

Basic Concepts

Introduction to Microcontrollers

Organization of Microcontrollers

4

What is a
Computing System?

 Hardware & Software

Control

unit

Arithmetic

Logic

Unit

Registers

communication bus

MEMORY

Program

Storage

Data

Storage

OUTPUT

UNIT

INPUT

UNIT

CPU

Components of Computer Systems

5

6

What is a Microprocessor ?

Pentium 4 microphotograph

7

Microprocessor Structure

8

Microprocessor Basic Operation

• Program (instructions) and Data are stored in Memory

• Each instruction is read (fetched) from memory, interpreted
(decoded), and executed

– Arithmetic Logic Unit (ALU) performs operations on data

– Data is transferred (register, memory, I/O)

• Program Counter (PC) indicates current location of program in
Memory and is automatically incremented after each instruction

• Each instruction can take several clock cycles

Decode

Fetch

Execute

9

What is a Microcomputer System?

• It is a computing system based on
microcontroller.

10

Microcontroller System

• The buffers and converters condition I/O signal
levels if necessary

• The bus is a group of signals (data, address,
control signal) with a common purpose.

• The clock circuit generates a fixed-frequency,
timing signal for the entire system.

• The power supply converts a raw power source
into the DC voltage (nominally 5V) required by the
system.

11

An example of microcontroller system
(MC68HC11EVBU evaluation board)

12

Microcontroller

• Integrated system designed to operate as an embedded computing system
(a computer which is part of a larger system)

• A microcontroller is a small, low-cost and self contained computer-on-a-
chip that can be used as an embedded system.

• It is composed by:
– microprocessor (CPU),

– ROM (for the program),

– RAM (for the data)

– I/O ports (to communicate/interface with external resources),

– Peripheral devices (to make easier the interfacing and implementation of the
desired functionalities),

13

Common Applications

• Consumer:
– Washing machine,
– Remote controls
– Clocks and watches
– Games and Toys
– Audio/video

• Communication:

– Telephone systems,
– Answering machines
– Cell phones and pagers
– Networking (ATM, credit cards, Ethernet)

• Automotive:

– Safety devices (Automatic Braking System, Airbag)
– Motor control (ignition, exhausts)
– Power windows and seats
– Instrumentation

14

Common Applications

• Military:
– Guidance systems
– Global positioning systems
– Target recognition systems

• Industrial:

– Traffic control
– Robotics
– Production plants
– Inventory and stock management

• Medical:

– Cardiac monitors
– Renal Monitors
– Pacemakers
– Dialysis machines

Classification of Microcontrollers

• The microcontrollers are characterized by their:
– bits,

– bus-width,

– instruction set,

– and memory structure.

15

Classification According to Number of Bits

• In 8-bit microcontroller, the point when the internal bus is 8-bit then
the ALU is performs the arithmetic and logic operations.

• The 16-bit microcontroller performs greater precision and
performance as compared to 8-bit. For example 8 bit microcontrollers
can only use 8 bits, resulting in a final range of 0×00 – 0xFF (0-255)
for every cycle. In contrast, 16 bit microcontrollers with its 16 bit data
width has a range of 0×0000 – 0xFFFF (0-65535) for every cycle.

• The 32-bit microcontroller uses the 32-bit instructions to perform the
arithmetic and logic operations. These are used in automatically
controlled devices including implantable medical devices, engine
control systems, office machines, appliances and other types of
embedded systems.

16

Classification According to Memory Devices

• Embedded memory microcontroller: When an embedded system has a
microcontroller unit that has all the functional blocks available on a chip is called
an embedded microcontroller. For example, 8051 having program & data memory,
I/O ports, serial communication, counters and timers and interrupts on the chip is
an embedded microcontroller.

• External Memory Microcontroller: When an embedded system has a
microcontroller unit that has not all the functional blocks available on a chip is
called an external memory microcontroller. For example, 8031 has no program
memory on the chip is an external memory microcontroller.

17

Classification According to Memory
Architecture

• Harvard Memory Architecture Microcontroller: The point when a
microcontroller unit has a dissimilar memory address space for the program
and data memory, the microcontroller has Harvard memory architecture in
the processor.

• Princeton Memory Architecture Microcontroller: The point when a
microcontroller has a common memory address for the program memory and
data memory, the microcontroller has Princeton memory architecture in the
processor.

18

Harvard

Architecture
Princeton

Architecture

Microcontroller Architecture

19

20

Microcontroller Organization

Processor ROM RAM I/O INTERFACE

RESET CLOCK I/O

MICROCONTROLLER (SINGLE CHIP)

PIO INT UART SIO

GPT PWM WDT AIO

21

Microcontroller Functional Units

• CPU: Central Processing Unit
(4,8,16,32 bit data bus)

• ROM: Read Only Memory (Firmware)

• RAM: Random Access Memory
(Register File, Processor Stack, Temporary data)

• PIO: Parallel I/O (relays, sensors)

• INT: Interrupt Inputs
(external/internal sources)

• UART: Universal Asynchronous Receiver Transmitter (e.g. RS232)

• GPT: General Purpose Timer
(optional event counter)

• PWM: Pulse Width Modulator (motor controller)

• WDT: Watch Dog Timer (automatic reset)

• AIO: Analog I/O (ADC & DAC)

22

Memory basic concepts

• Digital data is stored in the form of binary numbers, however it is often
represented using the hexadecimal numbering system.

• The bit is the smallest digital unit, and is either 1 or 0.

• A byte is defined to be 8 bits.

• A word varies from processor to processor and can be 8, 16, 32 or more bits.

• Normally, the byte is the smallest addressable unit; however, it is possible to
address individual bits in I/O registers.

