
Structured Programming
Lecture1 – Algorithms

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024الدراسية السنة

Algorithm can be defined as: “A sequence of activities to be processed for
getting desired output from a given input”.

Then we can say that:
1. Getting specified output is essential after the algorithm is executed.
2. One will get output only if the algorithm stops after a finite time.
3. Activities in an algorithm to be clearly defined in other words for it to be
unambiguous

Algorithm

Algorithm
Before writing an algorithm for a problem, one should find out what is the:

• The inputs to the algorithm.

• The output after running the algorithm.

While writing algorithms we will use the following symbols for different operations:

• ‘+’ for Addition

• ‘-’ for Subtraction

• ‘*’ for Multiplication

• ‘/’ for Division

• ‘ ’ for assignment.

- For example A X*3 means A will have a value of X*3.

Examples of Algorithm

Example 1: Find the area of a Circle

of radius r.

• Sol: Inputs to the algorithm:

• Radius r of the circle.

• Expected output:

• Area of the circle Algorithm.

Algorithm:
• Step1: Start
• Step2: Read\input the Radius r

of the Circle
• Step3: Input PI 3.14
• Step4: Area PI*r*r //

calculation of area
• Step5: Print Area
• Step6: End

Examples of Algorithm

• Example 2: Write an algorithm to
read two numbers and find their
sum.

• Sol: Inputs to the algorithm:

• First num1.

• Second num2.

• Expected output:

• Sum of the two numbers.

Algorithm:
• Step1: Start
• Step2: Read\input the first

num1.
• Step3: Read\input the second

num2.
• Step4: Sum num1+num2 //

calculation of sum
• Step5: Print Sum
• Step6: End

Types of Algorithms

• The algorithm and flowchart, classification to the three types of control
structures. They are:

• 1. Sequence The sequence structure is the construct where one statement
is executed after another.

• 2. Selection The selection structure is the construct where statements can
be executed or skipped depending on whether a condition evaluates to
TRUE or FALSE.

• There are three selection structures in C:

• 1. IF

• 2. IF – ELSE

• 3. SWITCH

Types of Algorithms

• 3. Loop (Repetition) The repetition structure is the construct where
statements can be executed repeatedly until a condition evaluates to
TRUE or FALSE.

• There are three repetition structures in C:

• 1. WHILE

• 2. DO – WHILE

• 3. FOR

Examples of Algorithm

• Example 3: Write an algorithm to find the greater number between
two numbers

• Sol:

• Step1: Start

• Step2: Read/input A and B

• Step3: If A >= B then C A // A greater than or equal B

• Step4: if B >= A then C B // B greater than or equal A

• Step5: Print C

• Step6: End

Examples of Algorithm

• Example 4: Write an algorithm to find the average of any three
numbers.

• Sol: Step1: Start

• Step2: Read values of X, Y, Z

• Step3: S X + Y + Z

• Step4: A S / 3

• Step5: Print value of A

• Step6: End

Examples of Algorithm

• Example 5: Write an algorithm to find the largest value of any three
numbers.

• Sol:

• Step1: Start

• Step2: Read/input A, B and C

• Step3: If (A>=B) and (A>=C) then Max A

• Step4: If (B>=A) and (B>=C) then Max B

• Step5: If (C>=A) and (C>=B) then Max C

• Step6: Print Max

• Step7: End

Examples of Algorithm

• Example 6: Write an algorithm to calculate and print even numbers
between 0 and 99.

• Sol:

• 1. Start

• 2. I 0

• 3. Print I

• 4. I I+2

• 5. If (I <=98) then go to line 3

• 6. End

Exercises
• Q1: Write an algorithm to calculate even numbers between 9 and

100.

• Q2: Write an algorithm to calculate and print odd numbers between 1
and 95.

• Q3: Write an algorithm to find the sum of 50 numbers.

• Q4: Write an algorithm to find the value of A, B, C.

A=X +6Y

B=2X-A

C=A +XB

• Q5: Write an algorithm to print the series. 2,4,8,16,32………..1024.

Structured Programming
Lecture2 – Flowcharts

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024الدراسية السنة

Flowcharts

The flowchart is a diagram that visually presents the flow of data
through processing systems. Algorithms are nothing but a
sequence of steps for solving problems. So a flowchart can be used
for representing an algorithm. A flowchart will describe the
operations are required to solve a given problem.

Flowchart Symbols There are 6 basic symbols commonly used in
the flowcharting of assembly language Programs: Process,
input/output, Decision, Connector, Terminal, and Flow Line
Process. This is not a complete list of all the possible flowcharting
symbols, it is the ones used most often in the structure of
Assembly language programming.

Flowcharts

General Rules for flowcharting

1. All boxes of the flowchart are connected with Arrows. (Not lines)
2. Flowchart symbols have an entry point on the top of the symbol with no
other entry points. The exit point for all flowchart symbols is on the bottom
except for the Decision symbol.
3. The Decision symbol has two exit points; these can be on the sides or the
bottom and one side.
4. Generally, a flowchart will flow from top to bottom.
5. Connectors are used to connect breaks in the flowchart. Examples are:
• From one page to another page.
• From the bottom of the page to the top of the same page.
6. All flowcharts are start and end with a terminal symbol.

