(1.3.2) The equation of the form f(p, q) = 0

Here we consider equations in which p and q occur other than in the first degree, that is nonlinear equations. To solve the equation

$$f(p,q) = 0$$
(1)

Taking p = constant = a(2)

$$q = constant = b$$
(3)

Substituting (2),(3) in (1), we get

$$F(a, b) = 0 \rightarrow b = F_1(a) \text{ or } a = F_2(b)....(4)$$

From dz = pdx + qdy(5)

Using (2),(3)
$$\rightarrow dz = adx + bdy$$
(6)

Integrating (6),
$$z = ax + by + c$$
(7)

Where *c* is an arbitrary constant

Substituting (4) in (7) to obtain the complete integral (complete solution)

$$z = ax + F_1(a)y + c$$
 or $z = F_2(b)x + by + c$ (8)

Ex.1: Solve $p^2 + p = q^2$

Sol.
$$p^2 + p - q^2 = 0$$
(1)

The equation (1) of the form f(p,q) = 0

Let
$$p = a$$
, $q = b$

Substituting in (1)

$$a^{2} + a - b^{2} = 0 \rightarrow b^{2} = a^{2} + a \rightarrow b = \pm \sqrt{a^{2} + a}$$

The complete integral is

$$z = ax + by + c$$

$$= ax \pm \sqrt{a^2 + a}y + c$$

Where *c* is an arbitrary constant.

Ex.2: Solve pq = k, where k is a constant.

Sol. Given that pq = k(1)

Since (1) is of the form f(p,q) = 0, it's solution is

$$z = ax + by + c$$
(2)

Let
$$p = a$$
, $q = b$, substituting in (1), then $ab = k \rightarrow b = \frac{k}{a}$...(3)

Putting (3) in (2), to get the complete solution

 $z = ax + \frac{k}{a}y + c$; c is an arbitrary constant.

Ex.3: Solve
$$\frac{\partial z}{\partial x} - 3\frac{\partial z}{\partial y} = (\frac{\partial z}{\partial y})^3$$

Sol. Given that $p - 3q = q^3$ (1)

Since (1) is of the form f(p,q) = 0, then

Let
$$p = a$$
, $q = b$

Substituting in (1),
$$a - 3b = b^3 \rightarrow a = b^3 + 3b$$
(2)

Putting (2) in the equation z = ax + by + c, we get

$$z = (b^3 + 3b)x + by + c$$

Where c is an arbitrary constant

The equation (3) is the complete integral.

(1.3.3) The Equation of the form z = px + qy + f(p,q)

A first order partial differential equation is said to be of **Clariaut** form if it can be written in the form

$$z = px + qy + f(p,q) \qquad \dots (1)$$

to solve this equation taking p = a, q = b and substituting in (1), so the complete integral is

$$z = ax + by + f(a, b) \qquad \dots (2)$$

Example 1: Solve z = px + qy + pq

Sol. The given equation is of the form z = px + qy + f(p,q)

let p = a and q = b substituting in the given equation, so the complete integral is

$$z = ax + by + ab$$

where a, b being arbitrary constant.

Example 2: Solve
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z - 5 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}$$

Sol. Rearrange the given equation, we have

$$x p + y q = z - 5p + pq$$

 $z = x p + y q + 5p - pq$...(3)

Equation (3) is of Clariaut form

let p = a and q = b substituting in (3), then the complete integral is z = ax + by + 5a - ab

where a, b being arbitrary constant.

Example 3: Solve
$$px + qy = z - p^3 - q^3$$

Sol. Rearrange the given equation, we have

$$z = px + qy + p^3 + q^3 ...(4)$$

let p = a and q = b substituting in (4)

 $z = ax + by + a^3 + b^3$ that is the complete integral and a, b being arbitrary constants.

(1.3.4) The Equation of the form f(z, p, q) = 0

To solve the equation of the form

$$f(z, p, q) = 0$$
 ...(1)

1. Let
$$u = x + ay$$
 ...(2)

where a is an arbitrary constant

2. Replace p and q by $\frac{dz}{du}$ and $a\frac{dz}{du}$ respectively in (1) as follows,

$$p = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \cdot \frac{\partial u}{\partial u} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} = \frac{dz}{du}$$

$$q = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial u}{\partial u} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} = a \frac{dz}{du} \qquad ...(3)$$
from (2) $\frac{\partial u}{\partial x} = 1$ and $\frac{\partial u}{\partial y} = a$

- 3. Substituting (3) in (1) and solve the resulting ordinary differential equation of first order by usual methods.
- 4. Next, replace u by x + ay in the solution obtained in step 3 to get the complete solution.

Example 1: Solve z = p + q

Sol. Given equation is
$$z = p + q$$
 ...(4)

which is of the form f(z, p, q) = 0. Let u = x + ay where a is an arbitrary constant.

