
Dr. Mohannad K. Sabir Al
Lami

Biomedical Engineering
Department

2018-2019

• Head lines

1- Software Design and Validation,

2- Microprocessor,

3- Computer Architecture,

4- Real Time computing,

5- Embedded Software,

6- Graphical User Interface, and

7- Networking,

Suggested Readings
• John L. Hennessy and David A. Patterson. Computer

Architecture: A Quantitative Approach (Third Edition
ed.). Morgan Kaufmann Publishers.

• Gamma E. et al.: Design patterns, WNT, Warszawa 2005
• Miles R., Hamilton K.: Learning UML 2.0, Helion,

Gliwice 2007
• Pressman R. S.: Software Engineering: A

Practitioner’s Approach,
• WNT, Warszawa 2004
• Sommerville I.: Software Engineering, WNT,

Warszawa 2003

Importance of software engineering

• National infrastructures are controlled by
computer based Systems

• More and more systems require reliable
software

• Software engineering is about theory, methods
and tools used in software development

• Software development is an important part of
economy in every developed country

• Software is more than just a program code. A
program is an executable code, which serves
some computational purpose. Software is
considered to be collection of executable
programming code, associated libraries and
documentations. Software, when made for a
specific requirement is called software product.

• Engineering on the other hand, is all about
developing products, using well-defined,
scientific principles and methods.

Software Overview

• Software engineering is an engineering branch associated
with development of software product using well-defined
scientific principles, methods and procedures. The outcome
of software engineering is an efficient and reliable software
product.

• IEEE defines software engineering as: Software Engineering
Tutorial

 (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software; that is, the application of engineering to software.

 (2) The study of approaches as in the above statement.

Software Evolution

The process of developing a software
product using software engineering
principles and methods is referred to as
Software Evolution. This includes the
initial development of software and its
maintenance and updates, till desired
software product is developed, which
satisfies the expected requirements.

Von Neumann Architecture

General Structure of the IAS computer.

 • A main memory which stores data and
instructions

 • An arithmetic and logical unit(ALU) capable of
operating on binary data.

 • A control unit , which interprets the instruction
in memory and causes them to be executed.

 • Input and Output(I/O) equipment operated by
control unit.

According to the above fig.

• (MBR) Memory Buffer Register : Contains the word to be stored in memory ,
or is used to receive a word from memory.

• (MAR) Memory Address Register: Specifies the address in the memory of
the word to be written from or read into the MBR.

• (IR)Instruction register: Contains the 8 bit opcode instruction being
executed

• (IBR)Instruction Buffer Register: Employed to temporartily hold the right –
hand instruction from a word in memory.

• (PC)Program counter: Contains the address of the next instruction-pair to
be fetched from memory.

• (AC)Accumulator and Multiplier-Quotient(MQ):Employed to temporarily
hold operands and results of ALU operations. For eg. The result of
multiplying two 40-bit numbers is an 80-bit number; the most significant
40 bits are stored in AC and the least significant in the MQ.

• STRUCTURE
• The computer is an entity that interacts with its external

environment. In general all its linkages to the external
environment can be classified as peripheral devices or
communication lines. There are four main structural
components.

• Central Processing Unit(CPU) : Controls the operation of the
computer and performs its data processing functions. Simply
referred to as Processors.

• Main memory : Store data.
• I/O : Moves data between computer and its external

environment
• System Interconnection : Some mechanism that provides for

communication among CPU, main memory, and I/O.

FACTORS AFFECTING THE PERFORMANCE FACTORS:

• Performance is specific to a particular program

• Total execution time is a consistent summary of performance

• Performance doesn’t depend on any single factor: need to know
Instruction Count, Clocks Per Instruction and Clock Rate to get valid
estimations

• For a given architecture performance increases come from: increases
in clock rate (without adverse CPI affects) – improvements in
processor organization that lower CPI compiler enhancements that
lower CPI and/or instruction count

• Pitfall: expecting improvement in one aspect of a machine’s
performance to affect the total performance

• Performance Calculation (1/2)

 CPU execution time for program= Clock Cycles for
program x Clock Cycle Time

 Substituting for clock cycles:

CPU execution time for program = (Instruction Count x
CPI) x Clock Cycle Time = Instruction Count x CPI x
Clock Cycle Time

• How to estimate a performance of computer?

 One of the generic measures is MIPS (millions of instructions
per second). This is only meaningful when comparing
machines with the same architecture, since some
architectures may require substantially more instructions
than others for the same program. This method also can be
very dependent on the mix of instructions and hence on the
program used to measure MIPS.

