
Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

1 
 

3.1 Lexical Analysis 

Lexical analysis is the first phase of a compiler. Lexical Analysis is also known as 

Scanner It takes the modified source code from language preprocessors that are 

written in the form of sentences. The lexical analyzer breaks these sentences into a 

series of tokens, by removing any whitespace or comments in the source code. If the 

lexical analyzer finds a token as invalid, it generates an error. The lexical analyzer 

works closely with the syntax analyzer. It reads character streams from the source 

code, checks for legal tokens, and passes the data to the syntax analyzer when it 

demands. 

 

These interactions are suggested above in Fig. 3.1. Commonly, the interaction is 

implemented by having the parser (syntax phase) call the lexical analyzer. The call, 

suggested by the get Next Token command, causes the lexical analyzer to read 

characters from its input until it can identify the next lexeme and produce for it the 

next token, which it returns to the parser. 

3.2 Tokens  

Lexemes are said to be a sequence of characters (alphanumeric) which is also called 

as tokens. There are some predefined rules for every lexeme to be identified as a 

valid token. These rules are defined by grammar rules, by means of a pattern. A 

pattern explains what can be a token, and these patterns are defined by means of 

regular expressions. 

In programming language, keywords, constants, identifiers, strings, numbers, 

operators, and punctuations symbols can be considered as tokens. 

Example: int value = 100; 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

2 
 

Contains the tokens: 

1) int (keyword) 

2) value (identifier) 

3) = (operator) 

4) 100 (constant) 

5); (symbol) 

 

3.3String  

A string over an alphabet is a finite sequence of symbols drawn from that alphabet. 

In language theory, the terms "sentence" and "word" are often used as synonyms for 

"string." The length of a string s, usually written |s|, is the number of occurrences of 

symbols in s. For example, banana is a string of length six. The empty string, denoted 

ɛ, is the string of length zero. 

 If x and y are strings, then the concatenation of x and y, denoted xy, is the 

string formed by appending y to x. For example, if x = dog and y = house, 

then xy = doghouse. The empty string is the identity under concatenation; 

that is, for any string s, ɛ S = S ɛ = s. 

 In lexical analysis, the most important operations on languages are union, con- 

catenation, and closure, which are defined formally in Fig. 3.6. Union is the 

familiar operation on sets. The concatenation of languages is all strings 

formed by taking a string from the first language and a string from the second 

language, in all possible ways, and concatenating them. The (Kleene) closure 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

3 
 

of a language L, denoted L*, is the set of strings you get by concatenating L 

zero or more times. Note that 𝐿0, the "concatenation of L zero times," is 

defined to be {ɛ}, and inductively,  𝐿𝑖−1𝐿 = 𝐿𝑖 . Finally, the positive closure, 

denoted L+, is the same as the Kleene closure, but without the term 𝐿0. That 

is, ɛ will not be in L+ unless it is in L itself. 

 
3.4 Regular Expression 

The regular expressions are built recursively out of smaller regular 

expressions, using the rules described below. Each regular expression r 

denotes a language L(r), which is also defined recursively from the languages 

denoted by r's subexpressions. Here are the rules that define the regular 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

4 
 

expressions over some alphabet Σ and the languages that those expressions 

denote. 

There are two rules that form the basis: 

1. ɛ is a regular expression, and L(ɛ) is { ɛ }, that is, the language whose sole 

member is the empty string. 

2. If a is a symbol in Σ, then a is a regular expression, and L(a) = {a}, that is, 

the language with one string, of length one, with a in its one position.  

 

 

 

  

 

 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

5 
 

 

3.4 Finite Automata 

Finite automata is a state machine that takes a string of symbols as input and changes 

its state accordingly. Finite automata is a recognized for regular expressions. When 

a regular expression string is fed into finite automata, it changes its state for each 

literal. If the input string is successfully processed and the automata reaches its final 

state, it is accepted, i.e., the string just fed was said to be a valid token of the language 

in hand. A recognizer/finite automaton for a language is a program that takes as input 

a string x and answers „yes‟ if x is a sentence of the language L „no‟ otherwise. 

 

 

 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

6 
 

3.4.1 Nondeterministic Finite Automata 

 

 

Transition Tables 

We can also represent an NFA by a transition table, whose rows correspond to states, 

and whose columns correspond to the input symbols and ɛ. The entry for a given 

state and input is the value of the transition function applied to those arguments. If 

the transition function has no information about that state-input pair, we put θ in the 

table for the pair. 

Example: 

The transition table for the NFA of Fig. 3.24 is shown in Fig. 3.25. 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

7 
 

 

3.4.2 Deterministic Finite Automata 

A deterministic finite automaton (DFA) is a special case of an NFA where: 

1. There are no moves on input ɛ, and 

2. For each state s and input symbol a, there is exactly one edge out of s 

labeled a. 

If we are using a transition table to represent a DFA, then each entry is a single 

state. we may therefore represent this state without the curly braces that we use to 

form sets. 

 

 

 

 



Compiler: Lecture 3                                                                                                                                      Dr. Wildan Jameel 

 

8 
 

 

 

 


