
Dr. Neamah E. Kadhim

44

void print2Array(string x[],string y[],int sizeX)
 {
 for(int i=0;i<sizeX;i++)
 {cout<<"\nx["<<i<<"]="<<x[i];
 cout<<" y["<<i<<"]="<<y[i];}
 cout<<endl; }
 void fillArray(string x[],int sizeX)
 { cout<<"\n enter the elements of array\n";
 for(int i=0;i<sizeX;i++)
 cin>>x[i]; }

1.13 Pointers Lecture Four

C++’s data types are classified into three categories: simple, structured, and pointers.
here discusses the third data type called the pointer data type. We have already seen
how variables are seen as memory cells that can be accessed using their identifiers.
This way we did not have to care about the physical location of our data within
memory, we simply used its identifier whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of memory

cells, each one of the minimal size that computers manage (one byte). These single-

byte memory cells are numbered in a consecutive way, so as, within any block of

memory, every cell has the same number as the previous one plus one. This way,

each cell can be easily located in the memory because it has a unique address and all

the memory cells follow a successive pattern.

As soon as we declare a variable, the amount of memory needed is assigned

for it at a specific location in memory (its memory address). We generally do not

actively decide the exact location of the variable that is a task automatically

performed by the operating system during runtime. However, in some cases, we may

be interested in knowing the address where our variable is being stored during

runtime. Pointer variable: A variable whose content is an address (that is, a memory

address).

int main()
{
 string st[size],st2[size];
 fillArray(st,size);
 cout<<st[0];
 swap_arr(st,st2,size);
 print2Array(st,st2,size);}

Dr. Neamah E. Kadhim

45

dataType *identifier;

As an example, consider the following statements:
int *p;
char *ch;

In these statements, both p and ch are pointer variables. The content of p points to
a memory location of type int, and the content of ch points to a memory location of
type char. Usually, p is called a pointer variable of type int, and ch is called a pointer
variable of type char.
In C++, the ampersand, &, called the address of the operator, is a unary operator
that returns the address of its operand. For example, given the statements:
int x;
int *p;
the statement:
p = &x;
assigns the address of x to p. That is, x and the value of p refers to the same memory
location.

C++ also uses * as a unary operator. When used as a unary operator, *, commonly
referred to as the dereferencing operator or indirection operator, refers to the object
to which its operand (that is, the pointer) points. For example, given the statements:
int x = 25;
int *p;
p = &x; //store the address of x in p
the statement:
cout << *p << endl;
prints the value stored in the memory space pointed to by p, which is the value of
x.
Also, the statement:
*p = 55;
stores 55 in the memory location pointed to by p—that is, in x.

EX: Let us consider the following statements:

int *p;
int num;

Dr. Neamah E. Kadhim

46

In these statements, p is a pointer variable of type int, and num is a variable of type
int. Let us assume that memory location 1200 is allocated for p, and memory location
1800 is allocated for num.

Consider the following statements:
1. num = 78;
2. p = #
3. *p = 24;

EX: The following program illustrates how pointer variables work:
#include <iostream>
#include <iomanip>
using namespace std;
const double PI = 3.1416;
int main()

Dr. Neamah E. Kadhim

47

{
double radius;
double *radiusPtr;
radius = 2.5;
radiusPtr = &radius;
cout << " Radius = " << radius
<< ", area = " << PI * radius * radius << endl;
//using pointers
cout << "Radius = " << *radiusPtr<< ", area = "<< PI * (*radiusPtr) * (*radiusPtr)
<< endl;

//read from pointer
cout << " Enter the radius: ";
cin >> *radiusPtr;
cout << endl;

cout << "Radius = " << radius << ", area = " << PI * radius * radius << endl;
cout << "Radius = " << *radiusPtr << ", area = " << PI * (*radiusPtr) * (*radiusPtr)
<< endl
cout << " Address of radiusPtr: "<< &radiusPtr << endl;
cout << " Value stored in radiusPtr: "<< radiusPtr << endl;
cout << " Address of radius: "<< &radius << endl;
cout << " Value stored in radius: "<< radius << endl;
return 0;
}