Types of flowchart

There are three types from flowcharts:

1. Simple Sequential Flowcharts

2. Branched Flowcharts

3. Loop Flowcharts

• Simple Sequential Flowcharts

The solution steps for this type of flowchart are arranged in a straight
series from the beginning of the program to the end so that it is free of
branches and loops

Example 1: Draw a flowchart to find the area of a circle
of radius r.

Algorithm
Step1: Start
Step2: Read\input r
Step3: Input PI 3.14
Step4: Area PI*r*r
Step5: Print Area
Step6: End

Highlight

Example 2: Draw a flowchart that gets two numbers and
prints the sum of their value.

Algorithm
Step1: Start
Step2: Input A,B
Step3: C A+B
Step4: Output C
Step5: End

Types of flowchart
• Branched Flowcharts

• This type of flowchart is used when there is a need to make a decision
or a tradeoff between two or more choices.

• There are two types of branched flowcharts as shown below:

Two branches decision Three branches decision

Example 3: Draw a flowchart to find the greater number
between two numbers.

Algorithm
Step1: Start
Step2: Read/input A and B
Step3: If A > B then
Step4: Print A
Step4: if B > A then
Step5: Print B
Step6: End

Example 4: Draw a flowchart to find the value of y.
𝑦 = −𝑥, 𝑖𝑓 𝑥 < 0

𝑥, 𝑖𝑓 𝑥 ≥ 0

Step1: Start
Step2: input X
Step3: if x>=0 then y=x
Step4: if x< 0 then y =-x
Step5: Print y
Step 6: End

Types of flowchart
• Loop Flowcharts

In this type of flowchart, we need to return a process or set of
processes in the program a specific or unspecified number of times,
and the overall form of these flowcharts is as follows:

Example 5: Draw a flowchart for printing even numbers
between 9 and 99.

Algorithm
Step1: Start
Step2: i =10
Step3; Print i
Step4: i=i+2
Step5: If (i <=98) then go to line 3
Step6: End

Example 6: Draw a flowchart that print the numbers between
1 to 5

Example 7: Draw a flowchart to find the sum of 20
numbers.

Exercises
1. Draw a flowchart to find the area and perimeter of circle have

known radius (R).
2. Draw a flowchart to find the values of variables A, B, and C

from the following equations
A=X2 +2Y
B=2X-3A
C=A2 +XB
3. Draw a flowchart to print the series: 5,8,11,14,17…….50
4. Draw a flowchart to check the input number is odd or even.
5. Draw a flowchart to print the series: 2,4,8,16,32………..1024.

Structured Programming
Lecture3 – C++Programming Language

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024الدراسية السنة

Introduction to C++

C++: is a programming language.
• Programming language: A set of rules, symbols, and special

words.
• Source program: A program written in a high-level language.

• The following steps, as shown in figure 1, are necessary to
process a C++ program.

1. You use a text editor to create a C++ program following the rules,
or syntax, of the high-level language. This program is called the
source code, or source program. The program must be saved in a
text file that has the extension .cpp.

Introduction to C++

2. In a C++ program, statements that begin with the symbol # are called
preprocessor directives. These statements are processed by a program
called preprocessor.

3. The next step is to verify that the program obeys the rules of the
programming language—that is, the program is syntactically correct—
and the compiler translates the program into the equivalent machine
language which is called object program.

Introduction to C++

4. The programs that you write are developed using an integrated
development environment (IDE). The IDE contains many programs that
are useful in creating your program. Once the program is developed
and successfully compiled, you must still bring the code for the
resources used from the IDE into your program to produce a final
program that the computer can execute.

This prewritten code (program) resides in a place called the library. A
program called a linker combines the object program with the
programs from libraries to create the executable code.

Introduction to C++

5. You must next load the executable program into the main memory
for execution. A program called a loader accomplishes this task

6. The final step is to execute the program.

As a programmer, you need to be concerned only with Step 1. That is,
you must learn, understand, and master the rules of the programming
language to create source programs

The Basics of a C++ Program

1. A C++ program is a collection of one or more subprograms, called
functions.

2. Every C++ program has a function called main. Thus, if a C++ program
has only one function, it must be the function main.

3. To write meaningful programs, you must learn the programming
language’s.

The Basics of a C++ Program

• Special symbols, words, syntax rules, and semantic rules.

• Syntax rules tell you which statements (instructions) are legal, or
accepted by the programming language, and which are not.

• Semantic rules tell you which determine the meaning of the
instructions.

4. Function: is a collection of statements, and when it is executed, it
accomplishes something.

Comments in C++ Program

1. It is a notes which putting on your program to explain something.

2. It gives a brief explanation of the program, and explain the meaning
of key statements in a program.

3. Comments are for the reader, not for the compiler. So when a
compiler compiles a program to check for the syntax errors, it
completely ignores comments.

Comments in C++ Program

4. There are two common types of comments in a C++ program.

• Single-line comments begin with // and can be placed anywhere in
the line.

Ex: cout << "7 + 8 = " << 7 + 8 << endl; //prints: 7 + 8 = 15

• Multiple-line comments are enclosed between /* and */. The
compiler ignores anything that appears between /* and */.

• For example, the following is an example of a multiple-line comment:
/*

• You can include comments that can occupy several lines.