• Motorola convention: binary number are prefixed by % and hexadecimal
numbers by $

23

Memory basic concepts

24

Memory Types

The main types of semiconductor memory are:

ROM – Read Only Memory

RAM – Random Access Memory

EPROM – Erasable Programmable Read Only

 Memory

EEPROM – Electrically Erasable Programmable

 Read Only Memory

25

The Bus

• The bus provides the communication infrastructure among the various components
of the system

• Data bus carries the information being transmitted/received.

• Address bus tells where the information is being transferred to/from.

• Control bus specifies when the information transfer take place by coordinating the
access to the data bus and the address bus, and directs the data from/to the
specific components.

CISC and RISC

• MCs with Harvard architecture are called "RISC
MCs". MCs with von- Neumann's architecture
are called 'CISC microcontrollers'.

• Harvard architecture is a newer concept than
von-Neumann's.

• In Harvard architecture, data bus and address
bus are separate. Thus a greater flow of data is
possible through the CPU, and of course, a
greater speed of work.

• It is also typical for Harvard architecture to have
fewer instructions than von-Neumann's, and to
have instructions usually executed in one cycle.

Compiler

The name "compiler" is primarily used

for programs that translate the source

code from a high level programming

language to a low-level language (e.g.,

assembly language or machine code).

1. Introduction to Microcontroller

• Figure 1.1 shows the block diagram of

a typical microcontroller. All

components are connected via an

internal bus and are all integrated on

one chip. The modules are connected

to the outside world via I/O pins.

Figure 1.1 Basic layout of a microcontroller.

• The following list contains the modules
typically found in a microcontroller.

1-Processor Core: The CPU of the controller.
It contains the arithmetic logic unit, the
control unit, and the registers (stack
pointer, program counter, accumulator
register, register file, . . .).

2-Memory: The memory is sometimes split
into program memory and data memory. In
larger controllers, a DMA controller handles
data transfers between peripheral
components and the memory.

3- Interrupt Controller: Interrupts are useful

for interrupting the normal program flow

in case of (important) external or internal

events. In conjunction with sleep modes,

they help to conserve power.

4- Timer/Counter: Most controllers have at

least one and more likely 2-3

Timer/Counters, which can be used to

timestamp events, measure intervals, or

count events.

Many controllers also contain PWM (pulse
width modulation) outputs, which can be used
to drive motors or for safe breaking (antilock
brake system, ABS). Furthermore the PWM
output can, in conjunction with an external
filter, be used to realize a cheap digital/analog
converter.

5-Digital I/O: Parallel digital I/O ports are one of
the main features of microcontrollers. The
number of I/O pins varies from 3-4 to over 90,
depending on the controller family and the
controller type.

6- Analog I/O: Apart from a few small controllers, most
microcontrollers have integrated analog/digital
converters, which differ in the number of channels
(2-16) and their resolution (8-12 bits). The analog
module also generally features an analog
comparator. In some cases, the microcontroller
includes digital/analog converters.

7- Interfaces: Controllers generally have at least one
serial interface which can be used to download the
program and for communication with the
development PC in general. Since serial interfaces
can also be used to communicate with external
peripheral devices, most controllers offer several
and varied interfaces like SPI and SCI.

Many microcontrollers also contain
integrated bus controllers for the most
common (field)busses. IIC and CAN
controllers lead the field here. Larger
microcontrollers may also contain PCI, USB,
or Ethernet interfaces.

8- Watchdog Timer: Since safety-critical
systems form a major application area of
microcontrollers, it is important to guard
against errors in the program and/or the
hardware. The watchdog timer is used to
reset the controller in case of software
―crashes‖.

9- Debugging Unit: Some controllers are equipped
with additional hardware to allow remote
debugging of the chip from the PC. So there is
no need to download special debugging
software, which has the distinct advantage that
erroneous application code cannot overwrite the
debugger.

To summarize, a microcontroller is a (stripped-
down) processor which is equipped with memory,
timers, (parallel) I/O pins and other on-chip
peripherals. The driving element behind all this is
cost: Integrating all elements on one chip saves
space and leads to both lower manufacturing costs
and shorter development times.

• As a result, microcontrollers are generally
tailored for specific applications, and there is
a wide variety of microcontrollers to choose
from.

• The first choice a designer has to make is the
controller family – it defines the controller‘s
architecture. All controllers of a family contain
the same processor core and hence are code-
compatible, but they differ in the additional
components like the number of timers or the
amount of memory.

• You will find that there are many

different controller families like 8051,

PIC, HC, ARM to name just a few, and

that even within a single controller

family you may again have a choice of

many different controllers.

1.2 Frequently Used Terms

1- Microprocessor: This is a normal CPU
(Central Processing Unit) as you can find in a
PC. Communication with external devices is
achieved via a data bus, hence the chip
mainly features data and address pins as well
as a couple of control pins. All peripheral
devices (memory, floppy controller, USB
controller, timer, . . .) are connected to the
bus. A microprocessor cannot be operated
stand-alone, at the very least it requires
some memory and an output device to be
useful.

2- Microcontroller: A microcontroller already
contains all components which allow it to operate
standalone, and it has been designed in
particular for monitoring and/or control tasks. In
consequence, in addition to the processor it
includes memory, various interface controllers,
one or more timers, an interrupt controller, and
last but definitely not least general purpose I/O
pins which allow it to directly interface to its
environment. Microcontrollers also include bit
operations which allow you to change one bit
within a byte without touching the other bits.

3- Mixed-Signal Controller: This is a microcontroller

which can process both digital and analog signals.

4- Embedded System: A major application area for
microcontrollers are embedded systems. In
embedded systems, the control unit is integrated
into the systems. As an example, think of a cell
phone, where the controller is included in the
device. This is easily recognizable as an embedded
system. On the other hand, if you use a normal PC
in a factory to control an assembly line, this also
meets many of the definitions of an embedded
system. The same PC, however, equipped with a
normal operating system and used by the night
guard to kill time is certainly no embedded system.

