Compiler: Lecture 3 Dr. Wildan Jameel

3.1 Lexical Analysis

Lexical analysis is the first phase of a compiler. Lexical Analysis is also known as
Scanner It takes the modified source code from language preprocessors that are
written in the form of sentences. The lexical analyzer breaks these sentences into a
series of tokens, by removing any whitespace or comments in the source code. If the
lexical analyzer finds a token as invalid, it generates an error. The lexical analyzer
works closely with the syntax analyzer. It reads character streams from the source
code, checks for legal tokens, and passes the data to the syntax analyzer when it
demands.

token
source Lexical —] to semantic
— Parser - .
program Analyzer | analysis
getNextToken |]
l .
Symbol)
l Table

Figure 3.1: Interactions between the lexical analyzer and the parser

These interactions are suggested above in Fig. 3.1. Commonly, the interaction is
Implemented by having the parser (syntax phase) call the lexical analyzer. The call,
suggested by the get Next Token command, causes the lexical analyzer to read
characters from its input until it can identify the next lexeme and produce for it the
next token, which it returns to the parser.

3.2 Tokens

Lexemes are said to be a sequence of characters (alphanumeric) which is also called
as tokens. There are some predefined rules for every lexeme to be identified as a
valid token. These rules are defined by grammar rules, by means of a pattern. A
pattern explains what can be a token, and these patterns are defined by means of
regular expressions.

In programming language, keywords, constants, identifiers, strings, numbers,
operators, and punctuations symbols can be considered as tokens.

Example: int value = 100;

Compiler: Lecture 3

Contains the tokens:
1) int (keyword)

2) value (identifier)
3) = (operator)

4) 100 (constant)
5); (symbol)

Dr. Wildan Jameel

- A typical high-level language contains the following symbols :-

Symbol Purpose
S
Addition(+), Subtraction(-), Modulo(%), Multiplication (¥ Anthmetic
and Division(/) Operator
Comma(,), Semicolon(;), Dot(.), Arrow(->) Punctuation
= 4=, /= F= = Assignment
==, |5, <, <5, >, >= Comparison
i Preprocessor
& [ocation
Specifier
&, &&. 1.], ! Logical
5> S5> <<, <<< Shift Operator

3.3String

A string over an alphabet is a finite sequence of symbols drawn from that alphabet.
In language theory, the terms "sentence™ and "word" are often used as synonyms for
"string."” The length of a string s, usually written |s|, is the number of occurrences of
symbols in's. For example, banana is a string of length six. The empty string, denoted

€, Is the string of length zero.

e |f xandy are strings, then the concatenation of x and y, denoted xy, is the
string formed by appending y to x. For example, if x = dog and y = house,
then xy = doghouse. The empty string is the identity under concatenation;

that is, for any strings, e S=S e=s.

¢ Inlexical analysis, the most important operations on languages are union, con-
catenation, and closure, which are defined formally in Fig. 3.6. Union is the
familiar operation on sets. The concatenation of languages is all strings
formed by taking a string from the first language and a string from the second
language, in all possible ways, and concatenating them. The (Kleene) closure

2

Compiler: Lecture 3 Dr. Wildan Jameel

of a language L, denoted L*, is the set of strings you get by concatenating L
zero or more times. Note that L°, the "concatenation of L zero times," is
defined to be {e}, and inductively, L='L = L. Finally, the positive closure,
denoted L+, is the same as the Kleene closure, but without the term L°. That
IS, € will not be in L+ unless it is in L itself.

OPERATION % DEFINITION AND NOTATION
Union of L and M LUM ={s|sisin Lorsisin M}
Concatenation of L and M | LM = {st | sisin L and ¢ is in M}
Kleene closure of L L* =u, L}
Positive closure of L Lt =ue, Lt

Figure 3.6: Definitions of operations on languages

Example 3.3: Let L be the set of letters {A,B,...,Z,a,b,...,z} and let D
be the set of digits {0,1,...9}. We may think of L and D in two, essentially
equivalent, ways. One way is that L and D are, respectively, the alphabets of
uppercase and lowercase letters and of digits. The second way is that L and D
are languages, all of whose strings happen to be of length one. Here are some
other languages that can be constructed from languages L and D, using the
operators of Fig. 3.6:

1.

>

n

6.

L U D is the set of letters and digits — strictly speaking the language
with 62 strings of length one, each of which strings is either one letter or
one digit.

LD is the set of 520 strings of length two, each consisting of one letter
followed by one digit.

L* is the set of all 4-letter strings.
L* is the set of all strings of letters, including €, the empty string.

L(L U D)* is the set of all strings of letters and digits beginning with a
letter.

D+ is the set of all strings of one or more digits.

3.4 Regular Expression

The regular expressions are built recursively out of smaller regular
expressions, using the rules described below. Each regular expression r
denotes a language L(r), which is also defined recursively from the languages
denoted by r's subexpressions. Here are the rules that define the regular

Compiler: Lecture 3 Dr. Wildan Jameel

expressions over some alphabet ¥ and the languages that those expressions
denote.

