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What is a Microprocessor ? 
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Microprocessor Structure 



8 

Microprocessor Basic Operation 

• Program (instructions) and Data are stored in Memory 

• Each instruction is read (fetched) from memory, interpreted 
(decoded), and executed 

– Arithmetic Logic Unit (ALU) performs operations on data 

– Data is transferred (register, memory, I/O) 

• Program Counter (PC) indicates current location of program in 
Memory and is automatically incremented after each instruction 

• Each instruction can take several clock cycles 

Decode 

Fetch 

Execute 
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What is a Microcomputer System? 

• It is a computing system based on 
microcontroller.  
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Microcontroller System 

• The buffers and converters condition I/O signal 
levels if necessary 

• The bus is a group of signals (data, address, 
control signal) with a common purpose. 

• The clock circuit generates a fixed-frequency, 
timing signal for the entire system. 

• The power supply converts a raw power source 
into the DC voltage (nominally 5V) required by the 
system. 
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An example of microcontroller system 
(MC68HC11EVBU evaluation board) 
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Microcontroller 

• Integrated system designed to operate as an embedded computing system 
( a computer which is part of a larger system) 

• A microcontroller is a small, low-cost and self contained computer-on-a-
chip that can be used as an embedded system. 

• It is composed by: 
– microprocessor (CPU), 

– ROM (for the program),  

– RAM (for the data) 

– I/O ports (to communicate/interface with external resources), 

– Peripheral devices (to make easier the interfacing and implementation of the 
desired functionalities), 
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Common Applications 

• Consumer: 
– Washing machine,  
– Remote controls 
– Clocks and watches 
– Games and Toys 
– Audio/video 

 
• Communication: 

– Telephone systems, 
– Answering machines 
– Cell phones and pagers 
– Networking (ATM, credit cards, Ethernet) 

 
• Automotive: 

– Safety devices (Automatic Braking System, Airbag) 
– Motor control (ignition, exhausts) 
– Power windows and seats 
– Instrumentation 
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Common Applications 

• Military: 
– Guidance systems 
– Global positioning systems 
– Target recognition systems 

 
• Industrial: 

– Traffic control 
– Robotics 
– Production plants  
– Inventory and stock management 

 
• Medical: 

– Cardiac monitors 
– Renal Monitors 
– Pacemakers 
– Dialysis machines 

 



Classification of Microcontrollers 

• The microcontrollers are characterized by their:  
– bits,  

– bus-width,  

– instruction set,  

– and memory structure. 
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Classification According to Number of Bits 

• In 8-bit microcontroller, the point when the internal bus is 8-bit then 
the ALU is performs the arithmetic and logic operations. 

• The 16-bit microcontroller performs greater precision and 
performance as compared to 8-bit. For example 8 bit microcontrollers 
can only use 8 bits, resulting in a final range of 0×00 – 0xFF (0-255) 
for every cycle. In contrast, 16 bit microcontrollers with its 16 bit data 
width has a range of 0×0000 – 0xFFFF (0-65535) for every cycle.  

• The 32-bit microcontroller uses the 32-bit instructions to perform the 
arithmetic and logic operations. These are used in automatically 
controlled devices including implantable medical devices, engine 
control systems, office machines, appliances and other types of 
embedded systems. 
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Classification According to Memory Devices 

• Embedded memory microcontroller: When an embedded system has a 
microcontroller unit that has all the functional blocks available on a chip is called 
an embedded microcontroller. For example, 8051 having program & data memory, 
I/O ports, serial communication, counters and timers and interrupts on the chip is 
an embedded microcontroller. 

• External Memory Microcontroller: When an embedded system has a 
microcontroller unit that has not all the functional blocks available on a chip is 
called an external memory microcontroller. For example, 8031 has no program 
memory on the chip is an external memory microcontroller. 
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Classification According to Memory 
Architecture 

• Harvard Memory Architecture Microcontroller: The point when a 
microcontroller unit has a dissimilar memory address space for the program 
and data memory, the microcontroller has Harvard memory architecture in 
the processor. 

• Princeton Memory Architecture Microcontroller: The point when a 
microcontroller has a common memory address for the program memory and 
data memory, the microcontroller has Princeton memory architecture in the 
processor. 
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Microcontroller Organization 

Processor ROM RAM I/O INTERFACE

RESET CLOCK I/O

MICROCONTROLLER (SINGLE CHIP)

PIO INT UART SIO

GPT PWM WDT AIO
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Microcontroller Functional Units 

• CPU: Central Processing Unit  
(4,8,16,32 bit data bus) 

• ROM: Read Only Memory (Firmware) 

• RAM: Random Access Memory  
(Register File, Processor Stack, Temporary data) 

• PIO: Parallel I/O (relays, sensors) 

• INT: Interrupt Inputs  
(external/internal sources) 

• UART: Universal Asynchronous Receiver Transmitter (e.g. RS232) 

• GPT: General Purpose Timer  
(optional event counter) 

• PWM: Pulse Width Modulator (motor controller) 

• WDT: Watch Dog Timer (automatic reset) 

• AIO: Analog I/O (ADC & DAC) 
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Memory basic concepts 

• Digital data is stored in the form of binary numbers, however it is often 
represented using the hexadecimal numbering system. 

• The bit is the smallest digital unit, and is either 1 or 0. 

• A byte is defined to be 8 bits. 

• A word varies from processor to processor and can be 8, 16, 32 or more bits. 

• Normally, the byte is the smallest addressable unit; however, it is possible to 
address individual bits in I/O registers. 

• Motorola convention: binary number are prefixed by %  and hexadecimal 
numbers by $ 
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Memory basic concepts 
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Memory Types 

The main types of semiconductor memory are: 
 

ROM – Read Only Memory 

RAM – Random Access Memory 

EPROM – Erasable Programmable Read Only  

 Memory 

EEPROM – Electrically Erasable Programmable  

    Read Only Memory 
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The Bus 

• The bus provides the communication infrastructure among the various components 
of the system  

• Data bus carries the information being transmitted/received. 

• Address bus tells where the information is being transferred to/from. 

• Control bus specifies when the information transfer take place by coordinating the 
access to the data bus and the address bus, and directs the data from/to the 
specific components. 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

CISC and RISC 

•   MCs with Harvard architecture are called "RISC 
MCs". MCs with von- Neumann's architecture 
are called 'CISC microcontrollers'. 

•   Harvard architecture is a newer concept than 
von-Neumann's. 

