
Lists in Python
Dr. Amer Almahdawi

Lists (Sequence)

 The most basic data structure in Python is the sequence. Each element of a

sequence is assigned a number - its position or index. The first index is zero,

the second index is one, and so forth.

 There are certain things you can do with all sequence types. These operations

include indexing, slicing, adding, multiplying, and checking for membership.

In addition, Python has built-in functions for finding the length of a sequence

and for finding its largest and smallest elements.

 The list is a most versatile datatype available in Python which can be written

as a list of comma-separated values (items) between square brackets.

Important thing about a list is that items in a list need not be of the same

type.

Lists

 Creating a list is as simple as putting different comma-separated values
between square brackets. For example:

 List1 = [‘Computer’, ‘Physics’, ‘Chemistry’, 1997, 2000]

 List2 = [1, 2, 3, 4, 5, 6]

 List3 = [“a”, “b”, “c”, “d”]

 Accessing Values in Lists

 Print (list1[0])

 Computer

 Print (list2[1:5])

 [2, 3, 4, 5]

Lists

 Updating Lists

 You can update single or multiple elements of lists by giving the slice on the
left-hand side of the assignment operator, and you can add to elements in a
list with the append() method. For example:

 List1 = [‘Computer’, ‘Physics’, ‘Chemistry’, 1997, 2000]

 Print (“ Available value at index 3 is: “, list1[3])

 Available value at index 3 is: 1997

 List1[3] = 2001

 Print (“ Available value at index 3 is: “, list1[3])

 Available value at index 3 is: 2001

Lists

 Delete List Elements

 List1 = ['physics', 'chemistry', 'computer', 2000]

 del list1[3]

 List1 = ['physics', 'chemistry', 'computer']

Basic List Operations

 Length:

 Len([1,2,3]) = 3

 Concatenation:

 [1,2,3] + [4,5,6] = [1,2,3,4,5,6]

 Repetition

 [‘Hi’]*4 = ['Hi', 'Hi', 'Hi', 'Hi']

 Membership

 3 in [1,2,3] =True

 Iteration

 For x in [1,2,3]: print (x)

1

2

3

Basic List Operations

 L = [‘car’, ‘Car’, ‘CAR!’]

 L[2] = CAR!

 L[-2] = Car

 L[1:] = [‘Car’, ‘CAR!’]

 alist=['Ahmed', 2, 123, 'Jeep']

 alist.append(2000)

 ['Ahmed', 2, 123, 'Jeep', 2000]

 alist.count(2)

 1

Basic List Operations

 alist= ['Ahmed', 2, 123, 'Jeep', 2000]

 alist.index(123)

 2

 alist.insert(3, 'Laptop')

 alist=['Ahmed', 2, 123, 'Laptop', 'Jeep', 2000]

 alist.pop()

 2000

 alist=['Ahmed', 2, 123, 'Laptop', 'Jeep']

 alist.remove(2)

 alist=['Ahmed', 123, 'Laptop', 'Jeep']

Basic List Operations

 alist=['Ahmed', 123, 'Laptop', 'Jeep']

 alist.reverse()

 alist=['Jeep', 'Laptop', 123, 'Ahmed']

 alist=['Jeep', 'Laptop', 'Ahmed']

 alist.sort()

 alist=['Ahmed', 'Jeep', 'Laptop']

Python Classes, objects

 Python is an object-oriented programming language.

 Almost everything in Python is an object, with its properties and methods.

 A Class is like an object constructor.

 Create a Class

 To create a class, use the keyword class:

 Create a class named MyClass, with a property named x:

 class Myclass:

 x = 5

 print(Myclass)

 <class '__main__.Myclass'>

Python Classes, objects

 Create Object

 Create an object named p1, and print the value of x:

 p1 = Myclass()

 print(p1.x)

 5

Python Classes, objects

 The __init__() Function

 The examples above are classes and objects in their simplest form and are

not really useful in real-life applications.

 To understand the meaning of classes we have to understand the built-in

__init__() function.

 All classes have a function called __init__(), which is always executed when

the class is being initiated.

 Use the __init__() function to assign values to object properties, or other

operations that are necessary to do when the object is being created:

Python Classes, objects

 Create a class named Person, use the __init__() function to assign
values for name and age:

 class Person:

 def __init__(self, name,age):

 self.name = name

 self.age = age

 p1 = Person("John",36)

 print(p1.name)

 print(p1.age)

 John

 36

Python Classes, objects

 Insert a function that prints a greeting, and execute it on the p1
object:

 class Person:

 def __init__(self, name,age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

 p1 = Person("John",36)

 p1.myfunc()

 Hello my name is John

Python Classes, objects

 Modify Object Properties

 P1.age = 40

 Delete Object Properties

 del p1.age

 Delete Objects

 del p1

Thank you

	Slide 1: Lists in Python
	Slide 2: Lists (Sequence)
	Slide 3: Lists
	Slide 4: Lists
	Slide 5: Lists
	Slide 6: Basic List Operations
	Slide 7: Basic List Operations
	Slide 8: Basic List Operations
	Slide 9: Basic List Operations
	Slide 10: Python Classes, objects
	Slide 11: Python Classes, objects
	Slide 12: Python Classes, objects
	Slide 13: Python Classes, objects
	Slide 14: Python Classes, objects
	Slide 15: Python Classes, objects
	Slide 16