• */

Token in C++ Program

• The smallest individual unit of a program written in any language is
called a token. C++’s tokens are divided into:

1. Special symbols.

2. Reserved word.

3. Identifiers.

1. Special symbols

The following are some of special symbols:

• Mathematical symbols: include (+ - * /) for addition, subtraction,
multiplication, and division.

Token in C++ Program

• Punctuation marks: include (. ; ? ,). These marks are taken from
English grammar. Note that the comma is also a special symbol. In
C++, commas are used to separate items in a list. Semicolons are used
to end a C++ statement.

• Comparison symbols: include (< =, >, > =, ! =, ==) for less than, less
and equal, greater than, greater and equal, not equal, equal)

• Character set: C++ has the letters and digits, as show below:

• Uppercase: A, B, C, . . ., Z

• Lowercase: a, b, c, . . ., z

• Digits: 0, 1, 2, . . .,9

Reserved words

• Some words are reserved by C++ (are parts of the C++ language) such
as main, for, while, if, int, float,… Reserved words can’t be used as
variable names or constant. Table 1 explains some examples of
reserved words.

Identifiers
• Identifiers are names of things that appear in programs, such as a

variable, a constant, an array, a function, a structure, or a class. Table
2 shows some illegal identifier description.

• Note: C++ is case sensitive—uppercase and lowercase letters are
considered different. Thus, the identifier NUMBER is not the same as the
identifier number. Similarly, the identifiers X and x are different.

• Whitespaces In a C++ program, whitespaces are used to separate special
symbols, reserved words, and identifiers. Whitespaces are nonprintable in
the sense that when they are printed on a white sheet of paper, the space
between special symbols, reserved words, and identifiers is white. Proper
utilization of whitespaces in a program is important. They can be used to
make the program readable.

• Example:

• int x;

whitespace

Getting Started with C++

• To begin learning C++ let’s examine the structure of C++ Program:
#include<iostream.h>

main ()

{

// A statements for main program

}

• #include<iostream.h>
• This line is for pre-processor directive. Any begins with # is processed

before the program is compiled. C++ programs must be start with #include.
• Every group of related functions is stored in a separate library called

(header file). To use the cin and cout, must include the header file
iostream.
main () is the name of C++ function.

• Every C++ program must have a function called main.
{

• indicates the start statements that define the function.
}

• indicates the end of the statements in the function.

• cout <<

• it is a C++ output statement. It causes the computer to evaluate the
expression after the pair of symbols << and display the result on the
screen.

• Note: << is an operator, called the stream insertion operator. (or send
operator)

• cin >>

• The input stream object. It reads the input values from the keyboard.

• Note: >> is an operator, called the stream extraction operator (or get
from operator)

• ; , semicolon, the terminator of every C++ statement.

• Note: The endl is used in C++ to represent a new line, also

• \n is a special escape code, also used in C++ to represent a new line,
as shown in the following example:

C++ provides escape sequences for several usages. These escape
sequences are listed below:

Example 3: Write a C++ program to represent all escape sequences in
the above table.

Structured Programming
Lecture4 – Variables Declaration in C++

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024السنة الدراسية

Variables Declaration in C++

• In some programs, data needs to be modified during program
execution. This type of data must be stored in those memory cells
whose contents can be modified during program execution.

• In C++, memory cells whose contents can be modified during
program execution are called variables.

• Variable is a memory location whose content may change during
program execution.

• A variable defined by stating its type, followed by one or more
spaces, followed by the one or more variable names separated by
commas, then followed by semicolon. The syntax for declaring one
variable or multiple variables is: data type identifier, identifier,…….;

• For example:

int x ;

unsigned short int X ;

float Y ;

char A, a, c ;

All variable must be declared with a name (an identifier) and a data
type.

The types of variables used in C++ programs are described in the
following table.

Note: C++ does distinguish between A and a variables (C++ is case-
sensitive).

Example 1: Write a C++ to read three different inputs and print outputs it.

Example 2: Write a C++ to read four different inputs and print outputs it.

Putting Data into Variables
• In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement The assignment statement takes the following form:

In an assignment statement, the value of the expression should match the
data type of the variable. The expression on the right side is evaluated, and
its value is assigned to the variable (and thus to a memory location) on the
left side. A variable is said to be initialized the first time a value is placed in
the variable. In C++, = is called the assignment operator.

Example 3: This program illustrates how data in the variables are
manipulated.

• Notes:This statement is valid in C++:

num = num + 2;

means ‘‘evaluate whatever is in num, add 2 to it, and assign the new
value to the memory location num.’’ The expression on the right side
must be evaluated first; that value is then assigned to the memory
location specified by the variable on the left side. Thus, the sequence of
C++ statements:

num = 6;

num = num + 2;

and the statement:

num = 8;

Input (Read) Statement

• In this section, you will learn how to put data into variables from the
standard input device, using C++’s input (or read) statements.

• Putting data into variables from the standard input device is
accomplished via the use of cin and the operator >>. The syntax of cin
together with >> is:

Example 4: This program illustrates how input statements work.

Increment and Decrement Operators
• You will learn about two more operators: the increment and

decrement operators. Suppose count is an int variable. The
statement: count = count + 1; or count++; increments the value of
count by 1. To execute this assignment statement, the computer first
evaluates the expression on the right, which is count + 1. It then
assigns this value to the variable on the left, which is count.

