B) When the equation contains the term (qy) or its' powers we use the hypothesis $\overline{Y = \ln y}$

as follows:

$$q = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial Y}{\partial Y} = \frac{\partial z}{\partial Y} \cdot \frac{\partial Y}{\partial y} = \frac{\partial z}{\partial Y} \cdot \frac{1}{y} \quad (\text{since } Y = \ln y \implies \frac{\partial Y}{\partial y} = \frac{1}{y})$$
$$\implies qy = \frac{\partial z}{\partial Y}$$

Then solving by the same way in (A).

Example 3: Solve 2p + qy = 4 by hypotheses

Sol. Given that
$$2p + qy = 4$$
 ...(10)

from
$$Y = \ln y$$
 we have $qy = \frac{\partial z}{\partial y}$...(11)

Substituting (11) in (10), we get

$$2p + \frac{\partial z}{\partial Y} = 4$$

Let $\frac{\partial z}{\partial Y} = t$ then,

$$2p + t = 4 \qquad \dots (12)$$

The equation (12) is of the form f(p, t) = 0

Then let p = a and t = b, putting in (12) 2a + b = 4

$$\Rightarrow b = 4 - 2a \qquad \dots (13)$$

Substituting (13) in z = ax + bY + c

$$\Rightarrow z = ax + (4 - 2a)Y + c...(14)$$

where c is an arbitrary constant

replacing Y in (14) to get the complete integral

$$z = a x + (4 - 2a) \ln y + c$$

Example 4: Solve $p^2x^2 = z^2 + q^2y^2$ by hypotheses

Sol. Given that
$$p^2x^2 = z^2 + q^2y^2$$
 ...(15)

from $X = \ln x$ and $Y = \ln y$ we have

$$xp = \frac{\partial z}{\partial x}$$
 and $qy = \frac{\partial z}{\partial y}$...(16)

Substituting (16) in (15), we get

$$\left(\frac{\partial z}{\partial x}\right)^2 = z^2 + \left(\frac{\partial z}{\partial y}\right)^2 \qquad \dots (17)$$

Let
$$t = \frac{\partial z}{\partial X}$$
 and $r = \frac{\partial z}{\partial Y}$ putting in (17)

Note that (18) is of the form f(t, r, z) = 0

Taking
$$u = X + aY$$
 (a is constant)

Then
$$t = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \cdot \frac{\partial u}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial u}{\partial x} = \frac{dz}{dy}$$

$$r = \frac{\partial z}{\partial Y} = \frac{\partial z}{\partial Y} \cdot \frac{\partial u}{\partial u} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial Y} = a \frac{dz}{du} \qquad \dots (19)$$

because
$$(\frac{\partial u}{\partial x} = 1)$$
 and $\frac{\partial u}{\partial y} = a$)

putting (19) in (18)

$$\left(\frac{dz}{du}\right)^2 - a^2 \left(\frac{dz}{du}\right)^2 = z^2$$

$$(1 - a^2) \left(\frac{dz}{du}\right)^2 = z^2$$

$$\pm \sqrt{1 - a^2} \frac{dz}{du} = z$$
 (taking the square root)

$$\pm\sqrt{1-a^2}\frac{dz}{z} = du \qquad \dots (20)$$

Integrating (20),

$$\pm \sqrt{1 - a^2} \ln z = u + \ln c \quad (c \text{ is constant}) \qquad \dots (21)$$

Now, replacing u in (21) to get the complete integral

$$\pm \sqrt{1 - a^2} \ln z = X + aY + \ln c$$
 ...(22)

Next, replacing X and Y in (22) to get the complete integral

$$\pm \sqrt{1 - a^2} \ln z = \ln x + a \ln y + \ln c$$

$$\ln z^b = \ln cx \ y^a \qquad \text{where } b = \pm \sqrt{1 - a^2}$$

$$\Rightarrow z^b = cx \ y^a \qquad \dots (23)$$

So, (23) is the complete integral.