 Some manufacturers report "peak MIPS" on carefully
designed but useless programs.

 It is obvious, that all major computer components such as
CPU, memory and IO devices together affect computer's
performance. Slow RAM or hard disk is going to be a
bottleneck for fast CPU. In reality, however, high performance
of PC is always a trade off to low cost:

• 1. The CPU.

 CPU architecture is important. The higher the generation, the better.
For example, because of high performance new features, Pentium 75
(fifth generation with the clock rate 75 MHz) outperforms
80486DX100 (which is the fourth generation CPU with the clock rate
100MHz). One of the techniques, enhancing the performance , is
parallel processing. For example, while an instruction is being
executed in the ALU (E), the next instruction can be fetched from
memory (F) and decoded (D).

 Instruction Prefetching is another idea, first appeared in 286 (6 byte
prefetching). It is based on the fact, that CPU is normally performing
sequential code fetching. Only jump instructions alter program flow
and they are statistically rare. Rather than wait for the execution unit
to request next instruction fetch, CPU during next cycle prefetches
the next instruction from memory and put it into prefetch queue to
have it ready. If jump instruction is executed the information in
prefetch queue is marked as invalid.

2. Data bus width.
 80486 processors have data bus 32 bits wide, whereas

Pentiums are 64 bit processors, thus Pentiums can
transfer twice as much data at a time compared to
fourth generation CPUs.

3. Clock rate.
 Since any step of processing can happen only on the

"tick" of the clock , the faster the rate the quicker the
CPU works.

4. Memory.
• The diagram illustrates a general memory hierarchy of

PC:

• The amount of RAM really depends on your
applications. Reasonable performance today calls
for 128 MB. Adding more RAM will speed up the
performance if you run several applications at the
same time or work with large files and documents.

• L1 cache resides on-chip. The bigger the on-chip
cache size - the better, since more instructions and
data can be stored on the chip, reducing the
number of times the processor has to access slower
off-chip memory areas to get data.

5- IO devices
 Speaking of effective interfacing I/O devices to CPU,

synchronous protocol (includes a clock in the control
lines) is more effective than asynchronous. A
synchronous interface means data and address are
transmitted relative to the clock. Since little or no logic
is needed to decide what to do next, a synchronous
interface can be both fast and inexpensive. A
disadvantage of this protocol is that it can not be long
because of the clock-skew problem.

 An asynchronous interface does not need clock.
Instead, self-timed, handshaking protocols are used
between sender and receiver.

 Most I/O devices today are interrupt-driven , i.e. CPU
does not do anything for the I/O device until it notifies the
CPU by sending interrupt (IRQ). First computers used
polling – a simple interface, when the CPU periodically
checked status bits to see if it is time for the next I/O
operation. Since CPU is much faster than any I/O
device, it is obvious that polling is a waste of the CPU's
time. In general-purpose applications, using IRQ is the
key to multitasking operating systems and good
response time.

• Since I/O events often involve block transfers, direct
memory access (DMA) hardware is added to many
computer systems. DMA is when I/O device acts as a
master and transfers large number of words to/from
memory without intervention by the CPU.

• Byte – The amount of space in memory or on a
disk needed to store one character.

 8 bits = 1 Byte

• Kilo means 1000 kilobyte (KB) = 1000 Bytes

• Mega means 1,000,000 megabyte (MB) =
1,000,000 Bytes

• Giga Means 1,000,000,000 gigabyte (GB) =
1,000,000,000 Bytes

Central Processing Unit (CPU)

• The central processing unit is one of the two
most important components of your
microcomputer.

• It is the electronic brain of your computer. In
addition to processing data, it controls the
function of all the other components. The most
popular microprocessors in IBM compatible
computers are made by Intel.

The generations of microprocessors are listed
below.

• 1981 8088

• 1984 80286

• 1987 80386

• 1990 80486

• 1993 Pentium

• 1996 P-1

• 2002 P-4

System Software

• System software will come provided with each
computer and is necessary for the computer’s
operation.

• This software acts as an interpreter between the
computer and user. It interprets your instructions
into binary code and likewise interprets binary
code into language the user can understand.

• In the past you may have used MS-DOS or
Microsoft Disk Operating System which was a
command line interface.

