the extreme vertices of the experimental domain and 
experiments, where the unrestricted factors take on a fixed proportion. For in­
stance, in the examples of Fig. 25.12 one would look at situations where JC2:JC3 = 1: 
1. For c = 0.4, this would lead us to retain the vertices described as experiment 1, 
3, 5 and 6 in Fig. 25.12a and add experiments 2 and 4, when the extreme levels (0 
and 0.4) of xi are present and at the same time X2:JC3 = 1 : 1 . The resulting design is 
given in Table 25.12. 

For c = 0.8 the same strategy would then lead to the selection of experiments at 
points 1,2, 3,4, 7 and 8 of Fig. 25.12b. However 4,7 and 8 are rather close together 
so that one might prefer to replace 7 and 8 by experiments 5 and 6 of the 
unrestricted simplex lattice design. The resulting design is given in Table 25.13. 

TABLE 25.12 

Design for^i < 0.4 

Expt. ^1 -*2 

0 
0 
0 
0.4 
0.4 
0.4 

1 
0.5 
0 
0.3 
0.6 
0 

0 
0.5 
1 
0.3 
0 
0.6 

TABLE 25.13 

Design forjci < 0.8 

Expt. X2 

0 
0 
0 
0.8 
0.5 
0.5 

1 
0.5 
0 
0.1 
0.5 
0 

0 
0.5 
I 
0.1 
0 
0.5 
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25.6 Upper and lower bounds 

Suppose now that some or all of the components are subject to both upper and 
lower boundaries. This leads to the situation described in Fig. 25.13. To the lower 
bounds of Fig. 25.11 higher bounds were now added so that 

0.1 <jci<0.4 

0.2<X2<0.5 

0.3<X3<0.6 

The shaded area is the area in which experiments are possible. The models to be 
fitted over this area still are equations of the type described in Sections 25.4.1-4.3. 
and usually the (3,2) or (3,3) reduced cubic model. They require that at least 6 or 
7 experiments be carried out to determine the ^-coefficients. 

The method that is used most often is the extreme vertices method of McLean 
and Anderson [12]. It requires the determination of the experiments at the 6 

X3 = 0.6 

Fig. 25.13. McLean and Anderson's extreme vertices algorithm: first stage. Point A is a possible point, 
point B is not. 
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Fig. 25.14. McLean and Anderson's extreme vertices algorithm: candidate experimental points for 
0.1 < jc, < 0.4, 0.2 <X2< 0.5, 0.3 < jcj < 0.6. 

vertices (points 1 to 6 in Fig. 25.14). When more experiments are wanted to obtain 
higher confidence in the model, one adds the face centroids (here 6 experiments, 7 
to 12 in Fig. 25.14) and the overall centroid (13 in Fig. 25.14). McLean and 
Anderson proposed the following two-step algorithm to obtain the coordinates of 
these experiments: 
1. Form all combinations of lower levels and upper levels for the different compo­

nents in pairs and fill in how much of the third component would then be 
required to make the mixture. This means that one determines all the points 
where the lines in the ternary diagram cross. 

2. Some of these mixtures (for instance A in Fig. 25.13) are possible, while others 
are not (such as B). These are detected in the algorithm because the lower or 
upper bounds for the third component are violated. 
To understand this, let us carry out the calculation for the example of Figs. 25.13 

and 25.14. The algorithm is summarized in Table 25.14. The four first lines in the 
table are obtained by first writing down all combinations of xi = 0.1, xi = 0.4, X2 = 0.2, 
X2 = 0.5. One then fills in JC3. The values filled out in this way are underlined in 
Table 25.14. For instance for the combination xi = 0.4, X2 = 0.5 one needs X3 = 0.1. 
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This experiment is however rejected since JC3 = 0.1 falls outside the permitted range 
0.3 < JC3 < 0.6. In fact, this is point B of Fig. 25.13. The combination x\ = 0.4, xi = 
0.2 requires X3 = 0.4. This is acceptable and is taken up in the design as point A of 
Fig. 25.13 and point 2 of Fig. 25.14. The design can now be completed to yield the 
first six lines of Table 25.15. 

To obtain the face centroids one takes all combinations of two vertices with the 
same value for one of the jc's and obtains the others by averaging. For instance 
vertices 2 and 3 have X2 = 0.2 in common. One obtains X] by averaging 0.4 and 0.2 
(0.3) and X3 by averaging 0.4 and 0.6 (0.5). The design is then completed by 

TABLE 25.14 

First stage of McLean and Anderson's extreme vertices method for 0.1 <xi< 0,4, 0.2 <X2^ 0.5, 0.3 < ̂ 3 < 0.6 

A'I X2 XT, Expt. of Fig. 25.14 

0.1 0.2 0 7 
0.1 0.5 04 (5) 
0.4 0.2 04 (2) 
0.4 05 0 1 
01 06 03 
0.1 0 3 0.6 (4) 
0.4 0 3 0 3 (1) 
04 0 0 06 
05 0.2 0.3 
0 2 0.2 06 (3) 
0 2 0.5 0.3 (6) 

-0.1 0 5 0.6 

TABLE 25.15 

Second stage of McLean and Anderson's extreme vertices method 

Expt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Type 

Vertex 
Vertex 
Vertex 
Vertex 
Vertex 
Vertex 
Face centroid 
Face centroid 
Face centroid 
Face centroid 
Face centroid 
Face centroid 
Centroid 

A, 

04 
04 
02 
01 
01 
02 
0.3 
03 
04 
01 
015 
015 
0.233 

X2 

0 3 
02 
02 
0 3 
05 
05 
0.2 
04 
025 
0.4 
05 
0.25 
0333 

-̂ 3 

0 3 
0.4 
06 
0.6 
0.4 
0 3 
0 5 
0 3 
035 
05 
035 
06 
0.433 

2 + 3 
1+6 
1+2 
5 + 4 
6 + 5 
3 + 4 
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averaging the jc-values for the vertices to obtain the overall centroid. For instance 
the JC, value for this point is (0.4 + 0.4 + 0.2 + 0.1 + 0.1 + 02)16 = 0.233. 

The number of experiments obtained in this way is usually higher than that 
required to fit the model. In this case there are 13 experiments and one needs 6 or 
7 to determine the coefficients. If the number of experiments is considered to be 
too large, one can decide to drop some of the experiments. Algorithms to decide 
which ones to drop have been described by Snee [13]. One can also apply 
D-optimality concepts. 

The visualisation of the results of complex mixture designs is not evident. An 
example of how to handle this can be found in Hare [14], who studied an instant 
soup thickener with four components, one of them (JC,) with an upper bound, the 
others with both upper and lower bounds. This yields the feasible region of Fig. 
25.15. The response was a measure of lumping tendency. This was measured at the 
vertices, the overall centroid, the centroids of the edges and of some faces, 19 
experiments in all. The model applied was 

4 4 

y=l^ biXi + X bij XiXj 
i-\ i<j 

where Xi and JC', are pseudo-components (see Section 25.5) of / andy. The Ẑ -coef-
ficients were obtained by regression and this allowed to represent the results by 

Fig. 25.15. Feasible region for the optimization of lumping tendency for an instant soup thickener 
(adapted from [14]). Triangle A is situated in the plane XJX^XA {X\ = 0). 
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COMPONENT 3 

0.5 1,0 0.5 1,0 1.5 ZO 

Fig. 25.16. Response surfaces in triangle A (jci = 0) (a) and slices at successively higher values of xi 
(b, c and d). 

observing mixture diagrams between x'2, ̂ '3 and x\ at given slices of Xi. The results 
are shown in Fig. 25.16. Hare's article includes several other ways of visualizing 
information obtained from mixture designs in general. 
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25.7 Combining mixture and process variables 

Sometimes, one needs to combine process variables and mixture variables in 
one experimental design. When the mixture consists of only two components, this 
offers no problems. One selects one of the components and treats the fraction of 
that component in the mixture as a process variable. As soon as there are more than 
two components, the situation becomes more complex. This can be illustrated with 
an example from Phan-Tan-Luu and colleagues [15]. 

Sof tener A 
1 

Softener B 

a) 
Sof tener C 

b) 

• Softener 
Softener A 

Softener B Sof tener C 

c) d) 

Fig. 25.17. Simultaneous optimization of process and mixture variables for the bed linen example, 
(a) Doehlert design for the process variables; (b) Scheffe Simplex centroid design for mixture 
variables; (c) the process/mixture variable design represented in the process variable space; (d) the 
process/mixture variable design represented in the mixture variable space (from Ref. [15]). 



767 

H Y D R O P H I L I C I TY 

X , 

Fig. 25.18. Values for one of the responses in the bed linen example. 

The example concerns the development of a finishing product formula for 
polyester/cotton cloth for use as bed linen. This product formula is based on the 
use of a resin and that of a softener mixture. The softener mixture consists of three 
softening products. The questions asked are: (i) how much resin and softener 
mixture should be used and (ii) what should be the composition of the softener 
mixture. The first question involves a typical two-factor process variable optimi­
zation, while the second concerns the optimization of a mixture. The authors 
answered the first question by using a Doehlert design (see Chapter 24) and the 
second by using a mixture design. The two designs are shown in Fig. 25.17a,b. 
They are combined in such a way that at each of the corners of the Doehlert design, 
one carries out a mixture design (Fig. 25.17c). Figure 25.18 shows the experimen­
tal results for one of the responses studied by the authors. The authors studied in 
fact several responses. How to treat such multiple response problems is discussed 
further in Chapter 26. 

The combined process variable-mixture designs can always be represented in 
two ways, namely as a factorial design with in each point a mixture design, or, 
alternatively as a mixture design with in each point a factorial design. Both are 
alternative representations of the same experiment. Figure 25.17d shows the bed 
linen experiment represented as a mixture design, with at each design point a 
Doehlert design to study the process variables. 

The number of experiments required is often high. In our example, it was 7 (for 
the Doehlert design) x 7 (for the mixture design). The combination of two-level 
factorial designs with mixture designs is more common than the use of the Doehlert 
design, and, in that case, one can apply fractional factorial designs instead of full 
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factorials. Doornbos and colleagues (see Ref. [16] for a review) have described the 
use of methods in which both the mixture design and process variable design part 
are fractionated. 

Models for combined mixture and process variables are complex. They contain 
cross-product terms between the mixture and the process variables (see for instance 
Gorman and Cornell [17]). Kettaneh-Wold [ 18] has shown that partial least squares 
(PLS) (see Chapter 35) as a modelling method offers advantages above the 
classical regression techniques and this seems to be especially the case for designs 
that involve both mixtures and process variables. 
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Chapter 26 

Other Optimization Methods 

26.1 Introduction 

In the preceding chapters we have discussed the main methods for optimization. 
In particular, the response surface methods for process variables (Chapter 24) and 
mixture variables (Chapter 25) have been applied to a great extent. In this chapter 
we will explain some further methods that are somewhat less often used. 

We will discuss sequential optimization methods (Section 26.2) and mixed 
sequential-simultaneous approaches (Section 26.3). The same methods can be 
applied for numerical optimization, i.e. finding optimal values for parameters in, 
e.g., regression equations. We will also pay some more attention to the optimiza­
tion criteria. Section 26.4 describes methods that can be applied when more than 
one optimization criterion has to be considered and Section 26.5 gives a short 
introduction to Taguchi methodology. This concentrates on finding good responses 
that are also robust. In other words, both the value of the response and its robustness 
are considered as criteria. 

26.2 Sequential optimization methods 

Sequential methods were introduced in Section 21.5. Using these methods, one 
carries out a very restricted amount of experiments, typically one more than the 
number of factors. On the basis of these results, one then decides on the next 
experiment. The result of this experiment and those that were carried out earlier are 
then used to select the conditions for the next experiment, etc. We will describe 
two such methods. The first is based on Fibonacci numbers, the next is the Simplex 
method. Both are used for numerical optimization and the latter also for experi­
mental optimization. 

26,2.1 Fibonacci numbers 

Fibonacci numbers are called after the 13th century mathematician Leonardo of 
Pisa, who was also called Fibonacci. Fibonacci numbers are defined by the 
recursive relationship 
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fn+2 — ^n + tn- n = 0, 1,2, (26.1) 

with to = 1 and ti = lAn words, each number of the series is the sum of the two 
preceding numbers. The Fibonacci series therefore begins as follows: 1, 1, 2, 3, 5, 
8, 13,21,34,55,89, 144,233,.... 

These numbers can be used to direct a restricted region search, meaning that the 
boundaries of the region to be searched are known. The method is valid only for 
univariate and unimodal situations. The search proceeds by eliminating parts of 
this region from consideration, thereby narrowing at each cycle the region in which 
the optimum can be situated. 

Consider the case in which the maximum of a response y must be found in a 
region [XA, XB]^ The function 3̂  = f(x), which is unknown to the experimenter, is 
depicted in Fig. 26.1. The value to be found is Xopt. Two experiments are carried out 
with the variable values X] and X2, chosen in such a way that the distance between 
XA and x\ is equal to that between X2 and XB. The resulting yi and 2̂ values are 
recorded. In the example it is observed that y\ > j2. It is therefore possible to 
conclude that the maximum is not situated in the [jC2, XB] region, to eliminate this 
region from further consideration and to concentrate on the [XA, X2] region which 
can be considered in its turn as a restricted region in which a search has to be carried 
out. In this region there is already one experimental result available, ^'i. We can 
then repeat the strategy of the first cycle by selecting X3 so that the distance between 
XA and x^ is equal to that between X] and X2. In the present instance, this leads to the 
elimination of the region [XA, X^] and the selection of X4, so that X2 -X4 = X3 -xi , etc. 
Fibonacci numbers are used to select X\, X2, etc. 

First, the experimenter must decide on the width, a, of the optimal region which 
he will accept compared with the original search region, A, The Fibonacci series 
indicates which number is the one immediately larger than A/a. If this is the ^+lth 
number in the series, then n experiments will be needed. For example, if A/a is 50, 

Fig. 26.1. Example of the first stages in a Fibonacci search. 
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then the smallest Fibonacci number which is higher than Ala is 55. This is the tenth 
number in the series, t̂ , and therefore nine experiments will be necessary. 

Let us call the length of the original search region L\{L\ - XB - XA) and the 
distances between the experiments x\ and X2 and the boundaries, l\ (l\ =^X]-XA=XB 

- X2). The latter is defined as: 

/ i - ^ L i (26.2) 

For the example 

and therefore Xi = x^ + (21/55) (XB - XA) and X2 = XB- (21/55) (XB - XA). 
One of the intervals [jĉ , x\] or [x2, XB] is eliminated according to whether yi < j2 

or vice versa, as explained earlier. The length of the remaining region is 

L2 = L] —— L] = —— L\ 

since 

tn-l 4- tn-2 = tn (26.3) 

Let us suppose that [x2, XB] was eliminated; X] is retained and we have to 
determine k, so that this is equal to the distances between x\ and X2 and between a 
new experiment x^ and x^. 

The following general equation is then applied 

k = b±^U (26.4) 
f^n-ik-l) 

SO that 

also, 

tn-{k-2) 

SO that 

One proceeds in the same way until n-\ experiments have been performed. 
For the last experiment 

ln-\ _ ^n-[(n-l)+l] _ ^ _ J_ /26 6") 

Ln-\ tn-\{n-\)-\] h 2 

which means that the distance between the last-but-one experiment and the boundary 
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of the remaining region is half of the length of this region. In other words, the 
last-but-one experiment is situated at the centre of the remaining search region. The 
last or nth experiment should also be placed at this point. If the two experiments 
are carried out with the same x value no new information is gained. Therefore, the 
last experiment is placed at the smallest distance which is thought to give a 
measurable difference in response. If yn > yn-\, the optimum is situated in the 
interval Xn-\ -Xn-2', if Jn-i > yn, it is to be found in Xn-Xn-3. 

The Fibonacci search can be shown to be very effective, meaning that a very 
small number of cycles is necessary. This is particularly true when the optimal 
value must be known very precisely and its effectiveness can be shown by comparing 
the Fibonacci method with the simplest possible search method, the pre-planned 
regular interval design. When the optimal region must be one thousandth of the 
original region, the two methods require 1999 and 16 experiments respectively. In 
fact, the Fibonacci search method is the best available as far as effectiveness is 
concerned. When the experimental error is large compared to the slope of the 
response, this can lead to the exclusion of the wrong region. However, this is no 
problem in numerical optimization. In the chemometrical literature an example can 
be found in the linearization of calibration lines for AAS by Wang et al. [1]. 

26.2,2 The Simplex method 

A simplex is a convex geometric figure in the factor space defined by a number 
of points equal to one more than the number of factors considered in the optimiza­
tion. For the simplest problem, namely an optimization of two factors, the simplex 
is therefore a triangle. The simplex has as many dimensions as factors. An example 
will be used to introduce the technique. Consider the isoresponse surface given in 
Fig. 26.2, which describes the optimization of a colorimetric determination of 
sulphur dioxide [2]. The numbers along the isoresponse lines are absorbances and 
the highest absorbance is considered to be the optimum. 

The optimization starts with experiments 1,2 and 3. The points representing the 
experiments form an equilateral triangle and point 2 shows the worst response of 
the three. It is logical to conclude that the response will probably be higher in the 
direction opposite to this point. Therefore, the triangle is reflected so that point 4 
opposite to point 2 is obtained. An experiment is now run with the factor values of 
point 4. Points 1,3 and 4 form together a new simplex. The procedure is now repeated. 

It appears that point 3 yields the lowest absorbance. Point 3 is therefore rejected 
and point 5 is obtained. In this way, using successive simplexes, one moves rapidly 
along the response surface. This procedure is described by the following rule [3]: 

Rule J: the new simplex is formed by rejecting the point with the worst result in 
the preceding simplex and replacing it with its mirror image across the line defined 
by the two remaining points. 
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HCl-conc. 

Fig. 26.2. Example of fixed size Simplex optimization (adapted from Ref. [2]). 

In the initial stages of an optimization, the new point in a simplex will usually 
yield a better result than at least one of the two remaining points, because the 
simplexes will tend to move towards the optimum. When the new point does not 
cause a move in this general direction a change in the progression axis is necessary. 
When the new point has the worst response of the simplex, it makes no sense to 
apply rule 1, as this would lead to reflection back to the point which was itself the 
worst one in the preceding simplex. For example consider simplex 6, 7 and 8 in 
Fig. 26.2. Point 6 has the lowest absorbance and is replaced by 9, its mirror image 
across the line 7-8. Point 9 has the least desirable response in the new simplex. 
Rule 1 would lead back to point 6, then again to point 9, etc. Therefore, one now 
applies rule 2. 

Rule 2: if the newly obtained point in a simplex has the worst response, do not 
apply rule 1 but instead eliminate the point with the second lowest response and 
obtain its mirror image to form the new simplex. 

The effect of this rule is to change the direction of progression towards the 
optimum. This will most often happen in the region of the optimum. If a point is 
obtained near to it, all of the other new points will overshoot the top of the response 
curve. A change in direction is then indicated. In the region of the optimum, the 
effect is that the simplexes circle around the provisional optimal point. For 
example, in Fig. 26.2 the application of rule 2 would lead to the rejection of the 
second lowest point, 7. Its reflection yields 10, a point with a negative hydrochloric 
acid concentration. Let us suppose for the moment that this is possible and that 10 
would yield the lowest response. Rule 2 then leads to 11. The response of this point 
is lower than the response of 8 but better than that of point 10. Point 8 is retained 
in consecutive simplexes, which is interpreted as indicating that this point is 
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situated as near to the optimum as one can get with the initially chosen simplex. 
The situation could also result from an erroneously high response from point 8. To 
make sure that this is not the case, one applies rule 3. 

Rule 3: if one point is retained in three successive simplexes, determine again 
the response at this point. If it is the highest in the last three simplexes it is 
considered as the optimum which can be attained with simplexes of the chosen 
size. If not, an experimental error has been made, the simplex has become trapped 
at a false maximum and one starts again. 

One difficulty which still has to be resolved is what to do in practice when one 
encounters a situation such as that exemplified by point 10. To avoid it, one 
identifies the constraints or the boundaries between which the simplex may move. 
For example, when the factors are concentrations, values lower than 0 are not 
possible. Once this has been done, one applies rule 4. 

Rule 4: if a point falls outside one of the boundaries, assign an artificially low 
response to it and proceed with rules 1-3. 

The effect of applying rule 4 is that the outlying point is automatically rejected 
without bringing the succession of simplexes to an end. 

Let us write these rules in vector notation. The initial simplex is called BNW 
(Fig. 26.3). In this simplex, the best response is obtained for vertex B and the worst 
for vertex W. The symbol N stands for next best. Let b, n and w be the vectors 
representing points B, N and W, i.e. b = [jci/, jci/,], n = [x\n X2n] and w = [x\w X2w]-
Since W is worst, it is eliminated and the centroid P of the line segment BN is: 

X2 

/ .•' 
• • • . . . • • > ? • » 

.. • / • / . / / / / / 

A 
/; 

\ 

X1 

Fig. 26.3. The modified Simplex for two factors x\ and X2. 
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p = ̂  (n + b) = [(xm + Xih)Xx2n + ̂ 2/,)] /2 

the reflected vertex R is obtained by: 

r = P + (P - w) 

Let us now consider the 3 factor simplex, which is a tetrahedron. If we call Ni and 
N2 the points that are neither best nor worst, then: 

p - | ( n i + n 2 + b) = 

r(Xin, + Xu, + Xib), {X2n, + X2n, + Xih) , fen. + -̂ Sn, + ^3^)1 / 3 

and again r = p + ( p - w ) = 2 p - w . 
The two-factor case can be generalized to the /:-factor case. In words, when the 

vertex to be rejected has been determined, the coordinates of fc retained vertices are 
summed for each factor and multiplied by Ilk. From the resultant values one 
subtracts the coordinates of the rejected point. The result yields the coordinates of 
the new vertex. 