EX: The following program illustrates how pointer variables work:

#include <iostream>
using namespace std;
int main ()

Dr. Neamah E. Kadhim

48

{
int firstvalue = 5, secondvalue = 15;
int * pf, * ps;

pf = &firstvalue; // pf = address of firstvalue
ps = &secondvalue; // ps = address of secondvalue
cout << "after pointing " <<endl;
cout<<"firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl<< endl;

cout << "after *pf = 10 " <<endl;
*pf = 10; // value pointed by pf = 10
cout<<"firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl<<endl;
*ps = *pf; // value pointed by ps = value pointed by
cout << "after *ps = *pf " <<endl;
cout<<"firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl<<endl;

pf = ps; // pf = ps (value of pointer is copied)
cout << "after pf = ps " <<endl;
cout<<"firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl<<endl;

*pf = 20; // value pointed by pf = 20
cout << "after *pf = 20 " <<endl;
cout<<"firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl<<endl;

return 0; }

Dr. Neamah E. Kadhim

49

Pointers and arrays
The concept of array is very much bound to the one of pointer. In fact, the identifier

of an array is equivalent to the address of its first element, as a pointer is equivalent

to the address of the first element that it points to, so in fact they are the same

concept. For example, supposing these two declarations:

int numbers [20];
int * p;

The following assignment operation would be valid:

p = numbers;

After that, p and numbers would be equivalent and would have the same properties.

The only difference is that we could change the value of pointer p by another one,

whereas numbers will always point to the first of the 20 elements of type int with

Dr. Neamah E. Kadhim

50

which it was defined. Therefore, unlike p, which is an ordinary pointer, numbers is

an array, and an array can be considered a constant pointer. Therefore, the following

allocation would not be valid:

numbers = p;
EX:
#include <iostream>
using namespace std;
int main ()
{

int numbers[5];
int * p;
p = numbers;
*p = 10;
p++; *p = 20;
p = &numbers[2];
*p = 30;
p = numbers + 3;
*p = 40;

p = numbers;
*(p+4) = 50;
for (int n=0; n<5; n++)
cout << numbers[n] << ", ";
cout <<endl;
return 0;

}

Pointer arithmetics
To conduct arithmetical operations on pointers is a little different than to conduct

them on regular integer data types. To begin with, only addition and subtraction

operations are allowed to be conducted with them, the others make no sense in the

world of pointers.

Suppose that we define three pointers in this compiler:

char *mychar;

short *myshort;

long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000

respectively.So if we write:

Dr. Neamah E. Kadhim

51

mychar++;

myshort++;

mylong++;

1.14 Data structures

We have already learned how groups of sequential data can be used in C++. But this

is somewhat restrictive, since in many occasions what we want to store are not mere

sequences of elements all of the same data type, but sets of different elements with

different data types.

Data structures
A data structure is a group of data elements grouped together under one name. These

data elements, known as members, can have different types and different lengths.

Data structures are declared in C++ using the following syntax:

struct structure_name

{

member_type1 member_name1;

Dr. Neamah E. Kadhim

52

member_type2 member_name2;

member_type3 member_name3;

.