Program Software
• Program software is software used to write computer

programs in specific computer languages.
• Application software is any software used for specified

applications such as:
1. Word Processing
2. Spreadsheet
3. Database
4. Presentation Graphics
5. Communication
6. Tutorials
7. Entertainment, Games

Emerging Trends

• There are standard buses such as Industry
Standard Architecture (ISA), Extended Industry
Standard Architecture (EISA), Micro- Channel
Architecture (MCA), and so on. The standard bus
permits the user to purchase the components from
different vendors and connect them easily.

• The various input and output devices have a
standard way of connecting to the CPU and
Memory. These are called interface standards.
Some popular interface standards are the RS-232C
and Small Computer System Interconnect (SCSI).

Main Memory
• A flip-flop made of electronic semiconductor

devices is used to fabricated a memory cell. These
memory cells organized as a Random Access
Memory (RAM).

• A memory cell, which does not loose the bit stored
in it when no power is supplied to the cell, is know
as a non-volatile cell.

• A RAM may be fabricated with permanently
stored

information, which cannot be erased. Such a
memory is called a Read Only Memory (ROM).

• a user can store his won special functions
or programs in a ROM. Such ROM's are
called Programmable ROM (PROM).

• The time taken to write a word is known
as the Write time. The time to retrieve
information is called the Access time of
the memory.

Application Software

• It is the set of programs necessary to carry out
operations for a specified application.

 Example Programs:

 • To solve a set of equations

 • To process examination results

 • To prepare a Pay-Bill for an organization

 • To prepare Electricity-Bill for each month.

System Software
• These are general program written for the system, which

provide the environment to facilitate writing of Application
software. Some of the system programs are given below:

• Compiler: It is a translator system program used to translate a
High-level language program into a Machine language
program.

• Assembler: It is another translator program used to translate an
Assembly language program into a Machine language
program.

• Interpreter: It is also a translator system program used to
translate a High level language program into a Machine
language program, but it translates and executes line by line.

• Loader: It is a system program used to store the machine
language program into the memory of the computer.

Computer Languages

1. Machine language:The computers can execute a
program written using binary digits only.

2. Assembly Language: In assembly language mnemonic
codes are used to develop program for problem
solving.

• Program code Description

 READ A It reads the value of A.

 ADD B The value of B is added with A

 STORE C The result is store in C.

 PRINT C The result in 'C' is printed.

 HALT Stop execution.

3. High Level Languages: High level language are
developed to allow application programs, which
are machine independent.

• FORTRAN (FORmula TRANslation),

• BASIC (Beginner's All-purpose Symbolic

• Instruction Code),

• COBOL (COmmon Business Oriented
Language).

• Visual Foxpro, Visual Basic (VB), Visual C++
(VC++) are more

• popular among the software developers.

Computers and Communications
Local Area Network (LAN) & Wide Area Network (WAN)
• One way of connecting the computers is by using devices

called modems.
• A modem is used to transfer data from one computer to

another using the telephone lines.
• Interconnection of computers which are within the same

building or nearby locations forms a
• network of computers and this network is called a Local

Area Network (LAN).
• A LAN permits sharing of data files, computing resources

and peripherals.
• Interconnection of computers located in far away locations

using telecommunication system is known as Wide Area
Network (WAN).

Indicating Digital signal

Indicating Digital signal

To build a simple processor
we need the following components:
– Some Registers - a register is a store where
we can place one piece of data;
– An Arithmetic Logic Unit, or ALU - a very
basic calculator for our processor. The ALU
will have some registers inside it, as we
will see later;
– A Control Unit, or CU - to run the
processor;
– Some buses - to allow us to move data
from one component to another.

 On the hardware side we saw major building blocks, registers,
adders and so on and at the bottom you have individual
components and transistors. So our focus would be somewhere
here in the middle where you see hardware software boundary.
So, what exactly is hardware software boundary? It is where
you have a set of instructions which define the basic capability
of a processor and major hardware components which are able
to understand those instructions. So, if you are a programmer
you will see the machine as defined by a set of instructions
whereas if you are a hardware designer you will see software
in terms of those machine instructions which you need to
interpret. So there are levels of hierarchy here within hardware
and level of hierarchy within software.

• Architecture itself, which is around interface
between hardware and software

• The instruction set architecture refers to the lowest
level visible to a programmer. The programmer is
not concerned about your transistors or your gates
or your flip-flops or adders and so on

• The basic unit of computation is an instruction
whereas micro architecture is what concerns a
hardware designer more and it fills up the gap
between the instruction and the logic modules

• This is the typical view of where we place instruction
set architecture in between software and hardware

• At the top you have application programs which are
able to run on a processor with the help of some
system software.

