Compiler: Lecture 4 Dr. Wildan Jameel

4.1 Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical analyzers and
other pattern-processing software. However, implementation of that software
requires the simulation of a DFA, or perhaps simulation of an NFA. Because an NFA
often has a choice of move on an input symbol, or even a choice of making a
transition on &: or on a real input symbol, its simulation is less straightforward than
for a DFA. Thus often it is important to convert an NFA to a DFA that accepts the
same language.

4.2 Conversion of an NFA to a DFA

For each NFA we can find a DFA accepting the same language. The number of states
of the DFA could be exponential in the number of states of the NFA, but in practice
this worst case occurs rarely.

Algorithm 4.1: The subset construction of a DFA from an NFA.
INPUT: An NFA N
OUTPUT: A DFA D accepting the same language as N.

METHOD: Each state of D is a set of states which N could be in after reading some
sequence of input symbols. Thus D is able to simulate all possible moves N can
make on a given input string. The initial state of D is the set consisting of S, the
initial state of N, together with all states of N that can be reached from S, by means
of e-transition only. The accepting states of D are those sets of states that contain at
least one accepting states of N.

Let us define the function E-CLOSURE (s) to be the set of states of N

built by applying the following rules:-

1- S 1s added to E-CLOSURE (s).

2- If tis in E-CLOSURE (s), and there 1s an edge labeled € from t to u, then u
1s added to E-CLOSURE (s) if u 1s not already there. Rule 2 is repeated
until no more states can be added to E-CLOSURE (s).

Compiler: Lecture 4 Dr. Wildan Jameel

Thus, E-CLOSURE (s) 1s just the set of states that can be reached from S
on E-transition alone. If T is a set of states, then E-CLOSURE (T) is just the

union over all states S in T of E-CLOSURE (S).

The computation of E-CLOSURE (T) 1s a typical process of searching a

graph for nodes reachable from a given set of nodes. In this case the nodes of

T are the given set, and the graph consists of the €- labeled edge of the

transition diagram only. A simple algorithm to compute E-CLOSURE (T) i1s
shown 1n fig (12)

Begin
Push all states in T onto STACK;

£-CLOSURE (T):=T;

While STACK not empty do
Pop S, the top element of STACK, off of stack;

For each state t with an edge from S to t labeled € do

If t 1s not in E-CLOSURE (T) then
Begin
Add t to E-CLOSURE (T);

Push t onto STACK;
End
End
End

Fig (12) Computation of E-CLOSURE

The states of D and their transition are constructed as follows. Initially,

let E-CLOSURE (Sy) be a state of D. This state i1s the start state of D. We

Compiler: Lecture 4 Dr. Wildan Jameel

assume each state of D is initially "unmarked". Then perform the algorithm of

Fig (13).

While there is an unmarked state x= (S, S;... S;) of D do
Begin
Mark x;
For each input symbol a do
Begin
Let T be the set of states to which there is a
transition on 'a' from some state S; in x;

y: = £-CLOSURE (T);

If'y has not yet been added to the set of states of
D then

Make y an "unmarked" state of D;

Add a ftransition from x to y labeled a if not
already present

End
End

Fig (13) The Subset Construction

Compiler: Lecture 4 Dr. Wildan Jameel

Cxample: 1

Regular Expression R = (a|b)*abb

Solution:
E-closure (0) = {0, 1, 2,4, 7} = A (new state in DFA)
// check every new state with input a, b
Move (A,a) = {3, 8}

E-closure(Move(A,a)) = {3,6,1,2,4,7, 8}
// add state 6 because it the connect between (OR part and AND part)

={1,2,3,4,6,7,8} =B
Move (A, b) = {5}
E-closure (Move(A, b)) = {5, 6, 1,
={1,2,4,5,6,
Move (B, a) = {3, 8}
E-closure (Move (B, a))={1,2,3,4,6,7,8} =B

4,5,7}

2
7y =C

Move (B, b) = {5, 9}
E-closure (Move (B, b)) = {1,2,4,5,6,7,9} =D

Move (C, a) = {3, 8}
E-closure (Move (C, a))={1,2,3,4,6,7,8} =B

Move (C, b) = {5}
E-closure (Move (C, b)) = {1,2,4,5,6,7} =C

Compiler: Lecture 4 Dr. Wildan Jameel

Move (D, a) = {3, 8}
E-closure (Move (D, a))={1,2,3,4,6,7,8} =B

Move (D, b) = {5, 10}
E-closure (Move (D, b)) = {1,2,4,5,6,7,10} =E

Move (E,a) = {3, 8}=B
Move (E,b) = {5}=C

Transition table:

States Input System

a
A B C
B B D
C B C
D B E
E B C

DFA:

Compiler: Lecture 4 Dr. Wildan Jameel

4.3 Types of Errors

Common programming errors can occur at many different levels.

o Lezical errors include misspellings of identifiers, keywords, or operators —
e.g., the use of an identifier elipseSize instead of ellipseSize — and
missing quotes around text intended as a string.

e Syntactic errors include misplaced semicolons or extra or missing braces;
that is, “{” or “}.” As another example, in C or Java, the appearance
of a case statement without an enclosing switch is a syntactic error
(however, this situation is usually allowed by the parser and caught later
in the processing, as the compiler attempts to generate code).

e Semantic errors include type mismatches between operators and operands.
An example is a return statement in a Java method with result type void.

e Logical errors can be anything from incorrect reasoning on the part of
the programmer to the use in a C program of the assignment operator =
instead of the comparison operator ==. The program containing = may
be well formed; however, it may not reflect the programmer’s intent.