• Increment and decrement operators each have two forms, pre and
post. The syntax of the increment operator is:

• Pre-increment: ++variable

• Post-increment: variable++

Increment and Decrement Operators

The syntax of the decrement operator is:

• Pre-decrement: – –variable

• Post-decrement: variable– –

Let’s look at some examples.

• The statement: ++count; or: count++; increments the value of count
by 1.

• Similarly, the statement: – –count; or: count– –; decrements the value
of count by 1.

• Notes: What is the difference between the pre and post forms of
these operators?

• Suppose that x is an int variable. If ++x is used in an expression, first
the value of x is incremented by 1, and then the new value of x is
used to evaluate the expression.

• On the other hand, if x++ is used in an expression, first the current
value of x is used in the expression, and then the value of x is
incremented by 1.

• The following example clarifies the difference between the pre- and
post-increment operators.

Example 5: Suppose that x and y are int variables. Consider the following
statements:
x = 5 ;

y = ++x ;

• The first statement assigns the value 5 to x.

• To evaluate the second statement, which uses the pre-increment
operator, first the value of x is incremented to 6, and then this value,
6, is assigned to y.

• After the second statement executes, both x and y have the value 6.

• Now, consider the following statements:

• x = 5;

• y = x++;

• As before, the first statement assigns 5 to x. In the second statement,
the post increment operator is applied to x.

• To execute the second statement, first the value of x, which is 5, is
used to evaluate the expression, and then the value of x is
incremented to 6.

• Finally, the value of the expression, which is 5, is stored in y. After the
second statement executes, the value of x is 6, and the value of y is 5

Example 6: Suppose a and b are int variables and:

a = 5; b = 2 + (++a);

• The first statement assigns 5 to a.

• To execute the second statement, first the expression 2 +(++a) is
evaluated. Because the pre-increment operator is applied to a, first
the value of a is incremented to 6.

• Then 2 is added to 6 to get 8, which is then assigned to b. Therefore,
after the second statement executes, a is 6 and b is 8.

• On the other hand, after the execution of the following statements:

a = 5;

b = 2 + (a++);

The value of a is 6 while the value of b is 7.

Example 7: This program illustrates how pre and post increments
statements work

Operational Assignment Operators

Example 8: Rewrite the equivalent statements for the following

examples, and find it results. Assume: X = 2, Y = 3, Z = 4, V = 12.

Example 9: What is the output of the program?

Exercises

• Q1: Write a C++ program that receives two integer values from the
user. The program then should print the (addition), (subtraction),
(multiplication), (division), and remainder after division (modulus).
Your program must use only integers.

• Q2: Write a C++ program that receives two double values from the
user. The program then should print the (addition), (subtraction),
(multiplication), and (division).

• Q3: What is printed by the following statement:

cout << /* 5 */ 3 << '\n';

Exercises
• Q4: Write a C++ program to find the area of square.

• Q5: Given the following declaration: int x = 2; Indicate what each of
the following C++ statements would print.

• (a) cout << "x"<< “\n”;

• (b) cout << 'x'<< “\n”;

• (c) cout << x << “\n”;

• (d) cout << "x + 1"<< “\n”;

• (e) cout << "x=" <<x<< “\n”;

• (f) cout << x + 1 << “\n”;

Structured Programming
Lecture5 – Constant Declaration in C++

and Arithmetic Operators

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024السنة الدراسية

Constant Declaration in C++

• Some data must stay the same throughout a program. In C++, you
can use a named constant to instruct a program to mark those
memory locations in which data is fixed throughout program
execution.

• Named constant: A memory location whose content is not allowed
to change during program execution.

• The syntax to declare a named constant is:

For example:

• const int INCHES_IN_FOOT = 12;

• const int NO_OF_STUDENTS = 20;

• const int CENTIMETER_IN_METER = 100;

• const float PI = 3.14 ;

• Const double SALARY=20.5

Example 1: Write a C++ program that read the radius of a circle, then
computes and outputs its area.

Arithmetic Operators

• To perform arithmetic operations, C++ language provides five
arithmetic operators:

- (subtraction operator),

+ (addition operator),

* (multiplication operator),

/ (division operator) and

% (modulus or remainder operator).

• You can use the operators +, -, *, and / with both integral and
floating-point data types.

• You use % with only the integral data type to find the remainder in
ordinary division.

Example 2: This program illustrates the arithmetic operators.

Example 3: This program illustrates the modulus arithmetic operators
(i.e., %).

Operator Precedence and Associativity
• When different operators are used in the same expression, the

normal rules of arithmetic apply. All C++ operators have a precedence
and associativity:

• Precedence —when an expression contains two different kinds of
operators.

• Associativity —when an expression contains two operators with the
same precedence.

C++ evaluates arithmetic expressions by the following rules of operator
precedence, which are generally the same in algebra.

1. Parentheses evaluation, which can be used to force the order of
evaluation to occur in any desired sequence.

• Y1 = 2 + (3 * 5) evaluates to 17.

• Y2 = (2 + 3) * 5 evaluates to 25

2. Multiplication (*), division (/), and modulus (%) operations are
evaluated next. For several operations in the same expression, the
evaluation is from left to right.