The initial simplex in the general case is obtained with the use of the factors in 
Table 26.1. It is best explained with an example. Suppose the simplex is a 
tetrahedron, because three factors are optimized. The multiplication factors of 
Table 26.1 specify the distance of each vertex from the experimental origin. The 
experimenter has to define the experimental origin and the step size for each factor, 
i.e. the maximum change that one wants to apply for a certain factor at each step 
of the procedure. Let the experimental origin be: factor 1 = 10, factor 2=100, factor 
3 = 20. These are then the coordinates of vertex 1. If the step sizes are respectively 
10, 20 and 5, then the other vertices are obtained as follows. 

TABLE 26.1 

Values of multiplication factors for the calculation of vertices of the initial simplex 

Vertex 

I 
2 
3 
4 
5 
6 
7 
8 
9 

Factor 

A 

0 
1.000 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

B 

0 
0 
0.866 
0.289 
0.289 
0.289 
0.289 
0.289 
0.289 

C 

0 
0 
0 
0.817 
0.204 
0.204 
0.204 
0.204 
0.204 

D 

0 
0 
0 
0 
0.791 
0.158 
0.158 
0.158 
0.158 

E 

0 
0 
0 
0 
0 
0.775 
0.129 
0.129 
0.129 

F 

0 
0 
0 
0 
0 
0 
0.764 
0.109 
0.109 

G 

0 
0 
0 
0 
0 
0 
0 
0.756 
0.094 

H 

0 
0 
0 
0 
0 
0 
0 
0 
0.750 
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Vertex 2: 
Factor 1: 10+ (10x1) = 20 
Factor 2: 100 + (20 x 0) = 100 
Factor 3: 20+ (5x0) = 20 

Vertex 3: 
Factor 1: 10 +(10x0.5) = 15 
Factor 2: 100 + (20 x 0.866) = 117 
Factor 3: 20+ (5x0) = 20 

Vertex 4: 
Factor 1: 10+ (10x0.5)= 15 
Factor 2: 100 + (20 x 0.289) = 106 
Factor 3: 20 + (5 x 0.817) = 24 

26.2.3 The modified Simplex method 

In the original Simplex method the step size is fixed. When it is too small, it 
takes many experiments to find the optimum; when it is too large, the optimum is 
determined with insufficient precision. In the latter instance, one can start a new 
simplex around the provisional optimum with a smaller step size. However, a 
modified Simplex [4] method in which the step size is variable throughout the 
whole procedure offers a more elegant (and efficient) solution. The principal 
disadvantage is that the simplicity of the calculations in the original Simplex 
method no longer exists. The principles of the method are retained but additionally, 
provision is made for the expansion or contraction of simplexes. 

The simplex search is accelerated by expanding it in directions which seem 
favourable and slowed down by contracting it in the directions that are unfavour­
able. This method, which was devised by Nelder and Mead [4], was introduced into 
chemistry by Morgan and Deming [5]. It is explained here for the two-factor case 
(Fig. 26.3). This again yields a triangle (which is now no longer necessarily 
equilateral) as the simplex. Depending on the response in R the following steps are 
undertaken. 

(a) Response at R > response at B. 
The simplex seems to move fast in a favourable direction. An expansion is 

therefore attempted by generating vertex E: 

E = P + Y(P-W) 

where y is usually 2. If the response at E is also better than at B, the E is retained 
and the new simplex is BNE. If not, the expansion is considered to have failed and 
the new simplex is BNR. 

(b) Response at B > response at R > response at N. 
The new simplex is BNR. No expansion or contraction is envisaged. 
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(c) Response at N > response at R. 
The simplex has moved too far and it should be contracted. If the response at R 

is not worse than at W, the new vertex CR is best situated nearer to R than to W 

CR = P + P ( P - W ) 

where (3 is usually 0.5. If the response at R is also worse than that at W, the new 
vertex Cw should be situated nearer to W 

Cw = P - p ( P - W ) 

The new simplex is BNCR or BNCw. From here on, one proceeds by rejecting in 
the new simplex the point that was next-to-worst in the old simplex (N). 

26.2.4 Advantages and disadvantages of Simplex methods 

The Simplex methodology is probably the best known so-called hill-climbing 
method. It is often used, both in numerical and in experimental optimization [6,7]. 
Its application for numerical optimization was mentioned in Chapter 11. In experi­
mental optimization, it is very useful to obtain rapid improvement of a single 
performance criterion. For this purpose, it is probably the best method available. 
Its main disadvantages are: 

- The Simplex method will find the global optimum when there is only one 
optimum. When there are local optima, the Simplex method will find one of the 
optima, but not necessarily the best one. 

- It does not work with more than one performance criterion. Indeed, these will 
probably have their maxima at different locations. The Simplex method may be 
used to find the optimum of a composite response, using utility or Derringer 
functions (and preferably the latter, see Sections 26.4.3 and 4), but cannot be 
applied with the other multicriteria methods described in Section 26.4. If utility or 
Derringer functions are used as criteria, one must bear in mind (see Section 21.4) 
that composite criteria often lead to local optima and, as explained above, one is 
not guaranteed to find the global optimum. 

- If the imprecision of the measurement is relatively large and the slope of the 
response surface studied is small, the Simplex method may move in wrong 
directions. Although this can be corrected in a subsequent move, this makes the 
method inefficient in such cases. 

- The Simplex method gives little information about the response surface. One 
can use the experimental results obtained to model the surface, but, from a 
modelling point of view, the points are chosen in a haphazard way. It is, for 
instance, not evident that the whole experimental area of interest will be mapped 
and it is probable that the experimental design will not correspond to the optimality 
criteria of Chapter 24. 
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In short, the Simplex method is the method of choice for rapid straightforward 
optimization of single responses or of composite responses when one knows there 
can only be one optimum. It is also very useful when improvement, but not 
necessarily optimization is wanted. 

26.3 Steepest ascent methods 

Instead of using a simplex, we can apply local factorial designs as hill-climbing 
methods. Consider four experiments, constituting a 2̂  factorial experiment (see Fig. 

A 

^3, 
• 1 

^0. 

I>A } 4» 

a) 

Fig. 26.4. (a) A 2̂  full factorial with centre point, (b) Additional experiment in a steepest ascent 
procedure. 
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26.4a). The response y can be described as a function of factors xi and X2, yielding 
equation 

y = bo + bixi + b2X2 (26.7) 

For the sake of simplicity, we suppose that it has been decided that the interac­
tion term can be neglected. The centre point of the design has also been measured 
and that measure has been replicated (yielding you yoi, yoa)- As we have seen in 
Section 22.9.3, this allows us to carry out a curvature check. If there is no curvature, 
then eq. (26.7) describes the response well. The response surface defined in this 
way is a plane and the optimal (supposedly highest) value must be situated on the 
boundary defined by the first four experiments. 

Suppose that both b\ and b2 are negative. It is then possible that there is an 
optimum outside the experimental domain in the direction of lower values of the 
X] and X2 variables. It would be logical to do an experiment in that direction. The 
path of steepest ascent is given by a direction such that for every unit of movement 
in the direction of xi, one should move ^2/̂ 1 units in the direction of ̂ 2 (Fig. 26.4b). 

A simple (synthetic) example is given in Table 26.2 and Fig. 26.5. A more 
realistic example can be found in the book by Box, Hunter and Hunter [8]. A first 
2̂  factorial design is carried out around the starting point (100, 48). The design 
consists of experiments 1 to 4 and the centre point is replicated 3 times (expts. 0.1, 
0.2 and 0.3). It is found that bi = -1 and b2 = -2 in scaled units. Therefore one 

TABLE 26.2 

Steepest ascent 

Expts. 

0.1 
0.2 
0.3 
1 
2 
3 
4 

5 
6 
7 

8 
9 
10 
11 
12 
13 

example 

y 

45 
44.4 
45.5 
46 
42 
48 
44 

50 
55 
51 

52 
52 
53 
51 
54.5 
55.5 

XI X2 

original 

100 
100 
100 
102 
102 
98 
98 

98 
96 
94 

98 
94 
94 
98 
96 
96 

48 
48 
48 
44 
52 
44 
52 

40 
32 
24 

28 
28 
36 
36 
32 
32 

x\ 

scaled 

0 
0 
0 

+ 1 
+ 1 
-1 
-1 

0 

+ 1 
-1 
-1 
+ 1 
0 
0 

X2 

0 
0 
0 

-1 
+1 
-1 
+1 

0 

-1 
-1 
+1 
+1 

0 
0 
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X2 

55-

50-

45' 

40 

35 

30 

25 

20 
90 95 100 X1 

Fig. 26.5. The steepest ascent method for the data of Table 26.2. 

obtains the steepest ascent path given in Fig. 26.5. Along it one selects a number 
of additional experiments. The length of the step can be based on intuition or, as 
proposed by Brooks [9], 2V(i>f -I- bl) (in scaled units). In our case we choose to 
carry out experiment 5. Since this yields clearly better results than for the experi­
ments 0 to 4 one continues in the same direction with experiment 6 and 7. The 
response of experiment 7 seems to indicate that one has gone beyond the optimum. 
Therefore, one carries out a new 2̂  factorial experiment around the provisional 
optimum of experiment 6. Replication of point 6 (experiments 12 and 13) and a 
curvature check show that the surface is curved in this region. One concludes that 
the optimum is situated in this neighbourhood. If one wants to know more exactly 
where it is situated, one could build a central composite design (see Chapter 24) using 
points 6 (and its replicates 12, 13), 8, 9, 10, 11 as central, respectively factorial points 
and adding four star points. 



783 

Fig. 26.6. Box-type factorial evolutionary operation. 

Another simple procedure, called evolutionary operation (EVOP) was proposed 
first by Box [10]. The method has mainly been used for the optimization of 
industrial processes. It is illustrated by Fig. 26.6. The principle is that one describes 
the region around the starting point by a factorial design (here a 2^ design). This 
factorial design is used as in the steepest ascent method to determine the coeffi­
cients of the model given by eq. (26.7). From this model one can then derive the 
direction of steepest ascent. Instead of carrying out experiments along the line of 
steepest ascent one carries out a new factorial experiment, which makes use of 
some of the experiments constituting the first design (see Fig. 26.6). If one prefers 
the use of second degree equations, the Doehlert design can be used in a similar 
way (see Section 24.3.4). 

26.4 Multicriteria decision making 

26,4.1 Window programming 

Multicriteria decision making (MCDM) is applied when more than one response 
has to be taken into account. Often, this requires finding optimal compromises. 
Window programming is applied in some specific cases, such as the optimization 
of selectivity in chromatography. Although it can be applied in multidimensional 
situations, it is often used in univariate optimization when there are several 
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51 

% methanol 

bl 

a b c % methanol 

Fig. 26.7. Window programming: (a) retention times IR of substances 1, 2 and 3 in function of % 
methanol; (b) IA^RI for the pairs of substances 1/2, 1/3 and 2/3 in function of % methanol. The fat line 
is min IA/RI. Point c yields the optimal result. 

responses to be optimized. It can be described as a minimax approach. One 
determines for all possible experimental conditions, the response which gives the 
worst result. The value of this response for the set of experimental conditions / is 
>̂ min,/. Then, for all possible experimental conditions (/ = 1, n), one determines that 
with the highest >'min. The criterion is therefore max CVmin,/) • 

i=],n 

For univariate optimization in chromatography, this method, pioneered by Laub 
and Pumell [11], is simple but powerful. Let us consider Fig. 26.7. In Fig. 26.7a ^R, 
the retention time, of three hypothetical substances is given as a function of one 
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variable, the percentage methanol in the solvent. For three substances as in Fig. 
26.7 this is a three-criterion problem. Indeed, one must consider the quality of the 
three binary separations (substances 1 and 2, 1 and 3, and 2 and 3). For simplicity, 
we suppose that the quality of the separation between two substances is given by 
the absolute difference in retention times IA^RI. We do this to be able to explain the 
method in a simple way. In fact, the criteria in chromatography are more complex 
and in real applications one uses criteria such as resolution to express how good a 
separation between two substances is. 

In Fig. 26.7b we plot IA R̂I as a function of percentage methanol for each pair of 
substances. These lines cannot be described easily by a simple linear or quadratic 
function because some of them have an intermediate value of 0 where the order of 
elution of the two substances changes (a cross-over). Incidentally this is why one 
should be careful in modelling complex criteria (see warning in Section 21.4). IA R̂I 

cannot be properly modeled, but one can first model R̂I and rR2 separately, in this 
case with a quadratic function, and, afterwards, compute for each value of the 
dependent variable the composite criterion IA^RI. 

In point a, substances 1 and 3 and 2 and 3 are separated much better than 1 and 
2. One can conclude that in that point the global quality is determined by the quality 
of the separation of the worst separated pair. This means that in each point our 
criterion for the whole chromatogram is min IA^RI. In point b, for instance, min IA R̂I 

is zero, because 1 and 2 are not separated at all. The thick line is the one describing 
min IA^RI (= >'min) as a function of % methanol. This thick line describes a series of 
windows, which explains the name of the technique. The highest point on that thick 
line or highest point on any window is c. This is the point where min IA^RI is largest 
f = mRx(ynun,i)] and therefore this is the optimum. In practice one would probably 
I i=\,n ' J 
prefer to work at slightly higher % methanol than c because the chromatogram is 
then more robust (see Section 26.5). 

26,4.2 Threshold approaches 

Threshold approaches are widely used in experimental design. One does not try 
to find the optimum, but a region where all responses have acceptable values. The 
value to be reached is called the threshold. The most common way of finding the 
region is to use maps, either an isocontour map for two variables or a mixture 
triangle. One makes these maps first for each response separately and crosses out 
those areas where the threshold is not reached. Then one superimposes all those 
maps. The area which has not been crossed out in any of the maps is then the 
acceptable area. If necessary, one can work in stages. In a second iteration, one can 
give more desirable values to one, more or all of the responses and thereby pinpoint 
still better conditions. 
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2-3 6-7 

Rs >1.5 

ACN 

MeOH 

b) 
THF 

Fig. 26.8. Overlapping resolution map in reversed-phase chromatography (adapted from [12]). (a) 
Domains, in which separation is possible for successive pairs of substances, are left blank; (b) 
superposition of the maps in a. 

An example of this method comes from chromatography [12] where the method 
is known as the overlapping resolution map method. It is used to find an acceptable 
solvent in HPLC. The mobile phase is a mixture of three solvents. In a first map 
(see Fig. 26.8) one crosses out all areas where the first and the second peak are not 
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Xi 

a) 
c) 

X, Xi 

b) d) 

X. X, 

Fig. 26.9. Combined contour plot for a formulation example, xi = anhydrous lactose, X2 = avicel, X3 
= a-lactose. (a) Contour plot for crushing strength; (b) contour plot for friability; (c) contour plot for 
disintegration time; (d) combined contour plot for the limits given in the figure. The black area is the 
acceptable area. 

sufficiently separated (for instance Rs < 1.5). To do that one models (see Chapter 
25) the retention of the relevant peaks and computes the resolution over the whole 
area from those models. In the second map this is done for the second and third 
peak, etc. Then the overlapping map is obtained by superposition of all the binary 
separation maps and the separation conditions retained as acceptable are those in 
the blank area of the overlapping resolution map. 

Another example, from pharmaceutical technology [13] this time, is shown in 
Fig. 26.9. A tablet formulation is optimized for three responses (crushing strength, 
friability and disintegration time). The factors are the relative amounts of the 
excipients anhydrous lactose (jci), avicel (xj) and a-lactose (x^) (in fact, they are 
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pseudocomponents — see Chapter 25). The contour plots for the individual criteria 
and a combined contour map with as constraints crushing strength >60 N, friability 
<1 %, disintegration time <120 s are shown. The black area in Fig. 26.9d shows the 
domain in which all these criteria are obeyed. A formulation with 50% X2 and 50% 
X3 is preferred. 

26.4.3 Utility functions 

Suppose there are m criteria >'y(yi,..., ym) to be optimized. For experiment /, they 
take the values yn, ..., yji, ..., y^ni. Suppose also that it is possible to express 
numerically the importance of the criteria by weights w/wi, ..., w^), then one 
obtains a utility function: 

m 

Ui = l wjyy, (26.8) 

The multicriteria problem is then reduced to the single criterion problem of optimiz­
ing (//. Unfortunately, this approach has some important disadvantages, namely: 

(a) it is very difficult to give a priori weights for all the criteria; 
(b) it is possible that the multicriteria optimum found leads to an unacceptable 

value of one or more of the criteria: it can happen that very good solutions are found 
for one of the criteria with high weight, so that the bad results for some of the other 
criteria are compensated. 

This method has nevertheless been used extensively in chromatography. An 
example is the CRF (chromatographic response function) [7]: 

m-\ 

CRF = I Rs(/V + 1) /i" + b{t^,, - tm) - c{t^, - r,) (26.9) 

where m = number of peaks expected; n = number of peaks detected; Rs (jj + 1) = 
resolution between peaksy andy + l;t\,tfn = times for first and last peaks; m̂in, m̂ax 
= times desired for first and last peak; a, b and c = weights. 

The first term sums m - 1 criteria (resolutions), while the two last terms consider 
as criteria how close t\ and fm are to the ideal situation. The difficulty, of course, is 
to determine sensible values for a, b and c. 

26.4.4 Derringer functions 

Instead of summing the criteria, one can multiply them. Harrington [14] 
proposed to scale the values of the criteria between 0 (unacceptable) and 1 
(optimal). These values are then called desirabilities. For instance, if resolution 
in chromatography should be at least 1 and, if 2 is the target to be reached, then 
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all resolution values equal to or smaller than 1 would have a desirability d = 0, all 
resolution values equal to or higher than 2 a desirability of 1 and a resolution of 1.6 
would then have desirability (1.6 - l)/(2 - 1) = 0.6. Derringer and Suich [15] 
adapted this as follows: 

d = 0 fOYy<ynnn 

d=l for y>y^,, (26.10) 

d=[(y- }^min)/(ymax " Jmin)] ' fo r y^rnn <y< ^max 

where d needs to be maximized, jmin is the minimum acceptable value ofy, ĵ max the 
value beyond which improvement is of no further interest and r is a coefficient to 
be determined by the user. The effect of using different values of r is shown in Fig. 
26.10. The authors give also transformations that can be used when a certain value 
ofy is wanted and both a lower and a higher value are less desirable. 

The global desirability D is then obtained as 

D = ndj (26.11) 

where dj are the values for individual criteria. 
This procedure has the advantage that if one of the criteria is unacceptable (i.e. 

= 0), then the global desirability is also 0. With the weighted sum of eq. (26.8), this 
is not the case. As explained, a very good value for one criterion can mask an 
unacceptable value for another criterion when utility functions are used. The use 

0.5 2.5 y 

Fig. 26.10. Values of Derringer and Suich's d for different values of r, ymin = 0.5, >'max = 2.5. 
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of Derringer's method in chromatography was introduced by Bourguignon and 
Massart [16]. 

26.4.5 ParetO'Optimality methods 

The Pareto-optimality principle is due to Vilfredo Pareto (see also Section 
2.3.4). It was introduced in chemometrics by Smilde et al. [17]. In this section, we will 
follow the argumentation of Keller et al. [18]. Pareto-optimality is defined as follows. 

An experiment is Pareto-optimal if there is no other experiment which has a 
better result on one criterion without having a worse result on another. 

Let us suppose that there are two criteria, >;i and yi, to be optimized and that 
optimization for both of them means maximization. Experiment 1 has yielded y\ = 
100 and y2 = 60 and experiment 2 >̂i = 100 and y2 = 50. Experiment 1 is better for 
y2 than experiment 2, without being worse for criterion yi. Experiment 1 is 
Pareto-optimal and is said to dominate experiment 2. Suppose now that experiment 
1 would have yielded y\ = 60 and yi = 100. In that case experiment 1 is still better 
for y2 but now it is worse for y\. It is now impossible to decide on a pure numerical 
basis. The numerical difference for >'2 (50-100) is larger in absolute value than that 
for y] (100-60), but it may well be that y\ is much more important for practical 
reasons: only an expert in the field studied can decide whether experiment 1 is to 
be preferred to experiment 2. 

The Pareto-optimality concept can be used with more than two responses but 
with two it is most attractive, because of the graphical interpretation (Figs. 26.11 
and 26.12). When there are many responses, it becomes increasingly unlikely that 
one experiment will dominate another for all responses and the method is less 
useful. Let us consider therefore the two-dimensional response case of Table 26.3. 
Consider for example experiments 5 and 4. The latter is dominated by the first. If 
one considers experiments 8 and 7, the latter is also dominated by the former. 
Experiments 5 and 8 both lie on the border of the cloud of points in Fig. 26.11 in 
the direction of high y] and high y2 (we are maximizing both). The line drawn 
through the border points (5, 6, 8, 9 and 10) connects experiments that dominate 
all the experiments below it. This is so for the actual experiments, but also for 
potential experiments, that were however not carried out. An expert will have to 
decide which, among the points along the line offers the best compromise between 
yi and y2. It may well be that he decides that this is situated half-way between 
experiments 6 and 8. In that case, it will be necessary to decide which experimental 
conditions would yield such values for y] and y2. 

Suppose that };2 is to be maximized, while y] is minimized. This would be typical 
for chromatography, where one wants to maximize separation quality (for instance, 
resolution) and minimize time. In that case, one would decide that the borderline 
constituted by points 1, 2 and 5 links the Pareto-optimal points (Fig. 26.12). 