} object_names;

EX:

struct product {

int weight;

float price;

} apple, banana, melon;

struct product {

int weight;

float price;

} ;

product apple;

product banana, melon;

It is important to clearly differentiate between what is the structure type name, and
what is an object (variable) that has this structure type. We can instantiate many
objects (i.e. variables, like apple, banana and melon) from a single structure type
(product).
EX: C++ Program to assign data to members of a structure variable and display
it.
#include <iostream>
using namespace std;

struct Person
{
 string name;
 int age;
 float salary;
};

int main()
{
 Person p1;

 cout << "Enter Full name: ";
 cin>>p1.name;

Dr. Neamah E. Kadhim

53

 cout << "Enter age: ";
 cin >> p1.age;
 cout << "Enter salary: ";
 cin >> p1.salary;

 cout << "\nDisplaying Information." << endl;
 cout << "Name: " << p1.name << endl;
 cout <<"Age: " << p1.age << endl;
 cout << "Salary: " << p1.salary;

 return 0;
}

EX: example about structures pass as parameter of function
#include <iostream>
#include <string>

using namespace std;
struct movies_t {
string title;
int year;
} mine, yours;
void printmovie (movies_t movie)
{
cout << movie.title;
cout << " (" << movie.year << ")\n";
}
int main ()
{
string mystr;
mine.title = "2001 A Space Odyssey";
mine.year = 1968;
cout << "Enter title: ";
cin>>yours.title;
cout << "\nEnter year: ";
cin>>yours.year;

cout << "\nMy favorite movie is:\n ";
printmovie (mine);
cout << "And yours is:\n ";

Dr. Neamah E. Kadhim

54

printmovie (yours);
return 0;
}

EX: example about Arrays in structs

#include <iostream>
using namespace std;
const int ARRAY_SIZE = 5;
struct listType
{
int listElem[ARRAY_SIZE]; //array containing the list
int listLength; //length of the list
};

int main()
{
 listType intList;

 intList.listLength = 0;
 intList.listElem[0] = 12;
 intList.listLength++;

 intList.listElem[1] = 37;
 intList.listLength++;
 for (int i=0;i<=5;i++)
 cin>>intList.listElem[i];
 for (int i=0;i<=5;i++)
 cout<<"\nintList.listElem["<<i<<"]=
"<<intList.listElem[i] ;
}

EX:structs within a struct
#include <iostream>
using namespace std;

struct nameType
{
 string first;
 string middle;

Dr. Neamah E. Kadhim

55

 string last;
};
struct addressType
{
 string city;
 string state;

};
struct dateType
{
 int month;
 int day;
 int year;
};

struct employeeType
{
 nameType name;
 string empID;
 addressType address;
 dateType hireDate;
 dateType quitDate;
 double salary;
};
void employ_print(employeeType em)
 {

 cout<<"\nthe employee name is: ";
 cout<<em.name.first<<" "<<em.name.middle<<" "<<em.name.last;
 cout<<"\nthe employee address: ";
 cout<<em.address.city<<" "<<em.address.state;
 cout<<"\nthe employee hireDate: ";
 cout<<em.hireDate.month<<" "<<em.hireDate.day<<" "<<em.hireDate.year;
 cout<<"\nthe employee quitDate: ";
 cout<<em.quitDate.month<<" "<<em.quitDate.day<<" "<<em.quitDate.year;
 cout<<"\nthe employee salary: ";
 cout<<em.salary;
 }
int main()
{
 employeeType em1;

 em1.name.first = "nada";
 em1.name.middle = "ali";
 em1.name.last="ziad";
 cout<<"\nenter the address: ";

Dr. Neamah E. Kadhim

56

 cin>>em1.address.city>>em1.address.state;
 cout<<"\nenter the hireDate: ";
 cin>>em1.hireDate.month>>em1.hireDate.day>>em1.hireDate.year;
 cout<<"\nenter the quitDate: ";
 cin>>em1.quitDate.month>>em1.quitDate.day>>em1.quitDate.year;
 cout<<"\nenter the salary: ";
 cin>>em1.salary;
 employ_print(em1);}

Examples of structures:

EX: program to find the distance between Two Points while representing the
point as a struct.