There are two rules that form the basis:

1. € is aregular expression, and L(¢) is { € }, that is, the language whose sole

member is the empty string.
2. Ifaisasymbol in X, then a is a regular expression, and L(a) = {a}, that is,
the language with one string, of length one, with a in its one position.

INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular expressions
denoting languages L(r) and L(s), respectively.

1. (r)|(s) is a regular expression denoting the language L(r) U L(s).
2. (r)(s) is a regular expression denoting the language L(r)L(s).
3. (r)* is a regular expression denoting [L(r})'.

4. (r) is a regular expression denoting L(r). This last rule says that we can
add additional pairs of parentheses around expressions without changing
the language they denote.

Example 3.4: Let ¥ = {a,b}.
1. The regular expression a|b denotes the language {a,b}.

2. (a|b)(a|b) denotes {aa, ab, ba, bb}, the language of all strings of length two
over the alphabet X. Another regular expression for the same language is
aalab|ba|bb.

3. a* denotes the language consisting of all strings of zero or more a’s, that
is, {€,a,aa,aaa,...}.

4. (alb)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a’s and b’s: {e,a, b, aa, ab, ba,bb, aaaq,...}.
Another regular expression for the same language is (a*b*)*.

5. aja*b denotes the language {a, b, ab,aab,aaab,...}, that is, the string a
and all strings consisting of zero or more a’s and ending in b.

Compiler: Lecture 3 Dr. Wildan Jameel

Example 3.5: C identifiers are strings of letters, digits, and underscores. Here
is a regular definition for the language of C identifiers. We shall conventionally
use italics for the symbols defined in regular definitions.

letter. — A|B|---|Z|a|b|-|2z]-
digit — 0|1]---]9
id — letter_ (letter- | digit)*
O

Example 3.6: Unsigned numbers (integer or floating point) are strings such
as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

digit — 0]1]---]9
digits — digit digit*
optionalFraction — . digits | €
optionalEzponent — (E(+|-|¢€) digits) | €
number — digits optionalFraction optionalEzponent

3.4 Finite Automata

Finite automata is a state machine that takes a string of symbols as input and changes
its state accordingly. Finite automata is a recognized for regular expressions. When
a regular expression string is fed into finite automata, it changes its state for each
literal. If the input string is successfully processed and the automata reaches its final
state, it is accepted, i.e., the string just fed was said to be a valid token of the language
in hand. A recognizer/finite automaton for a language is a program that takes as input
a string x and answers ,,yes” if x is a sentence of the language L ,,no" otherwise.

String S —>*{ Finite Automata — Yes / No

Figure 2 Finite Automaton

Types:
1. Non Deterministic Finite Automata (NFA)
2. Deterministic Finite Automata (DFA)

(a) Nondeterministic finite automata (NFA) have no restrictions on the
labels of their edges. A symbol can label several edges out of the
same state, and €, the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and for
each symbol of its input alphabet exactly one edge with that symbol
leaving that state.

Compiler: Lecture 3 Dr. Wildan Jameel

3.4.1 Nondeterministic Finite Automata
A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states S.

2. A set of input symbols ¥, the input alphabet. We assume that e, which
stands for the empty string, is never a member of X.

3. A transition function that gives, for each state, and for each symbol in
¥ U {e} a set of next states.

4. A state sg from S that is distinguished as the start state (or initial state).

5. A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).

Example 3.14: The transition graph for an NFA recognizing the language
of regular expression (a|b)*abb is shown in Fig. 3.24. This abstract example,
describing all strings of a’s and b’s ending in the particular string abb, will be
used throughout this section. It is similar to regular expressions that describe
languages of real interest, however. For instance, an expression describing all
files whose name ends in .o is any*.o, where any stands for any printable
character.

Figure 3.24: A nondeterministic finite automaton

Transition Tables

We can also represent an NFA by a transition table, whose rows correspond to states,
and whose columns correspond to the input symbols and e. The entry for a given
state and input is the value of the transition function applied to those arguments. If
the transition function has no information about that state-input pair, we put 0 in the
table for the pair.

Example:
The transition table for the NFA of Fig. 3.24 is shown in Fig. 3.25.

Compiler: Lecture 3 Dr. Wildan Jameel

STATE a b €
0 {0,1} {0}]
1 0 {2} 0
2 0 {3} 0
3 0 0 0

Figure 3.25: Transition table for the NFA of Fig. 3.24

3.4.2 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a special case of an NFA where:
1. There are no moves on input &, and

2. For each state s and input symbol a, there is exactly one edge out of s
labeled a.

If we are using a transition table to represent a DFA, then each entry is a single
state. we may therefore represent this state without the curly braces that we use to
form sets.

Example 3.19: In Fig. 3.28 we see the transition graph of a DFA accepting
the language (a|b)*abb, the same as that accepted by the NFA of Fig. 3.24.
Given the input string ababb, this DFA enters the sequence of states 0,1,2,1,2,3
and returns “yes.” 0O

8§ = 8o;
¢ = nextChar();
while (¢ != eof) {
8 = move(s,c);
¢ = nextChar();
}
if (sisin F) return "yes";
else return "no";

Figure 3.27: Simulating a DFA

Compiler: Lecture 3

Figure 3.28: DFA accepting (a/b)*abb

Dr. Wildan Jameel