TABLE 26.3 
Data set for explaining Pareto-optimality 
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Experiment y\ yi 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
4 
7 
7 
9 

10 
11 

4 
9 
3 
8 

10 
9 
7 
7 
3 
1 

10-

8-

6-

4-

2-

0-

i 

5 

a 2 

D ^ 

D 1 

D 3 

1 1 

" ^ • " ^ 6 

D 7 

-1 1 — 

\ 8 

\ ^ 

10 a 

1 - 1 — ^ 

10 12 y^ 
Fig. 26.11. Pareto-optimality. Responses y\ and y2 must be maximized. All Pareto-optimal solutions 
are found on the solid line. 
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10 

8-1 

6H 

D 7 n 8 

10 a 

"T 1 1 1 T " 
^ 6 8 10 12 

yi 
Fig. 26.12. Pareto-optimality. Response >'i is to be minimized, while y2 is maximized. All Pareto-
optimal solutions are found on the solid line. 

26,4.6 Electre outranking relationships 

In the Pareto-optimality procedure the relation between two experiments can be 
described only in two ways. Either one experiment dominates another one and it is 
clear which one is the better, or else the two cannot be compared. This may be too 
simple for some situations. Consider for instance the following situations de­
scribed by Brans and Mareschal [19]. 

Situation 1: experiment A scores 100 on criteria yi and y2, B scores 30 and 20; 
A is Pareto-optimal compared to B because it dominates B. 

Situation 2: experiment A scores 100 on >̂i and 20 on y2 and B scores 30 on yi 
and 100 on y2', A and B are incomparable. 

Situation 3: A scores 100 on y\ and 99 on y2 and B scores 1 on yi and 100 on ̂ 2. 
In the Pareto sense, the two experiments are incomparable. However, the differ­
ence in 3̂2 is so small, that one might reason that it is much less important than the 
difference in j i . In that case one would prefer A to B. 

Electre [20], and also Promethee (see next section) can work with preferences. 
To explain the method, we will apply it to data extracted from a study by Chardon 
et al. [18,21]. The original study consisted of the optimization of properties of 
bedsheets in function of resin, softener content and softener composition (see also 



TABLE 26.4 

Table of criteria for the evaluation of bedsheets [18,21] 
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J Criterion Weights Possible criterion values 

Smoothness 
Hand 
Hydrophilicity 
Soil release 

6,8,9 
8, 9, 10 
45, 40, 35, 30, 20 
60, 65, 70, 80 

TABLE 26.5 

Criterion values for some experiments [18,21] to optimize the properties of bedsheets 

Criterion 

1 
2 
3 
4 

Optimization 
goal 

max 
max 
min 
max 

Evaluation of bedsheets 

Experiment 

21 

6 
10 
30 
60 

24 

6 
10 
40 
80 

44 

9 
8 

45 
70 

61 

8 
9 

35 
65 

62 

8 
9 

45 
80 

64 

8 
9 

20 
80 

Chapter 25). The whole design required 49 experiments and 5 responses were 
measured. Of the 49 experiments only 6 fulfilled the minimum requirements for all 
criteria. For these six experiments, one criterion gave the same value for all 
experiments and therefore only four criteria are considered further. 

Table 26.4 gives the criteria;, the weights w, assigned to these criteria (here we 
considered all criteria to be equally weighted) and the values the criteria can take. 
In Table 26.5 the experimental values obtained and the optimization goals are 
given. One now compares each experiment with each other experiment. This is 
done in two steps. In the first step, one notes in what respect the experiments differ. 
Suppose we compare experiments 21 and 24, then 21 is better according to 
criterion 3, and worse according to criterion 4. The results are given in Table 26.6. 

In the second step, one takes into account the weights in order to arrive at a 
numerical expression. The preference ratio of experiment A over B is given by 

P = (26.12) 



2,3,14 
2,3,4,1 

-
-
-

2,3,14 
2,4, 7,3, 
1,4, 2,3 
-
-

2,3, lA 
2,3,7 
1,2,4 
3,4 

-

2,1,3,4 
2,1,3 
1, 2,3,4 
3,4 
3 
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TABLE 26.6 

Comparison of the experiments of Table 26.5 according to the criterion values. Bold numbers indicate criteria for 
which the row experiment is better than the column experiment, italic numbers indicate those criteria for which 
the opposite is true 

21 24 44 61 62 64 

21 - 3,4 
24 - -
44 - -
61 - -
62 - -
64 - -

TABLE 26.7 

Numerical comparison of the experiments of Table 26.5. Preference ratios are given for experiments in column 
(1) over those in columns (2) to (7) 

(1) (2) (3) (4) (5) (6) (7) 

21 24 44 61 62 64 

21 - - - - - -
24 - - 3 - 2 -
44 _ _ _ _ _ -

61 - - - - - -
62 - - 2 - - -
64 3 2 3 oo oo -

where A^ symbolizes the criteria for which A is better than B and AT those for 
which the inverse is true. For example, for the preference of 21 over 64, this 
becomes 

p = 1/3 = 0.33 

We can now construct Table 26.7, where only the values that exceed 1 are given. 
To return to the example, as P = 0.33 for the preference of 21 over 64, then P = 
1/0.33 = 3 for the preference of 64 over 21. 

Until now, we have taken into account only the fact that one experiment has a 
better value for some criterion or not. It is possible that one experiment is so much 
worse according to one criterion that, even when it is better in all other respects, 
we do not wish to conclude that it is better. To do this, we can add discrepancy 
conditions. In the present example we have not included this possibility. 

At this stage, a dominance threshold, T, can also be introduced which must be 
at least 1 and is usually higher. The idea is that it is preferable not to judge one 
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experiment to be better than the other when only a slight difference between both 
is obtained. In this way, the uncertainty involved in choosing the w; values is taken 
into account and the fact that some other criteria may have been overlooked. In the 
present example, T is considered to be 1.33 and all values that do not exceed this 
threshold are eliminated. In our simple example no experiments are eliminated and 
Table 26.8 is obtained, in which there is now a summary of those instances where 
one procedure is clearly better than another. These procedures dominate the others 
(symbol D). For example, in Table 26.8 it can be seen that experiment 64 dominates 
all others, while 24 dominates 62 and 44. We also say that 64 outranks all other 
experiments, while 24 outranks 62 and 44. From this table, a dominance graph is 
constructed, where 1-^2 means that 1 dominates 2. This graph is shown in Fig. 26,13. 

TABLE 26.8 

Dominance table for the experiments of Table 26.5. Dominance is given for experiments in column (1) over those 
in columns (2) to (7). 

(1) (2) (3) (4) (5) (6) (7) 

21 24 44 61 62 64 

21 
24 
44 
61 
62 
64 

D 
D 

64 44 

Fig. 26.13. Dominance graph for the example of Tables 26.4—26.8. Experiment 64 dominates all others. 
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26.4.7 Promethee 

Promethee, in the same way as Electre, aims to obtain outranking relationships, 
but is more refined than Electre. The latter simply counts the number of criteria for 
which one solution is better than another, but Promethee quantifies the degree of 
preference of one solution compared with another for each criterion. Promethee 
was originally developed by Brans et al. [19] for location problems, i.e. for the 
selection of one location for a factory, warehouse, etc. from several alternatives. 
The method was introduced into chemometrics by Keller et al. [18]. The first step 
of the procedure is to define preference functions for each criterion. Promethee 
includes many types of functions. For instance, the function of Fig. 26.14 can be 
used which is characterized by the following equations: 

P(A,B) = 0 f o r J < 0 

P(A,B) = d/z forO<d<z 

P(A,B)=1 for d>z 

(26.13) 

where J = >'A->'B. 

P(A,B) characterizes the preference of solution A over B. This means there is 
also a P(B,A) describing the preference of B over A. The criterion is the value of 
d. When d <0, A is not preferred over B and P(A,B) = 0. When d > z, A is so 
strongly preferred over B that a further increase in d is considered to have no 
further influence in the preference intensity. When d is situated between 0 and z, 
the preference depends linearly on d. In the next step, one sums the P,(A,B) values 
for the m criteria y and for each pair of solutions A,B and B,A. This sum can be 

1 r 

Fig. 26.14. A preference function describing the preference P{A,B) for experiment A over experiment 
B in function of the criterion value d using eq. (26.13). 
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TABLE 26.9 

A two-criterion example (from Ref. [18]) 

Experiment 

K 
L 
M 

TABLE 26.10 

y\ 

4 
7 
8 

Preference table for the data of Table 26.9 

Comparison 

K,L 
L,K 
K,M 
M,K 
L,M 
M,L 

dx 

-3 
3 

-A 
4 

-1 
1 

d2 

10 
-10 

80 
-80 
70 

-70 

Pi 

0 
1 
0 
1 
0 
0.5 

yi 

100 
90 
20 

Pi 

0.5 
0 
1 
0 
1 
0 

n 

0.25 
0.50 
0.50 
0.50 
0.50 
0.25 

weighted with weights w, for criterion y. In that case the weights are chosen such 
that their sum over all m criteria is 1. 

n(A,B) = I w,PXA,B) 
. 7 = 1 

where 

(26.14) 

Let us consider a very simple example where 3 experiments K, L and M were 
carried out for 2 criteria, y\ and y^ (Table 26.9). Suppose that zi = 2 and zi = 20. 
Then for y2, rf2(K,L) = 100-90 = 10 and P2(K,L) = 10/20 = 0.5. The values for d, P 
and n are given in Table 26.10 for the case of equal weights wi =W2 = 0.5. In a 
third step we compute so-called outranking flows. 

0^(A) = I n(A,/) (26.15) 

<I>-(A) = l n ( / , A ) 
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TABLE26.il 

Outranking flows for the data of Table 26.9 

Experiment 

K 
L 
M 

0 + 

0.75 
1.00 
0.75 

O" 

1.00 
0.50 
1.00 

^\A) is the positive outranking flow, which describes to what extent experiment 
A outranks all other experiments /, while the negative outranking flow 0"(A) is the 
extent to which A is outranked by other experiments. The results for our simple 
example are shown in Table 26.11. 

We now carry out pairwise comparisons, using the following set of rules. 
A outranks B if: 

<D̂ (A) > 0^(B) and 0-(A) < 0-(B) 

or 

a> (̂A) > O-'(B) and 0-(A) = O^B) (26.16) 

or 

<^\A) = 0\B) and OCA) < 0-(B) 

A is indifferent to B if: 

0^(A) = 0^(B) and 0-(A) = O^B) 

Otherwise A is incomparable with B. 
The net flow is defined by 

<D(A) = 0^(A) - 0-(A) 

In the above example, L outranks K and M, and K and M are indifferent. One 
should prefer L. If, for some reason, this becomes impossible, one can prefer either 
MorK. 

In this example, we have applied equal weights for the criteria, but this is not 
necessary. The Promethee procedure includes a sensitivity analysis called Gaia 
[19], which allows us to investigate the effect of the weights through a principal 
component analysis procedure on the net flows. An application to the data of Table 
26.5 is given in [18]. 
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26.5 Taguchi methods 

In Section 2.3 we discussed process capability indices and concluded that both 
deviation from target value and dispersion around target values should be small 
enough. Taguchi [22] addressed the question of how to use experimental design to 
achieve minimum dispersion around the target value and thereby increase the 
robustness of a product. We have already introduced the notion of robustness in 
chemical analysis in Chapter 13 and have shown that in chemical analysis experi­
mental design can be applied to identify sources of non-robustness (Chapter 23). 
Taguchi's ideas have had a profound effect on the thinking about quality. In this 
section we will describe only the ideas that have a direct bearing on chemometrics. 
They consist essentially of two elements, namely a response that also includes 
dispersion and experimental designs that allow us to optimize (in fact, maximize) 
that response [22-26]. 

26.5.1 Signal-to-noise ratios 

A response is characterized both by its value y and by the dispersion of the 
values when the experiment is replicated. In that case, the value of the response is 
given by J = X yt /n and the dispersion by s'^ = SCVJ - yf /(n - 1). In this context y 
is called the signal and s the noise and Taguchi's proposal was to maximize the 
signal-to-noise ratio given as 

Z=lOlog(^/s^) (26.17) 

This is equivalent to minimizing the relative standard deviation. 
Taguchi divides the factors that have an influence on the responses in two 

categories, namely: 
(1) control factors, that influence the robustness of the process as measured by Z; 
(2) signal or adjustment factors, that do not influence Z, but have an effect on 

y. In a statistical process control (SPC) setting these factors can be used to set the 
process such that the mean value is on target. 

The control and signal factors together are called the design factors. 

26.5.2 Inner and outer designs 

Taguchi proposes to investigate the effect of the factors on the response, y, and 
on the variance, s^, by carrying out an experimental design, usually a two-level (full 
or fractional) factorial or a three-level factorial (orthogonal array) design. This 
design is called the inner design and Taguchi also uses his own terminology to 
describe the designs. For instance, his L8 orthogonal array turns out to be a 2̂ "̂  
(III) design. To obtain an estimate of the variance, in the simplest case the 
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TABLE 26.12 

Factors studied in the leaf spring example (from Ref. [26]) 

Factor symbol 

B 

C 

D 

E 

O 

Factor 

High heat temperature (°F) 

Heating time (seconds) 

Transfer time (seconds) 

Hold down time (seconds) 

Quench oil temperature (°F) 

Low level High level 

840 

25 

12 

2 

30-150 

1880 

23 

10 

3 

150-170 

experiments are replicated. If we want to measure the robustness of the response 
at the experimental conditions studied, we can instead in each point carry out a 
design (often a screening design — see Chapter 23), which is called the outer 
design. This design describes the effect of small changes in all or some of the 
factors that were also studied in the inner design or of other factors. The variance 
of the responses measured in each outer design is then the s^ of the inner design. 

An example can be found in the article of Pignatiello and Ramberg [26]. They 
applied a Taguchi design to optimize a product (a leaf spring) with a target value 
of 8 inches. Deviations in both directions were undesirable. They wanted to know 
which factors could be controlled in view of obtaining the desired 8 inches. Four 
possible such factors (B, C, D and E — see Table 26.12) were identified. Another 
factor (O) was considered difficult to control and is therefore treated as an 
adjustment factor. 

A 2" '̂ fractional factorial design was carried out (see Table 26.13) as the inner 
design. The outer design consists of three replicates at the O" and three at the O^ 
level. The engineers in charge of the project were interested not only in the main 

TABLE 26.13 

Results (in inches) obtained in the Taguchi experiment for the leaf spring example 

Run 

1 
2 

3 

4 

5 

6 

7 

8 

Factor 

B 

_ 
+ 

-
+ 

-
+ 

-
+ 

C 

_ 
-
+ 

+ 

-
-
+ 

+ 

D 

_ 
-
-
-
+ 

+ 

+ 

+ 

E 

_ 
+ 

+ 

-
+ 

-
-
+ 

Results (v) 

0 " 

7.78 

8.15 

7.50 

7.59 

7.94 

7.69 

7.56 

7.56 

7.78 

8.18 

7.56 

7.56 

8.00 

8.09 

7.62 

7.81 

7.81 

7.88 

7.50 

7.75 

7.88 

8.06 
7.44 

7.69 

O^ 

7.50 

7.88 

7.50 

7.63 

7.32 

7.56 

7.18 

7.81 

7.25 

7.88 

7.56 

7.75 

7.44 

7.69 

7.18 

7.50 

7.12 

7.44 

7.50 

7.56 

7.44 

7.62 

7.25 

7.59 
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TABLE 26.14 

Interaction effects and Taguchi statistics for the data of Table 26.13 

Run 

1 
2 
3 
4 
5 
6 
7 
8 

Factor 

B 

_ 
+ 
-
+ 
-
+ 
-
+ 

C 

_ 
-
+ 
+ 
-
-
+ 
+ 

D 

_ 
-
-
-
+ 
+ 
+ 
+ 

E 

_ 
+ 
+ 
-
+ 
-
-
+ 

BC 

+ 
-
-
+ 
+ 
-
-
+ 

BD 

+ 
-
+ 
-
-
+ 
-
+ 

CD 

+ 
+ 
-
-
-
-
+ 
+ 

Statistics 

y 

7.54 
7.90 
7.52 
7.64 
7.67 
7.79 
7.37 
7.66 

s^ 

0.09 
0.07 
0.001 
0.01 
0.09 
0.05 
0.04 
0.02 

z 

28.00 
29.46 
47.70 
38.68 
28.11 
30.59 
31.55 
35.31 

effects of the factors named, but also in the interactions BC, BD and CD. It was 
considered that other interactions were not to be expected. Using the techniques 
described in Chapter 23, we can verify that the main effects are confounded with 
three-factor interactions and the possible interactions are not confounded with each 
other (see Table 26.14). 

The Taguchi statistics are also given in Table 26.14. As an example, we compute 
these values for run 1: 

y = (7.78 + 7.78 + 7.81 + 7.50 + 7.25 + 7.12)/6 = 7.54 

s'~ = [(7.78 - 7.54)2 + (7.78 - 7.54)' + (7.81 - 7.54)' + (7.50 - 7.54)' 
+ (7.25 - 7.54)' + (7.12 - 7.54)'] / (6 - 1) = 0.09 

Z = 10 logio(7.54'/0.09) = 28.00 

The effects (on Z) are given in Table 26.15. It turns out that the largest effect is 
due to C followed by the CD interaction. The Z-values are best at the highest C 
level and at the lower level of D and it was therefore concluded that these factors 
should be kept at these levels. The other factors are less important, although, due 
to the low number of degrees of freedom it is not clear whether they are significant 
or not. It was decided to investigate whether one might use them to fine-tune the 
y values obtained and achieve results as close as possible to the target of 8 inches. 
For that reason an ANOVA was carried out on the experimental data, i.e. on the y 
values of Table 26.13. Indeed, until now the analysis has indicated at which levels 
of certain factors to work to obtain a good Z-value, but it does not tell us whether 
this is due to the y or to the 5"' term. In this ANOVA, one now includes O as a factor. 
Table 26.16 gives the results. The supposed adjustment factor O has an effect on 
y and should be kept at the lower level. The controlled factors B and E have an 
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TABLE 26.15 

Effects (on Z) for the data of Table 26.14 

Factor Effect 

B (+ CDE) 
C (+ BDE) 
D (+ BCE) 
E (+ BCD) 
BC (+ DE) 
BD (+ CE) 
CD (+ BE) 

-0.33 
9.27 

^ . 5 6 
2.94 

-2.30 
3.45 

-5.19 

TABLE 26.16 

Analysis of variance of the y-values of Table 26.13 (adapted from Ref. [26]) 

Source df SS 

B + CDE 
C + BDE 
BC + DE 
D + BCE 
BD + CE 
CD + BE 
E + BCD 
0 + BCDEO 
BO + CDEO 
CO + BDEO 
BCO + DEO 
DO + BCEO 
BDO + CEO 
CDO + BEO 
EO + BCDO ] 
Residue 3̂  

I 0.587 
1 0.373 
1 0.004 
I 0.010 
I 0.005 

0.015 
I 0.129 

0.809 
I 0.086 

0.328 
0.001 
0.035 
0.020 
0.027 
0.009 

I 0.530 

MS 

0.587 
0.373 
0.004 
0.010 
0.005 
0.015 
0.129 
0.809 
0.086 
0.328 
0.001 
0.035 
0.020 
0.027 
0.009 
0.017 

F 

35.44 
22.52 

-
-
-
-

7.79 
48.85 

5.19 
19.80 

-
2.11 
1.21 
1.63 

-

P 

0.000001 
0.0004 

-
-
-
-
0.01 

<0.000001 
0.03 
0.0001 

-
0.16 
0.26 
0.21 

-

Significant effects: 
B(+CDE): 0.221 
C(+BDE):-0.176 
E(-»-BCD): 0.104 
O (+BCDEO): ^ .260 
BO (+ CDEO): 0.085 
CO (+BDEO): 0.165 

effect on y and can be fine-tuned to achieve the closest value to 8 possible. C also 
has an effect on y, but should not be used as a tuning factor, since it is fixed at the 
+ level to maximize Z. 
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Chapter 27 

Genetic Algorithms and Other Global Search Strategies 

27.1 Introduction 

In the late 1980s a new class of computational methods, the so-called natural 
computation methods were introduced in chemometrics. As their name suggests, 
these methods are inspired by a natural process. Genetic algorithms (GAs), artifi­
cial neural networks (ANN) and simulated annealing (SA) are the most prominent 
examples that have been studied in chemometrics. GAs are numerical optimization 
methods which simulate biological evolution. Simulated annealing (see Section 
27.9) is an optimization method which simulates the gradual cooling of a solid to 
overcome local energy minima. Artificial neural networks are based on a model of 
the working of the brain and are treated in Chapter 44. In this chapter we focus on 
the principles and mechanisms of GAs and briefly describe simulated annealing 
(Section 27.9) and tabu search (Section 27.10). 

In general, one can state that all search or optimization strategies are based on 
some assumptions about the search space. The weakest possible assumption is that 
each candidate solution can be evaluated. Examples of strategies that make use of 
this assumption only are: 

- enumerative search (a systematic scan of the search space); 
- random search. 

Such methods are generally applicable but inefficient. 
Other search strategies make strong assumptions about the response surface and 

are in fact tailored to the problem. They try to find an optimum as quickly as 
possible and search only in a local area of the search space. Such search strategies 
are called local. Examples are the gradient search methods, and Simplex optimiza­
tion. Local methods are efficient but not very robust. They only find the optimum 
in the search space closest to the starting point, and hence are easily trapped in local 
optima. These methods are best suited for optimization problems for which enough 
prior knowledge is available. 