•   In Harvard architecture, data bus and address 
bus are separate. Thus a greater flow of  data is 
possible through the CPU, and of  course, a 
greater speed of  work. 

•   It is also typical for Harvard architecture to have 
fewer instructions than von-Neumann's, and to 
have instructions usually executed in one cycle. 

 



 

 



 

Compiler 

The name "compiler" is primarily used 

for programs that translate the source 

code from a high level programming 

language to a low-level language (e.g., 

assembly language or machine code). 



 

 



 

 



 

 



 

 



 

1. Introduction to Microcontroller 

• Figure 1.1 shows the block diagram of  

a typical microcontroller. All 

components are connected via an 

internal bus and are all integrated on 

one chip. The modules are connected 

to the outside world via I/O pins. 



 

 

 

 

 

 

 

 

 

Figure 1.1 Basic layout of  a microcontroller. 

 



 

• The following list contains the modules 
typically found in a microcontroller.  

1-Processor Core: The CPU of  the controller.  
It contains the arithmetic logic unit, the 
control unit, and the registers (stack 
pointer, program counter, accumulator 
register, register file, . . . ). 

2-Memory: The memory is sometimes split 
into program memory and data memory. In 
larger controllers, a DMA controller handles 
data transfers between peripheral 
components and the memory. 



 

3- Interrupt Controller: Interrupts are useful 

for interrupting the normal program flow 

in case of  (important) external or internal 

events. In conjunction with sleep modes, 

they help to conserve power.  

4- Timer/Counter: Most controllers have at 

least one and more likely 2-3 

Timer/Counters, which can be used to 

timestamp events, measure intervals, or 

count events. 



 

Many controllers also contain PWM (pulse 
width modulation) outputs, which can be used 
to drive motors or for safe breaking (antilock 
brake system, ABS). Furthermore the PWM 
output can, in conjunction with an external 
filter, be used to realize a cheap digital/analog 
converter. 

5-Digital I/O: Parallel digital I/O ports are one of  
the main features of  microcontrollers. The 
number of  I/O pins varies from 3-4 to over 90, 
depending on the controller family and the 
controller type.  



 

6- Analog I/O: Apart from a few small controllers, most 
microcontrollers have integrated analog/digital 
converters, which differ in the number of  channels 
(2-16) and their resolution (8-12 bits). The analog 
module also generally features an analog 
comparator. In some cases, the microcontroller 
includes digital/analog converters. 

7- Interfaces: Controllers generally have at least one 
serial interface which can be used to download the 
program and for communication with the 
development PC in general. Since serial interfaces 
can also be used to communicate with external 
peripheral devices, most controllers offer several 
and varied interfaces like SPI and SCI.  



 

Many microcontrollers also contain 
integrated bus controllers for the most 
common (field)busses. IIC and CAN 
controllers lead the field here. Larger 
microcontrollers may also contain PCI, USB, 
or Ethernet interfaces. 

8- Watchdog Timer: Since safety-critical 
systems form a major application area of  
microcontrollers, it is important to guard 
against errors in the program and/or the 
hardware. The watchdog timer is used to 
reset the controller in case of  software 
―crashes‖. 



 

9- Debugging Unit: Some controllers are equipped 
with additional hardware to allow remote 
debugging of  the chip from the PC. So there is 
no need to download special debugging 
software, which has the distinct advantage that 
erroneous application code cannot overwrite the 
debugger. 

To summarize, a microcontroller is a (stripped-
down) processor which is equipped with memory, 
timers, (parallel) I/O pins and other on-chip 
peripherals. The driving element behind all this is 
cost: Integrating all elements on one chip saves 
space and leads to both lower manufacturing costs 
and shorter development times. 

 



 

• As a result, microcontrollers are generally 
tailored for specific applications, and there is 
a wide variety of  microcontrollers to choose 
from. 

• The first choice a designer has to make is the 
controller family – it defines the controller‘s 
architecture. All controllers of  a family contain 
the same processor core and hence are code-
compatible, but they differ in the additional 
components like the number of  timers or the 
amount of  memory. 



 

• You will find that there are many 

different controller families like 8051, 

PIC, HC, ARM to name just a few, and 

that even within a single controller 

family you may again have a choice of  

many different controllers. 

 



 



 

1.2   Frequently Used Terms 

1- Microprocessor: This is a normal CPU 
(Central Processing Unit) as you can find in a 
PC. Communication with external devices is 
achieved via a data bus, hence the chip 
mainly features data and address pins as well 
as a couple of  control pins. All peripheral 
devices (memory, floppy controller, USB 
controller, timer, . . . ) are connected to the 
bus. A microprocessor cannot be operated 
stand-alone, at the very least it requires 
some memory and an output device to be 
useful. 



 

2- Microcontroller: A microcontroller already 
contains all components which allow it to operate 
standalone, and it has been designed in 
particular for monitoring and/or control tasks. In 
consequence, in addition to the processor it 
includes memory, various interface controllers, 
one or more timers, an interrupt controller, and 
last but definitely not least general purpose I/O 
pins which allow it to directly interface to its 
environment. Microcontrollers also include bit 
operations which allow you to change one bit 
within a byte without touching the other bits. 



 
3- Mixed-Signal Controller: This is a microcontroller 

which can process both digital and analog signals. 

4- Embedded System: A major application area for 
microcontrollers are embedded systems. In 
embedded systems, the control unit is integrated 
into the systems. As an example, think of  a cell 
phone, where the controller is included in the 
device. This is easily recognizable as an embedded 
system. On the other hand, if  you use a normal PC 
in a factory to control an assembly line, this also 
meets many of  the definitions of  an embedded 
system. The same PC, however, equipped with a 
normal operating system and used by the night 
guard to kill time is certainly no embedded system. 



 

5- Real-Time System: Controllers are 

frequently used in real-time systems, 

where the reaction to an event has to 

occur within a specified time. This is 

true for many applications in 

aerospace, railroad, or automotive 

areas, e.g., for brake-by-wire in cars. 

 



 
1.3   Notation 
 

• When we talk about the values of  digital lines, we generally mean their 
logical values, 0 or 1. We indicate the complement of  a logical value X  
with 𝑋  , so 1   =  0 and 0  =  1. 

• Hexadecimal values are denoted by a preceding $ or 0x.  Binary values 
are either given like  decimal values if  it is obvious that the value is 
binary, or they are marked with (·)2 . 