3. Addition (+), and subtraction (-) operations are evaluated last. For
several operations in the same expression, the evaluation is from left to
right. To avoid confusion, you can use parentheses to group arithmetic
expressions.

4. (<=) less than or equal, (>=) greater than or equal, (>) greater than.

5. (==) equal, and (!=) not equal.

6. (&&) AND.

7. (||) OR.

8. (=) assignment operator.

For example, using the order of precedence rules,
3 * 7 - 6 + 2 * 5 / 4 + 6

• For example, using the order of precedence rules,

2 + 3 * 4

2 + (3 * 4)

2 + 12 = 14

• For example, using the order of associativity rules,

2 - 3 - 4

(2 - 3) – 4

-1- 4 = -5

Example 4: Write a C++ program to perform the equation:
Z = P * R % Q + W / X - Y;

Structured Programming
Lecture 6 – Relational , Logical and Bitwise

Operators

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024السنة الدراسية

Relational and Equality Operators
• The relationships can be expressed in C++ by using the relational operators. These

operators are listed in the following table and assume variable A holds 10 and
variable B holds 20, then:

Here there are some examples:
• (7 == 5) // evaluates to false.

• (5 > 4) // evaluates to true.

• (3 != 2) // evaluates to true.

• (6 >= 6) // evaluates to true.

• (5 < 5) // evaluates to false.

Also, instead of using only numeric constants, we can use any valid
expression, including variables.

Suppose that a=2, b=3 and c=6,

• (a == 5) // evaluates to false since a is not equal to 5.

• (a * b >= c) // evaluates to true since (2*3 >= 6) is true.

• (b + 4 > a * c) // evaluates to false since (3+4 > 2*6) is false.

• ((b = 2) == a) // evaluates to true.

Logical Operators

• The logical expression is constructed from relational expressions by
the use of the logical operators not(!), and(&&), or(||)

Example 1: Assume: a = 4, b = 5, c = 6. find the following expression:

Example 2: Assume X = 0, Y = 1, Z = 1; find the following expression:

(a < b) && (b < c)

T && T

T

(a < b) || (b > c)

T || F

T

! (a < b) || (c > b)

!(T) || T

F || T

T

(a < b) || (b > c) && (a >b) || (a > c)

T || F && F || F

T || F || F

T || F

T

Example 3: Suppose you have the following declarations:
• bool found = true ; :

• int age = 20 ;

• double hours = 45.30 ;

• double overTime = 15.00 ;

• int count = 20 ;

• char ch = 'B' ;

Consider the following

Expressions :

F && T
 F

! (T && T)
 ! (T)
 F

Bitwise Operators
• The bitwise operators are listed in the following table as:

Let’s look at the truth table of the bitwise operators.

• Example: We will perform a Bitwise operation between two numbers 7 and
4. In binary 7 will be represented as 111 and 4 will be represented as 100.

1. Bitwise AND (&)

As we can see in the above example only those bits are set bits whose
corresponding bits (both) are set. Therefore 7&4=4

1 1 1
&

1 0 0

1 0 0 = 4

2. Bitwise OR (|)

1 1 1
|

1 0 0
1 1 1 = 7

As we can see in above example those bits are set bits whose at least any one

corresponding bit are set. Therefore 7|4=7.

3. Bitwise XOR (^)

0 1 1

As we can see in above example those bits are set bits whose corresponding bits
are different . Therefore 7^4=3.

1 1 1
^

1 0 0

= 3

4.Bitwise NOT (~)

• The Bitwise NOT operation is performed on a single number. It
change the current bit to it's complement , i.e. if current bit is 0 then in
result it will be 1 and if current bit is 1 then it will become 0. It is
denoted by the symbol ~ .

• Example: We will perform bitwise NOT Operation on number 4. The
number 4 is represented as 100 in binary.

~ 1 0 0

0 1 1

• As we can see in result the bits whose initial value was 1 are 0 in
result and vice-versa. Therefore Bitwise NOT of number 4 will be 3.

5.Left Shift (<<)

• Example: Consider we have an integer 5, and we will left-shift its bits
by 2 positions. The operation will be represented as x << 2.

• The number 5 is represented as 101 in binary. We will add some zeros
at the beginning to left shift the bits. Therefore it will be represented
as 00000101.

• we will move all the bits two positions to left and we will fill the
empty positions with 0. Therefore it will become 00010100 which is
20 .

• As mentioned earlier left shifting the number by two bits means
multiplying it by 2 raised to 2 which is 4 . 5*4 = 20 shows the above
mentioned statement.

6.Right Shift (>>)

• Example: Consider we have an integer 16, and we will right-shift its
bits by 2 positions. The operation will be represented as x >> 2.

• The number 16 is represented as 10000 in binary. We will add some
zeros at the beginning to right shift the bits. Therefore it will be
represented as 00010000.

• We will move all the bits two positions to right and we will fill the
empty positions with 0. Therefore it will become 00000100 which is 4.

• As mentioned earlier right shifting the number by two bits means
dividing it by 2 raised to 2 which is 4 . 16*4 = 4 shows the above
mentioned statement.

Example 4: Write a C++ program to read two numbers and compute
bitwise operators between them.

