
Dr. Neamah E. Kadhim

1

1.1 A Brief Overview of Computers Lecture One

A computer is an electronic device capable of performing commands. The basic

commands that a computer performs are input (get data), output (display result),

storage, and performance of arithmetic and logical operations. There are two main

components of a computer system: hardware and software.

Major hardware components include the central processing unit (CPU);

main memory (MM), also called random access memory (RAM); input/output

devices; and secondary storage. Some examples of input devices are the keyboard,

mouse, and secondary storage. Examples of output devices are the screen, printer,

and secondary storage. See figure(1).

FIGURE 1: (a) Hardware components of a computer and (b)main memory

Software is programs written to perform specific tasks. For example, word

processors are programs that you use to write letters, papers, and even books. All

software is written in programming languages. There are two types of programs:

system programs and application programs.

Dr. Neamah E. Kadhim

2

System programs control the computer. The operating system is the system

program that loads first when you turn on your PC. Without an operating system, the

computer is useless. Application programs perform a specific task. Word

processors, spreadsheets, and games are examples of application programs. The

operating system is the program that runs application programs.

Remember that a computer is an electronic device. Electrical signals are used

inside the computer to process information. There are two types of electrical signals:

analog and digital. Analog signals are continuous waveforms used to represent such

things as sound. Audio tapes, for example, store data in analog signals. Digital

signals represent information with a sequence of 0s and 1s. A 0 represents a low

voltage, and a 1 represents a high voltage. Digital signals are more reliable carriers

of information than analog signals and can be copied from one device to another

with exact precision. Because digital signals are processed inside a computer, the

language of a computer, called machine language, is a sequence of 0s and 1s. The

digit 0 or 1 is called a binary digit, or bit. Sometimes a sequence of 0s and 1s is

referred to as a binary code or a binary number. Bit: A binary digit 0 or 1. A sequence

of eight bits is called a byte. Moreover, 1024 bytes is called a kilobyte (KB).

Every letter, number, or special symbol (such as * or {) on your keyboard is

encoded as a sequence of bits, each having a unique representation. The seven-bit

American Standard Code for Information Interchange (ASCII) is the most

commonly used encoding scheme on personal computers.

1.2 The Evolution of Programming Languages
The most basic language of a computer, the machine language, provides program

instructions in bits. Even though most computers perform the same kinds of

operations, computer designers may have chosen different sets of binary codes to

perform the operations. Therefore, the machine language of one machine is not

Dr. Neamah E. Kadhim

3

necessarily the same as the machine language of another machine. The only

consistency among computers is that all data is stored and manipulated as binary

codes.

Assembly languages were developed to make the programmer’s job easier.

In assembly language, instruction is an easy-to-remember. It is much easier to

write instructions in assembly language. However, a computer cannot execute

assembly language instructions directly. The instructions first have to be translated

into machine language. A program called an assembler translates the assembly

language instructions into machine language.

 Moving from machine language to assembly language made programming

easier, but a programmer was still forced to think in terms of individual machine

instructions. The next step toward making programming easier was to devise high-

level languages that were closer to natural languages. Basic, FORTRAN, COBOL,

Pascal, C, C++, C#, and Java are all high-level languages.

 EX: write the weekly wages equation

C++ Assembly Machine Language

wages = rate * hours;

LOAD rate
MULT hours
STOR wages

100100 010001
100110 010010
100010 010011

1.3 Programming Methodologies

Two popular approaches to programming design are the structured

approach and the object-oriented approach.

Structured Programming means that dividing a problem into smaller subproblems

is called structured design. Each subproblem is then analyzed, and a solution is

obtained to solve the subproblem. The solutions to all of the subproblems are then

combined to solve the overall problem.

Dr. Neamah E. Kadhim

4

Object-oriented design (OOD) is a widely used programming methodology.

In OOD, the first step in the problem-solving process is to identify the components

called objects, which form the basis of the solution, and to determine how these

objects interact. A programming language that implements OOD is called an object-

oriented programming (OOP) language.

1.4 Reviewing the basics of a C++ language syntax

In this section, we will briefly review basic C++ syntax. We are assuming that

you have a C++ programmer with non-OOP skills.