5- Real-Time System: Controllers are

frequently used in real-time systems,

where the reaction to an event has to

occur within a specified time. This is

true for many applications in

aerospace, railroad, or automotive

areas, e.g., for brake-by-wire in cars.

1.3 Notation

• When we talk about the values of digital lines, we generally mean their
logical values, 0 or 1. We indicate the complement of a logical value X
with 𝑋 , so 1 = 0 and 0 = 1.

• Hexadecimal values are denoted by a preceding $ or 0x. Binary values
are either given like decimal values if it is obvious that the value is
binary, or they are marked with (·)2 .

• The notation M[X] is used to indicate a memory access at address X.

• In our assembler examples, we tend to use general-purpose registers,
which are labeled with R and a number, e.g., R0.

• The ∝ sign means ―proportional to‖.

• In a few cases, we will need intervals. We use the standard interval
notations, which are [.,.] for a closed interval, [.,.) and (.,.] for half-open
intervals, and (.,.) for an open interval. Variables denoting intervals will
be overlined, e.g. dlatch = (0, 1]. The notation dlatch + 2 adds the constant
to the interval, resulting in (0, 1] + 2 = (2, 3].

• We use k as a generic variable, so do not be surprised if k means
different things in different sections or even in different paragraphs
within a section.

2. Microcontroller Components

2.1 Processor Core

• A basic CPU architecture is depicted in

Figure 2.1. It consists of the data path,

which executes instructions, and of the

control unit, which basically tells the

data path what to do.

2.1.1 Architecture

1- Arithmetic Logic Unit

At the core of the CPU is the arithmetic
logic unit (ALU), which is used to perform
computations (AND, ADD, INC, . . .).
Several control lines select which operation
the ALU should perform on the input data.
The ALU takes two inputs and returns the
result of the operation as its output. Source
and destination are taken from registers or
from memory. In addition, the ALU stores
some information about the nature of the
result in the status register (also called
condition code register):

• Z (Zero): The result of the operation is

zero.

• N (Negative): The result of the operation

is negative, that is, the most significant bit

(msb) of the result is set (1).

• O (Overflow): The operation produced an

overflow, that is, there was a change of

sign in a two‘s- complement operation.

• C (Carry): The operation produced a

carry.

2- Register File

The register file contains the working registers of the
CPU. It may either consist of a set of general purpose
registers (generally 16–32, but there can also be more),
each of which can be the source or destination of an
operation, or it consists of some dedicated registers.
Dedicated registers are e.g. an accumulator, which is
used for arithmetic/logic operations, or an index register,
which is used for some addressing modes.

In any case, the CPU can take the operands for the ALU
from the file, and it can store the operation‘s result back
to the register file. Alternatively, operands/result can
come from/be stored to the memory. However, memory
access is much slower than access to the register file, so
it is usually wise to use the register file if possible.

3- Stack Pointer
The stack is a portion of consecutive memory in the data
space which is used by the CPU to store return addresses
and possibly register contents during subroutine and
interrupt service routine calls. It is accessed with the
commands PUSH (put something on the stack) and POP
(remove something from the stack). To store the current fill
level of the stack, the CPU contains a special register
called the stack pointer (SP), which points to the top of the
stack. Stacks typically grow ―down‖, that is, from the
higher memory addresses to the lower addresses. So the
SP generally starts at the end of the data memory and is
decremented with every push and incremented with every
pop. The reason for placing the stack pointer at the end of
the data memory is that your variables are generally at the
start of the data memory, so by putting the stack at the end
of the memory it takes longest for the two to collide.

• Unfortunately, there are two ways to interpret the

memory location to which the SP points: It can
either be seen as the first free address, so a PUSH
should store data there and then decrement the
stack pointer as depicted in Figure 2.2 (the Atmel
AVR controllers use the SP that way), or it can be
seen as the last used address, so a PUSH first
decrements the SP and then stores the data at the
new address (this interpretation is adopted for
example in Motorola‘s HCS12). Since the SP must
be initialized by the programmer, you must look up
how your controller handles the stack and either
initialize the SP to the last address in memory (if a
push stores first and decrements afterwards) or to
the last address + 1 (if the push decrements first).

• As we have mentioned, the controller uses

the stack during subroutine calls and
interrupts, that is, whenever the normal
program flow is interrupted and should
resume later on. Since the return address is a
pre-requisite for resuming program execution
after the point of interruption, every
controller pushes at least the return address
onto the stack. Some controllers even save
register contents on the stack to ensure that
they do not get overwritten by the interrupting
code. This is mainly done by controllers which
only have a small set of dedicated registers.

Control Unit

• It is the task of the control unit to determine
which operation should be executed next and
to configure the data path accordingly.

• To do so, another special register, the
program counter (PC), is used to store the
address of the next program instruction.

• The control unit loads this instruction into the
instruction register (IR), decodes the
instruction, and sets up the data path to
execute it.

• Data path configuration includes
providing the appropriate inputs for the
ALU (from registers or memory),
selecting the right ALU operation, and
making sure that the result is written to
the correct destination (register or
memory).

• The PC is either incremented to point to
the next instruction in the sequence, or is
loaded with a new address in the case of
a jump or subroutine call.

• After a reset, the PC is typically initialized
to $0000.

• Traditionally, the control unit was hard-wired, that

is, it basically contained a look-up table which
held the values of the control lines necessary to
perform the instruction, plus a rather complex
decoding logic.

• This meant that it was difficult to change or extend
the instruction set of the CPU. To ease the design
of the control unit, Maurice Wilkes reflected that
the control unit is actually a small CPU by itself
and could benefit from its own set of
microinstructions.

• In his subsequent control unit design, program
instructions were broken down into
microinstructions, each of which did some small
part of the whole instruction (like providing the
correct register for the ALU).

• This essentially made control design a
programming task: Adding a new
instruction to the instruction set boiled
down to programming the instruction in
microcode.