Genetic algorithms are situated somewhere in between these two extremes. 
They are based on weak or moderate domain assumptions. The extent of the 
assumptions, e.g. the amount of heuristic knowledge about the problem can be 
adjusted for each case to the desired level. When the target problem is too complex 
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to be tackled by methods based on strong domain assumptions, genetic algorithms 
can still produce reliable results. With GAs it is e.g. possible to overcome to a 
great extent the disadvantages of the optimization methods such as Simplex, 
described in Chapter 26. They are able to search large problem spaces with a much 
smaller risk to be trapped in local optima. This advantage is paid for by a 
computational effort, which may be large. The recent interest of many researchers 
in these methods can be largely ascribed to the development of faster (e.g. parallel) 
and cheaper computer systems. Therefore GAs have become very useful in com­
putational optimization problems. When the optimization procedure requires time 
consuming or expensive experiments it is better to use local optimization methods 
that focus on a minimal number of experiments. 

27.2 Application scope 

Genetic algorithms are useful to treat numerical optimization problems that are 
difficult to solve with classical methods. The degree of difficulty is mainly 
determined by two factors: the size of the search space and the presence of 
suboptima. Although the applications of GAs are situated in numerous scientific 
fields, they can be approximately subdivided into three major categories: numeri­
cal problems, sequencing problems and subset selection problems. 

Problems in the first category consist of solving numerical calculation models. 
An example in chemistry is curve fitting of, e.g., an IR spectrum using a number 
of Gaussian peaks. Especially when the number of peaks is not known, this 
becomes a huge search space with many different local optima. 

The typical example of sequencing problems is the travelling salesperson (TSP) 
problem. The problem consists of finding the shortest route for a person to visit a 
number of cities, such that every city is visited only once. While this problem is 
extremely simple to state it is still a major challenge to solve. To visit Â  cities there 
are (Â  - 1)! (more than 10'̂  for N = 15) possibilities, with many almost equally 
good solutions. This type of optimization problems is not so common in chemistry. 

An example from the third category is feature selection; e.g. the selection of a 
number of wavelengths from a spectrum for multicomponent calibration. When the 
number of features to select from is large and the optimal number of features to 
select is not known, the search space becomes huge and contains many local 
optima. 

In the following sections the basic principles of GAs are explained with exam­
ples from each of the previous categories. 
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27.3 Principle of genetic algorithms 

Biological evolution has been particularly successful in the design and creation 
of amazingly complex organisms. The following mechanisms are important for 
biological evolution [1]: 

- it is based on Darwin's classical rules about natural evolution: struggle for 
life (competition rule) and survival of the fittest (selection rule); 

- it acts on an encoded form of life, the chromosomes, rather than on the living 
beings themselves. Random changes are introduced by natural mutation. 

This has stimulated several scientists to simulate this process on computers in 
order to solve complex computational problems. Holland [2] was one of the 
pioneers in the development of genetic algorithms. 

To simulate biological evolution in order to perform optimization tasks, suitable 
evolutionary components must be designed: 

- an encoding technique for the candidate solutions; 
- competition between these candidate solutions; 
- recombination between surviving solutions so that a new generation of 

possibly better solutions can be produced that replace the existing one; 
- mutation: random changes. 
We focus in this chapter on the traditional genetic algorithm, the so-called 

Simple Genetic Algorithm (SGA), as introduced by Holland [2]. We will, however, 
mention some important variants and extensions that may be useful for solving 
chemical problems [2-4]. 

27,3.1 Candidate solutions: representation 

The candidate solutions of the problem must be computer coded. In the tradi­
tional genetic algorithm these are bit strings, containing zeros and ones, that are 
manipulated further by the algorithm [5]. We will explain this by means of some 
examples. The first example is a simplification of an application described in the 
literature [6]. It concerns the optimization of the pH and the composition of the 
mobile phase for an HPLC separation. The capacity factor, k, of the different 
solutes can be calculated by means of a non-linear model. From the /:-values the 
separation quality can be derived by means of, e.g., calculating the resolution. This 
simplification is artificial because this problem can easily be solved by conven­
tional optimization and experimental design methods. However, it allows us to 
explain in a simple way the principles of the method. 

Candidate solutions are all valid combinations of the parameters to be opti­
mized. In this example they can be represented as a two-dimensional vector, 
encoded as a string in the computer. The collection of the candidate solutions 
constitutes in this case a two-dimensional search space (see Fig. 27.1). 
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a) 
x2 

X = (a,b) 

xl 

b) a b 

1 1 0 1 0 0 1 1 

Fig. 27.1. (a) Graphical representation of a candidate solution, xl represents the pH andx2 the concentration. 
X = (a,b) represents a candidate solution, (b) String representation of the candidate solution. 

There are many possibilities to represent the candidate solutions. The parameter 
values may be scaled and can be encoded as integer values or real values. Qualita­
tive parameters can be encoded as integer values with a restricted number of valid 
values. An often used representation is the binary encoding of the parameter values 
as in the traditional GA. In this encoding method the characters in the bit string are 
zero and one. In general all bit strings (candidate solutions) have the same length. 
Each bit string is divided in sub-parts. Each sub-part represents a solution parame­
ter and has a minimum length of one bit (see Fig. 27.2). 

parameter 

i i i o M O O i o i d i i o o a i i o l o 

parameter 

Fig. 27.2. Example of a binary representation of a candidate solution consisting of five parameters. 
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Suppose a parameter has the integer value V = 5. With a three-bit string 
representation 2̂  = 8 different (0-7) values can be represented. The binary repre­
sentation of the integer 5 is then 101 (V = 1x2^ + 0x2^ + 1x2^ = 5). When the 
parameter has the real value /?, that must be encoded in a binary number (BN) of 
B bits, first a certain range [/,M] is defined and divided into 2^ equidistant levels. 
Then the appropriate integer value, V, must be calculated. It is the integer number, 
closest to the value V: 

V = ̂ ^{2^-1) (27.1) 
u -1 

This integer value can then be represented in a binary number of B bits. The factor 
2^-1 determines the total number of different values that can represented between 
Z and u. With a larger B, more values can be represented and thus a higher resolution 
can be obtained. The appropriate B for a specific problem can be derived from the 
required resolution. The binary parameter can be translated into its real value by: 

R = l + {u-l)Y-[V (27.2) 

V is the integer value corresponding to the binary string. 

Example: 
A parameter that can have a real value between / = 0.0 and u = 10.0 must be 

represented in a binary form by a four-bit string. For the value R = 3.3, e.g., the 
binary representation is obtained as follows: 

V' = 

v = 
BN 

3 . 3 -
10.0-

5 

= 0101 

0.0 
-0.0 

15 = = 4.95 

The binary string 1011 (V = 11) then represents the value: /? = 0.0 + (10.0 - 0.0) 
^V[5 = 7.3. The string 1100 (V = 12) represents the real value 8.0. A four-bit 
representation corresponds thus with a resolution of 0.7. To obtain for this example 
a resolution of 0.1 it must be possible to represent 101 different values. To ensure 
that the factor 2^ - 1 is larger than 101, the number of bits, B, must be at least 7. 

In our chemical optimization example the string consists of two sub-parts, one 
representing the pH and the other the concentration. In Fig. 27.3 some encoding 
types are given for a string, representing a candidate solution: pH = 7.4 and 
concentration = 10.0; the range for the pH value is [0.0-10.0] and for the concen­
tration it is [0.0-30.0]. 

The encoding with real numbers looks, from the human point of view, the most 
familiar since we think of the solution in real numbers. This makes it easier to 
represent the problem in a sensible way. Most GA experts, however, do not advise 
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Encoding type 

Integer [74 10 

Real 07.4 10.(̂  

10111 01010 Binary 

Fig. 27.3. Some encoding types for the candidate solution (pH = 7.4; concentration = 10 M). 

the real encoding technique (see Section 27.3.2.4) [7]. Another frequently used 
technique is Gray coding. A Gray-code represents integers (0,1,...,2^"') as a binary 
string of length Â  in such a way that the Gray-code representation of adjacent 
integers differs in only one bit position. Walking through the integer sequence 
therefore requires flipping just one bit at a time. 

Example: the binary coding of the integers (0,1,...,7) is (000 001 010 Oil 100 
101 110 111) for Â  = 3. A possible Gray coding is (000 001 011 010 110 111 101 
100). There exist multiple Gray codings of any N. 

A more realistic example is to find the 3D configuration of a (bio)-macromole-
cule that is compatible with an experimentally obtained NMR spectrum. Since 
different configurations are caused by different torsional rotations around bonds it 
is straightforward to represent the 3D configuration by means of the torsion angles 
in the molecule. Consequently, the candidate solutions consist of a number of 
values, representing the different torsion angles. For example, the string: 

150.0 060.0 300.0 000.0 090.0 

represents a candidate solution involving 5 torsion angles, each of these, represen­
ted as a real value. When it is sensible to represent the angles as a multiple of, e.g., 
30° it is possible to represent the torsion angles as a multiple of 30. The candidate 
solution is then represented as: "5 2 10 0 3". These integers can also be encoded as 
a string of binary numbers: "0101 0010 1010 0000 0011". The choice of repre­
sentation determines the mesh size at which the problem space is searched. In the 
first decimal representation it is 0.1° while for the other representations it is 30°. 

Before the candidate solutions can be encoded it must first be decided how the 
(chemical) problem can be represented. In some cases this is straightforward, such 
as in the first example. In the second example, however, there are different ways 
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of representing a chemical 3D structure. An alternative to the use of torsion angles 
is the use of 3D coordinates. 

A third example concerns curve fitting. As outlined in Chapter 11, the only way 
to fit complex functions (that are non-linear in the parameters) to the data is to use 
an iterative strategy. However, this strategy requires much domain knowledge 
about the parameter values. If the initial values of the parameters are not close 
enough to the correct ones, the method is likely to end up in a local optimum 
resulting in a bad fit. GAs allow to use much less knowledge about the parameter 
values. A candidate solution consists of a string containing all parameters of the 
function, which has to be estimated. Again the representation defines the mesh size 
of the grid on the search space, evaluated by the GA. 

A typical example of sequence optimization is the travelling salesperson prob­
lem. Given 5 cities that have to be visited by the salesperson a candidate solution 
can be represented as a string of integers, each representing a particular city. The 
sequence in the string determines the visiting sequence. The string: "13 2 4 5" 
means that the cities are visited in the order 1; 3; 2; 4; and 5. A chemical example 
concerns the industrial separation of a multicomponent flow into a number of 
multicomponent products of specified composition by means of a sequence of 
distillation columns. The problem is then to synthesize an optimal distillation 
sequence that separates the single multicomponent feed into several multicompo­
nent products at a minimal cost [8]. 

In variable or feature selection the problem consists of selecting a subset of k 
variables from a set of ^ variables (see e.g. Chapter 10). To represent this problem, 
all variables in the source set of K variables must be uniquely labelled and 
represented as a string. For instance the string " 1 2 3 4 5 6 7 8 9 10" represents a 
source-set with AT = 10 variables. A candidate solution can be represented as a bit 
string of length K. A zero or one in a specific position determines the absence or 
presence of the specific variable: 

"0100110110" 

represents a subset consisting of /: = 5 variables (2,5,6,8,9). We can distinguish a 
fixed-size subset selection and a variable-size subset selection. For the fixed-size 
selection k is considered constant for all candidate solutions. The sum of the bits in the 
string must thus equal k for all candidate solutions. There is no such constraint for 
variable sized subset selection. In this case the number k must also be optimized. 

27.3.2 Flow chart of genetic algorithms 

27.3.2.1 Initiation 
The first step in the genetic algorithm (see Fig. 27.4 for a flowchart) is the 

creation of a number of candidate solutions. Without prior (heuristic) knowledge 



812 

^ 

1. initiate | 

\ ' 

2. evaluate | 

\ 

Terminate? 

3. exploit 

select 

reproduce 

^ ( 
4. explore 

recombine 

mutate 

Fitness value 

Fig. 27.4. Flow chart of a basic GA. 

the candidate solutions are randomly chosen. In this way the whole search space is 
equally well spanned. To avoid that the search space becomes unnecessarily large, 
it can be useful to use prior knowledge to select the initial candidate solutions in a 
more deterministic way [9,10]. 

The number of candidate solutions, Â p, is usually chosen in the range 50 to 100 
for most practical situations. This set of candidate solutions (or population) consti­
tutes the first generation [11]. From this first generation subsequent generations 
are created. The idea is that eventually, in the final generation, a candidate solution 
emerges that is the optimal solution of the problem. 

27,3.2.2 Evaluation and termination 
The next step in the algorithm consists of evaluating the quality of the candidate 

solutions. This requires an evaluation criterion or, in genetic algorithms terminol­
ogy, di fitness value. The optimal or target value of the evaluation criterion must 
also be defined (note that the value for the real optimum is often unknown). Since 
judging the quality of a solution requires domain knowledge, this step is the most 
domain dependent of the whole algorithm. 

For the NMR example it is possible to calculate the NMR spectrum belonging 
to each candidate solution. The smaller the difference between the calculated and 
the experimental spectrum, the closer the configuration is to the true one. The mean 



813 

squared difference between the two spectra can be used as an evaluation criterion. 
The target value for the fitness value is in this case zero or a small value depending 
on the experimental error. 

In general, the fitness value is obtained by means of an objective or evaluation 
function: y - f(x), where x is the string representation of the candidate solution and 
y is the fitness value of that particular candidate solution. The evaluation function 
thus has a string as input and returns a value indicating the performance of the 
candidate solution with respect to the problem considered. The fitness values can 
be used as such or may be scaled (e.g. between 0 and 100). The calculation of the 
fitness value is usually the most computationally intensive step. 

For the curve fitting example the candidate solutions are evaluated by the Root 
Mean Square Error (RMSE, see Chapter 10) of the resulting fit. The fitness value 
can thus be defined as the RMSE between the experimental data and the values, 
predicted with the non-linear function, using the parameter values belonging to the 
candidate solution. 

In the evaluation step it must also be verified whether the strings meet all 
constraints of the solution space. When illegal strings emerge, several strategies 
can be followed: 

- Rejection: the strings that do not fulfil the constraints are rejected. 
- Penalization: the strings that do not meet all constraints are penalized by 

lowering the fitness value. 
- Repairing: the strings are repaired according to a certain strategy so that they 

become legal. When e.g. a candidate solution emerges that is situated outside 
the boundaries of the allowed domain, the parameter values can be changed 
so that it falls inside the domain. 

Constraint handling in GAs is still a major point of research and a full description 
is outside the scope of this chapter [2,3,12]. 

The next step is to check whether the algorithm can be terminated. This is the 
case when there is a candidate solution fulfilling the target criterion for the fitness 
value. At the first generation it is unlikely that such a solution is among the 
candidate solutions since these are randomly selected. Usually, a convergence 
termination criterion is also included. When the candidate solutions of the new 
generations are not significantly better, the execution of the algorithm can be 
stopped. At this point other search heuristics (e.g. the Simplex method) can be 
included to improve the population of solutions. Another simple termination 
criterion is a maximum number of generations. It prevents the from algorithm 
going on indefinitely when no convergence can be achieved. 

27.3.2.3 Selection phase 
The next step is inspired by Darwin's selection rule (survival of the fittest). It is 

also called the exploitation stage of the algorithm. A new set of candidate solutions 
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is created from the current population. These new solutions constitute a new, 
temporary population. In the simplest case this temporary population (sometimes 
called the breeding population) has the same size (A '̂) as the original population 
(Â p). This new population is created as follows: 

- Select a candidate solution from the current population, according to a 
predefined selection strategy (see further). Make a copy of this string and put 
it aside as first member of the new population. 

- Repeat this Â ' times until the new population is complete. Note that selected 
candidate solutions are not excluded in the subsequent selections and can thus 
be selected several times. 

When the selection strategy favours the solutions with a higher fitness value, the 
new population will contain more of the better solutions of the original population. 
This is also called selection pressure. However, no new solutions are created yet 
at this stage. The new population is expected to show, on average, a higher quality than 
the previous one. A common selection strategy is to make the sampling chance 
proportional to the fitness value. There are several variants of this principle [3,5,13]: 

- Roulette selection: This is the most common, although not the best strategy. 
The selection chance is proportional to the (scaled) fitness value. Scaling is 
used to prevent that a few solutions showing a fitness value which is much 
larger (10-100 times larger) than the average dominate the selection proce­
dure and cause premature convergence. Scaling also prevents that all candi­
date solutions obtain about the same fitness value. The most usual scaling in 
this procedure is the linear scaling: scaled fitness value = ax fitness value -i- b. 
The scaling factors a and b are selected according to two criteria: (i) all fitness 
values must be positive and (ii) the best candidate solution should have a 
scaled fitness value that is about three to four times the average fitness value. 

The procedure is called roulette wheel selection since can be imagined as a 
special kind of roulette wheel (see Fig. 27.5). This procedure is used in most 
applications and a convenient way to implement it is as follows: 
1. Put the strings in a random sequence. 
2. Calculate the cumulative fitness value for each string in the selected sequence. 
3. Generate a random number between 0 and this total fitness. 
4. Select the first string whose cumulative fitness value is greater than or equal to 

the random number. 
An example of roulette wheel selection of 5 strings is shown in Table 27.1. This 

procedure ensures that the probability of each string to be selected is proportional 
to its (scaled) fitness value. 

- Linear selection: the selection probability is based on the fitness rank instead 
of the fitness value. 

- Threshold selection: This procedure ensures that the worst solutions do not 
enter the new population. First the Âw worst solutions are removed from the 
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Fig. 27.5. Roulette wheel selection: all candidate solutions (the numbers on the wheel) are assigned 
a pie piece on the wheel, proportional to their scaled fitness values. 

TABLE 27.1 
Example of selection by means of the roulette wheel strategy 

String 
Fitness 
Cumulative fitness 
value 

1 2 
3 5 
3 8 

Random numbers: 
32 
6 
18 
44 
77 

3 4 
15 34 
23 57 

Selected strings 
4 
2 
3 
4 
6 

5 
2 
59 

6 
20 
79 

original population. From the remaining number (Âp - Ny^) of candidate 
solutions strings are randomly selected. In this way the Âw worst solutions are 
never transferred to the next generation. Ny, is a predefined integer with a 
value between 0 and (Âp - 2). Âw = 0 results in random selection. 
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- Tournament selection: From the initial population Âi candidate solutions are 
randomly selected (with replacement). From this set the best string is selected 
and transferred to the new population. Ât is an integer value between 2 and 
Âp - 1. Binary tournament selection (Â t = 2) is the most usual. N[ = N^ is 
excluded, since then the next population would consist of Â ' identical strings 
(the best one) and would not have any diversity. 

- Elitist selection: This is a procedure with a deterministic part to guarantee that 
the best candidate solution(s) are transferred to the next population. In a first 
step the Âe best solutions are unconditionally selected. The other members of 
the population are selected in a probabilistic way, e.g. according to one of the 
previously discussed strategies. Combined with tournament or threshold 
selection this procedure performs best in practice. 

A non-random selection procedure results in a population which is on average, 
better than the previous one. In this way the available information is exploited. It 
is important to realize that bad solutions have a lower chance to be transferred to 
the new population, but are not excluded and may be selected and participate with 
the other candidate solutions in the procedure. This prevents premature convergence. 

27.3.2.4 Recombination and mutation 
The selection pressure, described in the previous step is essential but not 

sufficient to search the problem space efficiently. All that has been accomplished 
is that in future populations the best solutions of the original population will 
predominate but no new solutions have been found yet. To achieve this, variations 
must be brought into the population. At the same time important information, 
already present in the population, must be preserved. This can be achieved by 
means of so-called genetic operators: recombination or cross-over and mutation. 

Cross-over (recombination) 
The inspiration for this operator comes from the biological crossover between 

chromosomes. Fractions of two candidate solutions (parent strings) are recom-
bined so that two new solutions (child strings) are obtained. The simplest type of 
cross-over is the one-point cross-over as illustrated in Fig. 27.6. Two strings are 
split into two parts at a randomly selected point. The different parts are then 
recombined. The idea is that better solutions may be obtained by this type of 
recombination. Important information already present is usually preserved and 
passed on to the child strings. This is illustrated in Fig. 27.7. Suppose that the 
overall solution (consisting of two parameters a and b) of the problem is known 
and is represented as string S in Fig. 27.7. The substrings a and b represent the two 
parameters of the solution. The two parent strings are two candidate solutions to 
be recombined. The bits in bold represent 'correct' bits. The cross-over operation 
allows that pieces of well performing bit strings, called building blocks, are 
exchanged by the parent strings to reproduce better children. 



\ 
Parent string 1 1 1 0 1 0 1 1 

lOlIOlO Parent string 2 

Child string 1 110 1010 

Child string 2 1011011 

Parent string 1 1 0 0 1 1 0 0 

Parent string 2 101 1101 

Child string 1 10 01101 

Child string 2 101 110 0 

Fig. 27.6. Example of the one-point cross-over operator. 

The recombination procedure is carried out as follows: the strings of the 
temporary population are put in pairs. In the most common case the pairing of the 
strings is done in a random way. This may however result in unproductive 
recombinations. It is indeed possible that due to the selection procedure of the 
previous step, some duplicate strings may emerge in the new population. Pairing 
and recombination of these strings results of course in exactly the same strings. To 
avoid this, pairing can be done using more prior knowledge. It is reasonable to 
assume that diversity is most enhanced when very dissimilar strings are paired. A 
pairing procedure that favours the combination of dissimilar strings is therefore 
sometimes used. The difference between the fitness values of the strings can be 
used as a measure of dissimilarity. It can indeed be assumed that strings with 
different fitness value are dissimilar. Strings with equal fitness value however are 
not necessarily the same, since distinct solutions of the same quality may exist. An 
alternative measure of dissimilarity is the Hamming distance (in the encoded 
binary space) or Euclidean distance (in the real problem space) between the strings 
(see also Chapter 30). 

