
Compiler: Lecture 1 Dr. Wildan Jameel

1

Compiler Syllabus

Introduction of Compilers and languages

Compilers Phases

Symbol table

Type of Symbol table

Lexical analysis

Regular expressions & Finite state automata

Finite state automata: Nondeterministic and deterministic finite automata

Syntax analysis

Top-down parsing: Introduction & Eliminating left recursion in a grammar

Predictive parsers: LL(1) grammars& Construction of first and follow.

Bottom-up parsing: Shift-reduce parsers& SLR(1) parsing

CLR(1) parsing& LALR parsers.

Semantic analysis and Intermediate code generation

References

 Aho, Lam, Sethi, Ullman: Compilers: Principles, Techniques, and Tools

(2nd Edition).

 Garenra Sharma, Compiler Design.

1.1 Introduction

Compiler: a compiler is a program that can read a program in one language - the

source language - and translate it into an equivalent program in another language -

the target language; see Fig. 1.1. An important role of the compiler is to report any

errors in the source program that it detects during the translation process.

Compiler: Lecture 1 Dr. Wildan Jameel

2

An important part of any compiler is the detection and reporting of errors.

Commonly, the source language is a high-level programming language (i.e. a

problem-oriented language), and the target language is a machine language or

assembly language (i.e. a machine-oriented language). Thus compilation is a

fundamental concept in the production of software: it is the link between the

(abstract) world of application development and the low-level world of application

execution on machines.

A compiler can be treated as a single box that maps a source program into a

semantically equivalent target program. If we open up this box a little, we see that

there are two parts to this mapping: analysis and synthesis.

 The analysis part breaks up the source program into constituent pieces and

imposes a grammatical structure on them. It then uses this structure to create

an intermediate representation of the source program. If the analysis part

detects that the source program is either syntactically ill formed or

semantically unsound, then it must provide informative messages, so the user

can take corrective action. The analysis part also collects information about

the source program and stores it in a data structure called a symbol table,

which is passed along with the intermediate representation to the synthesis

part.

Compiler: Lecture 1 Dr. Wildan Jameel

3

 The synthesis part constructs the desired target program from the intermediate

representation and the information in the symbol table. The analysis part is

often called the front end of the compiler; the synthesis part is the back end.

1.2 The Structure of Compiler

The compilation procedure is nothing but a series of different phases. Each stage

acquires input from its previous phase. A typical decomposition of a compiler into

phases is shown in Fig. 1.2. In practice, several phases may be grouped together, and

the intermediate representations between the grouped phases need not be constructed

explicitly. The symbol table, which stores information about the entire source

program, is used by all phases of the compiler.

Figure 1.2 Compiler Phases

1.2.1 Lexical analysis

Lexical Analysis is the first phase when compiler scans the source code. This process

can be left to right, character by character, and group these characters into tokens.

Here, the character stream from the source program is grouped in meaningful

sequences by identifying the tokens. It makes the entry of the corresponding tickets

into the symbol table and passes that token to next phase.

The primary functions of this phase are:

 Identify the lexical units in a source code

Compiler: Lecture 1 Dr. Wildan Jameel

4

 Classify lexical units into classes like constants, reserved words, and enter

them in different tables. It will Ignore comments in the source program

 Identify token which is not a part of the language

1.2.2 Syntax Analysis

Syntax analysis is all about discovering structure in code. It determines whether or

not a text follows the expected format. The main aim of this phase is to make sure

that the source code was written by the programmer is correct or not.

Syntax analysis is based on the rules based on the specific programing language by

constructing the parse tree with the help of tokens. It also determines the structure

of source language and grammar or syntax of the language.

Here, is a list of tasks performed in this phase:

 Obtain tokens from the lexical analyzer

 Checks if the expression is syntactically correct or not

 Report all syntax errors

 Construct a hierarchical structure which is known as a parse tree

Compiler: Lecture 1 Dr. Wildan Jameel

5

1.2.3 Semantic Analysis

Semantic analysis checks the semantic consistency of the code. It uses the syntax

tree of the previous phase along with the symbol table to verify that the given source

code is semantically consistent. It also checks whether the code is conveying an

appropriate meaning. Semantic Analyzer will check for Type mismatches,

incompatible operands, a function called with improper arguments, an undeclared

variable, etc. An important part of semantic analysis is type checking, where the

compiler checks that each operator has matching operands. For example, many

programming language definitions require an array index to be an integer; the

Compiler: Lecture 1 Dr. Wildan Jameel

6

compiler must report an error if a floating-point number is used to index an array.

Functions of Semantic analyses phase are:

 Helps you to store type information gathered and save it in symbol table or

syntax tree

 Allows you to perform type checking

 In the case of type mismatch, where there are no exact type correction rules

which satisfy the desired operation a semantic error is shown

 Collects type information and checks for type compatibility

 Checks if the source language permits the operands or not

1.2.4 Intermediate Code Generation

Once the semantic analysis phase is over the compiler, generates intermediate code

for the target machine. It represents a program for some abstract machine.

Intermediate code is between the high-level and machine level language. This

intermediate code needs to be generated in such a manner that makes it easy to

translate it into the target machine code.

Functions on Intermediate Code generation:

 It should be generated from the semantic representation of the source

program

 Holds the values computed during the process of translation

 Helps you to translate the intermediate code into target language

 Allows you to maintain precedence ordering of the source language

 It holds the correct number of operands of the instruction

Compiler: Lecture 1 Dr. Wildan Jameel

7

Example:

p=i*r*t;

temp1=id3*id4

temp2=id2*temp1

id1=temp2

1.2.5 Code Optimization

The next phase of is code optimization or Intermediate code. This phase removes

unnecessary code line and arranges the sequence of statements to speed up the

execution of the program without wasting resources. The main goal of this phase is

to improve on the intermediate code to generate a code that runs faster and occupies

less-space.

The primary functions of this phase are:

 It helps you to establish a trade-off between execution and compilation

speed

 Improves the running time of the target program

 Generates streamlined code still in intermediate representation

 Removing unreachable code and getting rid of unused variables

 Removing statements which are not altered from the loop

Example:
Consider the following code

a = into float (10)

b = c * a

d = e + b

f = d

Can become

b =c * 10.0

f = e+b

Compiler: Lecture 1 Dr. Wildan Jameel

8

1.2.6 Code Generation

Code generation is the last and final phase of a compiler. It gets inputs from code

optimization phases and produces the page code or object code as a result. The

objective of this phase is to allocate storage and generate relocatable machine code.

It also allocates memory locations for the variable. The instructions in the

intermediate code are converted into machine instructions. This phase coverts the

optimize or intermediate code into the target language.

The target language is the machine code. Therefore, all the memory locations and

registers are also selected and allotted during this phase. The code generated by this

phase is executed to take inputs and generate expected outputs.

Example:

P=i*r*t

MOVE id4,R2

MULT id3,R2

MOVE id2,R1

MULT R2,R1

MOVE R1,id1