• As a consequence, it suddenly became
comparatively easy to add new and
complex instructions, and instruction sets
grew rather large and powerful as a
result.

• This earned the architecture the name
Complex Instruction Set Computer
(CISC).

• Of course, the powerful instruction set has its
price, and this price is speed: Microcoded
instructions execute slower than hard-wired
ones.

• Furthermore, studies revealed that only 20% of
the instructions of a CISC machine are
responsible for 80% of the code (80/20 rule).

• This and the fact that these complex instructions
can be implemented by a combination of simple
ones gave rise to a movement back towards
simple hard-wired architectures, which were
correspondingly called Reduced Instruction Set
Computer (RISC).

RISC: The RISC architecture has simple,
hard-wired instructions which
often take only one or a few clock
cycles to execute. RISC machines
feature a small and fixed code size
with comparatively few
instructions and few addressing
modes. As a result, execution of
instructions is very fast, but the
instruction set is rather simple.

CISC: The CISC architecture is
characterized by its complex
microcoded instructions which take
many clock cycles to execute. The
architecture often has a large and
variable code size and offers many
powerful instructions and
addressing modes. In comparison
to RISC, CISC takes longer to
execute its instructions, but the
instruction set is more powerful.

• Of course, when you have two

architectures, the question arises which
one is better. In the case of RISC vs.
CISC, the answer depends on what you
need.

o If your solution frequently employs a
powerful instruction or addressing mode
of a given CISC architecture, you
probably will be better off using CISC.

o If you mainly need simple instructions
and addressing modes, you are most
likely better off using RISC.

• Of course, this choice also depends on

other factors like the clocking

frequencies of the processors in

question.

2.1.2 Instruction Set

• The instruction set is an important
characteristic of any CPU. It influences
the code size, that is, how much memory
space your program takes. Hence, you
should choose the controller whose
instruction set best fits your specific
needs.

• The metrics of the instruction set that are
important for a design decision are:

• Instruction Size

• Execution Speed

• Available Instructions

• Addressing Modes

1- Instruction Size

An instruction contains in its opcode
information about both the operation that
should be executed and its operands.

Obviously, a machine with many different
instructions and addressing modes requires
longer opcodes than a machine with only a
few instructions and addressing modes, so
CISC machines tend to have longer opcodes
than RISC machines.

• Note that longer opcodes do not necessarily
imply that your program will take up more
space than on a machine with short opcodes.
As we pointed out in our CISC vs. RISC
example, it depends on what you need. For
instance, the 10 lines of ATmega16 RISC code
require 20 byte of code (each instruction is
encoded in 16 bits), whereas the 68030
instruction fits into 4 bytes. So here, the 68030
clearly wins. If, however, you only need
instructions already provided by an
architecture with short opcodes, it will most
likely beat a machine with longer opcodes.

• Obviously, a lot of space in the opcode
is taken up by the operands. So one
way of reducing the instruction size is
to cut back on the number of operands
that are explicitly encoded in the
opcode. In consequence, we can
distinguish four different architectures,
depending on how many explicit
operands a binary operation like ADD
requires:

Stack Architecture: This architecture,

also called 0-address format
architecture, does not have any

explicit operands. Instead, the

operands are organized as a

stack: An instruction like ADD

takes the top-most two values

from the stack, adds them, and

puts the result on the stack.

Accumulator Architecture: This

architecture, also called 1-address
format architecture, has an

accumulator which is always used

as one of the operands and as the

destination register. The second

operand is specified explicitly.

2-address Format Architecture: Here, both

operands are specified, but one of

them is also used as the destination

to store the result. Which register is

used for this purpose depends on

the processor in question, for

example, the ATmega16 controller

uses the first register as implicit

destination, whereas the 68000

processor uses the second register.

3-address Format Architecture: In this

architecture, both source operands

and the destination are explicitly

specified. This architecture is the

most flexible, but of course it also

has the longest instruction size.

• Table 2.1 shows the differences

between the architectures when

computing (A+B)*C. We assume that in

the cases of the 2- and 3-address

format, the result is stored in the first

register. We also assume that the 2-

and 3-address format architectures

are load/store architectures, where

arithmetic instructions only operate on

registers. The last line in the table

indicates where the result is stored.

2. Execution Speed

The execution speed of an instruction
depends on several factors. It is mostly
influenced by the complexity of the
architecture, so you can generally
expect a CISC machine to require more
cycles to execute an instruction than a
RISC machine.

It also depends on the word size of the
machine, since a machine that can fetch
a 32 bit instruction in one go is faster
than an 8-bit machine that takes 4 cycles
to fetch such a long instruction.

Finally, the oscillator frequency defines

the absolute speed of the execution,

since a CPU that can be operated at 20

MHz can afford to take twice as many

cycles and will still be faster than a

CPU with a maximum operating

frequency of 8 MHz.

3. Available Instructions

Of course, the nature of available instructions
is an important criterion for selecting a
controller. Instructions are typically parted into
several classes:

Arithmetic-Logic Instructions: This class
contains all operations which compute
something, e.g., ADD, SUB, MUL, . . . , and
logic operations like AND, OR, XOR, It
may also contain bit operations like BSET
(set a bit), BCLR (clear a bit), and BTST (test
whether a bit is set). Bit operations are an
important feature of the microcontroller,
since it allows to access single bits without
changing the other bits in the byte.

• Shift operations, which move the contents of a
register one bit to the left or to the right, are
typically provided both as logical and as
arithmetical operations.

• The difference lies in their treatment of the
most significant bit when shifting to the right
(which corresponds to a division by 2). Seen
arithmetically, the msb is the sign bit and
should be kept when shifting to the right. So if
the msb is set, then an arithmetic right-shift will
keep the msb set. Seen logically, however, the
msb is like any other bit, so here a right-shift
will clear the msb.