C) When the equation contains the terms $\frac{p}{z}$ or $\frac{q}{z}$ or its' powers we use the hypothesis $Z = \ln z$

as follows:

$$p = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \cdot \frac{\partial Z}{\partial z} = \frac{\partial z}{\partial z} \cdot \frac{\partial Z}{\partial x} = z \frac{\partial Z}{\partial x} \qquad \text{(since } \frac{\partial z}{\partial z} = z \text{)}$$

hence
$$\frac{p}{z} = \frac{\partial Z}{\partial x}$$

by the same way we have $\frac{q}{z} = \frac{\partial z}{\partial y}$

then substituting this terms in the given equation and solve it by the same way in (A) and (B).

Example 5: Solve $p^2 + q^2 = z^2$ by $\overline{Z = \ln z}$

Sol. Given that
$$p^2 + q^2 = z^2$$
 ...(24)

Dividing on
$$z^2$$
, $\frac{p^2}{z^2} + \frac{q^2}{z^2} = 1$...(25)

using
$$Z = \ln z$$
 we have $\frac{p}{z} = \frac{\partial Z}{\partial x}$ and $\frac{q}{z} = \frac{\partial Z}{\partial y}$, substituting in (25)

$$\left(\frac{\partial Z}{\partial x}\right)^2 + \left(\frac{\partial Z}{\partial y}\right)^2 = 1 \qquad \dots (26)$$

Let
$$t = \frac{\partial Z}{\partial x}$$
 and $r = \frac{\partial Z}{\partial y}$ thus, (26) would be
$$t^2 + r^2 = 1 \qquad ...(27)$$

Clear that (27) is of the form f(t,r) = 0

Let
$$t = a$$
, $r = b$ (a, b are constant)

Then
$$a^2 + b^2 = 1$$
 ...(28)

$$a = \pm \sqrt{1 - b^2} \qquad \dots (29)$$

Substituting a, b in Z = ax + by + c

$$\Rightarrow Z = \pm \sqrt{1 - b^2}x + by + c \qquad \dots (30)$$

Replacing Z from the hypothesis to get the complete integral

Then (31) is the complete integral.

Example 6: Solve $p^2 + q^2 = z^2(x + y)$ by hypotheses

Sol. Dividing on z^2 ,

$$\frac{p^2}{z^2} + \frac{q^2}{z^2} = x + y \tag{32}$$

using $Z = \ln z$ we have $\frac{p}{z} = \frac{\partial Z}{\partial x}$ and $\frac{q}{z} = \frac{\partial Z}{\partial y}$, substituting in (32)

$$\left(\frac{\partial Z}{\partial x}\right)^2 + \left(\frac{\partial Z}{\partial y}\right)^2 = x + y \qquad \dots(33)$$

Let $t = \frac{\partial Z}{\partial x}$ and $r = \frac{\partial Z}{\partial y}$ putting in (33)

Then $t^2 - x = a \rightarrow t = \pm \sqrt{a + x}$

$$y - r^2 = a \rightarrow r = \pm \sqrt{y - a}$$

Substituting in dZ = tdx + rdy

$$\Rightarrow dZ = \pm \sqrt{a + x} dx + \pm \sqrt{y - a} dy \qquad ...(35)$$

Integrating (35), we get

$$Z = \pm \frac{2}{3}(a+x)^{3/2} \pm \frac{2}{3}(y-a)^{3/2} + c$$
 (where c is constant)

Replacing Z from the hypothesis to get the complete integral

$$\Rightarrow \ln z = \pm \frac{2}{3} (a+x)^{3/2} \pm \frac{2}{3} (y-a)^{3/2} + c$$

... Exercises ...

$$1. \quad p^2 x^2 = z(z - qy)$$

2.
$$pq = z^2 y \sec x$$

3.
$$p + q = z e^{x+y}$$

4.
$$p^2 + zq = z^2(x - y)$$

5.
$$p^2 + zp = z^2(x - y)$$

6.
$$xp + 4q = \cos y$$

7.
$$p^2 + q^2 = z^2 y$$