#include<iostream.h>

#include<conio.h>

main ()

{

int a, b, c, d, e, f, g, h ;

cin >> a >> b ;

c = a & b ;

cout << "c=" << c << "\n" ;

d = a | b;

cout << "d=" << d << "\n" ;
e = a ^ b ;
cout << "e=" << e << "\n" ;
f = ~ a ;
cout << "f=" << f << "\n" ;
g = a << 3 ;
cout << "g=" << g << "\n" ;
h = a >> 3;
cout << "h=" << h << "\n" ;
getch () ; }

Exercises

Q1: Write C++ program to find the value of B (true or false) for the
following: i= 5; j = 9; B= ! ((i > 0) && (i >= j));

Q2: Write C++ program to illustrate the relational operators :

(a > b), (a < b), (a == b),(a != b). Assume that a=10 , b=6 .

Q3: Write C++ program to read two numbers and compute bitwise
operators on them. Assume that a= 5, b= 9

Structured Programming
Lecture 7 – Selection Statements

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2025-2024السنة الدراسية

Selection Statements
• Selection Statements Conditional expressions are mainly used for

decision making.
• C++ provides multiple selection structures: if, if/else, else if, nested if, and

switch

• The Single If Statement Structure
The if statement allows you to put some decision making into your
programs. If the expression is true, the statement will be executed. If the
expression is not true, the statement will not be executed.

cout << "x is 100";

The Single If Statement Structure (Blocks)
Multiple statements after the if may be grouped by putting them inside
curly braces ({ })

The If / else Statement Structure
The if-else form is used to decide between two statements referred to
as:

-3
negative

The If / else Statement Structure (Blocks)
• The if and if. . .else structures control only one statement at a time. Suppose,

however, that you want to execute more than one statement if the expression in
an if or if. . .else statement evaluates to true. To permit more complex
statements, C++ provides a structure called a compound statement or a block of
statements. A compound statement takes the following form:

Example 11: Write a C++ program to read a number and print “the
number is even” if it even, and decrement it by 2, otherwise print odd
and increment it by 10.

4
4 x is even
x= 2

else If Statements
General Form of else If statement as:

if (time < 10)

cout<<("Good morning.\n");

else if (time < 20)

cout<<("Good day.\n");

else

cout<<("Good evening.\n");

4
Wednesday

8
Invalid day number

Example 14: Write a C++ program to compute the value of Z according to
the following equations:

Enter X value
-4
Z is 1

Enter X value
0
Z is 5

Nested If Statement
• General form of nested if statement as:

Conditional Statement (?)
• Returns a certain value if that expression is true, and it returns a

different value if that expression is false. This operator is an
abbreviation of the if / else operator. General Form of Conditional
statement

Switch-Case Selection Statement
• Its objective is to check several possible constant values for an

expression. General Form of Switch-Case Selection statement as:

Example
#include <iostram.h>
include<conio.h
main() {

int num;

 cout<<"Enter a number:";

 cin>>num;

 switch (num)

 {

 case 20:

 cout<<"It is 20";

 break;

 case 30:

 cout<<"It is 30";

 break;

 case 40:

 cout<<"It is 40";

 break;

 default:

 cout<<"Not 20, 30 or 40";

 }

getch(); }

Output

Enter a number:30

It is 30

Enter a number:20

It is 20

Enter a number:40

It is 40

Enter a number:10

Not 20, 30 or 40

Example 16: Write a C++ program to read two integer numbers, and read
the operations to perform on these numbers.

Exercises

Q1: Write a C++ program to find the value of Z.

Q2: Write a C++ program to find the smallest value among three
numbers using (else … if).

Q3: Write a C++ program to enter a value less than (10) or greater than
(100) and print it using (if … else)

Q4: Write a C++ program to find the largest number between five
numbers (using the if statement).

Exercises

Q5: Write a C++ program to read a number and print the day of the
week. (Using Switch Statement)

Q6: Write a C++ program to read integer number and print if it is even
or odd . (Using Conditional Statement (?))

Structured Programming
Lecture 8 – Looping Statements

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ المرحلة الاولى

2025-2024السنة الدراسية

Looping (Repetition) Statements
• Sometimes it is necessary to repeat a set of statements several times. If

you want to repeat a set of statements 100 times, you type the set of
statements 100 times in the program.

• However, this solution of repeating a set of statements is impractical, if
not impossible. Fortunately, there is a better way to repeat a set of
statements. C++ has three repetitions, or looping, structures that allow
you to repeat a set of statements until certain conditions are met as
while, do-while, and for loop.

while Looping (Repetition) Structure
• In C++, while is a reserved word. Of course, the statement can be

either a simple or compound statement.

• The expression acts as a decision maker and is usually a logical
expression.

• The statement is called the body of the loop. Note that the
parentheses around the expression are part of the syntax.

Do / While Looping (Repetition) Structure
• do-while loop is evaluated after the execution of statement instead of

before, granting at least one execution of statement even if condition
is never fulfilled

Example 11: Write C++ program to find the sum of positive numbers if the user enters the negative

numbers the loop ends.