#include <iostream>
#include<cmath>
using namespace std;
struct point
{ float x;
 float y;};
void point_print(point po) {
cout<<"\npoint is: ";
cout<<"("<<po.x<<","<<po.y<<")";}
point point_read()
 { point po;

int main()
{ point p1,p2;
 p1=point_read();
 p2=point_read();
 point_print(p1);
 point_print(p2);
 double dis;
 dis=sqrt(pow(p1.x-p2.x,2)+pow(p1.y-p2.y,2));
 cout<<"the distance is: "<<dis<<endl; }

Dr. Neamah E. Kadhim

57

 cout<<"\npoint is: ";
 cout<<"enter x and y ";
 cin>>po.x>>po.y;
 cout<<endl;
 return po; }

EX: program to find
the smallest distance
between two points
among three points
while representing the
point as a struct.

#include <iostream>
#include<cmath>
using namespace std;
struct point
{ float x;
 float y;};
void point_print(point po) { cout<<"\npoint is: ";
cout<<"("<<po.x<<","<<po.y<<")";}
point point_read()
 { point po;
 cout<<"\npoint is: ";
 cout<<"enter x and y ";
 cin>>po.x>>po.y;
 cout<<endl;
 return po; }
void poin_print(point po)
 { cout<<"\npoint is: ";
 cout<<"("<<po.x<<","<<po.y<<")";}
double point_dis(point p1,point p2)
 { double d;
 d=sqrt(pow(p1.x-p2.x,2)+pow(p1.y-p2.y,2));
 return d; }

Dr. Neamah E. Kadhim

58

int main()
{ point p1,p2,p3;
 p1=point_read();
 p2=point_read();
 p3=point_read();
 point_print(p1);
 point_print(p2);
 point_print(p3);
 if(point_dis(p1,p2)>=point_dis(p1,p3)&&point_dis(p1,p2)>=point_dis(p2,p3))
 cout<<"the smallest distance is between p1 and p2 :"<<point_dis(p1,p2)<<endl;
 else if(point_dis(p1,p3)>=point_dis(p1,p2)&&point_dis(p1,p3)>=point_dis(p2,p3))
 cout<<"the smallest distance is between p1 and p3 :"<<point_dis(p1,p3)<<endl;
 else
 cout<<"the smallest distance is between p2 and p3 :"<<point_dis(p2,p3)<<endl;}

EX: program to illustrate the information of the graduated student, his grade
average to each year, and the acceptance year with the graduating year.

#include <iostream>

#include<string>

using namespace std;

struct student

{ string name;

 int GPA [4];

 int acc_y;

 int gra_y;};

 student
student_read()

 { student st;

 cout<<"enter the
student name ";

 cin>>st.name;

Dr. Neamah E. Kadhim

59

 cout<<endl;

 cout<<"first year grade average ";

 cin>>st.GPA[0];

 cout<<endl;

 cout<<"second year grade average ";

 cin>>st.GPA[1];

 cout<<endl;

 cout<<"third year grade average ";

 cin>>st.GPA[2];

 cout<<endl;

 cout<<"fourth year grade average ";

 cin>>st.GPA[3];

 cout<<endl;

 cout<<"the student accepted in ";

 cin>>st.acc_y;

 cout<<" the student graduated in ";

 cin>>st.gra_y;

 return st;

 }

int ave(int ar[])

{

 return(ar[0]*0.10+ar[1]*0.20+ar[2]*0.30+ar[3]*0.40);

}

void student_print(student st) {

 cout<<"\nname of student is: "<<st.name<<endl;

Dr. Neamah E. Kadhim

60

 cout<<"\nthe grade average for first year "<<st.GPA[0];

 cout<<", for second year"<<st.GPA[1]<<", for third year"<<st.GPA[2];

 cout<<", for fourth year"<<st.GPA[3]<<endl;

 cout<<"accepted in "<<st.acc_y<<" and graduated in "<<st.gra_y<<endl;

 cout<<"the student grade average is: "<<ave(st.GPA)<<endl;

 }

int main()

{

 student st1;

 st1=student_read();

 student_print(st1);

 return 1;

}