• Below ISA level you have the broad CPU design then at
a lower level you have circuit design and for fabricating
the circuit, for physically realizing this you need to have
a layout where you need to worry about where you
place the transistor where you place a wire how you
interconnect them and so on

Instruction Set Architecture

-- Organization of Programmable Storage

-- Data Types & Data Structures:

 Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing
Data Items and Instructions

-- Exceptional Conditions

Fundamental Execution Cycle

 •Obtain instruction from
program storage

•Determine required
actions and instruction size

•Locate and obtain
operand data

•Compute result value or
status
•Deposit results in storage for
later use

•Determine successor
instruction

Elements of an ISA
• Set of machine-recognized data types
 – bytes, words, integers, floating point, strings, . . .
• Operations performed on those data types
 – Add, sub, mul, div, xor, move, ….
• Programmable storage
 – regs, PC, memory
• Methods of identifying and obtaining data referenced by

instructions
 (addressing modes)
 – Literal, reg., absolute, relative, reg + offset, …
• Format (encoding) of the instructions
 – Op code, operand fields, …

Computer as a State Machine
• State: defined by storage
 –Registers, Memory, Disk, …
• Next state is influenced by the operation
 –Instructions, I/O events, interrupts, …
• When is the next state decided?
 –Result Store: Register write, Memory write
 –Output: Device (disk, network) write

• Accumulator:
 1 address add A acc acc + mem[A]
 1+x address addx A acc acc + mem[A + x]
• Stack:
 0 address add tos tos + next
• General Purpose Register:
 2 address add A B EA(A) EA(A) + EA(B)
 3 address add A B C EA(A) EA(B) + EA(C)
• Load/Store:
 3 address add Ra Rb Rc Ra Rb + Rc
 load Ra Rb Ra mem[Rb]
 store Ra Rb mem[Rb] Ra

Addressing Modes & Formats

•Simple addressing modes

•All instructions 32 bits wide

Illustration of Moor’s Law

Memory

Power dissipation

Application Software Issues

• Regardless of the language you use, most
of the important software issues are:

• How numbers are represented by bit
patterns,

• Round-off error in computer arithmetic

• The computational speed of different
types of processors, etc.

Computer Numbers
• A fixed number of bits are allocated to store

each number, usually 8, 16, 32 or 64.
• This is usually provided by an algorithm or

formula for converting between the
represented value and the corresponding bit
pattern, and back again.

• only two general formats have become
common, fixed point (also called integer
numbers) and floating point (also called real
numbers).

• When you evaluate the formats presented
pages, try to understand them in terms of
their range (the largest and smallest numbers
they can represent) and their precision (the
size of the gaps between numbers).

Fixed Point (Integers)

• Fixed point representation is used to store
integers, the positive and negative whole
numbers: -3,-2,-1, 0, 1, 2, 3,.. .

• unsigned integer format, the possible bit
patterns are assigned to the numbers 0
through 2N .

• The disadvantage of unsigned integer is that
negative numbers cannot be represented.

• Offset binary is similar to unsigned integer,
except the decimal values are shifted to allow
for negative numbers.

• The most important use of offset binary is in
ADC and DAC.

• Sign and magnitude is another simple way of representing negative

integers.

• The far left bit is called the sign bit, and is made a zero for positive
numbers, and a one for negative numbers.

• Two's complement is the format loved by
hardware engineers, and is how integers are
usually represented in computers.

• Converting between decimal and two's
complement is straightforward for positive
numbers, a simple decimal to binary conversion.

• For negative numbers, the following algorithm is
often used:

(1) take the absolute value of the decimal number,
(2) convert it to binary,
(3) complement all of the bits (ones become zeros

and zeros become ones),
(4) add 1 to the binary number.

Floating Point (Real Numbers)

• The basic idea is the same as used in
scientific notation, where a mantissa is
multiplied by ten raised to some exponent.

• ANSI/IEEE Std. 754-1985 is the most
common standard defines the format for 32
bit numbers called single precision, as well
as 64 bit numbers called double precision.

• These bits form the floating point number, v,
by the following relation:

• Floating point numbers are normalized in
the same way as scientific notation, that is,
there is only one nonzero digit left of the
decimal point (called a binary point in base
2).

• Since the only nonzero number that exists
in base two is 1, the leading digit in the
mantissa will always be a 1, and therefore
does not need to be stored.

Number Precision

• The errors associated with number
representation are very similar to
quantization errors during ADC.