• The notation M[X] is used to indicate a memory access at address X. 

• In our assembler examples, we tend to use general-purpose registers, 
which are labeled with R and a number, e.g., R0. 

• The ∝ sign means ―proportional to‖. 

• In a few cases, we will need intervals. We use the standard interval 
notations, which are [.,.] for a closed interval, [.,.) and (.,.] for half-open 
intervals, and (.,.) for an open interval. Variables denoting intervals will 
be overlined, e.g. dlatch = (0, 1]. The notation dlatch + 2 adds the constant 
to the interval, resulting in (0, 1] + 2 = (2, 3]. 

• We use k  as a generic variable, so do not be surprised if  k  means 
different things in different sections or even in different paragraphs 
within a section. 



 

 



 

2. Microcontroller Components 

2.1   Processor Core 

• A basic CPU architecture is depicted in 

Figure 2.1. It consists of  the data path, 

which executes instructions, and of  the 

control unit, which basically tells the 

data path what to do. 



 
2.1.1 Architecture 

 



 

1- Arithmetic Logic Unit 

At the core of  the CPU is the arithmetic 
logic unit (ALU), which is used to perform 
computations (AND, ADD, INC, . . . ). 
Several control lines select which operation 
the ALU should perform on the input data. 
The ALU takes two inputs and returns the 
result of  the operation as its output. Source 
and destination are taken from registers or 
from memory. In addition, the ALU stores 
some information about the nature of  the 
result in the status register (also called 
condition code register): 



 

• Z (Zero): The result of  the operation is 

zero. 

• N (Negative): The result of  the operation 

is negative, that is, the most significant bit 

(msb) of  the result is set (1). 

• O (Overflow): The operation produced an 

overflow, that is, there was a change of  

sign in a two‘s- complement operation. 

• C (Carry): The operation produced a 

carry. 



 

2- Register File 

The register file contains the working registers of  the 
CPU. It may either consist of  a set of  general purpose 
registers (generally 16–32, but there can also be more), 
each of  which can be the source or destination of  an 
operation, or it consists of  some dedicated registers. 
Dedicated registers are e.g. an accumulator, which is 
used for arithmetic/logic operations, or an index register, 
which is used for some addressing modes. 

In any case, the CPU can take the operands for the ALU 
from the file, and it can store the operation‘s result back 
to the register file. Alternatively, operands/result can 
come from/be stored to the memory. However, memory 
access is much slower than access to the register file, so 
it is usually wise to use the register file if  possible. 

 

 



 

 



 
3- Stack Pointer 
The stack is a portion of  consecutive memory in the data 
space which is used by the CPU to store return addresses 
and possibly register contents during subroutine and 
interrupt service routine calls. It is accessed with the 
commands PUSH (put something on the stack) and POP 
(remove something from the stack). To store the current fill 
level of  the stack, the CPU contains a special register 
called the stack pointer (SP), which points to the top of  the 
stack. Stacks typically grow ―down‖, that is, from the 
higher memory addresses to the lower addresses. So the 
SP generally starts at the end of  the data memory and is 
decremented with every push and incremented with every 
pop. The reason for placing the stack pointer at the end of  
the data memory is that your variables are generally at the 
start of  the data memory, so by putting the stack at the end 
of  the memory it takes longest for the two to collide. 



 
• Unfortunately, there are two ways to interpret the 

memory location to which the SP points: It can 
either be seen as the first free address, so a PUSH 
should store data there and then decrement the 
stack pointer as depicted in Figure 2.2 (the Atmel 
AVR controllers use the SP that way), or it can be 
seen as the last used address, so a PUSH first 
decrements the SP and then stores the data at the 
new address (this interpretation is adopted for 
example in Motorola‘s HCS12). Since the SP must 
be initialized by the programmer, you must look up 
how your controller handles the stack and either 
initialize the SP to the last address in memory (if  a 
push stores first and decrements afterwards) or to 
the last address + 1 (if  the push decrements first). 



 
• As we have mentioned, the controller uses 

the stack during subroutine calls and 
interrupts, that is, whenever the normal 
program flow is interrupted and should 
resume later on. Since the return address is a 
pre-requisite for resuming program execution 
after the point of  interruption, every 
controller pushes at least the return address 
onto the stack. Some controllers even save 
register contents on the stack to ensure that 
they do not get overwritten by the interrupting 
code. This is mainly done by controllers which 
only have a small set of  dedicated registers. 



 

 



 

Control Unit 

• It is the task of  the control unit to determine 
which operation should be executed next and 
to configure the data path accordingly. 

• To do so, another special register, the 
program counter (PC), is used to store the 
address of  the next program instruction. 

• The control unit loads this instruction into the 
instruction register (IR), decodes the 
instruction, and sets up the data path to 
execute it. 

 



 

• Data path configuration includes 
providing the appropriate inputs for the 
ALU (from registers or memory), 
selecting the right ALU operation, and 
making sure that the result is written to 
the correct destination (register or 
memory). 

• The PC is either incremented to point to 
the next instruction in the sequence, or is 
loaded with a new address in the case of  
a jump or subroutine call. 

• After a reset, the PC is typically initialized 
to $0000. 



 
• Traditionally, the control unit was hard-wired, that 

is, it basically contained a look-up table which 
held the values of  the control lines necessary to 
perform the instruction, plus a rather complex 
decoding logic. 

• This meant that it was difficult to change or extend 
the instruction set of  the CPU. To ease the design 
of  the control unit, Maurice Wilkes reflected that 
the control unit is actually a small CPU by itself  
and could benefit from its own set of  
microinstructions. 

• In his subsequent control unit design, program 
instructions were broken down into 
microinstructions, each of  which did some small 
part of  the whole instruction (like providing the 
correct register for the ALU). 



 

• This essentially made control design a 
programming task: Adding a new 
instruction to the instruction set boiled 
down to programming the instruction in 
microcode.  

• As a consequence, it suddenly became 
comparatively easy to add new and 
complex instructions, and instruction sets 
grew rather large and powerful as a 
result.  

• This earned the architecture the name 
Complex Instruction Set Computer 
(CISC).  



 

• Of course, the powerful instruction set has its 
price, and this price is speed: Microcoded 
instructions execute slower than hard-wired 
ones. 

• Furthermore, studies revealed that only 20% of  
the instructions of  a CISC machine are 
responsible for 80% of  the code (80/20 rule).  