• Note that there is no need to keep the
msb when shifting to the left (which
corresponds to a multiplication by 2).
Here, a simple logical shift will keep
the msb set anyway as long as there is
no overflow. If an overflow occurs,
then by not keeping the msb we simply
allow the result to wrap, and the status
register will indicate that the result
has overflowed. Hence, an arithmetic
shift to the left is the same as a logical
shift.

Data Transfer: These operations

transfer data between two registers,

between registers and memory, or

between memory locations. They

contain the normal memory access

instructions like LD (load) and ST

(store), but also the stack access

operations PUSH and POP.

Program Flow: Here you will find all
instructions which influence the
program flow. These include jump
instructions which set the program
counter to a new address, conditional
branches like BNE (branch if the
result of the prior instruction was not
zero), subroutine calls, and calls that
return from subroutines like RET or
RETI (return from interrupt service
routine).

Control Instructions: This class contains

all instructions which influence the

operation of the controller. The

simplest such instruction is NOP, which

tells the CPU to do nothing. All other

special instructions, like power-

management, reset, debug mode

control, . . . also fall into this class.

4. Addressing Modes

When using an arithmetic instruction, the
application programmer must be able
to specify the instruction‘s explicit
operands.

Operands may be constants, the
contents of registers, or the contents
of memory locations. Hence, the
processor has to provide means to
specify the type of the operand.

Hence, the processor has to provide means
to specify the type of the operand. While
every processor allows you to specify the
above-mentioned types, access to
memory locations can be done in many
different ways depending on what is
required.

So the number and types of addressing
modes provided is another important
characteristic of any processor. There
are numerous addressing modes, but we
will restrict ourselves to the most
common ones.

immediate/literal: Here, the operand is a

constant. From the application

programmer‘s point of view,

processors may either provide a

distinct instruction for constants (like

the LDI —load immediate— instruction

of the ATmega16), or require the

programmer to flag constants in the

assembler code with some prefix like

#.

register: Here, the operand is the

register that contains the value or that

should be used to store the result.

direct/absolute: The operand is a

memory location.

register indirect: Here, a register is

specified, but it only contains the

memory address of the actual source

or destination. The actual access is to

this memory location.

autoincrement: This is a variant of indirect
addressing where the contents of the
specified register is incremented either
before (pre-increment) or after (post-
increment) the access to the memory
location. The post-increment variant is
very useful for iterating through an array,
since you can store the base address of
the array as an index into the array and
then simply access each element in one
instruction, while the index gets
incremented automatically.

autodecrement: This is the counter-part to the
autoincrement mode, the register value gets
decremented either before or after the
access to the memory location. Again nice to
have when iterating through arrays.

displacement/based: In this mode, the
programmer specifies a constant and a
register. The contents of the register is
added to the constant to get the final memory
location. This can again be used for arrays if
the constant is interpreted as the base
address and the register as the index within
the array.

indexed: Here, two registers are
specified, and their contents are
added to form the memory address.
The mode is similar to the
displacement mode and can again be
used for arrays by storing the base
address in one register and the index
in the other. Some controllers use a
special register as the index register.
In this case, it does not have to be
specified explicitly.

memory indirect: The programmer again
specifies a register, but the
corresponding memory location is
interpreted as a pointer, i.e., it
contains the final memory location.
This mode is quite useful, for example
for jump tables.

Table 2.2 shows the addressing modes in
action. In the table, M[x] is an access
to the memory address x, d is the data
size, and #n indicates a constant.

• As we have already mentioned, CISC

processors feature more addressing

modes than RISC processors, so CISC

processors must construct more

complex addressing modes with

several instructions. Hence, if you

often need a complex addressing

mode, a CISC machine providing this

mode may be the wiser choice.

• Before we close this section, we would like to

introduce you to a few terms you will often

encounter:

1. An instruction set is called orthogonal if you can

use every instruction with every addressing mode.

2. If it is only possible to address memory with

special memory access instructions (LOAD,

STORE), and all other instructions like arithmetic

instructions only operate on registers, the

architecture is called a load/store architecture.

3. If all registers have the same function (apart from

a couple of system registers like the PC or the

SP), then these registers are called general-
purpose registers.

3. Memory

• The register file is, of course, just a small
memory embedded in the CPU.

• Also, we briefly mentioned data being
transferred between registers and the
data memory, and instructions being
fetched from the instruction memory.

• Therefore, an obvious distinction of
memory types can be made according to
their function:

 Register File: A (usually) relatively small memory
embedded on the CPU. It is used as a scratchpad
for temporary storage of values the CPU is
working with - you could call it the CPU‘s short
term memory.

 Data Memory: For longer term storage, generic
CPUs usually employ an external memory which
is much larger than the register file. Data that is
stored there may be short-lived, but may also be
valid for as long as the CPU is running. Of course,
attaching external memory to a CPU requires
some hardware effort and thus incurs some cost.
For that reason, microcontrollers usually sport
on-chip data memory.

 Instruction Memory: Like the data
memory, the instruction memory is
usually a relatively large external
memory (at least with general CPUs).
Actually, with von-Neumann-
architectures, it may even be the same
physical memory as the data memory.
With microcontrollers, the instruction
memory, too, is usually integrated right
into the MCU.

• These are the most prominent uses of
memory in or around a CPU. However,
there is more memory in a CPU than is
immediately obvious. Depending on the
type of CPU, there can be:

• pipeline

• registers,

• caches,

• various buffers, and so on.

• About memory embedded in an MCU:

Naturally, the size of such on-chip memory is
limited. Even worse, it is often not possible to
expand the memory externally (in order to
keep the design simple).

• However, since MCUs most often are used for
relatively simple tasks and hence do not need
excessive amounts of memory, it is prudent to
include a small amount of data and
instruction memory on the chip.

• Different members in a MCU family usually
provide different amounts of memory, so you
can choose a particular MCU which offers the
appropriate memory space.