• With fixed point variables, the gaps
between adjacent numbers are always
exactly one.

• In floating point notation, the gaps
between adjacent numbers vary over the
represented number range.

This is a key concept of floating point notation: large
numbers have large gaps between them, while small
numbers have small gaps.

• The additive error is roughly equal to the
round-off error from a single operation,
multiplied by the total number of operations.

• The random error only increases in
proportion to the square root of the number of
operations.

• Additive error can be hundreds of times
worse than random error for common DSP
algorithms.

Execution Speed: Program Language

• DSP programming can be loosely divided
into three levels of sophistication:

1. Assembly,

2. Compiled, and

3. Application Specific.

• Assembly programming requires an
extensive understanding of the internal
construction of the particular microprocessor
you intend to use.

• Compiled or high-level languages, is the
next level of sophistication can manipulate
abstract variables without any reference to the
particular hardware.

• A program called a compiler is used to
transform the high-level source code directly
into machine code.

• An interpreter converts a single line of source
code into machine code, executes that machine
code, and then goes on to the next line of
source code.

Execution Speed: Programming Tips
• How you program can be changed at any time,

and will drastically affect how long the program
will require to execute.

• Here are three suggestions:
1. First, use integers instead of floating point

variables whenever possible.
2. Second, avoid using functions such as: sin(x),

log(x), y x , etc.
• Another option is to pre-calculate these slow

functions, and store the values in a look-up table
(LUT).

3. Third, learn what is fast and what is slow on
your particular system.

ELEMENTS OF BUS DESGIN
• Type Bus Width
 Dedicated Address
 Multiplexed Data
• Method of Arbitration Data Transfer Type
 Centralized Read
 Distributed Write
• Timing Read-modify-write
 Synchronous Read-after-write
 Asynchronous Block

Bus Types
• Dedicated
 Separate data & address lines
• Multiplexed
 Shared lines
 Address valid or data valid control line

 Advantage Disadvantages
 fewer lines More complex control
 Ultimate performance

Method of Arbitration

• In all but the simplest systems, more than
one module may need control of the bus.

• Since only one unit at a time can successfully
transmit over the bus, some method of
arbitration is needed.

• The various methods can be roughly
classified as being either centralized or
distributed.

• centralized scheme, a single hardware device
(separate module or part of the CPU), referred
to as bus controller or arbiter, is responsible for
allocating time on the bus.

• distributed scheme, there is no central
controller, each module contains access control
logic and the modules act together to share the
bus.

• With both methods of arbitration, the purpose is
to designate one device as master.

• The master may then initiate a data transfer
(e.g. read or write) with some other device,
which acts as slave for this particular exchange.

Timing

• Timing refers to the way in which events
are coordinated on the bus.

Bus Width

• The width of the data bus has an impact on
system performance: the wider the data
bus, the greater the number of bits
transferred at one time.

• The width of the address bus has an impact
on system capacity: the wider the address
bus, the greater the range of locations that
can be referenced.

Data Transfer Type

• All buses support both write (master to
slave) and read (slave to master) transfers.

• In the case of a multiplexed address/data
bus, the bus is first used for specifying the
address and then for transferring the data.

• For a read operation, there is typically a
wait while the data is being fetched from
the slave to be put on the bus.

Synchronous Timing Diagram

Asynchronous Timing Diagram – Read Diagram

Asynchronous Timing Diagram – Write Diagram

PCI Bus

 • Peripheral Component Interconnection

 • Intel released to public domain

 • 32 or 64 bit

 • 50 lines

PCI Bus Lines (required)

 • Systems lines

 Including clock and reset

 • Address & Data

 32 time mux lines for address/data

 Interrupt & validate lines

 • Interface Control

 • Arbitration

 Not shared

 Direct connection to PCI bus arbiter

 • Error lines

PCI Bus Lines (Optional)
 • Interrupt lines
 Not shared
 • Cache support
 • 64-bit Bus Extension
 Additional 32 lines
 Time multiplexed
 2 lines to enable devices to agree to use 64-bit transfer
 JTAG/Boundary Scan
 For testing procedures
PCI Commands
 • Transaction between initiator (master) and target
 • Master claims bus
 • Determine type of transaction
 e.g. I/O read/write
 • Address phase
 • One or more data phases

PCI Read Timing Diagram

PCI Bus Arbitration

Software Paradigm

• Software Development Paradigm; This
paradigm is known as software engineering
paradigms; where all the engineering concepts
pertaining to the development of software are
applied.
– Requirement gathering

