
Dr. Neamah E. Kadhim

61

2.1 Object-Oriented Programming Lecture Five

Object-oriented design (OOD) is a widely used programming methodology.

In OOD, the first step in the problem-solving process is to identify the components

called objects, which form the basis of the solution, and to determine how these

objects interact with one another. After identifying the objects, the next step is to

specify for each object the relevant data and possible operations to be performed

on that data. An object combines data and operations on the data into a single unit.

 In OOD, the final program is a collection of interacting objects. A

programming language that implements OOD is called an object-oriented

programming (OOP) language.

Because an object consists of data and operations on that data, before you

can design and use objects, you need to learn how to represent data in computer

memory, how to manipulate data, and how to implement operations.

To create operations, you write algorithms and implement them in a

programming language. Because a data element in a complex program usually has

many operations, to separate operations from each other and to use them

effectively and in a convenient manner, you use functions to implement

algorithms.

Finally, to work with objects, you need to know how to combine data and

operations on the data into a single unit. In C++, the mechanism that allows you to

combine data and operations on the data into a single unit is called a class.

Dr. Neamah E. Kadhim

62

A class embodies a meaningful grouping of characteristics and behaviors.

The term object (instance) may also (and more often) be used to describe a specific

item in such a grouping. Let's consider some examples:

Class Object (Instance)

student Specific student in computer science department

university University of Baghdad

bank National bank

2.2 Understanding object-oriented concepts

The key object-oriented concepts are encapsulation and information hiding.

Incorporating these interrelated ideas into your design will provide the basis for

writing more easily modifiable and maintainable programs.

The grouping of meaningful characteristics (attributes) and behaviors

(operations) that operate on those attributes, bundled together in a single unit, is

known as encapsulation.

Information hiding refers to the process of abstracting the details of

performing an operation into a class method. That is, the user needs only to

understand which operation to utilize and its overall purpose; the implementation

details are hidden within the method (the function's body). In this fashion, changing

the underlying implementation (method) will not change the operation's interface.

Information hiding can additionally refer to keeping the underlying implementation

of a class' attributes hidden. Information hiding is a means to achieve proper

encapsulation of a class. A properly encapsulated class will enable proper class

abstraction and thus the support of OO designs.

Dr. Neamah E. Kadhim

63

2.3 Understanding class in C++

When you define a C++ Class, you define a blueprint for a data type. This

doesn't actually define any data, but it does define what the class name means,

that is, what an object of the class will consist of and what operations can be

performed on such an object. In C++, class is a reserved word, and it defines only a

data type; no memory is allocated. It announces the declaration of a class.

Class class_name {

Class body};

Class class_name {

Class body} object

name(s);

The members of a class are classified into three categories: private, public, and

protected. This lecture mainly discusses the first two types, private and public. In

C++, private, protected, and public are reserved words and are called member

access specifiers.

Following are some facts about public and private members of a class:

1) A public member is accessible outside of the class.
EX: Class with only public data

#include <iostream>

using namespace std;

class Box {

public:

double length; // Length of a box

double breadth; // width of a box

Dr. Neamah E. Kadhim

64

double height; // Height of a box

};

int main() {

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Box1.height = 5.0;

Box1.length = 6.0;

Box1.breadth = 7.0;

// box 2 specificaƟon

Box2.height = 10.0;

Box2.length = 12.0;

Box2.breadth = 13.0;

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2

volume = Box2.height * Box2.length * Box2.breadth;

cout << "Volume of Box2 : " << volume <<endl;

return 0;

}

EX: Class with public data and method to set the data.

Dr. Neamah E. Kadhim

65

#include <iostream>

using namespace std;

class Box {

public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

void setDim(double l,double b, double h)

 { length=l;

 breadth=b;

 height=h; }

};

int main() {

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Box1.setDim(5.0,6.0,7.0);

// box 2 specificaƟon

Box2.setDim(10.0,12.0,13.0);

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

Dr. Neamah E. Kadhim

66

cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2

volume = Box2.height * Box2.length * Box2.breadth;

cout << "Volume of Box2 : " << volume <<endl;

return 0;}

EX: Class with public data and methods.

#include <iostream>

using namespace std;

class Box {

public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

void setDim(double l,double b,double h)

 { length=l;

 breadth=b;

 height=h; }

double volume()

{

 double v;

 v=height * length * breadth;

Dr. Neamah E. Kadhim

67

 return v;}

};

int main() {

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

double v = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Box1.setDim(5.0,6.0,7.0);

// box 2 specificaƟon

Box2.setDim(10.0,12.0,13.0);

// volume of box 1

v = Box1.volume();

cout << "Volume of Box1 : " << v <<endl;

// volume of box 2

v = Box2.volume();

cout << "Volume of Box2 : " << v <<endl;

return 0;

}

EX: Class with public data and methods(the implementation of methods outside the
declaration of class)

#include <iostream>

using namespace std;

Dr. Neamah E. Kadhim

68

class Box {

public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

void setDim(double ,double ,double);

double volume();

};

void Box::setDim(double l,double b,double h)

 { length=l;

 breadth=b;

 height=h; }

double Box::volume()

{ double v;

 v=height * length * breadth;

 return v;}

int main() {

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

double v = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Box1.setDim(5.0,6.0,7.0);

// box 2 specification

Box2.setDim(10.0,12.0,13.0);

Dr. Neamah E. Kadhim

69

// volume of box 1

v = Box1.volume();

cout << "Volume of Box1 : " << v <<endl;

// volume of box 2

v = Box2.volume();

cout << "Volume of Box2 : " << v <<endl;

return 0;

}

2) By default, all members of a class are private.
3) If a member of a class is private, you cannot access it outside of the class.

EX: Programmatically wrong example

#include <iostream>

using namespace std;

class Box {

double length; // Length of a box

double breadth; // width of a box

double height; // Height of a box

 };

int main() {

Box Box1; // Declare Box1 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Dr. Neamah E. Kadhim

70

Box1.height = 5.0;

Box1.length = 6.0;

Box1.breadth = 7.0;

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

cout << "Volume of Box1 : " << volume <<endl;

return 0;}

C++ has no fixed order in which you declare public and private members; you can
declare them in any order. The only thing you need to remember is that, by default,
all members of a class are private.[ALWAYS USING PUBLIC FUNCTIONS TO ALTER
PRIVATE DATA]

To solve the error in the previous program we add a public function that can get
the value of Box dimensions (private data)

#include <iostream>

using namespace std;

class Box {

Dr. Neamah E. Kadhim

71

double length; // Length of a box

double breadth; // width of a box

double height; // Height of a box

public:

void setDim(double l,double b,double h)

 { length=l;

 breadth=b;

 height=h; }

void GetDim(double& l,double& b,double& h)

{ l=length;

 b=breadth;

 h=height; }};

int main() {

Box Box1; // Declare Box1 of type Box

double x,y,z, volume = 0.0; // Store the volume of a box here

// box 1 specificaƟon

Box1.setDim(5.0,6.0,7.0);

Box1.GetDim(x,y,z);

// volume of box 1

volume = x*y*z;

cout << "Volume of Box1 : " << volume <<endl;

return 0;}

At this point, you might wonder, if you are going to create a public function that
accesses private data, why not just make the data public in the first place, avoiding

Dr. Neamah E. Kadhim

72

the function? You create the public function so you, the class creator, can control
how the data items are used. For example, if your radio provides an interface that
allows you to set the volume only as high as 10, then you cannot set it to 11 even
though the internal components of your radio might be able to produce that level
of sound. Similarly, if you allow access to only public methods for a function that is
a user of your class (often called a class client), then you control how the user can
manipulate the data.