1. Variable declarations and standard data types: Variables may be any

length and may consist of letters, digits, and underscores. Variables

are case-sensitive and must begin with a letter or an underscore. Standard

data types in C++ include:

• int: To store whole numbers

• float: To store floating-point values

• double: To store double-precision floating-point values

• char: To store a single character

• bool: For Boolean values of true or false

EX: Here are a few straightforward examples using the standard data types

described above:

int x = 5;
int a = x;

float y = 9.87;
float y2 = 10.76f; //
optional 'f' suffix
on float literal
float b = y;

double yy = 12345.78;
double c = yy;

char z= 'Z';
char d = z;

bool test = true;
bool e = test;

Dr. Neamah E. Kadhim

5

bool f = !test;

2. Comment styles: Two styles of comments are available in C++:

• The /* */ style provides comments spanning multiple lines of code. This style

 may not be nested with other comments of this same style.

• The // style of comment provides a simple comment to the end of the current line.

3. Operators in C++: An operator is a symbol that tells the compiler to perform

specific mathematical or logical manipulations. C++ is rich in built-in operators and

provide the following types of operators:

 Arithmetic Operators

Assume variable A holds 10 and variable B holds 20:

Operator + - * / % ++ --

Expression A+B B-A A*B B/A B%3 B++ A--

Output 30 10 200 2 2 21 9

 Relational Operators

Assume variable A holds 1 and variable B holds 2:

Operator == != > < >= <=

Expression A==B B!=A A>B B<A B>=B B<=A

Output False True False False True False

 Logical Operators

Assume variable A holds 1 and variable B holds 0

Operator &&(and) ||(or) !(not)

Expression A && B B || A !A

Dr. Neamah E. Kadhim

6

Output False True False

 Bitwise Operators

Assume variable A holds 60(00111100) and variable B holds 13(00001101)

Operator Expression Output

& (And) A&B 12 (0000 1100

| (Or) B|A 61 (0011 1101)

^ (Xor) A^B 49 (0011 0001)

~(Complement) ~A 195 (1100 0011)

<< (Binary Left Shift) A << 2 240 (1111 0000)

>> (Binary Right Shift) A>>2 15 (0000 1111)

 Assignment Operators

= += -= *= /= %= >>= <<=

C=3 C+=3 C-=3 C*=3 C/=3 C%=3 C>>=3 C<<=3

Assign

3 to c
C=C+3 C=C-3 C=C*3 C=C/3 C=C%3 C=C>>3 C=C<<3

 Casting operators convert one data type to another. For example,

int(2.2000) would return 2.

 Increment and Decrement Operators

Pre-increment Post-increment Pre-decrement Post-decrement

++variable Variable++ --variable Variable--

X=5

++x; //x=6

X=5

X++; //x=6

X=5

--x ;//x=4

X=5

x --;//x=4

Dr. Neamah E. Kadhim

7

x = 5;

y = ++x;//x=6,y=6

x = 5;

y = x++;//x=6,y=5

x = 5;

y = --x;//x=4,y=4

x = 5;

y = x--;//x=4,y=5

1.5 Control Structures

A computer can process a program in one of the following ways: in sequence,

selectively, by making a choice, which is also called a branch; repetitively, by

executing a statement over and over, using a structure called a loop; or by calling a

function. Figure 2 illustrates the first three types of program flow.

Dr. Neamah E. Kadhim

8

FIGURE 2: Flow of execution

 Selection Control Structure

In C++, there are two selections or branch control structures: if statements and the
switch structure.

One-Way Selection Two-Way Selection Nested if
if (expression)
 statement

if (expression)
 statement1

if (score >= 90)
 cout << "The grade is A.";

Dr. Neamah E. Kadhim

9

else
 statement2

else if (score >= 80)
 cout << "The grade is B.";
else if (score >= 70)
 cout << "The grade is C.";
else if (score >= 60)
 cout << "The grade is D.";
else
 cout << "The grade is F." ;

if (score >= 60)
 grade = 'P';

if (score >= 60)
 grade = 'P';
else
 grade = 'P';

EX: c++ program to test if number is negative or positive, and if number is
positive then it is compute its double.
#include <iostream>
using namespace std;
int main()
{ int x;

cout << "Enter an integer: ";
cin >> x;
if (x == 0)

cout << "x is 0" << endl;
else if (x < 0)

cout << "x is negative" << endl;
else {

cout << "x is positive";
cout << "and ten times x is: " << x * 10 << endl;}

return 0;}
EX: c++ program to test if character is small letter, capital letter,digits or
special character.