#include<iostram.h>
include<conio.h>

main() {

int number = 0;

int sum = 0;

do

{

cout << "Enter a number: ";

cin >> number;

sum += number;

}

while (number >= 0);

cout << "The sum is " << sum << endl;

getch () ;

}

0utput:
Enter a number: 6

Enter a number: 5

Enter a number: 9

Enter a number: 1

Enter a number: 4

Enter a number: -1

The sum is 25

Different between while and Do while loop

Different between while and Do while loop

// while loop example

int i = 1; // initialize a variable

while (i <= 5) { // check the
condition

cout << i << " "; // print the
variable

i++; // increment the variable

}

// output: 1 2 3 4 5

// do-while loop example

int j = 1; // initialize a variable

do

{

cout << j << " "; // print the

variable

j++; // increment the variable

}

while (j <= 5); // check the

condition

// output: 1 2 3 4 5

Different between while and Do while loop

// while loop example

int i = 6;

while (i <= 5)

{

cout << i << " ";

i++;

}

// Output: nothing

// do-while loop example

int i = 6;

do

{

cout << i << " ";

i++;

}

while (i <= 5);

// Output: 6

Structured Programming
Lecture 9 – for loop Statement

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة
2025-2024الدراسية السنة

for loop Statement Structure
• The for statement allows you to execute a block of code a specified

number of times.
• The for loop is designed to allow a counter variable that is initialized at

the beginning of the loop and incremented (or decremented) on each
iteration of the loop. The general form of the for statement is:

Nested for loop
• loops can be put one inside another to solve certain programming

problems. Loops may be nested as follows:

Break Control Statements
• Break statement causes enclosing loop or switch to be terminated

immediately. It can be used to end an infinite loop, or to force it to
end before its natural end. The general form of the break statement
is:

break;

Structured Programming
Lecture 10 – Arrays

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة

2024-2025السنة الدراسية

Arrays
• An array is a series of elements of the same type placed in contiguous

memory locations that can be individually referenced by adding an index
to a unique identifier.

• That means that, for example, we can store 5 values of type int in an
array without having to declare 5 different variables, each one with a
different identifier. Instead of that, using an array to store 5 different
values of the same type, int for example, with a unique identifier.

For example: an array to contain 5 integer values of type int called age
could be represented like this:

where each blank panel represents an element of the array, that in
this case are integer values of type int. These elements are
numbered from 0 to 4 since in arrays the first index is always 0,
independently of its length. Like a regular variable, an array must
be declared before it is used.

Array of One Dimensional
A typical declaration for one dimensional array (1-D) in C++ is:

where data-type is a valid type (like int, float...), array-name is a valid
identifier and the size field (which is always enclosed in square brackets
[]), specifies how many of these elements the array has to contain

For example:
int age[10];
float degree[5];

Initializing Array of One Dimensional

To declare an array, we have the possibility to assign initial values to each
one of its elements by enclosing the values in braces { }. For examples:
int billy [5] = { 16, 2, 77, 40, 12071 }; This declaration would have created
an array like this:

The amount of values between braces { } must not be larger than the
number of elements that we declare for the array between square
brackets []. For example in the example of array billy we have declared
that it has 5 elements and in the list of initial values within braces { } we
have specified 5 values, one for each element.

Note: When an initialization of values is provided for an array, C++ allows
the possibility of leaving the square brackets empty []. In this case, the
compiler will assume a size for the array that matches the number of
values included between braces { }

For example: int billy [] = {16, 2, 77, 40, 12071};

Accessing the Values of an Array
Access to each array element is achieved by written name of array, followed
by brackets delimiting a variable in the brackets which are called the array
index. Following the previous examples in which billy had 5 elements and
each of those elements was of type int, the name which we can use to refer
to each element is the following:

• For example, to store the value 75 in the third element of billy, we
could write the following statement:

billy[2] = 75

and, for example, to pass the value of the third element of billy to a
variable called a, we could write:

a = billy[2];

int billy[5]; // declaration of a new array

billy[2] = 75; // access to an element of the array.

Read and Write Array Elements
• cin>>num[i]; \\ read elements

• cout<<num[i]; \\ print elements
Example 1: Write a C++ program to initialize array num to read 10 integers and print
them.

Solution 1

#include <iostream.h>
include <conio.h>
main ()
{
int num [10] ={1, 4, 8, 66, 99, 66, 22, 54, 87, 77 } ;
for (int i = 0 ; i < 10 ; i++)
cout << num [i] << "\n" ; getch () ;
}

Array of Two Dimensional
• Two dimensional array are often used to represent tables of values

consisting of information arranged in rows and columns. To identify a
particular table element, we must specify two subscripts.

• By convention, the first identifies the element's row and the second
identifies the element's column.

• Arrays that require two subscripts to identify a particular element are
called two-dimensional arrays or 2-D arrays.

• Figure below illustrates a two-dimensional array, a. The array contains
three rows and four columns, so it is said to be a 3-by-4 array. In
general, an array with m rows and n columns is called an m-by-n
array.

Initializing Array of Two Dimensional

Read and Write Array Elements

Exercises
• Q1: Write C++ program to find the maximum value in array of 8

numbers. Q2: Write C++ program to split the odd numbers and even
numbers of one array contains 20 numbers into two arrays.

• Q3: Write C++ program to read two arrays one dimensional a[5],b[5]
and print the sum of elements of two arrays in array c.

• Q4: Write C++ program to read one dimensional array 1-D a[10] and
compute the following: 1- count the numbers divisible by 5. 2-
multiply the even number by 2 and multiply the odd number by 3 and
print array. 3- print the sum of first number and last number.