• Now, the functional distinction of memory
types made above is based on the way
the memory is used. From a
programmer‘s perspective, that makes
sense.

• However, hardware or chip designers
usually view memory rather differently:
They prefer to distinguish according to
the physical properties of the electronic
parts the memory is made of.

Fig 3.1 Types of Semiconductor Memory

3.1 Volatile Memory

• As mentioned above, volatile memory
retains its contents only so long as the
system is powered on.

• Then why should you use volatile memory
at all, when non-volatile memory is readily
available?

• The problem here is that non-volatile
memory is usually a lot slower, more
involved to work with, and much more
expensive.

Static RAM

• Disregarding the era of computers before
the use of integrated circuits, Static Random
Access Memory (SRAM) was the first type of
volatile memory to be widely used.

• An SRAM chip consists of an array of cells,
each capable of storing one bit of
information.

• To store a bit of information, a so-called flip-
flop is used, which basically consists of six
transistors.

• Looking at Figure 3.2, you see that one

SRAM cell has the following inputs and
outputs:

• Data In Din On this input, the cell accepts
the one bit of data to be stored.

• Data Out Dout As the name implies, this
output reflects the bit that is stored in the
cell.

 Fig 3.2 An SRAM cell as a

Black box.

• Read/Write Via the logical value at this
input, the type of access is specified: 0 means
the cell is to be written to, i.e., the current
state of Din should be stored in the cell. 1
means that the cell is to be read, so it should
set Dout to the stored value.

• Cell Select CS As long as this input is logical
0, the cell does not accept any data present at
Din and keeps its output Dout in a so-called high
resistance state, which effectively
disconnects it from the rest of the system. On
a rising edge, the cell either accepts the state
at Din as the new bit to store, or it sets Dout to
the currently stored value.

• To get a useful memory, many such cells are
arranged in a matrix as depicted in Figure
3.3.

• As you can see, all Dout lines are tied
together. If all cells would drive their outputs
despite not being addressed, a short
between GND and VCC might occur, which
would most likely destroy the chip.

• Therefore, the CS line is used to select one
cell in the matrix and to put all other cells
into their high resistance state.

Fig. 3.3 A matrix of memory in an SRAM

Fig. 3.4 Further reducing the number of external address pins.

• So, instead of actually setting one of
many rows, we just need the number of
the row we wish to select, and the
decoder produces the actual row lines.
With that change, our 16Kx1 SRAM needs
no more than 14 address lines.

• So much for the internals of a SRAM.
Now, what do we actually see from the
outside? Well, a SRAM usually has the
following external connections (most of
which you already know from the layout
of one memory cell):

 Address Lines A0 . . . An−1 They are
used to select one memory cell out of a
total of 2n cells.

 Data In (Din) The function is basically the
same as with one memory cell. For RAMs
of width n ≥ 2, this is actually a bus
composed of n data lines.

 Data Out (Dout) Same function as in a
single memory cell. Like Din , for RAMs of
width n ≥ 2, this would be a bus.

 Chip Select (CS) or Chip Enable (CE)

This is what Cell Select was for the

memory cell.

 Read/Write Again, this works just

like in a memory cell.

Dynamic RAM

• Obviously, we would like to get as much
storage capacity as possible out of a
memory chip of a certain size.

• Now, we already know that SRAM usually
needs six transistors to store one single
bit of information.

• If we could reduce the number of
components needed – say, we only use
half as much transistors –, then we would
get about twice the storage capacity.

• That is what was achieved with Dynamic
Random Access Memory – DRAM: The

number of transistors needed per bit of

information was brought down to one.

• So at the same chip size, a DRAM has

much larger storage capacity compared

to an SRAM.

• Well, instead of using a lot of transistors

to build flip-flops, one bit of information is

stored in a capacitor.

• They kind of work like little rechargeable

batteries – you apply a voltage across

them, and they store that voltage.

Disconnect, and you have a loaded

capacitor. Connect the pins of a loaded

capacitor via a resistor, and an

electrical current will flow, discharging

the capacitor.

• Well, the information is indeed stored in a

capacitor, but in order to select it for

reading or writing, a transistor is needed.

• If you want to store a logical one, you

address the memory cell you want to

access by driving the transistor.

• Then, you apply a voltage, which charges

the capacitor.

• To store a logical zero, you select the cell

and discharge the capacitor.

• However, due to the flow of minimal currents
through the non-perfect insulators on the
chip (so-called leakage currents), the
capacitor loses its charge, despite not being
accessed.

• And since these capacitors are rather small,
their capacity is accordingly small. This
means that after loading the capacitor, the
charge will unavoidably decrease. After
some time (in the range of 10 to 100 ms), the
charge will be lost, and the information with
it.

• Well, they kind of handed the problem over
to the users: By accessing DRAM, the
information is refreshed (the capacitors are
recharged). So DRAM has to be accessed
every few milliseconds or so, else the
information is lost.

• Often, the CPU does not need to access its
RAM every cycle, but also has internal
cycles to do its actual work. A DRAM refresh
controller logic can use the cycles in
between the CPUs accesses to do the
refreshing.

• DRAM has about four times larger storage
capacity than SRAM at about the same cost and
chip size. This means that DRAMs are available in
larger capacities.

• Apart from the need for memory refresh, there is
another severe disadvantage of DRAM: It is much
slower than SRAM. However, due to the high cost
of SRAM, it is just not an option for common
desktop PCs. Therefore, numerous variants of
DRAM access techniques have been devised,
steadily increasing the speed of DRAM memory.

• In microcontrollers, you will usually find SRAM,
as only moderate amounts of memory are
needed, and the refresh logic required for DRAM
would use up precious silicon area.

3.2 Non-volatile Memory

• Contrary to SRAMs and DRAMs, non-
volatile memories retain their content
even when power is cut. But, as
already mentioned, that advantage
comes at a price: Writing non-volatile
memory types is usually much slower
and comparatively complicated, often
downright annoying.