Syntax Analysis

4.4 Introduction

the parser obtains a string of tokens from the lexical analyzer, as shown in Fig. 4.1,
and verifies that the string of token names can be generated by the grammar for the
source language. We expect the parser to report any syntax errors in an intelligible
fashion and to recover from commonly occurring errors to continue processing the
remainder of the program.

Conceptually, for well-formed programs, the parser constructs a parse tree and
passes it to the rest of the compiler for further processing. In fact, the parse tree need
not be constructed explicitly, since checking and translation actions can be
interspersed with parsing, as we shall see. Thus, the parser and the rest of the front
end could well be implemented by a single module.

Compiler: Lecture 4 Dr. Wildan Jameel

— :
token '
source | Lexical ~ b i parse 1 Rest of intermediate
arser L-----» e
tree ' Front End |representation

program ’ Analyzer m(ﬂ
token ‘ /

l

| Symbol
Table

it

Figure 4.1: Position of parser in compiler model

Due to the limitations of regular expressions the lexical analyzer cannot check the
syntax of a given sentence. Regular expressions cannot check balancing tokens, such
as parenthesis. Therefore, this phase uses context-free grammar (CFG), which is
recognized by push-down automata.

There are three general types of parsers for grammars: top-down, and bottom-up.
The methods commonly used in compilers can be classified as being either top-down
or bottom-up. As implied by their names, top-down methods build parse trees from
the top (root) to the bottom (leaves), while bottom-up methods start from the leaves
and work their way up to the root. In either case, the input to the parser is scanned
from left to right, one symbol at a time.

4.5 Context-Free Grammars

Grammars systematically describe the syntax of programming language constructs
like expressions and statements. a context-free grammar (grammar for short)
consists of terminals, nonterminals, a start symbol, and productions.

Compiler: Lecture 4 Dr. Wildan Jameel

1. Terminals are the basic symbols from which strings are formed. The term
“token name” is a synonym for “terminal” and frequently we will use the
word “token” for terminal when it is clear that we are talking about just
the token name. We assume that the terminals are the first components
of the tokens output by the lexical analyzer. In (4.4), the terminals are
the keywords if and else and the symbols “(” and *).”

2. Nonterminals are syntactic variables that denote sets of strings. In (4.4),
stmt and expr are nonterminals. The sets of strings denoted by nontermi-
nals help define the language generated by the grammar. Nonterminals
impose a hierarchical structure on the language that is key to syntax
analysis and translation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and
the set of strings it denotes is the language generated by the grammar.
Conventionally, the productions for the start symbol are listed first.

4, The productions of a grammar specify the manner in which the termi-
nals and nonterminals can be combined to form strings.

Example:

E - E+T|E-T|T
T - T+«F|T/F|F
F - (E)|id

The notational conventions tell us that E, T, and F are nonterminals, with E
the start symbol. The remaining symbols are terminals.
Example: The grammar in Fig. 4.2 defines simple arithmetic expressions.
In this grammar, the terminal symbols are

id+-*/ ()

The nonterminal symbols are ezpression, term and factor, and ezpression is the
start symbol O

Compiler: Lecture 4

exrpression
eTpression
exrpression
term

term

term
factor
factor

LN R AR A A A A

Dr. Wildan Jameel

expression + term
expression - term
term

term * factor
term / factor
factor

(expression)

id

Figure 4.2: Grammar for simple arithmetic expressions

4.6 Derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by the
body of one of its productions. This derivational view corresponds to the top-down
construction of a parse tree, but the precision afforded by derivations will be
especially helpful when bottom-up parsing is discussed. As we shall see, bottom-
up parsing is related to a class of derivations known as "rightmost" derivations, in
which the rightmost nonterminal is rewritten at each step.

For example, consider the following grammar:

E - E+E|ExE| —E|(E)|id (4.7)

The string —(id + id) is a sentence of grammar (4.7) because there is a

derivation

E= -E= —(E)=> —(E+E)= —(id+E) = —(id+id) (4.8)

The strings E, —E, —(E),... ,—(id + id) are all sentential forms of this gram-
mar. We write E = —(id + id) to indicate that —(id + id) can be derived

from E.