• Q5:Write a C++ program to read 3*4 2D-array, then find the
summation of each row.

Exercises
• Q6: Write a C++ program to read 3*4 2D-array, then replace each

value equal 5 with 0.

• Q7:Write a C++ program to read 4*4 2D-array, and replace each
element in the main diagonal with one.

• Q8: Write a C++ Program to read array two dimensional a(3×3) and
find the following:

• 1. find the sum of element in the last row.

• 2. replace each element of the third column by value 10.

• 3. replace each element of the first row by the value 5.

Structured Programming
Lecture 11– Functions

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة
2024-2025الدراسية السنة

Functions

• A function is a set of statements designed to accomplish a particular task.
Experience has shown that the best way to develop and maintain a large
program is to construct it from smaller pieces or (modules).

• Modules in C++ are called functions. A function definition has a name,
parentheses pair containing zero or more parameters and a body.

• For each parameter, there should be a corresponding is taken to be an
integer by default. The general form of the function definition is:

• The type of the function may be int, float char, etc. it may be declared
as type (void), which informs the compiler not to the calling program.

• Any variable declared in the body of function is said to be local to that
function. Other variables which are not declared either as arguments
or in the function body are considered “global” to the function and
must be defined externally. For example

• void square (int a, int b) \\ a,b are the formal parameters

• float output (void) \\ function without formal parameters

• The keyword return is used to terminate function and return a value
to its caller. The return statement may or may not include an
expression. Its general syntax is:

• return;

• return (expression) ;

• The return statements terminate the execution of the function and
pass the contral back to the calling environment.

Function Definition
• Definition before main function

• The functions are defined before the first appearance of calls to them
in the source code. These calls were generally in function main which
we have always left at the end of the source code.

• Example 1 : Write a C++ program using function to print any text.

Example 2 : Write a C++ program to read two numbers and return the
maximum number between them using function.

Example 3 : Write a C++ program to read two numbers and return the
summation of these numbers using function.

Note:

At the point at which the function is called from within main, the control is lost by
main and passed to function sum. The value of both arguments passed in the call
(99 and 10) are copied to the local variables int a and int b within the function.
Function sum declares another local variable (int r), and by means of the
expression r=a+b, it assigns to r the result of a plus b. Because the actual
parameters passed for a and b are 99 and 10 respectively, the result is 109. The
following line of code: return (r);

Definition after main function (prototype)
• There is an alternative way to avoid writing the whole code of a

function before it can be used in main function. This can be achieved
by declaring just a prototype of the function before it is used, instead
of the entire definition.

• This declaration is shorter than the entire definition, but significant
enough for the compiler to determine its return type and the types of
its parameters.

• type name (type1 argument1, type2 argument2, ...);

• It is identical to a function definition, except that it does not include
the body of the function itself (i.e., the function statements that in
normal definitions are enclosed in braces { }) and instead of that we
end the prototype declaration with a semicolon (;).

Example 4 : Write a C++ program using function prototype to calculate
the average of two numbers entered by the user in the main program.

Structured Programming
Lecture 12– Passing Parameters

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
نظري/ الاولىالمرحلة
2024-2025الدراسية السنة

Local and Global Variables
Variables can be classified into local or global variables as:
1. Local variables are declared within a function or any other inner

block and cannot be used outside of them.
2. Global variables are declared outside the main function block.

Passing Parameters
• There are two main methods for passing parameters to a program:

• (1) passing by value, and (2) passing by reference.

• 1. Passing by Value When parameters are passed by value, a copy of
the parameters value is taken from the calling function and passed
to the called function. The original variables inside the calling
function, regardless of changes made by the function to it are
parameters will not change. All the pervious examples used this
method.

Passing Parameters

• 2. Passing by Reference When parameters are passed by reference
their addresses are copied to the corresponding arguments in the
called function, instead of copying their values. Thus pointers & are
usually used in function parameters and any modification that do to
the local variables will have an effect in their variables passed as
arguments in the call to the function.

• This method is more efficient and provides higher execution speed
than the call by value method, but call by value is more direct and
easy to use

Example 1 : Write a C++ program using function and passing by
reference to read three integer numbers and multiplied by 2.

Note: Passing by reference is also an effective way to allow a function to
return more than one value. For example, here

• Example 2 : Write a C++ program using function and passing by
reference to returns the previous and next numbers of the first
parameter passed.

Arrays as parameters for Function

• At some moment may need to pass an array to a function as a
parameter. In order to accept arrays as parameters the only thing that
have to do when declaring the function is to specify in its parameters
the element type of the array, an identifier and a pair of void
brackets [] For example, the following function:

• void procedure (int arg [])

• accepts a parameter of type "array of int" called arg. In order to pass
to this function an array declared as:

• int myarray [40] ;

Example 3 : Write a C++ program to read array 1-D contains 10 elements
and print the array elements using function print.

Note: Also function parameters can be defined as array without size as:

Example 4 : Write a C++ program using functions to read, print, and find the
summation of array elements a [10].

Example 5 : Write a C++ program to find the following.
1) to read array (3×3) by using function.
2) to print array (3×3) by using function.
3) find the sum of elements on triangle upper main diagonal by using function.
4) find the sum of elements on secondary diagonal using function