1. ROM

2. PROM

3. EPROM

4. EEPROM: The EEPROM (Electrically Erasable and
Programmable ROM) has all the advantages of an
EPROM without the hassle. No special voltage is
required for programming anymore, and – as the name
implies – no more UV light source is needed for
erasing. EEPROM works very similar to EPROM, except
that the electrons can be removed from the floating
gate by applying an elevated voltage.

• Of course, EEPROMs have their limitations, too: They
endure a limited number of write/erase- cycles only
(usually in the order of 100.000 cycles), and they do not
retain their information indefinitely, either.

• EEPROMs are used quite regularly in microcontroller
applications.

5. Flash: Flash is a variant of EEPROM

where erasing is not possible for each

address, but only for larger blocks or

even the entire memory (erased ‗in a

flash‘, so to speak).

• Therefore, Flash-EEPROMs often have

a lower guaranteed write/erase cycle

endurance compared to EEPROMs –

about 1.000 to 10.000 cycles. This, too,

makes Flash-EEPROMs cheaper.

6. NVRAM: Finally, there is a type of memory
that combines the advantages of volatile and
non-volatile memories: Non-Volatile RAM
(NVRAM). This can be achieved in different
ways. One is to just add a small internal
battery to an SRAM device, so that when
external power is switched off, the SRAM still
retains its content. Another variant is to
combine a SRAM with an EEPROM in one
package. Upon power-up, data is copied
from the EEPROM to the SRAM. During
operation, data is read from and written to
the SRAM. When power is cut off, the data is
copied to the EEPROM

3.3 Accessing Memory

• Many microcontrollers come with on-chip
program and data memory. Usually, the
program memory will be of the Flash-
EEPROM type, and the data memory will
be composed of some SRAM and some
EEPROM.

• How does a particular address translate
in terms of the memory addressed?
Basically, there are two methods:

1. Each memory is addressed separately,

see Figure 3.4 (e.g. ATmega16).

Fig. 3.4 Separate Memory Addressing.

• The address ranges of the three

different memory types can be the

same. The programmer specifies which

memory is to be accessed by using

different access methods. E.g., to

access EEPROM, a specific EEPROM-

index register is used.

2. All memory types share a common address range,
see Figure 3.5 (e.g. HCS12).

• Here, the programmer accesses EEPROM in the
same way as SRAM. The microcontroller uses the
address to decide which memory the access goes
to. For example, EEPROM could be assigned an
address range of 0x1000 – 0x2000, while SRAM
shows up in the range 0x2000 – 0x3000. Now, when
the programmer accesses address 0x1800, the
microcontroller knows that this is in the EEPROM
range, and therefore it will access the EEPROM.

Fig. 3.5 Different

memory types

mapped into one

address range.

• While this method is very straightforward, it is

also inherently less safe: A wrong address

can lead to the wrong type of memory being

accessed. This would be especially

dangerous if you were to inadvertently

access the EEPROM instead of SRAM – with

frequent access, the EEPROM could wear out

in a matter of minutes.

• Separate memory addressing, on the other

hand, comes with an implicit protection

against access to the wrong type of memory.

• When accessing byte-addressed memory
word-wise, there is a special pitfall to be
considered: Suppose a 16 bit controller
writes a word (two bytes) into SRAM, say
at address 0x0100. The word consists of
a low and a high byte. Now, in what order
are the bytes to be written? There are two
variants: the low byte could go to 0x0100
and the high byte to the next address
(0x0101), or the other way around. That is
the problem of endianness:

• Big Endian: Big Endian architectures store the
high byte first. So, if you write the word 0x1234
to address 0x0100, the high byte 0x12 goes to
address 0x0100, and the low byte 0x34 to
address 0x0101. The name is derived from this
order: The Big End of the word is stored first –
therefore, it is called Big Endian.

• Little Endian: Little Endian architectures
access memory the other way around (Little
End of the word first). Here, the low byte is
stored first. Writing 0x1234 at address 0x0100
on a little endian architecture writes 0x34 to
address 0x0100 and 0x12 to address 0x0101.

• Note carefully, however, that this

difference in the ordering of high and

low is only relevant on a byte level. The

bits within a byte are numbered from

right to left on both architectures. So,

the least significant bit is always the

rightmost one.

4. Interrupts

• Microcontrollers tend to be deployed in systems
that have to react to events. Events signify state
changes in the controlled system and generally
require some sort of reaction by the
microcontroller.

• Reactions range from simple responses like
incrementing a counter whenever a workpiece
crosses a photoelectric barrier on the conveyor belt
to time-critical measures like shutting down the
system if someone reaches into the working area of
a machine. Assuming that the controller can
observe the event, that is, there is an input line that
changes its state to indicate the event, there is still
the question of how the controller should monitor
the input line to ensure a proper and timely
reaction.

• It is of course possible to simply poll the input

signal, that is, to periodically check for state

changes.

• However, this polling has its drawbacks: Not

only does it unnecessarily waste processor

time if the event only occurs infrequently, it is

also hard to modify or extend. After all, a

microcontroller generally has a lot more to do

than just wait for a single event, so the event

gets polled periodically in such a way that the

rest of the program can be executed as well.

• Fortunately, the microcontroller itself offers a

convenient way in the form of interrupts. Here,
the microcontroller polls the signal and
interrupts the main program only if a state
change is detected.

• As long as there is no state change, the main
program simply executes without any
concerns about the event.

• As soon as the event occurs, the
microcontroller calls an interrupt service
routine (ISR) which handles the event.

• The ISR must be provided by the application
programmer.

4.1 Interrupt Control

• Two bits form the main interface to the
interrupt logic of the microcontroller:

1. The interrupt enable (IE) bit is set by the
application programmer to indicate that the
controller should call an ISR in reaction to
the event.