• This and the fact that these complex instructions 
can be implemented by a combination of  simple 
ones gave rise to a movement back towards 
simple hard-wired architectures, which were 
correspondingly called Reduced Instruction Set 
Computer (RISC). 



 

RISC: The RISC architecture has simple, 
hard-wired instructions which 
often take only one or a few clock 
cycles to execute. RISC machines 
feature a small and fixed code size 
with comparatively few 
instructions and few addressing 
modes. As a result, execution of  
instructions is very fast, but the 
instruction set is rather simple. 



 

CISC: The CISC architecture is 
characterized by its complex 
microcoded instructions which take 
many clock cycles to execute. The 
architecture often has a large and 
variable code size and offers many 
powerful instructions and 
addressing modes. In comparison 
to RISC, CISC takes longer to 
execute its instructions, but the 
instruction set is more powerful. 



 
• Of course, when you have two 

architectures, the question arises which 
one is better. In the case of  RISC vs. 
CISC, the answer depends on what you 
need. 

o If  your solution frequently employs a 
powerful instruction or addressing mode 
of  a given CISC architecture, you 
probably will be better off  using CISC.  

o If  you mainly need simple instructions 
and addressing modes, you are most 
likely better off  using RISC. 



 

• Of course, this choice also depends on 

other factors like the clocking 

frequencies of  the processors in 

question.  



 

  



 

2.1.2    Instruction Set 

• The instruction set is an important 
characteristic of  any CPU. It influences 
the code size, that is, how much memory 
space your program takes. Hence, you 
should choose the controller whose 
instruction set best fits your specific 
needs. 

• The metrics of  the instruction set that are 
important for a design decision are: 



 

• Instruction Size 

• Execution Speed 

• Available Instructions 

• Addressing Modes 

1- Instruction Size 

An instruction contains in its opcode 
information about both the operation that 
should be executed and its operands. 

Obviously, a machine with many different 
instructions and addressing modes requires 
longer opcodes than a machine with only a 
few instructions and addressing modes, so 
CISC machines tend to have longer opcodes 
than RISC machines. 



 

• Note that longer opcodes do not necessarily 
imply that your program will take up more 
space than on a machine with short opcodes. 
As we pointed out in our CISC vs. RISC 
example, it depends on what you need. For 
instance, the 10 lines of  ATmega16 RISC code 
require 20 byte of  code (each instruction is 
encoded in 16 bits), whereas the 68030 
instruction fits into 4 bytes. So here, the 68030 
clearly wins. If, however, you only need 
instructions already provided by an 
architecture with short opcodes, it will most 
likely beat a machine with longer opcodes.  



 

• Obviously, a lot of  space in the opcode 
is taken up by the operands. So one 
way of  reducing the instruction size is 
to cut back on the number of  operands 
that are explicitly encoded in the 
opcode. In consequence, we can 
distinguish four different architectures, 
depending on how many explicit 
operands a binary operation like ADD 
requires: 



 

Stack Architecture: This architecture, 

also called 0-address format 
architecture, does not have any 

explicit operands. Instead, the 

operands are organized as a 

stack: An instruction like ADD 

takes the top-most two values 

from the stack, adds them, and 

puts the result on the stack. 



 

Accumulator Architecture: This 

architecture, also called 1-address 
format architecture, has an 

accumulator which is always used 

as one of  the operands and as the 

destination register.  The second 

operand is specified explicitly. 



 

2-address Format Architecture: Here, both 

operands are specified, but one of  

them is also used as the destination 

to store the result. Which register is 

used for this purpose depends on 

the processor in question, for 

example, the ATmega16 controller 

uses the first register as implicit 

destination, whereas the 68000 

processor uses the second register. 



 

3-address Format Architecture: In this 

architecture, both source operands 

and the destination are explicitly 

specified. This architecture is the 

most flexible, but of  course it also 

has the longest instruction size. 



 

• Table 2.1 shows the differences 

between the architectures when 

computing (A+B)*C. We assume that in 

the cases of  the 2- and 3-address 

format, the result is stored in the first 

register. We also assume that the 2- 

and 3-address format architectures 

are load/store architectures, where 

arithmetic instructions only operate on 

registers. The last line in the table 

indicates where the result is stored. 



 



 

2. Execution Speed 

The execution speed of  an instruction 
depends on several factors. It is mostly 
influenced by the complexity of  the 
architecture, so you can generally 
expect a CISC machine to require more 
cycles to execute an instruction than a 
RISC machine. 

It also depends on the word size of  the 
machine, since a machine that can fetch 
a 32 bit instruction in one go is faster 
than an 8-bit machine that takes 4 cycles 
to fetch such a long instruction. 



 

Finally, the oscillator frequency defines 

the absolute speed of  the execution, 

since a CPU that can be operated at 20 

MHz can afford to take twice as many 

cycles and will still be faster than a 

CPU with a maximum operating 

frequency of  8 MHz. 



 

3. Available Instructions 

Of  course, the nature of  available instructions 
is an important criterion for selecting a 
controller. Instructions are typically parted into 
several classes: 

Arithmetic-Logic Instructions: This class 
contains all operations which compute 
something, e.g., ADD, SUB, MUL, . . . , and 
logic operations like AND, OR, XOR, . . . . It 
may also contain bit operations like BSET 
(set a bit), BCLR (clear a bit), and BTST (test 
whether a bit is set). Bit operations are an 
important feature of  the microcontroller, 
since it allows to access single bits without 
changing the other bits in the byte. 

 



 

• Shift operations, which move the contents of  a 
register one bit to the left or to the right, are 
typically provided both as logical and as 
arithmetical operations.  

• The difference lies in their treatment of  the 
most significant bit when shifting to the right 
(which corresponds to a division by 2). Seen 
arithmetically, the msb is the sign bit and 
should be kept when shifting to the right. So if  
the msb is set, then an arithmetic right-shift will 
keep the msb set. Seen logically, however, the 
msb is like any other bit, so here a right-shift 
will clear the msb. 



 

• Note that there is no need to keep the 
msb when shifting to the left (which 
corresponds to a multiplication by 2). 
Here, a simple logical shift will keep 
the msb set anyway as long as there is 
no overflow. If  an overflow occurs, 
then by not keeping the msb we simply 
allow the result to wrap, and the status 
register will indicate that the result 
has overflowed. Hence, an arithmetic 
shift to the left is the same as a logical 
shift. 