– Software design

– Programming

• Software Design Paradigm; is a part of
Software Development and includes –
– Design

– Maintenance

– Programming

• Programming Paradigm; This paradigm is
related closely to programming aspect of
software development. This includes –

– Coding

– Testing

– Integration

Need of Software Engineering
 The need of software engineering arises

because of higher rate of change in user
requirements and environment on which the
software is working. Following are some of the
needs stated

• Large software
• Scalability
• Cost
• Dynamic Nature
• Quality Management

Characteristics of good software
1. Operational; this tells us how well the

software works in operations. It can be
measured on:
– Budget
– Usability
– Efficiency
– Correctness
– Functionality
– Dependability
– Security
– Safety

2. Transitional; this aspect is important when the
software is moved from one platform to another:
– Portability

– Interoperability

– Reusability

– Adaptability

3. Maintenance; this aspect briefs about how well
the software has the capabilities to maintain itself
in the ever-changing environment:
– Modularity

– Maintainability

– Flexibility

– Scalability

• Software Development Life Cycle, SDLC; is
a well-defined, structured sequence of stages
in software engineering to develop the
intended software product.

• SDLC Activities

Software Development Paradigm; helps a
developer to select a strategy to develop
the software. A software development
paradigm has its own set of tools,
methods, and procedures, which are
expressed clearly and defines software
development life cycle. A few of software
development paradigms or process
models are defined as follows:

Waterfall Model; is the simplest model of software
development paradigm. All the phases of SDLC will function
one after another in linear manner.

Iterative Model; leads the software development process in
iterations. It projects the process of development in cyclic
manner repeating every step after every cycle of SDLC process

Spiral Model; is a combination of both, iterative model and one
of the SDLC model. It can be seen as if you choose one SDLC
model and combined it with cyclic process (iterative model).

V – model; the major drawback of waterfall model is we move
to the next stage only when the previous one is finished and there
was no chance to go back if something is found wrong in later
stages. V-Model provides means of testing of software at each stage in
reverse manner

Big Bang Model; is the simplest model in its form. It requires little

planning, lots of programming and lots of funds. This model is
conceptualized around the big bang of universe. As scientists say that after
big bang lots of galaxies, planets, and stars evolved just as an event.
Likewise, if we put together lots of programming and funds, you may
achieve the best software product. This model is not suitable for large
software projects but good one for learning and experimenting

Software Project Management

Software development job can be splitted
into two parts:

1- Software creation.

2- Software Project Management

A Project is well-defined task, which is a
collection of several operations done in
order to achieve a goal.

Project can be characterized as:
1- Every project may have a unique and distinct

goal.
2- Project is not a routine activity or day-to-day

operation.
3- Project comes with a start and end time.
4- Project ends when its goal is achieved. Hence, it is

a temporary phase in the life time of an
organization.

5- Project needs adequate resources in terms of time,
manpower, finance, material, and knowledge-
bank.

Software Project: is the complete procedure of
software development from requirement
gathering to testing and maintenance, carried out
according to the execution methodologies, in a
specified period of time to achieve intended
software product.

• Most software products are tailor made to fit
client’s requirements.

• The most important is that the underlying
technology changes and advances so frequently
and rapidly that the experience of one product
may not be applied to the other one.

• Triple constraints for software projects are
shown below:

• It is essential part of software organization
1- To deliver quality product,
2- Keeping the cost within client’s budget constrain,

and
3- Deliver the project as per scheduled.
• Any of the three factors can severely impact the

other two.
• There are several factors, both internal and

external, which may impact this triple constrain
triangle.

• Software project management is essential to
incorporate user requirements along with budget
and time constraints.

• Software Project Manager is a person
who undertakes the responsibility of
executing the software project. He may
never directly involve in producing the
end product but he controls and manages
the activities involved in production.

• Below few responsibilities that he should do:
A) Managing People
1- Act as project leader.
2- Lesion with stakeholders,
3- Managing human resources.
4- setting up reporting hierarchy etc.
B) Managing Project
1- Defining and setting up project scope.
2- Managing project management activities.
3- Monitoring progress and performance.
4- Risk analysis at very phase.
5- Take necessary step to avoid or come out of problems.
6- Act as project spokesperson.

Software Management Activities may include:

1- Project Planning.

2- Scope Management.

3- Project Estimation.

• Project Planning: it is a task, which is
performed before the production of software
actually starts. It is a set of multiple
processes, which facilitates software
production.