#include <iostream>
using namespace std;
int main()

Dr. Neamah E. Kadhim

10

{ char x;
cout << "Enter a character: ";
cin >> x;
if (x >= 'A' && x<='Z')
 cout << "The character is CL.";
else if (x >= 'a' && x<='z')
 cout << "The character is SL.";
else if (x >= '0' && x<='9')
 cout << "The character is D.";
else
 cout << "it is special character." ;
return 0;
}

EX:c++ program to compute the maximum number between three numbers.

#include <iostream>
using namespace std;
int main()
{
 int x, y, z, max;
 cout<<"Enter any three numbers: ";
 cin>>x>>y>>z;
 max = x;
 if(y>max)
 max = y;
 if(z>max)
 max = z;
 cout<<"\n"<<"The largest of "<<x<<", "<<y<<" and "<<z<<" is "<<max;
 return 0;
}

C++’s switch structure gives the computer the power to choose from among many
alternatives. A general syntax of the switch statement is:

Dr. Neamah E. Kadhim

11

switch (expression)
{
case value1:
 statements1
 break;
case value2:
 statements2
 break;
.
.
.
case valuen:
 statementsn
 break;
default:
 statements
}
EX: C++ program to evaluate the grade of students.
#include <iostream>
using namespace std;
int main()
{ int score;
char grade;
cout << "Enter degree of student: ";
cin >> score;
switch (score / 10)
{

case 0:
case 1:
case 2:
case 3:
case 4:
case 5:

grade = 'F';
break;

case 6:

grade = 'D';
break;
case 7:

grade = 'C';
break;
case 8:

grade = 'B';
break;
case 9:
case 10:

grade = 'A';
break;
default:
cout << "Invalid test score." <<

endl;
}

cout<<"grade="<<grade;
return 0;

}
EX: C++ program that shows the appropriate age to vote.
#include <iostream>

Dr. Neamah E. Kadhim

12

using namespace std;
int main()
{ int age;
 cout << "Enter the age: ";

cin >> age;
switch (age >= 18)

{
case 1:

cout << "Old enough to be drafted." << endl;
cout << "Old enough to vote." << endl;

break;
case 0:

cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

return 0;
}

 Lopping Control Structure

A loop statement allows us to execute a statement or group of statements multiple
times, and the following is the general form of a loop statement in most programming
languages:

Dr. Neamah E. Kadhim

13

C++ programming language provides the following type of loops to handle
looping requirements.

while
loop

while (expression)
 statement

i = 0;
while (i <= 20)
{
 cout << i << " ";
 i = i + 1;
}

i = 0;
while (i <= 20)
{
 cout << i << " ";
 i = i + 2;
}

For
loop

for (initial statement; loop condition; update statement)
 statement

for (i = 0; i < 20; i++)
 cout << i << " ";

for (i = 0; i < 20; i+=2)
 cout << i << " ";

do i = 0;

Dr. Neamah E. Kadhim

14

Do

while

 statement
while (expression);

do
{
 cout << i << " ";
 i = i + 1;
}
while (i <= 20);

i = 0;
do
{
 cout << i << " ";
 i = i + 2;
}
while (i <= 20);

EX: C++ program to Calculate 12 + 22 + 32 + 42 + 52 +62 ... + n2 series

#include <iostream>
using namespace std;
int main()
{ int i,a,n,sum=0;
 cout<<"enter the limit of series";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 sum+=i*I;
 cout<<"Sum: "<<sum;
 return 0; }

EX: C++ program to Calculate 12 / 22+ 22 /32+ 32 /42+ ... + n2 /(n+1)2 series.

#include <iostream>
using namespace std;
int main()

Dr. Neamah E. Kadhim

15

{ int i,a,n,sum=0;
 cout<<"enter the limit of series";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 sum+=(i*i)/(i+1)*(i+1);
 cout<<"Sum: "<<sum;
return 0; }
EX: C++ program to Calculate (1) + (1+2) + (1+2+3) + (1+2+3+4) + ... +
(1+2+3+4+...+n) series
#include <iostream>
using namespace std;
int main()
{ int i,j,n,sum=0;
 cout<<"enter the limit of series";
 cin>>n;
 for(i=1;i<=n;i++)
 for(j=1;j<=i;j++)
 sum+=j;
 cout<<"Sum: "<<sum;
return 0;}
EX: C++ program finds the sum of positive numbers the user enters. The loop
ends if the user enters a negative number.