 



 

Data Transfer: These operations 

transfer data between two registers, 

between registers and memory, or 

between memory locations. They 

contain the normal memory access 

instructions like LD (load) and ST 

(store), but also the stack access 

operations PUSH and POP. 



 

Program Flow: Here you will find all 
instructions which influence the 
program flow. These include jump 
instructions which set the program 
counter to a new address, conditional 
branches like BNE (branch if  the 
result of  the prior instruction was not 
zero), subroutine calls, and calls that 
return from subroutines like RET or 
RETI (return from interrupt service 
routine). 



 

Control Instructions: This class contains 

all instructions which influence the 

operation of  the controller. The 

simplest such instruction is NOP, which 

tells the CPU to do nothing. All other 

special instructions, like power-

management, reset, debug mode 

control, . . . also fall into this class. 



 

4. Addressing Modes 

When using an arithmetic instruction, the 
application programmer must be able 
to specify the instruction‘s explicit 
operands.  

Operands may be constants, the 
contents of  registers, or the contents 
of  memory locations. Hence, the 
processor has to provide means to 
specify the type of  the operand. 



 

Hence, the processor has to provide means 
to specify the type of  the operand. While 
every processor allows you to specify the 
above-mentioned types, access to 
memory locations can be done in many 
different ways depending on what is 
required. 

So the number and types of  addressing 
modes provided is another important 
characteristic of  any processor. There 
are numerous addressing modes, but we 
will restrict ourselves to the most 
common ones. 



 

immediate/literal: Here, the operand is a 

constant. From the application 

programmer‘s point of  view, 

processors may either provide a 

distinct instruction for constants (like 

the LDI —load immediate— instruction 

of  the ATmega16), or require the 

programmer to flag constants in the 

assembler code with some prefix like 

#. 



 

register: Here, the operand is the 

register that contains the value or that 

should be used to store the result. 

direct/absolute: The operand is a 

memory location. 

register indirect: Here, a register is 

specified, but it only contains the 

memory address of  the actual source 

or destination. The actual access is to 

this memory location. 



 

autoincrement: This is a variant of  indirect 
addressing where the contents of  the 
specified register is incremented either 
before (pre-increment) or after (post-
increment) the access to the memory 
location. The post-increment variant is 
very useful for iterating through an array, 
since you can store the base address of  
the array as an index into the array and 
then simply access each element in one 
instruction, while the index gets 
incremented automatically. 



 

autodecrement: This is the counter-part to the 
autoincrement mode, the register value gets 
decremented either before or after the 
access to the memory location. Again nice to 
have when iterating through arrays. 

displacement/based: In this mode, the 
programmer specifies a constant and a 
register. The contents of  the register is 
added to the constant to get the final memory 
location. This can again be used for arrays if  
the constant is interpreted as the base 
address and the register as the index within 
the array. 



 

indexed: Here, two registers are 
specified, and their contents are 
added to form the memory address. 
The mode is similar to the 
displacement mode and can again be 
used for arrays by storing the base 
address in one register and the index 
in the other. Some controllers use a 
special register as the index register. 
In this case, it does not have to be 
specified explicitly. 



 

memory indirect: The programmer again 
specifies a register, but the 
corresponding memory location is 
interpreted as a pointer, i.e., it 
contains the final memory location. 
This mode is quite useful, for example 
for jump tables. 

Table 2.2 shows the addressing modes in 
action. In the table, M[x] is an access 
to the memory address x, d is the data 
size, and #n indicates a constant.  



 

• As we have already mentioned, CISC 

processors feature more addressing 

modes than RISC processors, so CISC 

processors must construct more 

complex addressing modes with 

several instructions. Hence, if  you 

often need a complex addressing 

mode, a CISC machine providing this 

mode may be the wiser choice. 



 
• Before we close this section, we would like to 

introduce you to a few terms you will often 

encounter: 

1. An instruction set is called orthogonal if  you can 

use every instruction with every addressing mode. 

2. If  it is only possible to address memory with 

special memory access instructions (LOAD, 

STORE), and all other instructions like arithmetic 

instructions only operate on registers, the 

architecture is called a load/store architecture. 

3. If  all registers have the same function (apart from 

a couple of  system registers like the PC or the 

SP), then these registers are called general-
purpose registers. 



 

 



 

3. Memory 

• The register file is, of  course, just a small 
memory embedded in the CPU.  

• Also, we briefly mentioned data being 
transferred between registers and the 
data memory, and instructions being 
fetched from the instruction memory. 

• Therefore, an obvious distinction of  
memory types can be made according to 
their function: 



 

 Register File: A (usually) relatively small memory 
embedded on the CPU. It is used as a scratchpad 
for temporary storage of  values the CPU is 
working with - you could call it the CPU‘s short 
term memory. 

 Data Memory: For longer term storage, generic 
CPUs usually employ an external memory which 
is much larger than the register file. Data that is 
stored there may be short-lived, but may also be 
valid for as long as the CPU is running. Of  course, 
attaching external memory to a CPU requires 
some hardware effort and thus incurs some cost. 
For that reason, microcontrollers usually sport 
on-chip data memory. 



 

 Instruction Memory: Like the data 
memory, the instruction memory is 
usually a relatively large external 
memory (at least with general CPUs). 
Actually, with von-Neumann-
architectures, it may even be the same 
physical memory as the data memory. 
With microcontrollers, the instruction 
memory, too, is usually integrated right 
into the MCU. 



 

• These are the most prominent uses of  
memory in or around a CPU. However, 
there is more memory in a CPU than is 
immediately obvious. Depending on the 
type of  CPU, there can be:  

• pipeline  

• registers,  

• caches,  

• various buffers, and so on. 



 
• About memory embedded in an MCU: 

Naturally, the size of  such on-chip memory is 
limited. Even worse, it is often not possible to 
expand the memory externally (in order to 
keep the design simple). 

• However, since MCUs most often are used for 
relatively simple tasks and hence do not need 
excessive amounts of  memory, it is prudent to 
include a small amount of  data and 
instruction memory on the chip. 

• Different members in a MCU family usually 
provide different amounts of  memory, so you 
can choose a particular MCU which offers the 
appropriate memory space. 



 

• Now, the functional distinction of  memory 
types made above is based on the way 
the memory is used. From a 
programmer‘s perspective, that makes 
sense. 

• However, hardware or chip designers 
usually view memory rather differently: 
They prefer to distinguish according to 
the physical properties of  the electronic 
parts the memory is made of. 