• Scope Management it includes all the
activities, process need to be done in order
to make a deliverable software product.

• It is essential because it creates boundaries
of the project by clearly defining what
would be done in the project and what
would not be done.

• During Project Scope management, it is
necessary to:

1- Define the scope,

2- Decide its verification and control,

3- Divide the project into various smaller
parts for ease of management,

4- Verify the scope,

5- Control the scope by incorporating
changes to the scope.

• Project Estimation determines an accurate
estimation of various measures.

• It may involve the following:

1- Software size estimation; may be estimated
either in terms of Kilo Line of code (KLOC)
or by calculating number of function points
in the software.

• Line of code depend upon coding practices.

• Function points vary according to the user or
software requirement.

2- Effort estimation; is in terms of personnel
requirement and man-hour required to
produce the software.

• For effort estimation software size should
be known.

• It is derived by manager’s experience,
historical data of organization, or software
size can be converted into efforts by using
some standard formulae.

3- Time estimation; once the size and efforts
are estimated, the time required to produce
the software can be estimated.

• Software tasks are divided into smaller tasks,
activities or events by Work Breakthrough
Structure (WBS).

• The tasks are scheduled on day-to-day basis
or in calendar months.

• The sum of time required to complete all
tasks in hours or days is the total time
invested to complete the project.

4- Cost estimation; is considered as the most
difficult of all because it depends on more
elements than any of the previous ones. It is
required to consider:

 Size of the software,
 Software quality,
 Additional software or tools, licenses etc,
 Skilled personnel with task-specific skills,
 Travel involved,
 Communication,
 Training and support.

Project Estimation Techniques
• Project estimation involved various parameters

such as size, efforts, and cost.
• Project manager can estimate the listed factors

using two broadly recognized techniques:
1- Composition Technique; assumes the software as

a product of various compositions. There are two
models:

 Line of code: the estimation is done on behalf of
the number of line codes in the software product.

 Function Points: the estimation is done on behalf
of number of function points in the software
product.

2- Empirical Estimation Technique; uses
empirically derived formulae to make
estimation.

 Putnam Model: is made by Lawrence H.
Putnam. It maps time and efforts required
with software size.

 COCOMO: stands for Constructive Cost
Model, developed by Barry W. Boehm. It
divides the software product into three
categories of software: organic, semi-
detached, and embedded.

Project Scheduling: refers to roadmap of all
activities to be done with specified order
and within time slot allocated to each
activity.

• Project managers trend to define various
tasks, and project milestones and then
arrange them keeping various factors in
mind.

• For scheduling a project, it is necessary to:

1- Break down the project tasks into smaller,
manageable form,

2- Find out various tasks and correlate them,

3- Estimate time frame required for each task,

4- Divide time into work-units,

5-Assign adequate number of work- units for
each task,

6- Calculate total time required for the project
from start to finish.

Resource Management: all elements used to
develop a software product may be assumed
as resource for that project.

• This may include human resource,
productive tools, and software libraries.

• The shortage of resources hampers
development of the project and it can lag
behind the schedule.

• Allocating extra resources increases
development cost in the end.

• Resource management includes:

1- Defining proper organization project by
creating a project team and allocating
responsibilities to each team member.

2- Determining resources required at a
particular stage and their availability.

3- Manage resources by generating resource
request when they are required and de-
allocating them when they are no more
needed.

Project Risk Management; involves all activities
pertaining to identification, analyzing and making
provision for predictable and non-predictable
risks in the project. It may include:-

1- Experienced staff leaving the project and new staff
coming in.

2- Change in organizational management.
3- Requirement change or misinterpreting

requirement.
4- under-estimation of required time and resources.
5- Technological changes, environmental changes,

business competition.

• Risk Management Process; involves the following
activities:

1- Identification- make note of all possible risks, which
may occur in the project.

2- Categorize- known risks into high, medium and low
risk intensity as per their possible impact on the
project.

3- Manage- Analyze the probability of occurrence of
risks at varies phases. Make plan to avoid or face risks.
Attempt to minimize their side effects.

4- Monitor- Closely monitor the potential risks and their
early symptoms. Also monitor the effective steps
taken to mitigate or avoid them.

Project Execution and Monitoring; are executing the tasks

described in project according to their schedules.
• Execution needs monitoring in order to check whether

everything is going according to the plan.
• These measures include:
1- Activity Monitoring- All activities scheduled within some

task can be monitored on day-to-day basis. When all activities
in task are completed, it is considered as complete.