At each step in a derivation, there are two choices to be made. We need
to choose which nonterminal to replace, and having made this choice, we must
pick a production with that nonterminal as head. For example, the following
alternative derivation of —(id + id) differs from derivation (4.8) in the last two

steps:

E=-E= —(E)= —(E+E)= —(E+id) = —(id +id) (4.9)

Compiler: Lecture 4 Dr. Wildan Jameel

From above we can see that there are two types of derivatives:

1. In leftmost derivations, the leftmost nonterminal in each sentential is al-
ways chosen. If @ = 3 is a step in which the leftmost nonterminal in « is

replaced, we write a = f3.
im

2. In rightmost derivations, the rightmost nonterminal is always chosen; we

write @ = /3 in this case.
rm

Derivation (4.8) is leftmost, while (4.9) is a rightmost derivation.
4.7 Parse Trees and Derivations

A parse tree is a graphical depiction of a derivation. It is convenient to see
how strings are derived from the start symbol. The start symbol of the derivation
becomes the root of the parse tree. Let us see this by an example, The given
string is, a + b * ¢ . The given Grammar is E — E*¥E / E+E / id.

The left-most derivation is:
E—-E*E
E—E+E*E
E—-id+E*E
E—id+id*E
E—id+id *id
In a parse tree:
1. All leaf nodes are terminals.
2. All interior nodes are non-terminals.

3. In-order traversal gives original input string.

10

Compiler: Lecture 4

4.8 Ambiguity

Dr. Wildan Jameel

Steps Parse Tree
Step1:
=)
ES>E*E /1\
3 e CE
Step 2: =
= l\c
EDE+E*E # LS
(S - E
Step 3:
E>id+E*E /1\"’
T -+
ict
Step 4: e
E/l\ﬁ
E->id+id*E AN
o e
l l
iad id
Step 5: =
E/l\g
E->id+id*id E-/i\E L
l l
id id

A grammar G is said to be an ambiguous if it has more than one parse tree (left

or right derivation) for at least one string.

Example: -
E—E+E
E—E-E
L—id

11

Compiler: Lecture 4 Dr. Wildan Jameel

id id id id

For the string id + 1d — 1d, the above grammar generates two parse trees:

When the non-terminal on the right side of given production depends on the
non- terminal on the left side of the same production, the grammar thus formed
is called inherently Ambiguous. From the above example, the language
generated by an ambiguous grammar is said to be inherently ambiguous.
Ambiguity in grammar is not good for a compiler construction. No method can
detect and remove ambiguity automatically, but it can be removed by either re-
writing the whole grammar without ambiguity, or by setting and following
associativity and precedence constraints.

4.8.1 Associativity

If an operand has operators on both sides, the side on which the operator takes
this operand is decided by the associativity of those operators. If the operation
Is left- associative, then the operand will be taken by the left operator; or if the

operation is right- associative; the right operator will take the operand.

Example

Operations such as Addition, Multiplication, Subtraction, and Division are
left associative. If the expression contains:

id op id op id it will be evaluated as: (1d op 1d) op 1d

For example, (1d +1d) +1d

Operations like Exponentiation are right associative, 1.e., the order of evaluation in
the same expression will be:

id op (id op 1d)

For example, i1d * (id * id)

12

Compiler: Lecture 4 Dr. Wildan Jameel

4.8.2 Precedence

If two different operators share a common operand, the precedence of operators
decides which will take the operand. That is, 2+3*4 can have two different parse
trees, one corresponding to (2+3)*4 and another corresponding to 2+(3*4). By
setting precedence among operators, this problem can be easily removed. As in the
previous example, mathematically * (multiplication) has precedence over +
(addition), so the expression 2+3*4 will always be interpreted as: 2 + (3 * 4) These
methods decrease the chances of ambiguity in a language or its grammar.

4.9 Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a

derivation A = Aa for some string a. Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate left
recursion.

As shown below:

A— AKX
Aoy
 SEE
A/ o
A — Aa . «
Ao
A |
A—AX_..¥ -
Ao,
A o

we can showed how the left-recursive pair of productions 4 =+ Aa | 8 could be
replaced by the non-left-recursive productions:

13

Compiler: Lecture 4 Dr. Wildan Jameel

A pA
A'—5ad | e
Example
Production Rule No With Left Recursion Without Left Recursion
If the production is A— Aa | A—PBA’ A'=>¢gA'|&
I E—E+T|T E— TE
E'— +TE | &
2 T—T*F[F T—FT
T"— *FT |
3 F—(E)|d No need for Lett
Recursion.

4.10 Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing. When the choice between two
alternative A-productions is not clear, we may be able to rewrite the productions to
defer the decision until enough of the input has been seen that we can make the right
choice.

In general, if A = af | af2 are two A-productions, and the
input begins with a nonempty string derived from a, we do not know whether
to expand A to af; or af;. However, we may defer the decision by expanding
A to aA'. Then, after seeing the input derived from a, we expand A’ to 3, or
to B». That is, left-factored, the original productions become

A—aA
A =B | B2

Example: if we have the following grammar

SiEtS |iEtSeS | a
E—=b

Left-factored, this grammar becomes:

14

Compiler: Lecture 4

S»iEtSS | a
S'—seS | e
E—b

15

Dr. Wildan Jameel