 

 

 

 

 

 

 

 

Fig 3.1 Types of  Semiconductor Memory 



 

3.1 Volatile Memory 

• As mentioned above, volatile memory 
retains its contents only so long as the 
system is powered on. 

• Then why should you use volatile memory 
at all, when non-volatile memory is readily 
available? 

• The problem here is that non-volatile 
memory is usually a lot slower, more 
involved to work with, and much more 
expensive. 



 

Static RAM 

• Disregarding the era of  computers before 
the use of  integrated circuits, Static Random 
Access Memory (SRAM) was the first type of  
volatile memory to be widely used. 

• An SRAM chip consists of  an array of  cells, 
each capable of  storing one bit of  
information.  

• To store a bit of  information, a so-called flip-
flop is used, which basically consists of  six 
transistors.  



 
• Looking at Figure 3.2, you see that one 

SRAM cell has the following inputs and 
outputs: 

• Data In Din  On this input, the cell accepts 
the one bit of  data to be stored. 

• Data Out Dout  As the name implies, this 
output reflects the bit that is stored in the 
cell. 

 

     Fig 3.2 An SRAM cell as a  

Black box. 



 

• Read/Write          Via the logical value at this 
input, the type of  access is specified: 0 means 
the cell is to be written to, i.e., the current 
state of  Din should be stored in the cell. 1 
means that the cell is to be read, so it should 
set Dout to the stored value. 

• Cell Select CS  As long as this input is logical 
0, the cell does not accept any data present at 
Din and keeps its output Dout in a so-called high 
resistance state, which effectively 
disconnects it from the rest of  the system. On 
a rising edge, the cell either accepts the state 
at Din as the new bit to store, or it sets Dout to 
the currently stored value. 



 

• To get a useful memory, many such cells are 
arranged in a matrix as depicted in Figure 
3.3. 

• As you can see, all Dout lines are tied 
together. If  all cells would drive their outputs 
despite not being addressed, a short 
between GND and VCC might occur, which 
would most likely destroy the chip. 

• Therefore, the CS line is used to select one 
cell in the matrix and to put all other cells 
into their high resistance state.  



 

 

 

 

 

 

 

 

 

 

Fig. 3.3 A matrix of  memory in an SRAM 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Further reducing the number of  external address pins. 



 

• So, instead of  actually setting one of  
many rows, we just need the number of  
the row we wish to select, and the 
decoder produces the actual row lines. 
With that change, our 16Kx1 SRAM needs 
no more than 14 address lines. 

• So much for the internals of  a SRAM. 
Now, what do we actually see from the 
outside? Well, a SRAM usually has the 
following external connections (most of  
which you already know from the layout 
of  one memory cell): 



 

 Address Lines A0  . . . An−1  They are 
used to select one memory cell out of  a 
total of  2n cells. 

 Data In (Din ) The function is basically the 
same as with one memory cell.  For RAMs 
of  width n  ≥  2, this is actually a bus 
composed of  n data lines. 

 Data Out (Dout ) Same function as in a 
single memory cell.  Like Din , for RAMs of  
width n  ≥  2, this would be a bus. 



 

 Chip Select (CS) or Chip Enable (CE) 

This is what Cell Select was for the 

memory cell. 

 Read/Write          Again, this works just 

like         in a memory cell. 



 

Dynamic RAM 

• Obviously, we would like to get as much 
storage capacity as possible out of  a 
memory chip of  a certain size. 

• Now, we already know that SRAM usually 
needs six transistors to store one single 
bit of  information.  

• If  we could reduce the number of  
components needed – say, we only use 
half  as much transistors –, then we would 
get about twice the storage capacity. 



 

• That is what was achieved with Dynamic 
Random Access Memory – DRAM: The 

number of  transistors needed per bit of  

information was brought down to one. 

• So at the same chip size, a DRAM has 

much larger storage capacity compared 

to an SRAM. 

• Well, instead of  using a lot of  transistors 

to build flip-flops, one bit of  information is 

stored in a capacitor. 



 

• They kind of  work like little rechargeable 

batteries – you apply a voltage across 

them, and they store that voltage. 

Disconnect, and you have a loaded 

capacitor. Connect the pins of  a loaded 

capacitor via a resistor, and an 

electrical current will flow, discharging 

the capacitor. 



 

• Well, the information is indeed stored in a 

capacitor, but in order to select it for 

reading or writing, a transistor is needed. 

• If  you want to store a logical one, you 

address the memory cell you want to 

access by driving the transistor. 

• Then, you apply a voltage, which charges 

the capacitor. 

• To store a logical zero, you select the cell 

and discharge the capacitor.  



 

• However, due to the flow of  minimal currents 
through the non-perfect insulators on the 
chip (so-called leakage currents), the 
capacitor loses its charge, despite not being 
accessed.  

• And since these capacitors are rather small, 
their capacity is accordingly small. This 
means that after loading the capacitor, the 
charge will unavoidably decrease. After 
some time (in the range of  10 to 100 ms), the 
charge will be lost, and the information with 
it. 



 

• Well, they kind of  handed the problem over 
to the users: By accessing DRAM, the 
information is refreshed (the capacitors are 
recharged). So DRAM has to be accessed 
every few milliseconds or so, else the 
information is lost. 

• Often, the CPU does not need to access its 
RAM every cycle, but also has internal 
cycles to do its actual work. A DRAM refresh 
controller logic can use the cycles in 
between the CPUs accesses to do the 
refreshing. 



 

• DRAM has about four times larger storage 
capacity than SRAM at about the same cost and 
chip size. This means that DRAMs are available in 
larger capacities. 

• Apart from the need for memory refresh, there is 
another severe disadvantage of  DRAM: It is much 
slower than SRAM. However, due to the high cost 
of  SRAM, it is just not an option for common 
desktop PCs. Therefore, numerous variants of  
DRAM access techniques have been devised, 
steadily increasing the speed of  DRAM memory. 

• In microcontrollers, you will usually find SRAM, 
as only moderate amounts of  memory are 
needed, and the refresh logic required for DRAM 
would use up precious silicon area. 



 

3.2 Non-volatile Memory 

• Contrary to SRAMs and DRAMs, non-
volatile memories retain their content 
even when power is cut. But, as 
already mentioned, that advantage 
comes at a price: Writing non-volatile 
memory types is usually much slower 
and comparatively complicated, often 
downright annoying. 