A cross-over point is selected randomly for each pair of strings. 
At this point the parent strings can be broken and recombined to form the 

child-strings. This recombination of the pairs is performed with a probability F,, 
which is commonly chosen between 0.5 and 1.0. 

Obviously, the recombination operator introduces new candidate solutions in 
the GA. Many GA practitioners claim that the cross-over operator is what distin­
guishes the GA from all other optimization techniques [7]. 

In Fig. 27.7a a situation is shown in which the correct combination can never be 
obtained in one step with a simple one-point cross-over, even when all correct 



string S 
(a= 12; b= 1) 

a b 

iioo'ooi 

a. One-point crossover 

Parent string 1 10 01110 
(a= 9; b= 6) 

I 
Parent string 2 00100 01 
(a= 2; b= 1) 

Child string 1 100 0 001 
(a=8;b=l) 

Chil(istring2 0 0 1 1 1 1 0 
(a= 3; b= 6) 

b. Two-point crossover 

Parent string 1 1 1 1 1 1 0 1 
(a= 15; b= 5) . . I \ 
Parent string 2 0 0 0 0 0 1 0 
(a=0;b=2) 

Childstringl 1 1 0 0 0 0 1 
(a= 12; b= 1) 

Child string 2 0 0 1 1 1 1 0 

(a= 3; b= 6) 

c. Uniform crossover u 
Parent string 1 1 1 1 1 1 0 1 
(a=15;b=5) 

Parent string 2 0 0 0 0 0 1 0 
(a= 0; b= 2) 

Child string 1 
(a=13;b=l) 

Child string 2 
(a= 2; b= 6) 

1101 001 

0 0 1 0 110 

Fig. 27.7. Example of two-point cross-over. String S represents the global solution. The bits in bold 
have the correct value. 

information is present in the parent strings. With a two-point cross-over, two cut-
points are randomly selected and the bitstring between the two cut-points is inter­
changed between the parent strings. This cross-over allows to combine the parent 
strings in Fig. 27.7b to form a correct child string. A GA, using a one-point cross-over 
requires two or more generations to obtain that result. This type of cross-over operator 
is in general called the /i-point cross-over operator. The cross-over operator that 
performs best in practice is the uniform cross-over type. This operator interchanges a 
number of randomly selected bits between the parent strings (see Fig. 27.7c). 
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Note that the cut-point(s) can be situated between any two bits of the string and 
is not restricted to the places between the subparts of the string representing the 
different parameters. This feature makes it possible that the new candidate solu­
tions obtain values for the parameters that were not present in the initial population. 
This is also illustrated in Fig. 27.7; the integer values, represented by the parent 
and child strings are given. It can be seen that, e.g. for the parameter a, the values 
for the child strings (12 and 3) are different from those of the parent strings (15 and 
0). It also shows that although the correct values of the parameters are not present 
in the parent strings, it is possible that the optimal value emerges in the child 
strings. This allows a powerful search behaviour [3,14,15]. 

When the real number encoding technique is used, the cut-point can, in contrast 
to the binary representation, only be set between the subparts of the string, 
representing the parameters. This results in a much more restricted search behav­
iour of the GA. The new solutions are only different combinations of the parent 
strings. Therefore variants of the classical cross-over operator are developed in 
which some numerical features are incorporated. One example is the average 
cross-over where the child strings are formed by averaging different subparts of the 
parent string [16-18]. 

It should be noted that whatever type of cross-over is used there always is a 
danger that invalid solutions are created. This can be handled in the evaluation 
phase, by checking that the candidate solution is within all constraints. As a rule, 
however, it can be stated that when many illegal solutions are found it means that 
the representation and the cross-over operator do not combine well. Usually an 
alternative representation or cross-over type is tried. 

In some cases problem-specific cross-over operators must be designed. A 
typical example is when a GA is used to solve a problem in which a sequence must 
be optimized, such as the industrial separation problem. Suppose that in a chemical 
plant there are six distillation columns with different separation properties avail­
able. In Fig. 27.8 a typical cross-over is shown. When cross-over operators, as 
described earlier, are used it is clear that more invalid (i.e. one coUum appears 
twice in a sequence) than valid child strings will emerge. New cross-over operators 
have been developed especially to handle this kind of sequence problems [7]. 

\ 
Parent string 1 13 5 2 4 6 Child string 1 13 513 2 Invalid 

\ 
Parent string 2 2 4 613 2 Child string 2 2 4 6 2 4 6 Invalid 

Fig. 27.8. Example of invalid strings that are produced by the one-point cross-over operator. 
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Mutation 
In one particular situation cross-over is not able to introduce the necessary 

variation. When one bit is the same in all the strings, this bit cannot be varied by 
means of the cross-over operator. Consider e.g. the following population of strings: 

0 1 10 0 10 1 

10 0 1110 1 

0 1 1 0 1 I 1 1 

1110 1001 

0 0 111111 

The last bit in all these strings equals 1. This means that only odd numbers are 
present in the population and it is not possible to obtain an even number by means 
of the cross-over operation alone. By this mechanism the GA may be trapped in a 
local optimum of the search space. To overcome this problem, another type of 
operator was introduced: the mutation operator. Mutation is a random local change 
in the bit string. Any position in any string is subject to mutation with a probability 
Pni, which is usually chosen below 0.05. With a binary representation mutation 
causes those bits that are selected to flip from zero to one or vice versa. The effect 
of the operator is shown in Fig. 27.9. Mutation ensures additional diversity in the 
population and helps to avoid premature convergence. The change of one bit can 
indeed move the string to a totally different place in the solution space. The 
mutation operator as described here cannot be applied to strings that are encoded 
as real numbers. The analogue for real number encoded strings can be the replace­
ment of a parameter value by a random value. When real number encoding is used 
mutation can however be made more intelligent. It can be used to force already 
well-performing strings, that are situated on a hill in the solution space, to explore 
the hill. This can be accomplished by changing with a small value the current 
parameter values. Using binary coding, this effect can only be achieved by first 
decoding the string to a real number and reconverting it back afterwards. 

Old string Mutate ? New string 

1 0 0 1 1 0 0 n n n n n y n 1 0 0 1 1 1 0 

1 0 1 1 1 0 1 n n n y n n n 1 0 1 0 1 0 1 

Fig. 27.9. The mutation operator. 
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Mutation was initially assigned a background role in the GA since high mutation 
rate would damage useful information already present in the population. Therefore 
a genetic algorithm that uses a low mutation probability performs better than one 
that uses a high mutation probability. A high mutation probability with no cross­
over at all is similar to a random search. A mutation rate of zero may cause the GA 
to be trapped in a local optimum as explained before. Recently however the role of 
mutation has been revised [19,20]. In some types of problem the influence of the 
mutation operator on the performance of the GA seems to be higher than that of 
the cross-over operator. A high mutation rate and a low cross-over rate would be 
preferable in such cases. Future research will have to bring clarity in this situation. 

27.3.2.5 Replace and continue 
After the application of cross-over and mutation the current population can be 

replaced by the temporary new generation population. When the original and the 
temporary population are equally large (Â ' = Â p), the replacement procedure is 
straightforward. When the temporary population is chosen to be smaller than the 
original population (i.e. Â ' < Âp) the replacement procedure requires some attention. 
From the Âp strings of the original population Â ' are replaced by the strings of the 
temporary population. This strategy is called a steady state algorithm with a generation 
gap, G = N'/Np. The selection of the Â ' can be biased towards the worst strings of the 
original population. The same selection principles as applied in the selection procedure 
(step 2) can be applied. This step completes one cycle or one generation. The 
procedure is repeated many times. Depending on the nature of the problem (number 
of parameters, degree of complexity) some hundreds, even up to many thousands of 
generations are necessary before a sufficient degree of convergence is achieved. 

27.3.2.6 Performance measure of a generation 
The performance of a generation can be measured in different ways. There is, 

however, no unique best way to measure the performance of a particular GA. We 
can compute the mean of the fitness values of all members of the population, the 
mean of the K best members of a generation, where K is a predefined integer 
number, or the best solution of each generation or a combination of these possibili­
ties etcetera. Usually the mean or median of the population together with the 'best 
ever string' is plotted as function of the generation number. A typical performance 
plot of a GA-run is given in Fig. 27.10. 

27.4 Configuration of genetic algorithms 

In the previous section many configurational aspects of GAs have been dis­
cussed. The most important ones are summarized in Table 27.2. All these possible 
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Fig. 27.10. A typical performance plot of a GA. The best ever solution together with the median of 
each generation are plotted. 

TABLE 27.2 

The most important configuration parameters of a GA 

Choice of representation of the solutions; 

Choice of strategy for: initialization of the algorithm; 
selection of strings (and selection of the appropriate parameters); 
recombination of strings/mutation; 
replacement of strings. 

A'p, the size of the initial population; 

A'', the size of the temporary population; 

Py, the recombination probability; 

P^, the mutation probability. 

configuration settings make the GA very versatile. The experienced user has many 
possibilities to tailor the GA to the requirements and characteristics of a specific 
application. There is however up to now no standard methodology available to find 



823 

optimal settings for a specific problem. This implies that experience and some rules 
of thumb will have to guide the user. It should be stressed that a reasonable 
understanding of the search mechanisms and of the influence of the different 
parameters is a prerequisite. 

The configuration optimization starts with a good initial guess for the configu­
ration parameter settings from where further improvements can be made. Different 
strategies can be used to optimize the configuration. Fortunately, however, it turns 
out that GAs are reasonably robust to a suboptimal configuration. The GA will 
usually still find the global optimum in the search space, but with non-optimal 
settings it requires much more time before convergence is reached. A much 
more difficult situation occurs however when the GA is not converging. It is 
then very hard to find out which settings have to be changed in order to obtain 
convergence. 

The experienced user of GA can apply an interactive optimization strategy. 
Given a good starting point for the configuration settings, this initial estimate is 
refined by stepwise adjustments of the settings. It is of course possible to apply a 
more systematic approach using, e.g., factorial designs. A drawback of this ap­
proach is that it requires a large amount of computing time so that in practice such 
an approach is hardly feasible. Schaffer et al. [21] applied full factorial designs to 
find the optimal parameter setting for a set of numerical function optimization 
problems. They came to the conclusion that the optimal settings vary from problem 
to problem. Moreover, these experiments were conducted using only one type of 
encoding (Gray encoding). 

The use of GAs to optimize the configuration of GAs has been reported in the 
literature [7]. To remain practical, the number of control parameters to be opti­
mized should remain limited. 

Previously we implicitly assumed that the optimal settings to start a genetic 
algorithm run remain optimal during the whole run of the GA. However, it is more 
reasonable to assume that the optimal parameters of the GA should evolve during 
the run. This then requires dynamic parameter settings, but the approach is more 
complicated. 

27.5 Search behaviour of genetic algorithms 

27.5.1 Search accuracy and precision 

It is important to realize that the performance of a GA is based on a population 
of solutions rather than on one specific solution. In that context a search accuracy 
can be defined. By accuracy we mean that the correct optimum in the solution 
space is approached by a sufficient number of strings in the population. 
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In general it is observed that GAs show a very good search accuracy in the sense 
that the correct hill in the fitness landscape is often reached. Due to the probabilistic 
nature of the operators in the GA it is much more difficult to reach the actual top 
of the hill. We say that GAs show a poor search precision. 

Note that these properties are opposite to the features of a deterministic optimi­
zation strategy such as a Simplex optimization or other hill climbing techniques. 
These techniques show a poor accuracy, because they always reach the hill in the 
fitness landscape that is closest to their starting point. Whether this is the highest 
hill depends entirely on the initialization point. Consequently, these methods are 
not suitable to search rough response surfaces. However, once they have found the 
correct hill it is almost certain that they will reach the top of that hill in a short time: 
they show a good search precision. 

27.5.2 Behaviour ofGA in the presence of multiple optima 

The fact that there are many strings in a population competing with each other 
allows the GA to find more than one high hill in the fitness landscape. When 
several optima of similar quality are present the strings are divided over these 
optima during the evolution of the GA. This is an interesting feature of the GA 
since it allows different solutions of similar quality and this in turn can throw new 
light on the problem under investigation. An example is the search for the 3D 
structure of (bio)-macromolecules. Here it is of utmost importance to find all 
structures that are compatible with the experimentally obtained NMR spectrum of 
a molecule [e.g. 22]. 

When the different optima in the fitness landscape are not equally good the GA 
mechanisms will eventually make the strings converge to the best optimum. When one 
is interested in finding the different optima some additional parameters may need to 
be introduced in the GA. One possibility is to incorporate a sharing penalty in the 
fitness value: when too many strings are situated around the same optimum the fitness 
value of these strings is diminished with a certain value. This will favour the strings to 
spread on different optima if they are present. 

27.6 Hybridization of GAs 

Because of the specific properties of GAs it is profitable to combine them with 
other techniques. In this section some of these techniques are discussed (see e.g. 
Refs. [7,13,23]). 

Post hybridization. One obvious combination is the use of a hill climbing 
technique (see Chapters 11 and 26) after a GA-run. Since GAs are powerful to find 
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Fig. 27.11. Self-hybridization of GAs. The mesh size is gradually decreased in subsequent GA 
runs. 

the highest hill but are bad at finding its top one can increase the precision by 
applying a hill climbing search strategy with the best strings. The last generations 
of a GA are not really efficient for finding the final solutions, since the strings are 
merely circling around the hill and will only find its top by accident. This 
phenomenon is also called genetic drift. Another possibility is to combine cluster 
analysis of the strings during the GA run which allows the identification of 
multiple optima in the fitness landscape. 

Self-hybridization. It is possible to run several GAs in sequence with a different 
configuration. This results in a chain of GAs in which each passes results to the 
next GA. An example is the iterative search volume contraction. The first GA is 
meant to search the space with a large mesh size. The mesh size can be controlled 
by the representation and encoding. After a number of generations the GA is 
stopped and a new GA is started with the current population that searches a 
subspace of the solution space with a smaller mesh size. This procedure is referred 
to as self hybridization and makes it possible to search large spaces in a more 
efficient way. The procedure is schematically shown in Fig. 27.11. 



826 

Pre-hybridization. Other techniques can be appUed to incorporate domain knowl­
edge in the initiahzation step. De Weijer et al. [9] use a neural network to estimate the 
number of peaks in a curve fitting problem. This approach usually results in a much 
more efficient optimization procedure than blind (random) initialization. 

Parallel-hybridization. It is possible to run several GAs in parallel, e.g. each 
with a different configuration or population initialization. After a number of 
generations information is exchanged between these different GAs. The way to do 
this is still subject to research. A possibility is to define a migration operator. This 
operator exchanges some of the strings between the different populations accord­
ing to a certain strategy. This is quite a complex procedure and many variants 
exists. The description of these procedures is outside the scope of this chapter. 

27.7 Example 

In this section we follow step by step a run of a GA to solve a (relatively) simple 
problem. We will try to find the optimum of a function of two parameters (pi, p2). 

f{pl,p2) = e-^l(/^2-0.5r + (/7l + iri ^ Q ^ ^-0.4(/;2+ir-0.2(/>l-0.5)' 

In Fig. 27.12 the function is given together with the contour plot of the function 
values in the parameter space. The problem is to find the parameter combination 
(p\,p2) yielding the highest peak. We will apply a basic GA to solve this problem. 
The configuration parameters are selected as follows: 

Population size, Âp = 20; 

Cross-over operator: one-point cross-over; 

Cross-over probability, Pr = 0.75; 

Mutation probability, P^ = 0.05; 

Stopping criterion: maximum 30 generations. 

The first step is to select a representation of the candidate solutions. We selected 
a binary coding of the parameters and defined the range of the parameters to be 
between -3.33 and +3.33. Each parameter is coded by 10 bits; this allows us to 
represent 2'^ levels between -3.33 and +3.33. A candidate solution thus consists of 
the two 10-bitbinary encoded values of the parameters/?1 and/?2 (see Fig. 27.13). 
According to eq. (27.2) the string 0100101111, e.g., represents a real number value 
of: 

R = -3.3 + (6.66) - ^ ^ 303 = -1.33 
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(a) 

(b) 

0.5 

' "' /\X'5'V,'*>' XX^<>'̂  »N' •'* ' ' , \ ^ " .; 

^ >-•< 

-5^-5 

Fig, 27.12. Graphical representation (a) and contour plot (b) of the function: 
f01,p2) = e-'l*^^-"-'' ^ipM) 1 + 0.5 e-«"(A'2+i)'-0.20)1-0.5)' 

PI P2 

0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 

PI = -1.33 P2= 0.42 

Fig. 27.13. Binary representation of the candidate solution (pi =-1.33; p2 = 0.42). 
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TABLE 27.3 

Initial population for the example of Section 27.7 

String P-^ Pl Fitness value 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

10000000100100001000 
lOlOOOOOllOIOOOllOlO 
11000100000011010010 
00110010011110000000 
00001011001001111111 
00100111010011000100 
00010100000000111001 
lllOOOllllOOOlI11100 
01001010011000011110 
10100100001011001011 
10101001110000001010 
01010000001001110100 
01011111011011001101 
00111001001010000100 
01111010000100100111 
10100111101111100111 
00000000111010010110 
10001110101011111111 
lOlOlOlOOOlOllllOIOl 
01100100010110100111 

0.016 

0.85 

1.8 
-2.0 

-3.0 

-2.3 

-2.8 

2.6 
-1.4 

0.94 

1.1 
-1.3 

-0.85 

-1.8 

-0.61 

1.0 
-3.3 

0.38 

1.1 
-0.72 

-1.6 

-1.5 

-2.0 

2.5 
0.83 

-2.1 

-3.0 

-2.5 

0.20 

1.3 
-3.3 

0.76 

1.3 
0.86 

-1.4 

3.2 
0.98 

1.7 
1.6 

-0.58 

0.4100 

0.4418 

0.2492 

0.0010 

0.0106 

0.0658 

0.0119 

0.0817 

0.3078 

0.0557 

0.0596 

0.4883 

0.0457 

0.0442 

0.4285 

0.0004 

0.0057 

0.0294 

0.0315 

0.3456 

Initial population summary: 
Maximum fitness, 0.4883 
Average fitness 0.1557. 

TABLE 27.4 

Recombination and mutation step for the example of Section 27.7 

String Cut-point Cross-over Mutation 

01100100010110100111 
101000001lOlOOOIIOIO 

lOlOOOOOIIOIOOOOOIII 
OIIOOIOOOIOIIOIIIOIO 

lOIOlOOOlIOlOOOOOlll 
OOIOOIOOOIOII1111010 

OOlllOOlOOIOlOOOOIOO 
10000000100100001000 

10 lOOOOOOOIOIOIOOOOIOO 
OOIIIOOIOOOIOOOOIOOO 

lOOOOOOOlOIOIOlOOlOO 
OOIIIOOIOOOIOOOOIOOO 

OOlllOOlOOIOlOOOOIOO 
10101010001011110101 

13 lOlOIOlIOOIOIOOOOIOO 
OOIUOOOOOIOIIIIOIOI 

lOIOlOllOOIOIOOOlllO 
OOIUOOOOOIOIIIIOIOI 

lOIOlOlOOOlOIlllOlOI 
lOIOOOOOl1010001lOIO 

lOIOOOOOIIOIOOOIIOOl 

loioioioooiomioiio 
lOlOOOIOl10110011001 
lOlllOlOOOIOllllOIlO 

(continued opposite) 



TABLE 27.4 {continuation) 

829 

String Cut-point Cross-over Mutation 

10100000110100011010 
OllOOlOOOlOllOlOOill 

10000000100100001000 
01001010011000011110 

11000100000011010010 
10000000100100001000 

OllOOlOOOlOllOlOOill 

oimoiooooiooiooiu 

OllOOlOOOlOllOlOOill 
10001110101011111111 

01001010011000011110 
OllOOlOOOlOllOlOOill 

4 OUOOIOOOIOIIOIOIOIO 

loiooooonoioooioni 

13 01001010100100001000 
10000000011000011110 

13 10000000000011010010 
11000100100100001000 

14 01111000010110100111 
OllOOllOOOOlOOlOOlll 

— OllOOlOOOlOllOlOOill 
lOOOUlOlOlOllllllU 

— 01001010011000011110 
OllOOlOOOlOllOlOOill 

OUOOIOOOIOIIOIOIOIO 
lOlOOOOOllOlOOOlOlll 

0100101 UOOIOOOOOOOO 
1000000001lOOOOlOl10 

lOOOOOOOOOOO11010010 
11000100100101011000 

01111000010110101 111 
OllOOllOOOOlOOlOOlll 

01000100010110110111 
100011 lOlllOlU HI 11 

01000010011000011110 
OllOOlOOOlOOlOlOOlll 

'"Starting from the right. 

Since the problem is relatively simple a small population is selected (Âp = 20) 
and kept constant. The initial generation is selected randomly and is given in Table 
27.3. For each of these candidate solutions the fitness value (here the function 
value) is calculated. From this population a temporary population is selected using 
the roulette wheel selection strategy on the fitness values, as explained in Section 
27.3.2. The selected strings are: 

1,3,20,9,18,2,14,20,14,9,1,20,19,2,2,20,15,1,20,19. 