#include <iostream>
using namespace std;
int main() {
 int num;
 int sum = 0;
 cout << "Enter a number: ";
 cin >> num;
 while (num >= 0) {
 sum += num;
 cout << "Enter a number: ";
 cin >> num; }

 cout << "\nThe sum is " << sum << endl;
 return 0; }
EX: C++ program to Calculate 10+ 21 + 32 + 43 + 54 +65 ... + n n-1 series

do {
 sum += num;
 cout << "Enter a number: ";
 cin >> num; }
 while (num >= 0);

Dr. Neamah E. Kadhim

16

#include <iostream>
using namespace std;
int main()
{ int i,j,n,sum=1,f;
 cout<<"enter the limit of series";
 cin>>n;
 cout<<endl;
 for(i=2;i<=n;i++)
 {f=1;
 for(j=1;j<=i-1;j++)
 f*=i;
 sum+=f;}
 cout<<"Sum: "<<sum;
 return 0; }
EX: C++ program to show the following pattern:
#include <iostream>
using namespace std;
int main()
{ int i,j,n;
 cout<<"enter the limit of pattern";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 { for(j=1;j<=i;j++)
 cout<<i<<" ";
 cout<<endl; }

 return 0; }
EX: C++ program to show the following pattern:

#include <iostream>
using namespace std;
int main()
{ int i,j,n;
 cout<<"enter the limit of pattern";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 {

1
2 2
3 3 3
4 4 4 4

1 1 1 1
2 2 1
3 3
4

Dr. Neamah E. Kadhim

17

 for(j=1;j<=n-i+1;j++)
 cout<<i<<" ";
 cout<<endl;
 }

 return 0; }
EX: C++ program to show the following pattern:
#include <iostream>
using namespace std;
int main()
{ int i,j,n,a=1;
 cout<<"enter the limit of pattern";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 {
 for(j=1;j<=n-i+1;j++)
 cout<<a++<<" ";
 cout<<endl;
 }

 return 0; }

EX: C++ program to show the following pattern:

#include <iostream>
using namespace std;
int main()
{ int i,j,n;
 char a='a';
 cout<<"enter the limit of pattern";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 {
 for(j=1;j<=n-i+1;j++)
 cout<<a++<<" ";
 cout<<endl;
 }

1 2 3 4
5 6 7
8 9
10

a b c d
e f g
h i
j

Dr. Neamah E. Kadhim

18

 return 0; }

EX: C++ program to show the following pattern:

#include <iostream>
using namespace std;
int main()
{ int i,j,n,a=-1;
 char l='a';
 cout<<"enter the limit of pattern";
 cin>>n;
 cout<<endl;
 for(i=1;i<=n;i++)
 { for(j=n-i;j>=1;j--)
 cout<<" ";
 a=a+2;
 for(j=1;j<=a;j++)
 cout<<l<<" ";
 cout<<endl;
 l++; }

 return 0; }
EX: C++ program to show the following pattern:

#include <iostream>
using namespace std;
int main()
{ int i,j,n,a;
 char l='a';
 cout<<"enter the limit of pattern";
 cin>>n;
 a=n;
 cout<<endl;

for(i=1;i<=n;i++)
 { for(j=1;j<=i;j++)
 cout<<" ";
 for(j=1;j<=a;j++)

 cout<<l<<" ";
 a-=2;
 cout<<endl;
 l++; }

 a
 b b b
c c c c c

a a a a a
 b b b
 c

Dr. Neamah E. Kadhim

19

 return 0; }
EX: C++ program to show the following pattern:
#include <iostream>
using namespace std;
int main()
{ int i,j,n,a;
 cout<<"enter the limit of pattern";
 cin>>n;
 a=n-1;
 cout<<endl;
 for(i=1;i<=n;i++)
 {
 for(j=1;j<=a;j++)
 cout<<" ";
 a--;
 for(j=1;j<=i;j++)
 cout<<i<<" ";
 cout<<endl;}
 return 0; }

 1
 2 2
 3 3 3
4 4 4 4