 
1. ROM 

2. PROM 

3. EPROM 

4. EEPROM: The EEPROM (Electrically Erasable and 
Programmable ROM) has all the advantages of  an 
EPROM without the hassle. No special voltage is 
required for programming anymore, and – as the name 
implies – no more UV light source is needed for 
erasing. EEPROM works very similar to EPROM, except 
that the electrons can be removed from the floating 
gate by applying an elevated voltage. 

• Of course, EEPROMs have their limitations, too: They 
endure a limited number of  write/erase- cycles only 
(usually in the order of  100.000 cycles), and they do not 
retain their information indefinitely, either. 

• EEPROMs are used quite regularly in microcontroller 
applications. 

 



 

5. Flash: Flash is a variant of  EEPROM 

where erasing is not possible for each 

address, but only for larger blocks or 

even the entire memory (erased ‗in a 

flash‘, so to speak).  

• Therefore, Flash-EEPROMs often have 

a lower guaranteed write/erase cycle 

endurance compared to EEPROMs – 

about 1.000 to 10.000 cycles. This, too, 

makes Flash-EEPROMs cheaper. 



 

6. NVRAM: Finally, there is a type of  memory 
that combines the advantages of  volatile and 
non-volatile memories: Non-Volatile RAM 
(NVRAM). This can be achieved in different 
ways. One is to just add a small internal 
battery to an SRAM device, so that when 
external power is switched off, the SRAM still 
retains its content. Another variant is to 
combine a SRAM with an EEPROM in one 
package. Upon power-up, data is copied 
from the EEPROM to the SRAM. During 
operation, data is read from and written to 
the SRAM. When power is cut off, the data is 
copied to the EEPROM 



 

3.3 Accessing Memory 

• Many microcontrollers come with on-chip 
program and data memory. Usually, the 
program memory will be of  the Flash-
EEPROM type, and the data memory will 
be composed of  some SRAM and some 
EEPROM.  

• How does a particular address translate 
in terms of  the memory addressed? 
Basically, there are two methods: 



 

1. Each memory is addressed separately, 

see Figure 3.4 (e.g. ATmega16). 

 

 

 

 

 

 

Fig. 3.4  Separate Memory Addressing. 

 



 

• The address ranges of  the three 

different memory types can be the 

same. The programmer specifies which 

memory is to be accessed by using 

different access methods. E.g., to 

access EEPROM, a specific EEPROM-

index register is used. 



 

2. All memory types share a common address range, 
see Figure 3.5 (e.g. HCS12). 

• Here, the programmer accesses EEPROM in the 
same way as SRAM. The microcontroller uses the 
address to decide which memory the access goes 
to. For example, EEPROM could be assigned an 
address range of  0x1000 – 0x2000, while SRAM 
shows up in the range 0x2000 – 0x3000. Now, when 
the programmer accesses address 0x1800, the 
microcontroller knows that this is in the EEPROM 
range, and therefore it will access the EEPROM.  

 



 

Fig. 3.5 Different  

memory types  

mapped into one  

address range.  



 
• While this method is very straightforward, it is 

also inherently less safe: A wrong address 

can lead to the wrong type of  memory being 

accessed. This would be especially 

dangerous if  you were to inadvertently 

access the EEPROM instead of  SRAM – with 

frequent access, the EEPROM could wear out 

in a matter of  minutes.  

• Separate memory addressing, on the other 

hand, comes with an implicit protection 

against access to the wrong type of  memory.  



 

• When accessing byte-addressed memory 
word-wise, there is a special pitfall to be 
considered: Suppose a 16 bit controller 
writes a word (two bytes) into SRAM, say 
at address 0x0100. The word consists of  
a low and a high byte. Now, in what order 
are the bytes to be written? There are two 
variants: the low byte could go to 0x0100 
and the high byte to the next address 
(0x0101), or the other way around. That is 
the problem of  endianness: 



 

• Big Endian: Big Endian architectures store the 
high byte first. So, if  you write the word 0x1234 
to address 0x0100, the high byte 0x12 goes to 
address 0x0100, and the low byte 0x34 to 
address 0x0101. The name is derived from this 
order: The Big End of  the word is stored first – 
therefore, it is called Big Endian. 

• Little Endian: Little Endian architectures 
access memory the other way around (Little 
End of  the word first). Here, the low byte is 
stored first. Writing 0x1234 at address 0x0100 
on a little endian architecture writes 0x34 to 
address 0x0100 and 0x12 to address 0x0101. 



 

• Note carefully, however, that this 

difference in the ordering of  high and 

low is only relevant on a byte level. The 

bits within a byte are numbered from 

right to left on both architectures. So, 

the least significant bit is always the 

rightmost one. 



 
4. Interrupts  

• Microcontrollers tend to be deployed in systems 
that have to react to events. Events signify state 
changes in the controlled system and generally 
require some sort of  reaction by the 
microcontroller. 

• Reactions range from simple responses like 
incrementing a counter whenever a workpiece 
crosses a photoelectric barrier on the conveyor belt 
to time-critical measures like shutting down the 
system if  someone reaches into the working area of  
a machine. Assuming that the controller can 
observe the event, that is, there is an input line that 
changes its state to indicate the event, there is still 
the question of  how the controller should monitor 
the input line to ensure a proper and timely 
reaction. 



 

• It is of  course possible to simply poll the input 

signal, that is, to periodically check for state 

changes.  

• However, this polling has its drawbacks: Not 

only does it unnecessarily waste processor 

time if  the event only occurs infrequently, it is 

also hard to modify or extend. After all, a 

microcontroller generally has a lot more to do 

than just wait for a single event, so the event 

gets polled periodically in such a way that the 

rest of  the program can be executed as well.  



 
• Fortunately, the microcontroller itself  offers a 

convenient way in the form of  interrupts. Here, 
the microcontroller polls the signal and 
interrupts the main program only if  a state 
change is detected. 

• As long as there is no state change, the main 
program simply executes without any 
concerns about the event. 

• As soon as the event occurs, the 
microcontroller calls an interrupt service 
routine (ISR) which handles the event.  

• The ISR must be provided by the application 
programmer. 



 

4.1 Interrupt Control 

• Two bits form the main interface to the 
interrupt logic of  the microcontroller: 

1. The interrupt enable (IE) bit is set by the 
application programmer to indicate that the 
controller should call an ISR in reaction to 
the event. 