The next step is to apply recombination and mutation. The cross-over procedure 
is started by pairing randomly the selected strings. For the one-point cross-over one 
cutpoint must then be randomly selected for each pair. The result is shown in Table 
27.4. In the first column the pairs and the selected cutpoints are shown. On each 
pair the cross-over is applied with a probability of 0.75. The result is shown in the 
second column of Table 27.4. Finally the mutation operator acts on each bit with a 
probability of 0.05. The result is shown in the third column. This temporary 
population replaces the initial population and the fitness of each candidate solution 
of this new population is calculated (see Table 27.5). This completes one cycle. As 
can be seen the results of the new generation are not better than the initial 
population. It is on average even a little worse. This is due to the stochastic 
properties of the algorithm. In Fig. 27.14 the position of the candidate solutions of 



830 

TABLE 27.5 

Generation 1 for the example of Section 27.7 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

String 

10101000110100000111 

00100100010111111010 

loooooooioioioiooioo 
00111001000100001000 

10101011001010001110 

00111000001011110101 

10100010110110011001 

lOlUOlOOOlOllllOUO 

01100100010110101010 

10100000110100010111 

01001011100100000000 

10000000011000010110 

10000000000011010010 

11000100100101011000 

01111000010110101111 

01100110000100100111 

OIOOOIOOOIOUOUOIU 

10001110111011111111 

01000010011000011110 

01100100010010100111 

p^ 

-1.6 

-3.6 

0.02 

-2.8 

1.7 
-2.8 

1.4 
2.3 

-1.1 

1.3 
-2.1 

0.0098 

0.0 
2.7 

-0.30 

-1.0 

-2.3 

0.58 

-2.4 

-1.1 

pl 

-2.4 

-0.059 

1.6 
-2.4 

1.4 
2.4 

-1.0 

2.4 
-0.84 

-2.3 

-2.5 

0.21 

-2.9 

-1.6 

-0.79 

-2.1 

-0.71 

2.5 
0.29 

-3.4 

Fitness value 

0.1735 

0.0125 

0.0139 

0.0261 

0.0388 

0.0006 

0.4316 

0.0026 

0.2996 

0.2310 

0.0553 

0.2645 

0.1040 

0.1646 

0.4319 

0.1914 

0.0971 

0.0038 

0.0470 

0.0321 

Generation 1 summary: 
Maximum fitness, 0.4319. 
Average fitness, 0.1320. 
Best ever, 0.4883. 

some generations are shown. As the procedure is repeated several times, it can be 
seen that the results are improving and the optimum is found around the tenth 
generation. As the algorithm proceeds, the solutions tend to cluster around the 
maximum in the solution space. The fact that not all candidate solutions are close 
to the optimum illustrates the poor search precision of the algorithm. In this 
example the only stopping criterion is the maximum number of generations which 
is set to 30. 

It can be seen that although the algorithm converged around the tenth genera­
tion, due to the stochastic properties of the algorithm further scattering can occur. 
The performance plot is shown in Fig. 27.15. 
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(a) Initial population 

(b) Generation 1 

Fig. 27.14. Scatterplot of the initial population (a) and of subsequent populations from generations 1 
to 15 (b-p) on the contour plot of the function to be optimized. 
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(C) 

(d) 

Generation 2 

Generation 3 

Fig. 27.14 continued. 
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Generation 4 

(f) Generation 5 

Fig. 27.14 continued. 



834 

(g) 

(h) 

Generation 6 

Generation 7 

Fig. 27.14 continued. 
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(i) 

41 

3 

2h 

% 

(j) 

Generation 8 
n 1 \ r 

-1 0 1 
p1-> 

Generation 9 

Fig. 27.14 continued. 
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(k) Generation 10 
- I 1— 

(I) Generation 11 

Fi^. 27.14 continued. 
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(m) Generation 12 

(n) Generation 13 
"T r-

Fig. 27.14 continued. 
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(O) 

(P) 

Generation 14 

Generation 15 

Fig. 27.14 continued. 
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(a) 
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Fig. 27.15. Performance plot of the GA of Section 27.7. Plot of the best ever solution (a) and of the 
average of each generation (b). 
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27.8 Applications 

The field of GAs is relatively young. The first applications were reported around 
1960 when Holland introduced the method [24]. It is however only since the 1980s 
that the number of publications increases exponentially, mainly due to advances in 
the computer technology. In 1985 the first conference on GAs took place and the 
first textbook appeared in 1989 [3]. An extensive bibliography was made by 
Alander [25]. He compiled more than 3700 references on GAs and conferences 
from many different fields of science. He also made a separate bibliography on 
GAs in chemistry and physics. This bibliography contains more than 300 articles 
from 100 journals from which about 200 articles are on chemistry. 

Examples in chemistry can be found in the three different application types for 
GAs (numerical, sequencing and subset selection problems). In Table 27.6 some 
examples and references are given in the three application fields. 

TABLE 27.6 

Applications of GAs in chemistry 

Numerical Problems: 

Estimation ot model parameters; 

- fitting IR spectra of PET yarns [9]; 

- nonlinear chromatographic behaviour [6]; 

- kinetic parameters [26]; 

- LMS regression parameters [27]; 

Optimization of statistical quality control parameters [28]; 

Multicriteria optimization [29]; 

PLS. calibration [30,31]; 

Quantitative structure activity relationships [32]; 

Molecular modelling, molecular design [22,33-43]; 

Neural network training [44]; 

Display of chemical structures [45]. 

Sequencing problems: 

Sequential assignment of NMR spectra of proteins [40]; 

Design of .sequence of distillation columns [8]. 

Subset selecticm problems: 

Wavelength .selection for multivariate calibration [46^8]; 

Filter selection for multivariate image analysis [49]; 

Clustering of large data.sets [50]. 
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It is clear from these examples that there are many possibilities for GAs in 
chemistry and probably many more applications and useful results will emerge 
during the coming years. An important aspect that will need proper attention for 
certain applications is the validation of the result found with the GA. The applica­
tion of wavelength selection for multivariate calibration is such an example. Many 
combinations are tried out by the GA and the probability to find chance correlations 
is considerable [51]. 

The major drawback and the bottleneck of the use of GAs is the configuration 
problem. For the moment no good solutions are available to overcome this prob­
lem. It is partly due to this drawback that interest in other global search strategies, 
such as simulated annealing and tabu search is increasing. These methods pose 
much less configuration problems. 

27.9 Simulated annealing 

The basic idea for the simulated annealing (SA) algorithm was provided by 
Metropolis et al. in 1953 [52]. They published an algorithm that simulates the 
controlled cooling of material in a heat bath to a low-energy state, a process which 
is known as annealing. If the cooling process is too fast, a number of imperfections 
arise in the solid state. Kirckpatrick et al. [53] found thirty years later that the same 
idea could be used to solve general optimization problems. 

27,9.1 Principle of simulated annealing 

The approach resembles classical optimization (e.g. steepest descent or Sim­
plex), but has the ability to overcome its major difficulty, namely to be trapped in 
local optima. As mentioned earlier, the solutions found by local optimization are 
determined by the starting position. This is caused by the fact that they always 
move in the direction that optimizes the objective function. In this way they end up 
in the optimum closest to the starting point. A way to alter this behaviour is to allow 
also steps in a direction that yields inferior solutions. Since the overall objective is to 
find the optimal solutions, these steps in the 'wrong' direction must be taken carefully. 
In the simulating annealing method they are allowed, but controlled by a probability 
function that has its roots in Metropolis' work in statistical thermodynamics. 

According to the laws of thermodynamics the probability that a system moves 
to a state with a higher energy is given by: 

p(8£) = e'^^ 

p{hE) is the probability that at a temperature, 7, the system moves to a state with 
an energy that is a value hE higher; k is the Boltzman constant. In the Metropolis 
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algorithm a perturbation is induced in the system and the associated energy change 
is calculated. When the energy is lower the perturbation is accepted; when the 
energy is higher the perturbation is accepted with the probability given above. This 
process is iterated while the temperature decreases until the system has cooled 
down into a frozen state, i.e. no changes that yield an energy increase are accepted. 

The different states of the system represent the different candidate solutions. 
The energy of the state can be seen as the value of the objective function for the 
specific solution. The perturbations to move into another state can be compared 
with moving to a neighbour candidate solution. The frozen state corresponds with 
the final solution, found by the algorithm. The temperature is then a control 
parameter. In simulated annealing terminology, the control parameter that deter­
mines the probability of accepting inferior solutions is still called the temperature. 
The Boltzman constant is not retained in the terminology, instead a cooling 
parameter a, between zero and one is defined to allow the temperature to decrease 
as the algorithm progresses (see further). 

Any local optimization method can be converted into a simulated annealing 
strategy, by allowing steps in an inferior direction according to a certain probabil­
ity. A classical local optimization (minimization) procedure can be summarized as: 

1. Select a starting position: solution 5o. 
2. Evaluate 5o by calculating the objective function, f(5o). 
3. Search for a neighbouring solution, 5, using a predefined stepsize such that 

f(S) < f(5o) by a suitable method (e.g. steepest descent). 
4. Replace 5o by S. 
5. Repeat the last two steps until no better neighbouring solutions can be found. 

A simulated annealing procedure can be summarized as: 
1. Select a starting position, 5o. 
2. Evaluate ^o by calculating f(So). 
3. Select an initial value of the control parameter, the temperature, T. 
4. Select a value of the control parameter a, to reduce the temperature. 
5. Select randomly a neighbouring solution 5. 
6. Calculate 6 = f(S)-f(5o). 
7. If 5 < 0 take 5 as the new solution. 
8. If 5 > 0 accept 5 with a probability, exp(-6/7); keep 5o with a probability, 

l-exp(-5/7). 
9. Repeat the steps 5-8 a number of times, nn. 
10. Set the control parameter T = aT. 
11. Repeat steps 5-10 until convergence. 
A convenient method to implement step 8 is to select a random number in the 

interval (0,1). When this random number is smaller than the value of exp(-6/r) the 
attempted candidate solution is accepted; when it is larger, the attempted solution 
is not accepted. 
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27.9.2 Configuration parameters for the simulated annealing algorithm 

From the previous summary it is clear that some decisions must be taken before 
applying simulated annealing. They concern a number of problem specific aspects, 
such as the cooling scheme. 

The cooling scheme is defined by the initial temperature and the rate at which 
the temperature decreases. This rate is determined by the number of states, nit, that 
are investigated at each temperature and by the control parameter a. When the 
initial temperature is too high, almost all inferior solutions will be accepted and the 
search becomes a random search. When the temperature is too low, no inferior 
solutions will be accepted, and the search reduces to a slow version of a classical 
local search such as Simplex or hill climbing. The optimal value is problem 
dependent. In general it is assumed that a probability between 0.5 and 0.9 for 
accepting inferior solutions is a good guess. This means that a suitable initial 
temperature depends on the average difference in the value for the objective 
functions for neighbouring solutions, i.e. the form of the objective function. When 
not enough prior knowledge is available the temperature can initially be increased. 
The probability of accepting inferior solutions is determined experimentally. When 
the temperature that yields a suitable probability is reached, the cooling process can 
be initiated. This process can be compared to the process of first heating the system 
until it is melted before starting the cooling process. 

According to theoretical considerations, the value of a should be high (0.8-
0.95) which implies a slow cooling process. Other, more compHcated, cooling 
schemes are also possible. The number of repetitions at each temperature, n\u 
depends on the size of the neighbourhood and may be different for different 
temperatures. It is, e.g., important that the algorithm spends enough time in the 
neighbourhood of a (local) optimum, to explore it fully. Therefore n\i is usually 
increased when the program progresses (e.g. depending on the ratio of superior 
versus inferior solutions). Another approach to determine nn is to change the 
temperature when a certain number of attempted solutions are accepted. This 
implies that at the beginning of the procedure the temperature changes faster than 
at lower temperatures. 

As well as the previous generic decisions, some problem-specific decisions 
should also be considered. It has been implicitly accepted in the previous algorithm 
that the neighbourhood candidate solutions can be easily defined and remain 
unchanged during the process. In practice the neighbourhood definition, i.e. the 
step size, may require a considerable amount of prior knowledge. It may also be 
desirable to decrease the step size when approaching an optimum. 

Many modifications to the basic algorithm have been proposed and tried out. 
The most important concem different cooling schemes and the use of alternative 
functions to determine the probability to accept the inferior solutions. A full 
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explanation of these modifications is outside the scope of this book. Moreover, in 
practice the basic algorithm seems to perform best. The interested reader is referred 
to the books by Reeves [54] and Aarts and Korst [55]. 

27.9.3 Applications 

Since Kirckpatrick showed the possibilities of the simulated annealing algo­
rithm of IVIetropolis, numerous applications have been published in different fields 
of sciences. A good overview can be found in Aarts and Korst [55]. In analytical 
chemistry Kalivas et al. [56] successfully applied simulated annealing for selecting 
an optimal calibration set for NIR determinations. They also compared the SA with 
Simplex optimization and found the SA superior to Simplex for wavelength 
selection in UV-VIS. Lucasius et al. [48] performed a comparative study involving 
genetic algorithms and simulated annealing for wavelength selection in multicompo-
nent analysis. Different optimization criteria were tested. No general conclusions 
could be drawn since the performance depends on the domain characteristics which 
determine the fitness landscape and on the configuration settings of the algorithms. 
Other comparative studies have been performed in various domains [39,57]. 

27.10 Tabu search 

Tabu search (TS) is yet another strategy to solve difficult optimization problems 
with many local optima. It was introduced first in 1977 by Glover [58]. The first 
publications on the theory of TS appeared in 1986 [59-61] and the first tutorial in 
1989 [62]. Together with simulated annealing and GAs, TS has been selected as 
'extremely promising' for the future treatment of practical applications [54]. Just 
like simulated annealing, it is basically an enhancement of a local optimization 
strategy. It first searches an optimum. The position of the optimum is 'remem­
bered' and is avoided in future searches. 

In the same way as in a local search method, the TS searches the environment 
of the initial selected candidate solution. The definition of this neighbourhood is 
an important, problem specific decision. All valid candidate solutions are evalu­
ated and the best one is selected. In a separate list (the tabu list) this solution is 
saved. When the procedure reaches a (local) optimum a classical local search 
strategy would stop here but TS continues the search. It evaluates again the 
environment of the local optimum and the best solution in it is selected. It allows 
thus, such as in simulated annealing that worse solutions are accepted. The only 
restriction for a candidate in the environment to be selected as the next solution is 
that it is not listed on the tabu list. This means that the procedure will escape from 
the local optimum but in a different direction as it reached it. There are two 
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drawbacks to the procedure as described above. Firstly, as the procedure continues 
the tabu Ust grows and becomes too large to be practically applicable. Secondly, 
the demand of never ever visiting a location twice is too restrictive. It is possible 
that a certain position must be passed twice to allow exploration of another 
direction. Therefore in practice the tabu list is limited to about 10 steps. The most 
recently visited position replaces the oldest. 

Improvements and alterations have been proposed. One improvement is to 
introduce long-term and intermediate-term memory tabu lists, in addition to the 
short-term memory tabu list as described above. Tabu search has been hybridized 
with steepest descent methods and with GAs. Applications of tabu search have 
been reported for scheduling problems, layout and circuit design, clustering, neural 
network training and sequencing problems. To the authors' knowledge no applica­
tions have been reported in chemistry. 
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a-error, 79, 80, 85, 157, 423, 424, 425 
a-value, 78 
p-considerations, 88 
p-error, 80, 85, 90, 102, 157, 386, 398, 401, 

402,409,414,423,424,425 
2 factorial design, 781 
2^ factorial design, 515, 659 
A-optimality, 704 
AAS,65, 123,418,437,729 
aberrant values, 41 
about line sum of squares, 184 
absolute systematic error, 403-407,408,412,413 
acceptable quality level (AQL), 639 
acceptable range, 340 
acceptance number, 638 
acceptance sampling, 86, 636, 638 
acceptance zone, 639 
accuracy, 10, 36, 379, 380, 393 
—of the mean, 41 
ACE, 12,329 

action limits, 156-158, 168, 466, 470 
action lines, 152, 160, 162, 165 
addition law, 462 
addition of vectors, 234 
additive model, 128,331 
additivity and variance stabilization (AVAS), 

330 
adjusted R^, 21^ 
adjustment factors, 799 
AIDS, 475 
air pollution, 529, 533, 534, 568 
aliases, 686, 688 
all possible regressions, 278 
alternating conditional expectation (ACE), 329 
alternative hypothesis, 74, 75, 492 
analysis of the residuals, 179, 274 
analysis of variance see ANOVA 
analyte detection limit, 429 

analytical blank, 427 
analytical chemistry, 12-14, 22, 48, 85, 151, 

644, 667 
analytical laboratories, 10, 160 
analytical methods, 7, 137 
angle between vectors, 239 
anisotropic effects, 634 
ANOVA, 3, 6, 101, 121, 180, 184, 270, 343, 

403,511,733 
—by ranks, 133 
—model, 643 
—table, 128, 130 
arch of knowledge, 1, 2 
arcsine transformation, 70 
ARIMAmodel, 169,604 
ARMA model, 602, 604 
ARMAX model, 602,617 
ARTHUR, 13 
artificial intelligence, 10, 11, 18, 586 
artificial neural networks, 336, 805 
ARX model, 601, 602, 603 
atomic absorption spectrometry see AAS 
attributes, 11,22 
autocorrelation, 228, 593, 594, 595 
—analysis, 599 
—charts, 158, 604 
—coefficient, 627 
—function, 594, 595, 597, 600, 605, 611, 624 
autocorrelograms, 597, 599, 600, 624, 625 
autoregression, 228, 593, 595 
—function, 593 
autoregressive integrated moving average see 

ARIMA 
autoregressive models, 594 
autoscaling, 52 
average range, 31 
average run length, 157, 165 
axioms of probability, 478 



850 

back-fitting, 330 
backward elimination procedure, 280 
bacterial counts, 67, 69 
bacteriological data, 68 
bad leverage point, 202 
balanced incomplete block design, 737 
Bartlett's test, 132 
barycentre, 522 
base vector, 242 
basis function, 332 
Bayes' probability, 560 
Bayes' theorem, 482, 561 
Bayesian approach, 484 
Berkson Model, 215 
best linear unbiased estimation (BLUE), 631 
between-column sum of squares, 127 
between-column variance, 125 
between-day component, 155 
between-laboratory component, 442 
between-laboratory standard deviation, 396 
between-laboratory variance, 130, 442 
between-run variation, 383 
bias, 33, 35, 36, 40,41, 73, 82, 83, 84, 151, 

156, 160,380,393,417,436,441 
—of a measurement method, 395 
—parameter, 289 
biased estimator, 48, 289 
bimodal distribution, 486 
binary data, 11 
binary encoding, 808 
binomial distribution, 161, 463, 471, 621 
bio-analysis of drugs, 427 
bioequivalence studies, 90 
biplot technique, 16 
biplots, 536, 539 
bivariate data, 520 

bivariate normal distribution, 223, 224 
biweight, 361,458 
Bland and Altman plot, 412, 413 
blank, 42, 382, 385, 396, 397, 399, 404, 405, 

437 
—chart, 161 
—correction, 428, 429 
— measurement, 423, 427 

block effect, 694, 714 
blocking, 143, 145, 680, 735 
blocking out, 134 
Bonferroni adjustment, 100, 198 
Bonferroni correction, 121 
Bonferroni procedure, 135, 401 
Bonferroni test, 498 
bootstrapping, 370 
boundaries, 649 
box and whisker plot see box plots 
box plots, 4, 63, 131, 135, 341,416, 417, 452 
Box and Cox transformation, 70 
Box-Behnken design, 708, 716 
breakdown point, 355 
breeding population, 814 
building blocks, 816 
bulk sampling, 619 

C 4.5 algorithm, 568 
calibration, 3, 6, 7, 160, 171, 172, 428, 583 
—design, 3 
—line, 207, 382, 396, 401, 402, 406, 435, 437, 

646 
—procedure, 400 
candidate solutions, 807 
canonical equation, 745 
canonical form, 746 
canonical variate, 555, 570 
capability, 17, 56 
capability index for setting, 33 
capabihty indices, 799 
capable, 33, 37 
capillary gas chromatograms, 582 
capillary zone electrophoresis, 683 
cardinality of a fuzzy set, 577, 578, 579 
case-control studies, 512 
category, 475 
cause-effect diagram, 37 
cell frequency, 476 
central composite circumscribed, 713 
central composite design, 657, 708, 711, 782 
central composite face-centred, 713 
central composite inscribed, 713 
central limit theorem, 56, 177, 371 
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central location, 27, 49, 151 
central moment, 49 
central tendency, 26 
centre a column vector, 238 
centre line, 151 
centre point, 674, 681 
Centre for Process Analytical Chemistry, 14 
certification process, 399 
certified reference material, 161 
charts 
—for attributes, 161 
—for precision, 160 
check sample, 151 
chemical analysis, 10 
chemical measurement, 40 
Chemometrics Society, 13 
chi-square test, 114, 116, 117, 155,499 
chi-square distribution, 107 
chromatographic methods, 12 
chromatographic optimization, 649 
chromatographic response function (CRF), 788 
chromatography, 17,431,432, 655, 783, 790 
class, 24 
class indicator variables, 9 
class interval, 24 
class Hmits, 24 
class mark, 24 
classification, 5, 8, 13 
clinical chemistry, 436, 451 
clinical trials, 85 
closed data, 247 
closure, 248 
clustering, 8, 569 
Cochran outHer, 445 
Cochran test, 97, 155, 209, 446 
Cochran's criterion, 132 
Cochran's diagram, 495 
coded factors, 654 
coefficient 
—of determination, 229 
—of multiple correlation, 274 
—of multiple determination, 274, 288 
—of variation, 27, 384, 387 
cofactors, 259 

cohort studies, 513 
collaborative studies, 110,441 
collection time, 605 
coUinearity, 245,261 
column-centring, 255, 531, 541 
column space, 234 
column-standardization, 531 
column vector, 232, 249 
combined standard uncertainty, 44 
combining mixture and process variables, 766 
common odds ratio, 512 
comparison 
—of a mean with a given value, 98 
—of a variance with a given value, 107 
—of the means of two independent samples, 

