
Compiler: Lecture 4 Dr. Wildan Jameel

1

4.1 Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical analyzers and

other pattern-processing software. However, implementation of that software

requires the simulation of a DFA, or perhaps simulation of an NFA. Because an NFA

often has a choice of move on an input symbol, or even a choice of making a

transition on ɛ: or on a real input symbol, its simulation is less straightforward than

for a DFA. Thus often it is important to convert an NFA to a DFA that accepts the

same language.

4.2 Conversion of an NFA to a DFA

For each NFA we can find a DFA accepting the same language. The number of states

of the DFA could be exponential in the number of states of the NFA, but in practice

this worst case occurs rarely.

Algorithm 4.1: The subset construction of a DFA from an NFA.

INPUT: An NFA N

OUTPUT: A DFA D accepting the same language as N.

METHOD: Each state of D is a set of states which N could be in after reading some

sequence of input symbols. Thus D is able to simulate all possible moves N can

make on a given input string. The initial state of D is the set consisting of 𝑆0, the

initial state of N, together with all states of N that can be reached from 𝑆0 by means

of ε-transition only. The accepting states of D are those sets of states that contain at

least one accepting states of N.

Compiler: Lecture 4 Dr. Wildan Jameel

2

Compiler: Lecture 4 Dr. Wildan Jameel

3

Compiler: Lecture 4 Dr. Wildan Jameel

4

Compiler: Lecture 4 Dr. Wildan Jameel

5

Compiler: Lecture 4 Dr. Wildan Jameel

6

4.3 Types of Errors

Syntax Analysis

4.4 Introduction

the parser obtains a string of tokens from the lexical analyzer, as shown in Fig. 4.1,

and verifies that the string of token names can be generated by the grammar for the

source language. We expect the parser to report any syntax errors in an intelligible

fashion and to recover from commonly occurring errors to continue processing the

remainder of the program.

Conceptually, for well-formed programs, the parser constructs a parse tree and

passes it to the rest of the compiler for further processing. In fact, the parse tree need

not be constructed explicitly, since checking and translation actions can be

interspersed with parsing, as we shall see. Thus, the parser and the rest of the front

end could well be implemented by a single module.

Compiler: Lecture 4 Dr. Wildan Jameel

7

Due to the limitations of regular expressions the lexical analyzer cannot check the

syntax of a given sentence. Regular expressions cannot check balancing tokens, such

as parenthesis. Therefore, this phase uses context-free grammar (CFG), which is

recognized by push-down automata.

There are three general types of parsers for grammars: top-down, and bottom-up.

The methods commonly used in compilers can be classified as being either top-down

or bottom-up. As implied by their names, top-down methods build parse trees from

the top (root) to the bottom (leaves), while bottom-up methods start from the leaves

and work their way up to the root. In either case, the input to the parser is scanned

from left to right, one symbol at a time.

4.5 Context-Free Grammars

Grammars systematically describe the syntax of programming language constructs

like expressions and statements. a context-free grammar (grammar for short)

consists of terminals, nonterminals, a start symbol, and productions.

Compiler: Lecture 4 Dr. Wildan Jameel

8

Example:

The notational conventions tell us that E, T, and F are nonterminals, with E

the start symbol. The remaining symbols are terminals.

Example: The grammar in Fig. 4.2 defines simple arithmetic expressions.

In this grammar, the terminal symbols are

Compiler: Lecture 4 Dr. Wildan Jameel

9

4.6 Derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by the

body of one of its productions. This derivational view corresponds to the top-down

construction of a parse tree, but the precision afforded by derivations will be

especially helpful when bottom-up parsing is discussed. As we shall see, bottom-

up parsing is related to a class of derivations known as "rightmost" derivations, in

which the rightmost nonterminal is rewritten at each step.

For example, consider the following grammar:

Compiler: Lecture 4 Dr. Wildan Jameel

10

From above we can see that there are two types of derivatives:

Derivation (4.8) is leftmost, while (4.9) is a rightmost derivation.

4.7 Parse Trees and Derivations

In a parse tree:

1. All leaf nodes are terminals.

2. All interior nodes are non-terminals.

3. In-order traversal gives original input string.

Compiler: Lecture 4 Dr. Wildan Jameel

11

4.8 Ambiguity

A grammar G is said to be an ambiguous if it has more than one parse tree (left

or right derivation) for at least one string.

Compiler: Lecture 4 Dr. Wildan Jameel

12

4.8.1 Associativity

If an operand has operators on both sides, the side on which the operator takes

this operand is decided by the associativity of those operators. If the operation

is left- associative, then the operand will be taken by the left operator; or if the

operation is right- associative; the right operator will take the operand.

Compiler: Lecture 4 Dr. Wildan Jameel

13

4.8.2 Precedence

If two different operators share a common operand, the precedence of operators

decides which will take the operand. That is, 2+3*4 can have two different parse

trees, one corresponding to (2+3)*4 and another corresponding to 2+(3*4). By

setting precedence among operators, this problem can be easily removed. As in the

previous example, mathematically * (multiplication) has precedence over +

(addition), so the expression 2+3*4 will always be interpreted as: 2 + (3 * 4) These

methods decrease the chances of ambiguity in a language or its grammar.

4.9 Elimination of Left Recursion

As shown below:

we can showed how the left-recursive pair of productions could be

replaced by the non-left-recursive productions:

Compiler: Lecture 4 Dr. Wildan Jameel

14

4.10 Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive, or top-down, parsing. When the choice between two

alternative A-productions is not clear, we may be able to rewrite the productions to

defer the decision until enough of the input has been seen that we can make the right

choice.

Example: if we have the following grammar

Left-factored, this grammar becomes:

Compiler: Lecture 4 Dr. Wildan Jameel

15