2. The interrupt flag (IF) bit is set by the 
microcontroller whenever the event occurs, 
and it is cleared either automatically upon 
entering the ISR or manually by the 
programmer. 



 

• Basically, the IF bit shows that the interrupt 
condition has occurred, whereas the IE bit allows 
the interrupt itself  to occur. 

• The IE and IF bits are generally provided for every 
interrupt source the controller possesses. 

• Apart from the IE and IF bits, the controller will 
most likely offer additional control bits (interrupt  
mode) for some of  its interrupt sources. They are 
used to select which particular signal changes 
should cause an interrupt (e.g., only a falling edge, 
any edge, . . . ). It is sometimes even possible to 
react to the fact that an input signal has not 
changed. This is called a level interrupt. 

 



 

• Since it would be inconvenient and time-
consuming to disable all currently enabled 
interrupts whenever the program code should not 
be interrupted by an ISR (atomic action), a 
microcontroller also offers one global interrupt 
enable bit which enables/disables all currently 
enabled interrupts. 

• Hence, an ISR is only called if  both the IE bit for 
the interrupt source and the global IE bit are 
enabled. Note that in the case of  the global IE bit, 
―enabled‖ does not necessarily mean ―set‖, so 
always check whether the bit should be set or 
cleared to enable interrupts. 



 

• Disabling interrupts does not necessarily 
imply that you will miss events. The 
occurrence of  an event is stored in its IF, 
regardless of  whether the IE bit is set or not 
(this refers to both the global and local IE). 
So if  an event occurs during a period when 
its interrupt was disabled, and this interrupt 
is later enabled again, then the 
corresponding ISR will be called, albeit 
somewhat belatedly. The only time you will 
miss events is when a second event occurs 
before the first one has been serviced. 



 
• Apart from the normal interrupts, which can be 

disabled, some controllers also offer a non-
maskable interrupt (NMI), which cannot be disabled 
by the global IE bit. Such interrupts are useful for 
particularly important events, when the reaction to 
the event must not be delayed regardless of  
whether it affects the program or not. 

• After a reset, interrupts are generally disabled both 
at the source and globally. However, the application 
programmer should be aware that the start-up code 
generated by the compiler may already have 
enabled the global IE bit before the application code 
begins its execution.  



 

Interrupt Vector Table 

• Apart from enabling a given interrupt, the 

programmer must also have the means to 

tell the controller which particular 

interrupt service routine should be 

called. The mapping of  interrupts to ISRs 

is achieved with the interrupt vector 
table, which contains an entry for each 

distinct interrupt vector. 



 

• An interrupt vector is simply a number 

associated with a certain interrupt. 

Each vector has its fixed address in the 

vector table, which in turn has a fixed 

base address in (program) memory. At 

the vector address, the application 

programmer has to enter either the 

starting address of  the ISR (e.g., 

HCS12) or a jump instruction to the ISR 

(e.g., ATmega16). 



 

 



 

Interrupt Priorities 

• Most controllers with many interrupts and a vector 
table use the interrupt vector as an indication to the 
priority. The ATmega16, for example, statically 
assigns the highest priority to the interrupt with the 
smallest interrupt vector. If  the controller offers NMIs, 
they will most likely have the highest priority. 

• Of course, a static assignment of  priorities may not 
always reflect the requirements of  the application 
program. In consequence, some controllers allow the 
user to dynamically assign priorities to at least some 
interrupts. Others enable the user to select within the 
ISR which interrupts should be allowed to interrupt 
the ISR. 



 
4.2 Interrupt Handling 
• To summarize, from the detection of  the event on, 

interrupt handling is executed in the following steps: 

1. Set interrupt flag: The controller stores the occurrence 
of  the interrupt condition in the IF. 

2. Finish current instruction: Aborting half-completed 
instructions complicates the hardware, so it is generally 
easier to just finish the current instruction before 
reacting to the event. Of  course, this prolongs the time 
until reaction to the event by one or more cycles. 

3. Identify ISR: The occurrence of  an event does not 
necessarily imply that an ISR should be called.  If  the 
corresponding IE bit is not set, then the user does not 
desire an interrupt. Furthermore, since the controller has 
several interrupt sources which may produce events 
simultaneously, more than one IF flag can be set. So the 
controller must find the interrupt source with the highest 
priority out of  all sources with set IF and IE bits. 



 

4. Call ISR: After the starting address has been 
determined, the controller saves the PC etc. 
and finally executes the ISR. 

• The whole chain of  actions from the 
occurrence of  the event until the execution of  
the first instruction in the ISR causes a delay 
in the reaction to the event, which is 
subsumed in the interrupt latency. 

• The latency generally tends to be within 2-20 
cycles, depending on what exactly the 
controller does before executing the ISR. 



 

4.3   Interrupt Service Routine 

• The interrupt service routine contains the 
code necessary to react to the interrupt. This 
could include clearing the interrupt flag if  it 
has not already been cleared, or disabling the 
interrupt if  it is not required anymore.  

• The ISR may also contain the code that reacts 
to the event that has triggered the interrupt. 
However, the decision what to do in the ISR 
and what to do in the main program is often 
not easy and depends on the situation, so a 
good design requires a lot of  thought and 
experience.  



 

Interrupt or Polling 

• First of  all, you face the decision of  whether 

you should poll or whether you should use 

an interrupt. This decision is influenced by 

several factors. Is this a large program, or 

just a small one? Are there other things to 

do in the main loop which are not related to 

the event you want to service? How fast do 

you have to react? Are you interested in the 

state or in the state change? 



 

• As an example, consider a button that is 
actuated by a human operator. As long as the 
button is pressed, a dc motor should be active. 

• Checking every couple of  milliseconds will 
easily be enough, and you can fit a lot of  other 
code into a period of  1-10 ms. 

• Assume that the impulses to advance the 
stepper motor come from a machine and are 
short. Here, interrupts are definitely the best 
solution, first because there is no bouncing 
involved, and mainly because polling may miss 
the short impulse, especially if  there is other 
code that has to be executed as well. 



 
• To summarize, indications for using interrupts are 

  event occurs infrequently 

  long intervals between two events 

  the state change is important 

  short impulses, polling might miss them 

  event is generated by HW, no bouncing effects or spikes 

  nothing else to do in main, could enter sleep mode 

• whereas polling may be the better choice if 

 the operator is human 

 no precise timing is necessary 

 the state is important 

  impulses are long 

  the signal is noisy 

  there is something else to do in main anyway, but not too 

much 