93 
—of the means of two paired samples, 97 
—of the slopes of two regression Unes, 208 
—of two correlation coefficients, 227 
—of two laboratories, 408 
—of two means, 93 
—of two methods, 408, 538 
—of two variances, 104 
complement of a fuzzy set, 577, 578, 579 
complementary events, 462 
complete cubic (canonical) model, 748 
composite responses, 649 
concentration detection limit, 432 
concentration Umits, 429 
concordances, 499 
conditional distribution, 223 
conditional probability, 462,476, 478, 482, 

560 
confidence, 59 
confidence interval, 60, 61, 75, 94, 96, 165, 

189, 284, 320, 361, 504, 506, 508 
—forp2,421 
—for the intercept, 189 
—for the mean, 58 
—for the slope, 189 
—for the true mean value of y, 285 
—for the true regression parameters, 284 
—for the true response, 195 
—of the correlation coefficient, 225 
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confidence limits, 59, 77, 223 
—for Poisson-distributed values, 469 
configuration of genetic algorithms, 821, 822 
confounding, 134, 684 
confounding factor, 503, 511 
conservative test, 496 
constant (absolute) systematic errors, 192, 396, 

437 
constraint handling, 813 
consumer/producer risk, 86 
contingency tables, 6, 475 
continuous distributions, 24, 117 
continuous variables, 22 
contour plot, 651 
contrast, 496, 508, 532, 543 
control, 36, 39 
—charts, 5, 37, 151,587 
—factors, 799 
— limits, 615 
—system, 607 
controllability, 588, 589 
controlled autoregressive model see ARX 
controlled autoregressive moving average 

model see ARMAX 
convenience sampling, 621 
conventional set theory, 573 
Cook's squared distance, 203, 300 
cooling process, 843 
corrected process capability index, 37 
corrected sum of squares, 126 
correlation, 565 
—analysis, 172 
—and regression, 228 
—charts, 37 
—coefficient, 7, 221, 225, 240, 243, 414, 418, 

420 
—diagram, 219, 220 
correspondence factor analysis, 516, 539 
counter-current distribution method, 463 
counting rate, 469 
counts, 11,465,468 
covariance, 221, 627, 632 
— matrix, 256, 552 
covariogram, 624 

coverage factor, 44 
cracking, 568 
crisp set, 573 
critical/^-values, 105, 106 
critical level, 424 
critical g-values, 111 
critical ^values, 61 
critical values, 76 
—for Dixon's test, 111 
—for the Grubbs' test, 113 
—for the Kolmogorov-Smirnov test, 119 
—for the Mann-Whitney f/-test, 348 
—for the runs test, 353 
—for the Wilcoxon signed rank test, 346 
—of chi-square, 107 
—of ranking scores, 458 
—of the sign test, 345 
—of the Spearman rank correlation 

coefficient, 352 
cross-validation, 282 
cross-over, 816 
—one-point, 817 
—two-point, 818 
—uniform, 818 
crossed ANOVA, 148 
crossed design, 3 
cubic model, 656 
cubic smoothing splines, 329 
cubic splines, 12 
cumulative frequency, 24, 64 
—distribution, 52 
cumulative normal probability distribution, 51 
cumulative probability, 25 
—distribution, 25 
cumulative relative expected frequencies, 116, 

117 
cumulative relative frequency distribution, 24, 

117 
cumulative relative observed frequencies, 117 
cumulative sum (CUSUM) chart, 158, 163, 

164, 168 
cumulative sum of differences, 163 
cumulative table, 55 
curvature, 681 
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—check, 781, 782 
curvefitting, 307, 811 
curve resolution methods, 15 
curvilinear model, 264 
cyclical changes, 156 

D-optimal designs, 648, 657, 722, 734 
D-optimality, 704, 756, 764 
D-optimality principle, 643 
data matrix, 231 
data structures, 4 
datatables, 3,6, 231 
dead time, 604 
decision limit, 423, 425, 428, 486, 489, 490, 

505 
decision support systems, 10 
decision tree, 568 
decorrelation, 544, 552 
deductive expert systems, 567 
deductive reasoning, 10 
defective items, 466 
defining contrasts, 688 
degradation, 471 
degrees of freedom, 11, 27, 48, 494 
deleted residual, 282 
dependent variable, 171, 264 
Derringer functions, 779, 788 
descriptive robust statistics, 339 
design factors, 799 
design matrix, 662, 665, 704 
design of experiments, 13 
designs based on inner points, 754 
desirabilities, 788 
detectable ratio, 387 
detection limit, 42, 197, 379, 380, 422, 423, 

425,428 
detection of trends, 351 
determinant, 259, 261, 286 
determination limit, 423, 426 
deterministic Monte Carlo, 370, 374 
diagnostic indicator, 485 
diagonal elements, 250 
diagonal matrix, 249, 254 
dia^onalization, 552 

dichotomous variables, 475, 511,513 
dimension of a vector, 234 
dimensionahty reduction, 247, 248 
diode array detector, 15 
direction cosines, 239 
discontinuities, 754, 755 
discordances, 499 
discrete distributions, 24 
discrete hypergeometric distribution, 494 
discrete variables, 22, 23 
discriminant analysis, 8 
disjoint class modelling, 8 
dispersion, 26, 28, 151 
dispersion matrix, 256 
display, 5 
dissolution methods, 121 
distance, 236 
distribution, 4, 6, 11,23,486 
distribution-free methods, 339 
distribution tests, 114 
Dixon's test, 109 
Doehlert design, 648, 707, 708, 718, 766, 767 
Doehlert uniform network, 657 
Doehlert uniform shell design, 718, 726 
dominance graph, 795 
dot product, 236 
double-closure, 531 
double dichotomy, 490 
double Grubbs' test. 111, 112 
double outlier test, 446 
drift, 42, 156, 168,354,611 
—of the mean, 600 
drug design, 13 
drug structure-activity, 7 
drugs, 90 
dummy factors, 697 
Dunnett test, 137 
dynamic processes, 6 
dynamics of a system, 593 

Edwards' map, 514 
effect, 122 
—of aberrant values, 679 
—of study, 503 
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—of treatment, 502 
—size, 504, 509 
efficiency of a design, 720 
eigenvalue, 541, 549, 545 
—matrix, 542 
Electre outranking relationships, 792, 796 
elements of a vector, 232 
elevation, 497, 508 
elevation-contrasts diagram, 496 
elitist selection, 816 
embedded full factorials, 693 
empirical models, 171, 322, 654, 701 
enamel, 68 
encoding type, 810 
entropy, 557, 558, 570 
errors-in-variables regression, 213 
estimation 
—of effects, 662 
—of the regression parameters, 172, 264 
—set, 282 
estimators, 27, 47 
Euclidean distance, 237 
Eurochemometrics, 14 
evaluation criteria, 812 
evaluation function, 813 
evolutionary operation (EVOP), 783 
evolving factor analysis, 546 
exact probabilities, 491 
exactly determined system, 292 
exchange algorithms, 723 
expanded form, 259 
expanded uncertainty, 44 
expected distribution, 114, 117 
expected frequency, 116, 475 
expected value, 493, 494 
experimental design, 1, 3, 6, 11, 14, 16, 145, 

284, 285, 287, 643, 659, 683, 701, 739, 771 
experimental domain, 647 
experimental optimization, 779 
experimentwise error rate, 100 
expert systems, 8, 10, 14 
exploitation stage, 813 
explorative data analysis, 362 
exploratory validation, 381, 399 

exponentially weighted moving average 
(EWMA) charts, 166, 168 

extrapolation, 208 
extreme levels, 663 
extreme value distributions, 472 
extreme values, 6, 340 
extreme vertices method, 761, 763 

F-test, 104, 108, 126,409 
F-to-enter, 280 
F-testforlack-of-fit,421 
F-to-remove, 280 
face-centred central composite design, 708 
factor analysis, 5, 13, 14, 17, 437, 534, 535 
factor levels, 124, 138, 647, 649 
factor plots, 668 
factorial designs, 655, 684 
factorial experiments, 780 
factors, 138,643,535,647,655 
false negative, 477 
—conclusion, 81 
—decisions, 423, 424, 426 
—rate, 380, 436 
false positive, 81, 477 
—decisions, 423 
—rate, 380,436 
feature, 519 
—reduction, 519, 522, 525, 530, 542, 552 
—selection, 282,520, 811 
Fibonacci numbers, 771 
finite populations, 21 
first (statistical) moment, 28 
first degree polynomial, 296 
first-order autoregressive function, 594, 598 
first-order autoregressive model, 594 
first-order models, 3 
first-order process, 598 
first quartile, 340 
fishbone diagram, 37 
Fisher's exact test, 491, 495 
fitness value, 812 
fixed effect models, 128, 135, 510 
fixed effects, 141 
fixed size Simplex method, 653 
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fluoride, 68, 69 
folding-over, 692 
food analysis, 436 
food authentication, 527, 554 
food industry, 17 
forecast error, 167 
fortified samples, 399 
forward selection, 280 
Fourier transform, 600 
fourth spread, 340 
fraction defectives, 465 
fractional factorial designs, 657, 683, 800 
frequency distribution, 25 
frequency tables, 6 
FTIR, 17 
full validation, 381, 398 
fully quadratic model, 297 
fundamental variables, 535 
fuzzy adaptive resonance theory networks, 8 
fuzzy data, 11 
fuzzy methods, 573 
fuzzy observations, 583 
fuzzy regression, 6, 12, 583 
fuzzy search, 9 
fuzzy set theory, 573 

G-efficiency, 708 
G-optimality, 708 
gambling, 484 
gas chromatography, 529, 565, 566 
gas chromatography-Fourier transform IR, 244 
Gauss-Newton linearization, 310 
general contingency table, 515 
generalized least squares and variance function 

estimation (GLS-VFE) method, 188 
generation, 812, 821 
generators, 688 
genetic algorithms, 3, 12, 15, 18, 336, 375, 

654, 723, 805 
—configuration of, 821 
genetic drift, 825 
good leverage point, 202 
Good Laboratory Practice (GLP), 382 
goodness of fit, 494 

—tests, 114 
gradient, 314 
gradient search methods, 805 
Graeco-Latin square, 737 
Gram-Schmidt orthogonalization, 242 
grand mean, 124 
Graphical y^ test, 496 
Gray coding, 810, 823 
Grubbs' pair test, 446 
Grubbs'test, 112, 155,446 

H-point standard addition, 407 
/z-statistic, 454 
half-fraction design, 684 
half-fraction factorial design, 684 
half-repUca design, 684 
Hamming distance, 817 
Hartley's constant, 31, 153 
Hartley's test, 132 
hat matrix, 266 
HELP method, 546, 552 
heteroscedasticity, 131, 132, 186, 188, 387, 

413,429 
heuristically evolving latent projections 

method see HELP 
hierarchical ANOVA, 148 
hierarchical design, 3 
high-dimensional integrals, 374 
higher interactions, 673 
higher order polynomials, 297 
hill-chmbing method, 779, 780, 843 
histogram, 4, 23, 37 
hit-or-miss Monte Carlo method, 375 
HIV infection, 481 
homogeneity, 123, 490, 507 
—of variance, 131 

homoscedasticity, 131, 143, 177, 179, 219 
HORRAT (Horwitz ratio), 450 
HPLC,15, 16, 17,582,695 
—with diode array detection (DAD), 546 
hybridization of genetic algorithms, 824 
hyper-Graeco-Latin square, 737 
hypergeometric distribution, 467, 498 
hypermedia, 18 
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hyphenated techniques, 17 
—chromatographic, 437 
hypothesis tests, 5, 8, 9, 11,59,73,93, 121, 

189,223,484 

identity matrix, 250 
ill-conditioned matrix, 261, 287 
image, 17 
immunological assays, 436 
in-line analysis, 17 
increment, 621 
independence of two variables, 490, 493, 494 
independent samples, 93 
independent r-test, 136,405 
independent variable matrix, 704 
independent variables, 43, 264 
index of accuracy, 36 
inductive expert systems, 10, 567 
inductive reasoning process, 10 
industrial chemistry, 645 
inflation factor, 726 
information content, 559, 560, 561, 563, 564 
information matrix, 729 
information theory, 11, 12, 557 
informational orthogonality, 566 
infrared spectroscopy see IR 
inner arrays, 799 
inner designs, 799 
inner product, 236 
interaction, 131, 142, 144, 147,511,516,536, 

646,651,652,654,659,664 
—effects, 141,663 
—terms, 297 
inter-assay precision, 384 
intercept, 172 
intercomparison studies, 539 
interferograms, 244 
interlaboratory method performance study, 384 
interlaboratory standards, 489 
interlaboratory studies, 122, 389, 441 
—of the lab-performance type, 383 
—of the method-performance type, 383 
interlaboratory tests, 110 
interlaboratory validation, 380 

intermediate precision, 388 
—conditions, 384 
internal method validation, 379 
internal standard, 400 
Internet, 15 
interpolating spline function, 328 
interquartile range, 339, 340, 362, 370 
intersection, 462, 581 
—of two fuzzy sets, 577, 578 
—of two regression lines, 210 
interval hypotheses, 88 
—tests, 414 
interval scale, 11, 22 
intra-assay precision, 384 
intra-laboratory standards, 489 
intrinsically non-linear model, 308 
inverse 
—least squares, 207 
—of a square matrix, 256 
—regression, 207 
—transformation, 70 
ion-selective electrode, 437 
IR, 17,582 
Ishikawa diagram, 37, 38 
isocontour maps, 785 
isoprobability ellipses, 224 
isoresponse curves, 756 
iterative weighting procedures, 361 
iteratively reweighed least squares, 365 

jack-knifing, 370 
Jacobian matrix, 312 
joint confidence interval, 403 
joint confidence region for all the regression 

parameters, 284 
joint confidence region for slope and intercept, 

193 
joint hypothesis test for slope and intercept, 

193 
joint probability, 100 
judgement sampling, 621 

A:-statistic, 454 
Kalman filter, 6 
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Kennard and Stone algorithm, 727 
knots, 323 
Kohonen network, 8 
Kolmogorov-Smirnov J-value, 70 
Kolmogorov-Smirnov test, 67, 114, 117 
Kriging method, 630, 631 
Kruskal-Wallis one-way analysis of variance 

by ranks, 349 
kurtosis, 50 

laboratory bias, 41, 160, 384, 395, 445, 453, 
454 

laboratory component of bias, 395, 396, 399 
laboratory-performance studies, 441, 451, 539 
lack of fit, 179 
— test, 184 
lags, 624 

large-sample % test, 502 
latent variable methods, 6 
latent variable techniques, 5 
latent variables, 11, 38, 519, 522 
Latin square designs, 734 
Latin squares, 146, 680 
lead distance, 165 
learning samples, 554 
least median of squares method, 358, 422 
least-squares line, 174 
least-squares method, 174, 361 
least-squares modelling, 677 
least-squares parameter estimation, 309 
least squares solution, 266 
least significant difference (LSD), 136 
leave-one-out, 282 
left and right singular vectors, 543 
length of a vector, 236 
leptokurtic, 50 
level of significance, 79, 479 
leverage, 206, 301 
leverage point, 202, 284, 301 
Lewis Carroll's diagram, 514 
libraries, 12, 17 

library of reference lines, 574, 582 
library search, 582 
lifetime, 471 

likehhood ratio, 482, 484, 486, 504 
linear combinations, 245, 531 
linear dependence, 245, 261 
linear discriminant analysis (LDA), 527, 553, 

554, 570 
linear learning machine, 12 
linear logit model, 511 
linear mixture models, 253 
linear model, 128, 140,263 
linear regression, 3 
linear selection, 814 
linearity, 396,401,488 
—of a test procedure, 417 
—of calibration lines, 417 
linearization, 308, 310 
—of a curved line, 217 
loading matrix, 535, 543 
loading plots, 530 
loadings, 531, 536 
local modelling, 18 
local optima, 844 
location problems, 796 
log-ANOVA, 132 
log column-centring, 531 
log double-centring, 531, 536 
log-linear models, 516 
log-normal distributions, 67, 70 
log odds ratio, 505, 511 
log-transformation, 70, 343 
logarithmic transformation see log-transforma­

tion 
logistic distribution, 507 
logistic transform, 701 
logits, 505 
lower control limit, 152 
lower fourth, 340 
lower quantification limit, 400 
lower warning limit, 152 

M-optimality, 704 
Mahalanobis distance, 206, 612 
main effect, 141, 143, 511, 664 
Mallows Cp statistic, 279 
Mandel's h and k statistics, 446, 454 
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manifest variables, 522 
Mann-Whitney U-tesi for two independent 

samples, 347 
Mantel-Haenszel X^test, 501, 503, 509 
mapping design, 657 
marginal distribution, 223 
marginal totals, 476, 490, 493, 498 
Marquardt method, 310, 314 
mass spectra, 12 
material-certification studies, 441 
matrices, 11,231,249 
matrix addition, 250 
matrix algebra, 12 
matrix blank, 427 
matrix effects, 138 
matrix interferences, 208, 381, 396, 436, 437 
matrix inversion, 256, 261 
matrix multiplication, 251 
matrix notation, 271 
matrix subtraction, 250 
maximum entropy, 570 
maximum likelihood estimate, 493, 510, 511 
maximum normalized deviation test, 112 
McNemar's X^ test, 498 
mean, 6, 26, 27, 47, 49 
—chart, 151, 158, 160 
—deviation, 4 
—effect, 686 
—free path length, 373 
—square, 127, 130 
mean-centre a column vector, 238 
measurability, 39, 588, 589, 604-607 
measurability-cost relationship, 608 
measurand, 44 
measure of central tendency, 340 
measure of spread, 340, 365 
measurement, 21 
—index, 40 
—quality, 390 
—variables, 22 
measuring system, 604, 607 
mechanistic modelling, 306, 701 
median, 27, 339, 459 
—chart, 160, 169 

—of the squared residuals, 358 
median-based robust regression, 354 
medical diagnosis, 485 
membership function, 573, 574, 575, 576 
meta-analysis, 510 
method bias, 41, 382, 395, 396 
method detection limit, 431 
method-performance bias experiments, 451 
method-performance interlaboratory studies, 

396 
method-performance precision experiments, 

443 
method-performance studies, 441 
method validation, 6, 8, 73, 90, 131, 209, 364, 

538 
—by interlaboratory studies, 441 
metrology, 44 
microbiological assays, 436 
mid-point of a class, 24 
minors, 259 

mixed effect model, 141 
mixture design, 3, 648, 655, 739, 756 
mixture factor, 656, 657 
mixture variable, 3, 655 
mixtures resolution, 546 
mobile phase, 17 
model, 644 
—building, 171 
—matrix, 704 
—parameters, 172 
ModellANOVA, 128 
Model I regression, 171 
Model II ANOVA, 129, 130 
Model II regression, 171, 213 
modelling, 3, 5, 6, 9, 145, 257, 643 
models for process fluctuations, 593 
modified Simplex method, 778 
molecular modelling, 16 
moment about the mean, 49 
moment coefficient of skewness, 71 
moments, 28,49 
Monte Carlo methods, 369 
more than two-level design, 3, 646 
moving average charts, 161 
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moving average method, 166, 168 
moving averages, 162, 163 
moving range charts, 161 
MS spectra, 17 
multicollinearity, 286 
multicomponent analysis, 292 
multicriteria decision-making, 15, 783 
multicriteria methods, 649 
multidimensional data, 520 
multilevel design, 701 
multinomial distribution, 465 
multiple 2x2 contingency tables, 501, 509 
multiple comparison problem, 193, 198 
multiple comparisons, 100 
multiple linear regression, 292 
multiple optima, 824 
multiple optimal regression by alternating least 

squares (MORALS), 330 
multiple outlier tests, 110 
multiple regression, 254, 258, 263, 361, 552, 

656,703 
multiplication of a vector by a scalar, 235, 251 
multivariate, 8, 23 
—adaptive regression splines (MARS), 332 
—analysis, 517 
—calibration, 3, 6, 14, 17, 292, 519, 552, 553, 

646 
—caHbration model, 527, 529 
—control chart, 611, 614, 616, 617 
—data, 4, 5, 12,520 
—data analysis, 13 
—methods, 11 
—outlier test, 9 
—quality control, 5 
—regression, 3, 6 

—statistical process control, 611,617 
—statistics, 13 
multiway ANOVA, 138 
multiway tables, 15 
mutation, 816, 820 
mutation probability, 822 
mutual exclusivity, 461 
mutual information, 565 
myocardial infarction, 484 

natural computing techniques, 375 
near infra-red see NIRA 
needle game of Buffon, 374 
negative exponential distribution, 471 
negative predictive value, 482 
neighbourhood, 843 
nested ANOVA, 138, 147, 148 
nested designs, 393 
neural networks, 6, 8, 10, 15, 527, 586 
neuroleptics, 553 
neutron scattering and absorption, 372 
Neyman-Pearson approach, 484 
NIRA, 16, 17,527,530,552 
NMR, 17, 18 
noise, 5, 42, 162 
nominal level, 663 
nominal scale, 22 
non-linear model, 263, 734 
non-Hnear regression, 6, 12, 305, 701, 734 
non-linear relationships, 305 
non-linearity, 403 
non-parametric methods, 27, 28, 339, 422 
non-probabihty sampling, 620 
non-singular square matrix, 256, 261, 265, 286 
norm, 34 
normal deviate, 488 
normal distribution, 4, 6,47, 11, 25, 461,471 
—plots, 4 
normal equations, 174, 264-267, 286, 289, 309 
normal operating conditions (NOC), 604, 614 
normal probability paper, 65 
normal probability plot, 670, 687 
normality, 143 
—assumption, 131 
—test, 63, 114 
normed score matrix, 543, 545 
normed scores, 543 
normed vectors, 239 
np charts, 466 
nugget effect, 628, 629 
null hypothesis, 74, 75, 79, 492, 507 
null matrix, 249 
number of defectives, 465,468, 470 
numerical optimization, 3, 654, 771, 779 
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numerical problems, 840 
numerical simulation, 369 
nutrition trials, 17 

object space, 234 
objective function, 841, 842 
observed distribution, 114, 117 
observed frequencies, 116, 475 
observed minus expected frequency, 498, 502, 