2. The interrupt flag (IF) bit is set by the
microcontroller whenever the event occurs,
and it is cleared either automatically upon
entering the ISR or manually by the
programmer.

• Basically, the IF bit shows that the interrupt
condition has occurred, whereas the IE bit allows
the interrupt itself to occur.

• The IE and IF bits are generally provided for every
interrupt source the controller possesses.

• Apart from the IE and IF bits, the controller will
most likely offer additional control bits (interrupt
mode) for some of its interrupt sources. They are
used to select which particular signal changes
should cause an interrupt (e.g., only a falling edge,
any edge, . . .). It is sometimes even possible to
react to the fact that an input signal has not
changed. This is called a level interrupt.

• Since it would be inconvenient and time-
consuming to disable all currently enabled
interrupts whenever the program code should not
be interrupted by an ISR (atomic action), a
microcontroller also offers one global interrupt
enable bit which enables/disables all currently
enabled interrupts.

• Hence, an ISR is only called if both the IE bit for
the interrupt source and the global IE bit are
enabled. Note that in the case of the global IE bit,
―enabled‖ does not necessarily mean ―set‖, so
always check whether the bit should be set or
cleared to enable interrupts.

• Disabling interrupts does not necessarily
imply that you will miss events. The
occurrence of an event is stored in its IF,
regardless of whether the IE bit is set or not
(this refers to both the global and local IE).
So if an event occurs during a period when
its interrupt was disabled, and this interrupt
is later enabled again, then the
corresponding ISR will be called, albeit
somewhat belatedly. The only time you will
miss events is when a second event occurs
before the first one has been serviced.

• Apart from the normal interrupts, which can be

disabled, some controllers also offer a non-
maskable interrupt (NMI), which cannot be disabled
by the global IE bit. Such interrupts are useful for
particularly important events, when the reaction to
the event must not be delayed regardless of
whether it affects the program or not.

• After a reset, interrupts are generally disabled both
at the source and globally. However, the application
programmer should be aware that the start-up code
generated by the compiler may already have
enabled the global IE bit before the application code
begins its execution.

Interrupt Vector Table

• Apart from enabling a given interrupt, the

programmer must also have the means to

tell the controller which particular

interrupt service routine should be

called. The mapping of interrupts to ISRs

is achieved with the interrupt vector
table, which contains an entry for each

distinct interrupt vector.

• An interrupt vector is simply a number

associated with a certain interrupt.

Each vector has its fixed address in the

vector table, which in turn has a fixed

base address in (program) memory. At

the vector address, the application

programmer has to enter either the

starting address of the ISR (e.g.,

HCS12) or a jump instruction to the ISR

(e.g., ATmega16).

Interrupt Priorities

• Most controllers with many interrupts and a vector
table use the interrupt vector as an indication to the
priority. The ATmega16, for example, statically
assigns the highest priority to the interrupt with the
smallest interrupt vector. If the controller offers NMIs,
they will most likely have the highest priority.

• Of course, a static assignment of priorities may not
always reflect the requirements of the application
program. In consequence, some controllers allow the
user to dynamically assign priorities to at least some
interrupts. Others enable the user to select within the
ISR which interrupts should be allowed to interrupt
the ISR.

4.2 Interrupt Handling
• To summarize, from the detection of the event on,

interrupt handling is executed in the following steps:

1. Set interrupt flag: The controller stores the occurrence
of the interrupt condition in the IF.

2. Finish current instruction: Aborting half-completed
instructions complicates the hardware, so it is generally
easier to just finish the current instruction before
reacting to the event. Of course, this prolongs the time
until reaction to the event by one or more cycles.

3. Identify ISR: The occurrence of an event does not
necessarily imply that an ISR should be called. If the
corresponding IE bit is not set, then the user does not
desire an interrupt. Furthermore, since the controller has
several interrupt sources which may produce events
simultaneously, more than one IF flag can be set. So the
controller must find the interrupt source with the highest
priority out of all sources with set IF and IE bits.

4. Call ISR: After the starting address has been
determined, the controller saves the PC etc.
and finally executes the ISR.

• The whole chain of actions from the
occurrence of the event until the execution of
the first instruction in the ISR causes a delay
in the reaction to the event, which is
subsumed in the interrupt latency.

• The latency generally tends to be within 2-20
cycles, depending on what exactly the
controller does before executing the ISR.

4.3 Interrupt Service Routine

• The interrupt service routine contains the
code necessary to react to the interrupt. This
could include clearing the interrupt flag if it
has not already been cleared, or disabling the
interrupt if it is not required anymore.

• The ISR may also contain the code that reacts
to the event that has triggered the interrupt.
However, the decision what to do in the ISR
and what to do in the main program is often
not easy and depends on the situation, so a
good design requires a lot of thought and
experience.

Interrupt or Polling

• First of all, you face the decision of whether

you should poll or whether you should use

an interrupt. This decision is influenced by

several factors. Is this a large program, or

just a small one? Are there other things to

do in the main loop which are not related to

the event you want to service? How fast do

you have to react? Are you interested in the

state or in the state change?

• As an example, consider a button that is
actuated by a human operator. As long as the
button is pressed, a dc motor should be active.

• Checking every couple of milliseconds will
easily be enough, and you can fit a lot of other
code into a period of 1-10 ms.

• Assume that the impulses to advance the
stepper motor come from a machine and are
short. Here, interrupts are definitely the best
solution, first because there is no bouncing
involved, and mainly because polling may miss
the short impulse, especially if there is other
code that has to be executed as well.

• To summarize, indications for using interrupts are

 event occurs infrequently

 long intervals between two events

 the state change is important

 short impulses, polling might miss them

 event is generated by HW, no bouncing effects or spikes

 nothing else to do in main, could enter sleep mode

• whereas polling may be the better choice if

 the operator is human

 no precise timing is necessary

 the state is important

 impulses are long

 the signal is noisy

 there is something else to do in main anyway, but not too

much