2- Status Reports- The reports contain status of activities and
tasks completed within a given time frame, generally a week.
Status can be marked as Finished, Pending or Work-in-
Progress etc.

3- Milestones Checklist- Every project is divided into multiple
phases where major tasks are performed (milestones) based
on the phases of SDLC. This milestone checklist is prepared
once every few weeks and reports the status of milestones.

Project Communication Management;

• plays a vital role in the success of a
project.

• It bridges gaps between client and
organization, among the team members as
well as other stake holders in the project
such as hardware suppliers.

• Communication can be oral or written.

• Communication management process may have the following
steps:

1- Planning- This step includes the identifications of all the
stakeholders in the project and the mode of communication
among them. It also considers if any additional communication
facilities are required.

2- Sharing- manager focuses on sharing correct information with
the correct person at the correct time. This keeps every one
involved in the project up-to-date with project progress and its
status.

3- Closure- At the end of each major event, end of a phase of
SDLC or end of the project itself, administrative closure is
formally announced to update every stakeholder by sending
email, by distributing a hardcopy of document or by other
mean of effective communication.

• After closure, the team moves to next phase or project.

Configuration Management; is a process of tracking
and controlling the changes in software in terms
of the requirements, design, functions and
development of the product.

• IEEE defines it as “the process of identifying and
defining the items in the system, controlling the
change of these items throughout their life cycle,
recording and reporting the status of items and
change requests, and verifying the completeness
and correctness of items”.

• The changes are addressed only with prior
approval of higher management, as there is a
possibility of cost and time overrun.

Configuration Management
1-Baseline; A phase is baselined when all

activities pertaining to it are finished and
well documented. If it was not the final
phase, its output would be used in next
immediate phase.

• Configuration management is a discipline of
organization administration, which takes
care of occurrence of any changes (process,
requirement, technological, strategical etc.)
after a phase is baselined. CM keeps check on
any changes done in software.

Configuration Management

2- Change Control; is function of configuration
management, which ensures that all changes
made to software system are consistent and made
as per organizational rules and regulations.

A change in the configuration of product goes
through following steps –

i- Identification - A change request arrives from
either internal or external source. When change
request is identified formally, it is properly
documented.

Configuration Management

ii- Validation - Validity of the change
request is checked and its handling
procedure is confirmed.

iii- Analysis - The impact of change request
is analyzed in terms of schedule, cost and
required efforts. Overall impact of the
prospective change on system is analyzed.

Configuration Management

iv- Control - If the prospective change either
impacts too many entities in the system or
it is unavoidable, it is mandatory to take
approval of high authorities before change
is incorporated into the system. It is
decided if the change is worth
incorporation or not. If it is not, change
request is refused formally.

Configuration Management
v- Execution - If the previous phase determines

to execute the change request, this phase
takes appropriate actions to execute the
change, through a thorough revision if
necessary.

vi- Close request - The change is verified for
correct implementation and merging with the
rest of the system. This newly incorporated
change in the software is documented
properly and the request is formally closed.

Project Management Tools

• The risk and uncertainty rises multifold
with respect to the size of the project, even
when the project is developed according
to set methodologies.

• There are tools available, which aid for
effective project management. A few
described are:-

Project Management Tools

1- Gantt Chart; Gantt chart was devised by
Henry Gantt (1917). It represents project
schedule with respect to time periods. It is
a horizontal bar chart with bars
representing activities and time scheduled
for the project activities.

2- PERT Chart; Program Evaluation &
Review Technique) (PERT) chart is a tool
that depicts project as network diagram. It
is capable of graphically representing
main events of project in both parallel and
consecutive ways. Events, which occur
one after another, show dependency of the
later event over the previous one.

Events are shown as numbered nodes. They are
connected by labeled arrows depicting the sequence
of tasks in the project.

3- Resource Histogram; this is a graphical
tool that contains bar or chart representing
number of resources (usually skilled staff)
required over time for a project event (or
phase). Resource Histogram is an effective
tool for staff planning and coordination.

4- Critical Path Analysis; this tools is useful in
recognizing interdependent tasks in the project. It
also helps to find out the shortest path or critical
path to complete the project successfully. Like
PERT diagram, each event is allotted a specific
time frame. This tool shows dependency of event
assuming an event can proceed to next only if the
previous one is completed.

• The events are arranged according to their earliest
possible start time. Path between start and end
node is critical path which cannot be further
reduced and all events require to be executed in
same order.