509 
odds, 482 
odds ratio, 504 
oils, 17 
omnibus tests, 510 
one-point cross-over, 817 
one-sided decision limit, 87 
one-sided hypothesis, 492 
one-sided tables, 52, 55 
one-sided tests, 85, 86 
one-tailed tables, 52 
one-tailed test, 86 
one-way analysis of variance, 121, 122,414, 

448 
one-way layout, 122 
operating characteristic curve, 81, 82 
operations research, 12 
operations with fuzzy sets, 576, 578 
optimization, 3, 13, 16, 17, 643, 649 
—criteria, 771 
— problems, 12 
— strategies, 805 
order of a determinant, 260 
order statistics, 30 
ordinal scale, 22 
ordinary least squares regression, 413 
organic syntheses, 645 
orthogonal 
— arrays, 710, 799 
—design, 729 
—distance regression, 214 
— matrix, 705 
—projection, 240 
— projection operator, 259 
—regression, 413, 538 

—vectors, 239 
orthogonality, 678, 683, 714 
orthogonalization, 240 
orthonormal matrices, 543 
outer arrays, 799 
outer designs, 799, 800 
outlier diagnostics, 202, 300, 360 
outliertests, 6, 67, 109 
outliers, 41, 42, 65, 67, 96, 109, 133, 135, 155, 

202, 341, 354, 361, 362, 364, 368, 416, 
422, 445, 523, 524, 569, 583 

outranking, 795 
over-determined system, 292 
overall regression equation, 270 
overlapping resolution map method, 786 
overview of studies, 510 

p charts, 467 
paired comparisons, 428 
paired Grubbs' outliers, 445 
paired samples, 93 
paired r-test, 146, 409, 410 
parallel-hybridization, 826 
Pareto diagram, 37-39 
Pareto distribution, 472 
Pareto optimality, 38 
Pareto-optimality methods, 790 
partial F-test, 275, 280 
partial least squares (PLS), 5, 9, 14, 16, 336, 

553,617,768 
partition coefficients, 535 
pattern identification, 579 
pattern recognition, 10, 12, 13, 554 
peakedness, 50 
Pearson correlation coefficient, 222, 351 
Pearson's x^ test, 493, 494, 500, 515 
percentage standard deviation, 384 
performance criteria, 379 
performance plot of a genetic algorithm, 822 
periodical changes, 156 
periodicity, 600, 601 
Peto's test for log odds ratio, 509 
pharmaceutical compounds, 17 
pharmaceutical technology, 645, 655, 659, 787 
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pharmacokinetic models, 6 
pharmacokinetics, 404 
pharmacological assays, 16 
phase transitions, 754 
photon scattering and absorption, 373 
placebo, 397 
Plackett-Burman design, 391, 657, 697 
planned grouping, 134 
platykurtic, 50 
PLS 1,553 
PLS2, 553 
point hypotheses, 88 
point hypothesis tests, 414 
Poisson distribution, 161, 468, 471 
polynomial regression, 6, 263, 296, 322 
polynomials, 263 
pooled result, 502 
pooled standard deviation, 28, 31 
pooled variance, 95, 125 
pooling, 145 
population, 21, 812 
population correlation coefficient, 222, 225 
population covariance, 221 
population mean, 26 
population parameters, 26, 47 
population standard deviation, 26 
population variance, 48 
positive predictive value, 482, 484, 486 
post-hybridization, 824 
posterior odds, 484 
posterior probability, 462, 482, 484 
postmultiplication, 251 
potential function, 570 
power, 79, 372, 479, 489, 493 
power curve, 81, 82 
pre-hybridization, 826 
precision, 10, 17,33,40,41,56, 137,379, 

380,383,384,441 
precision clause, 390, 444 
precision study, 441 
predicted residual error sum of squares 

(PRESS), 282 
prediction error sum of squares, 284 
prediction error variance, 633 

prediction intervals, 196 
prediction of new responses, 196 
prediction of x from y, 191 
prediction set, 282 
prediction variable, 171 
preferences, 792, 796 
preliminary estimates of precision, 383 
premultiplication, 251 
PRESS, 552 
pretreatment, 532, 541 
prevalence, 477, 482, 486 
principal component analysis (PCA), 5, 12, 

519-556 
principal component regression, 552 
principal components, 214, 224, 247 
prior information, 560 
prior odds, 484 
prior probability, 463, 482 
probabilistic Monte Carlo, 370, 372 
probability, 25, 461, 476, 484 
probability density function, 25, 51 
probability distribution, 25, 461 
probability paper, 66, 68 
process, 5,8 

process analytical chemistry, 17 
process capability index, 33, 34 
—for setting, 35, 36 
—for dispersion, 34, 36 
process control, 17, 18, 37 
process factors, 656 
process fluctuations, models for, 593 
process/mixture variable design, 766, 767 
process state 
—control, 587 
—description, 587 

— monitoring, 587 
process variables, 3, 655 
product-moment correlation coefficient, 222, 

500 
proficiency, 10, 399 
— studies, 441,539 
—testing, 129 
projection, 257 
—pursuit, 569 
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—regression, 336 
Promethee, 792, 796 
propagation of errors, 42 
proportion of defectives, 467 
proportional error, 405, 406, 407, 408, 410, 

412,413 
proportional integral differential (PID) control 

equation, 168 
proportional (relative) systematic errors, 396 
proportional systematic error, 193,400,402,403 
prospective validation, 381 
pseudo-normal distribution, 371 
pseudocomponents, 754, 757, 764, 788 
pseudosamples, 485 
pure error sum of squares, 184 
pure experimental error, 175 

quadratic model, 296 
quadratic response surfaces, 701 
qualitative analysis, 557, 558, 564, 566 
qualitative or categorical variables, 22 
quality, 2, 3, 10, 11, 15, 17, 18,21,32,799 
—assurance, 10, 15, 32, 379, 382 
—coefficient, 418 
—index Cpk, 36 
—of measurements, 39 
—of processes, 22, 39 
quality control, 10, 30, 38,42, 151, 160, 162, 

166,382,466,468,470 
—charts, 48, 152 
—procedures, 383 
—sample, 151 
quantification limit, 380, 385, 389, 409, 423, 

426 
quantitative analysis, 435 
quantitative structure-activity relationships, 6 
quantitative variables, 22 
quarter-fraction design, 684 
quarter-replica design, 684, 690 
queues, 371 
Quinlan's Id3 algorithm, 567 

R^, 274, 278, 289 
random data permutations, 368 

random effects, 141 
—model, 128, 129, 137,442,511 
random error, 33, 34, 36, 40, 43, 151, 380, 

383,395,396,413,442 
random-function models, 624 
random walks, 371, 373 
randomization, 134, 143, 662, 680 
—method, 133 
—one-way analysis of variance, 368 
—tests, 18,367,416,422 
randomized independent r-test, 367 
range,23,30, 153, 158,380,629 
range charts, 151, 158 
rank of a square matrix, 261 
ranked data, 11 
ranked variables, 22, 23 
ranking method, 457 
rankit, 64-69 
rankit procedure, 63 
rare events, 468 
ratio scale, 11, 22 
reagent blank, 427 
recall bias, 510 

receiver operating characteristic, 487 
recombination, 816 
recombination probability, 822 
reconstitution of sample, 397 
recovery chart, 161 
recovery experiment, 101 
recovery rate, 399, 404 
reduced cubic lattice design, 753 
reduced cubic model, 743, 748 
reduced variable, 52 
reduction uncertainty, 557 
reference material, 161, 398, 407, 441, 539 
reflected design, 392 
regression, 1, 11,402,404, 406, 412, 417 
—analysis, 171 
—line, 403,404 
—modelling, 257, 756 
—models, 643, 663 
—outliers, 202 
—spHnes, 323 
—techniques, 6 
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regular square matrix, 256, 261 
rejectable quality level (RQL), 639 
rejection of outliers, 109 
rejection zone, 639 
relative cardinality, 578, 581 
relative frequency, 24 
—distribution, 24 
relative precision index (RPI), 35 
relative repeatability standard deviation, 444 
relative reproducibility standard deviation, 444 
relative standard deviation, 27, 384 
relative systematic errors, 437, 404 
reliability, 471 
repeatability, 33,41, 130, 160, 381-384, 387, 

388, 390, 396, 399, 400, 402, 414, 441, 
444,449 

—conditions, 396, 441, 442 
— limit, 444 
—standard deviation, 387, 399, 415, 444 
—variance, 442 
repeated median method, 36 
repeated testing by ANOVA, 146, 416 
reproducibility, 33, 41, 130, 149, 383, 384, 

390, 396, 414, 441, 443, 444, 449 
—conditions, 442 
—limit, 444 
—standard deviation, 444 
residual, 144, 174, 176, 264, 266, 352 
—error sum of squares, 270 
—mean square, 278 
—plots, 179,274 
—standard deviation, 428 
—sumof squares, 127, 128, 184 
—variance, 174, 266 
resolution, 382, 691 
response, 644, 649 
—functions, 644, 654 
—line, 502, 512 
—variable, 171 
response surface, 3, 297, 644, 646, 649, 651, 

703,741,805 
—surface methodology, 6, 300, 729 
restricted region search, 772 
retrieval, 12, 17 

retrospective vahdation, 382 
reversed-phase chromatography, 734, 786 
reweighted least squares, 361 
ridge coefficient, 289 
ridge regression, 289 
ridge trace, 289 
risk 
—consumer's, 638, 639 
—producer's, 638, 639 
risk assessment, 485 
robust ANOVA, 133 
robust methods, 42, 339 
robust regression, 6, 12 
robust regression methods, 206, 422 
robust statistics, 339 
robustness, 384, 390, 651, 657, 771, 785, 799, 

800 
root mean squared prediction error (RMSPE), 

282 
rotatability,707,714,720 
rotatable design, 729 
roulette selection, 814 
rounding, 44 
rounding errors, 44 
row space, 234 
row vector, 232, 249 
ruggedness, 380, 384, 390, 416, 695 
run, 659 

runs test, 169,351 
—above and below the median, 354 

sample, 21,22 
sample distribution, 48 
—of the means, 56 
—of the standard deviation, 58 
sample inhomogeneity, 124 
sample mean, 27 
sample parameters, 47 
sample size, 27, 59, 82, 102, 135, 477 
sample standard deviation, 48 
sample units, 619 
sample variance, 48 
sampling, 10, 587 
sampling constant, 622 
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sampling diagram, 623 
sampling error, 22, 621 
sampling for prediction, 623 
sampling interval, 604 
sampling rate, 17 
sampling scheme, 635, 636 
sampling strategy, 636 
sampling time, 604 
saturated fractional factorial designs, 391, 657, 

684, 694 
scalar, 235 
scalar multiplication, 235 
scalar product, 236 
scale estimator 360 
scaling, 52 

scanning electron microprobe, 568 
scatter diagram, 37, 220 
scatter plot, 626, 627 
Scheffe-Box, 132 
Scheffe method, 137 
score matrix, 535, 543, 545 
score plots, 527, 545 
scores, 521,525, 536 
screening assay, 475 
screening designs, 391, 646, 647, 657, 694, 800 
search accuracy and precision, 823 
search precision, 824 
second degree polynomial, 296 
second-order equations, 655 
second-order process, 601 
second-order models, 3, 657 
selection of predictor variables, 275, 278 
selection pressure, 814 
selectivity, 17, 380, 381, 396, 463 
self-hybridization, 825 
SEM, 27, 56 
semivariance, 626-628 
semivariogram, 628 
sensitivity, 81, 380, 382, 423, 435, 436, 463, 

478-480, 489, 504 
sensitivity analysis, 798 
sensors, 17 
sensory analysis, 6 
sensory characteristics, 7, 10, 645 

sensory data, 10, 17 
sensory optimization, 739 
sequencing problems, 806, 819, 840 
sequential designs, 646 
sequential optimization, 3 
— methods, 771 
— strategies, 16, 651 
sequential sampling plans, 638, 640 
sequentiality, 721 
Shannon equation, 558, 569, 570 
Shewhart chart, 168 
shift, 156, 162 
shortest half, 360 
sigmoid relationship, 701, 734 
sign test for two related samples, 344 
signal analysis, 11 
signal factors, 799 
signal processing, 5, 11, 162, 166, 570 
signal-to-noise ratio, 799 
significance 
—of ^2, 421 

—of the estimated effects, 668, 672, 675 
—of the regression, 184 
significant figures, 44 
sill, 629 
SIMCA, 8,9, 12, 13 
simple random sampling, 619 
Simplex, 16,70,841,843 
Simplex centroid design, 746, 752, 766 
Simplex designs, 743 
Simplex lattice design, 745, 746, 752 
Simplex methods, 771, 774, 779, 813 
Simplex optimization, 585, 653, 654, 805, 806 
SIMPLISMA, 17 
simulated annealing, 375, 654, 805, 841 
simultaneous designs, 646 
simultaneous equations, 261 
simultaneous optimization strategies, 16, 651 
single Grubbs' outlier, 445 
single Grubbs' test, 111, 112, 446 
single median method, 355 
singular matrix, 256, 261 
singular value decomposition, 535, 541 
singular values matrix, 542 



865 

size component, 532, 543 
skewed distribution, 342 
skewness, 28, 49, 70, 486 
slope, 172 
slope ranking method, 422 
smallest detectable difference, 489 
smoothing splines, 323, 327 
soft modelling, 12 
soft modelling methods, 519 
solvent blank, 427 
sources of variance, 124 
span of a set of vectors, 247 
spatial continuity, 624, 635 
spatial dependency, 624 
spatial description, 618 
SPC, 10, 137, 158,471 
Spearman rank correlation coefficient, 350 
special cubic model, 748 
specifications, 39 
specificity, 17, 380, 478, 479, 480, 489, 504 
specificity rate, 436 
spectra, 5, 17, 18 
spectral map analysis, 16, 517, 537, 538 
spectral maps, 536 
spectroscopic detectors, 17 
spectroscopy, 261 
spiked samples, 399 
spiking, 397, 404 
splines, 13,323 
split level experiment, 443 
spurious errors, 41 
square matrix, 249 
square root transformation, 70 
square transformation, 70 
squared Mahalanobis distance, 301 
stability studies, 90 
stack loss data, 267 
standard addition method, 207 
standard additions, 406, 407, 408 
standard deviation, 4, 6, 26, 27, 30, 47, 49, 52, 

238, 383, 469 
standard deviation chart, 160 
standard deviation from paired data, 28 
standard deviation of effects, 672 

standard deviation of the means, 56 
standard error, 28, 56 
standard error of the mean (SEM), 27 
standard error of the standard deviation, 58 
standard error on the mean, 56 
standard normal deviate, 494 
standard operating procedure, 379, 382 
standard order, 666 
standard uncertainty, 44 
standardization, 52 
standardized deviate, 52, 116 
standardized normal distribution, 51, 52 
standardized residuals, 202, 301 
standardized variables, 239 
starchart, 615, 616, 617 
star design, 711 
stationarity, 624 
stationary phase, 565, 566 
statistical control, 42, 151 
statistical process control, 10, 30, 33, 151, 799 
statistical quality control, 37 
statistical significance, 74 
steepest ascent, 654, 780, 783 
steepest descent, 310, 314, 841 
stepwise regression, 280 
— procedures, 275 
straggler, 111, 446 
straight line regression, 145, 171 
—through a fixed point, 216 
strata, 619 
stratification, 514 
stratified random sampling, 619 
structure-activity, 7 
structure-activity correlations, 16 
structure-activity analysis, 536 
Student's distribution, 61 
Student-Newman-Keuls method, 137 
subset selection, 806 
subset selection problems, 840 
suitabiHty check, 382, 383, 390 
sum of squares, 126, 130 
—due to lack-of-fit, 270 
—due to pure experimental error, 270 
—due to regression, 184, 270 
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—due to slope, 184 
supersaturated designs, 695 
supervised pattern recognition, 8, 9, 554 
support of a fuzzy set, 579, 583 
symmetric matrix, 249 
system dynamics, 593 
system states, 591 
system suitability checks, 382, 418 
systematic error or bias, 35 
systematic errors, 33, 34, 36, 40, 41, 43, 151, 

380, 393, 395, 416, 436, 442, 453, 457 
systematic sampling, 620 

/-distribution, 60, 370 
r-method, 137 
r-test, 16, 59, 95, 99, 275, 397, 398, 399, 400, 

401, 404, 405, 406, 410, 412, 421 
tabu list, 844, 845 
tabu search, 805, 844 
Taguchi designs, 3, 15 
Taguchi methodology, 771, 799 
Taguchi-type designs, 657 
target, 34 
target-transformation factor analysis, 13 
taste perception, 17 
Taylor's theorem, 311 
ternary diagram, 741 
test samples, 554 
test set, 282 
test value, 76 
tetrachoric correlation, 500 
theoretical distribution, 114 
thin layer chromatography, 563 
third quartile, 340 
three-level factorial design, 708, 709 
three-way PCA, 519 
three-way tables, 519 
three-way ANOVA, 416 
threshold approaches, 785 
threshold selection, 814 
time constants, 594, 595, 597, 600, 601, 624 
time-different intermediate precision, 388 
time series, 161, 169,593,603 
time-series analysis, 623 

time-to-failure, 471 
times series, 599 
tolerance, 287 
tolerance interval, 34, 40 
tolerance limits, 33-35, 151, 390 
total sum of squares, 270 
total with in-laboratory standard deviation, 383 
tournament selection, 816 
trace of a square matrix, 250 
training set, 152,282 
transfer suitability check, 382, 408 
transformation, 70, 71, 132, 217 
transpose, 232, 233, 250 
travelling salesperson problem, 806, 811 
treatment, 127,659 
treatment of outliers, 111 
trends, 151, 156 
triangular matrix, 250 
triangulation method, 630 
trilinear diagram, 741 
true negative, 477 
true positive, 477 
true value, 40 
trueness, 380, 393, 394 
Tukey-Kramer method, 137 
two-dimensional membership function, 582, 

586 
two-level designs, 799 
two-level factorial designs, 3, 8, 656, 657, 659, 

705 
two-level fractional factorial designs, 3 
two-point cross-over, 818 
two-sided hypothesis, 86, 493 
two-sided tables, 52 
two-sided tests, 85 
two-tailed hypothesis, 86 
two-tailed tables, 52 
two-way ANOVA, 138, 143, 414 
two-way tables, 139, 519 
type I error, 79, 423 
type II error, 79, 423 

ultraviolet spectra, 582 
unbalanced allocation, 503 
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unbiased estimator, 48 
unbiasedness condition, 630, 631 
uncertainty, 44, 396 
uncontrolled factors, 134 
UNEQ, 8 
uniform cross-over, 818 
uniform level experiment, 443, 446 
uniform mapping algorithms, 726 
uniform precision, 707 
uniformity, 569, 707 
—in space filling, 708, 718 
union, 461 
union of two fuzzy sets, 577, 578, 579 
univariate, 23 
univariate data, 520 
univariate regression, 6 
unpaired (independent) r-test, 409 
unsupervised learning, 8 
unsupervised pattern recognition, 8 
unweighted regression, 200 
upper and lower bounds, 757, 761 
upper control Hmit, 152 
upper fourth, 340 
upper warning limit, 152 
utility functions, 779, 788 

V-mask, 165 
validation, 10 
—of the model, 178, 179, 270, 753 
—of the prediction performance, 282 
variable selection, 282, 811 
variable space, 234 
variables, 22 
variance, 6, 27, 49 
variance components, 129, 137 
variance function, 178, 188,707 
variance inflation factor (VIF), 288 
variance of the regression parameters, 285 
variance of 3; given x, 175 
variance-related criteria, 707 
variance-covariance matrix, 255 
—of the b coefficients, 706 
—of the regression coefficients, 285 

variograms, 17, 624, 629, 632, 634, 636 
variograms, modelling, 633 
vector, 11,231 
vector basis, 246 
vector multiplication, 236 
vector subspace, 247 
Venn diagram, 513 
virtual reality, 18 
visual display methods, 451 

waiting lines, 371 
warning limits, 155, 156, 158, 162, 466, 470 
warning lines, 152, 160, 162 
Weibull distribution, 471 
weighted ANOVA. 132 
weighted least squares, 365 
weighted regression, 200, 254, 448 
weighting, 254 
Western Electric rules, 157, 165 
whisker, 341 
Wilcoxon signed rank test, 345 
Wilcoxon r-test for two paired samples, 345 
window programming, 654, 783 
winsorized mean, 361, 364, 459 
within-column sum of squares, 127 
within-column variance, 125 
within-laboratory component, 442 
within-laboratory reproducibility, 383, 388, 

400 
within-run variation, 383 
Woolf s formula, 506 
Working-Hotelling confidence band, 195 

3;-hat, 48 
Yates' algorithm, 687 
Yates' correction for continuity, 495 
Yates' method, 659, 665, 667 
Youden plots, 452 

z-distribution, 61 
z-transformation, 52 
z-score method, 457 
z-statistic, 94, 99 
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