Now, replacing p and q by $\frac{dz}{du}$ and $a\frac{dz}{du}$ respectively in (4), we get

$$z = \frac{dz}{du} + a \frac{dz}{du}$$

$$\Rightarrow z = (1+a) \frac{dz}{du}$$

$$\Rightarrow du = (1+a) \frac{dz}{z}$$
 ...(5)

Integrating (5), $u + c = (1 + a) \ln z$

where c is an arbitrary constant

Replacing u,

$$x + ay + c = \ln z^{(1+a)}$$

$$\Rightarrow e^{x+ay+c} = z^{(1+a)}$$

$$\Rightarrow z = e^{\frac{x+ay+c}{1+a}} \qquad \dots (6)$$

and that is the complete integral.

Example 2: Solve
$$\left(\frac{\partial z}{\partial x}\right)^2 z - \left(\frac{\partial z}{\partial y}\right)^2 = 1$$

Sol. Rearrange the given equation, we have

$$p^2z - q^2 = 1...(7)$$

This equation is of the form f(z, p, q) = 0

Let u = x + ay, where a is an arbitrary constant

Now, replacing p and q by $\frac{dz}{du}$ and $a\frac{dz}{du}$ respectively in (7), we get

$$\left(\frac{dz}{du}\right)^2 z - \left(a \, \frac{dz}{du}\right)^2 = 1$$

$$\Rightarrow (z - a^2) \left(\frac{dz}{du}\right)^2 = 1$$

 $\Rightarrow \pm \sqrt{z - a^2} \frac{dz}{du} = 1$ by taking the square root

$$\Rightarrow \pm \sqrt{z - a^2} \, dz = du...(8)$$

Integrating (8),

$$\pm \frac{2}{3}(z-a^2)^{3/2} = u + c...(9)$$

Replacing u in (9) to get the complete integral

$$\pm \frac{2}{3}(z - a^2)^{\frac{3}{2}} = x + ay + c$$

(1.3.5) The Equation of the form $f_1(x, p) = f_2(y, q) = 0$

In this form z does not appear and the terms containing x and p are on one side and those containing y and q on the other side.

To solve this equation putting

$$f_1(x,p) = f_2(y,q) = a...(1)$$

where a is an arbitrary constant

$$f_1(x,p) = a \implies p = g_1(x,a)...(2)$$

$$f_2(y,q) = a \implies q = g_2(y,a)...(3)$$

Substituting (2) and (3) in dz = pdx + qdy, we get

$$dz = g_1(x, a)dx + g_2(y, a)dy...(4)$$

Integrating (4),

$$z = \int g_1(x, a)dx + \int g_2(y, a)dy + b$$

which is a complete integral containing two arbitrary constants a and b.

Example 1: Solve $p = 2xq^2$

Sol. Separating p and x from q and y, the given equation reduces $to \frac{p}{x} = 2q^2...(5)$

Equating each side to an arbitrary constant a, we have

$$\frac{p}{x} = a \implies p = ax$$

$$2q^2 = a \implies q = \pm \sqrt{\frac{a}{2}}$$

Putting these values of p and q in

$$dz = pdx + qdy$$
, we get

$$dz = axdx \pm \sqrt{\frac{a}{2}}dy \qquad \dots (6)$$

Integrating (6),
$$z = \frac{a}{2}x^2 \pm \sqrt{\frac{a}{2}}y + b$$

where a and b are two arbitrary constants.

Example 2: Solve $xq - y^2p - x^2y^2 = 0$

Sol. Separating p and x from q and y, the given equation reduces to $\frac{p+x^2}{x} = \frac{q}{y^2}...(7)$

Equating each side to an arbitrary constant a, we have

$$\frac{p+x^2}{x} = a \qquad \Rightarrow \quad p = ax - x^2 \qquad \dots(8)$$

$$\frac{q}{y^2} = a \qquad \Rightarrow \quad q = a \ y^2 \qquad \dots (9)$$

Putting (8) and (9) in dz = pdx + qdy, we get

$$dz = (ax - x^2)dx + ay^2dy$$
 ...(10)

Integrating (10),
$$z = \frac{ax^2}{2} - \frac{x^3}{3} + a\frac{y^3}{3} + b$$

which is a complete integral containing two arbitrary constants a and b.

Example 3: Solve $p - 3x^2 = q^2 - y$

Sol. Equating each side to an arbitrary constant a, we get

$$p - 3x^2 = a \qquad \Rightarrow \quad p = a + 3x^2 \qquad \dots (11)$$

$$q^2 - y = a \qquad \Rightarrow \qquad q = \pm \sqrt{a + y} \qquad \dots (12)$$

Putting these values of p and q in dz = pdx + qdy, we get

$$dz = (a + 3x^2)dx \pm \sqrt{a + y}dy \qquad \dots (13)$$

Integrating (13),
$$z = ax + x^3 \pm \frac{2}{3}(a+y)^{3/2} + b$$

which is a complete integral containing two arbitrary constant a and b.