
Compiler: Lecture 5 Dr. Wildan Jameel

1

5.1 Top Down Parsing

Top-down parsing processes the input string provided by a lexical analyzer, and

generate a parse tree for that input string using derivation. The top-down parsing

first creates the root node of the parse tree. And it continues creating its leaf nodes.

 Remember the top-down parsing cannot handle the grammar with left

recursion and ambiguity.

 At each step of a top-down parse, the key problem is that of determining the

production to be applied for a nonterminal, say A. Once an A-production is

chosen, the rest of the parsing process consists of "matching7' the terminal

symbols in the production body with the input string.

5.2 Recursive Descent Technique

It is a technique of top-down parsing in which the construction of a parse tree

happens from the top, and input is read from left to right. It uses CFG(context-free

grammar), which is why it is recursive. In this technique, procedures are used for

each terminal and non-terminal entity. And, it parses the input recursively to make

a parse tree with or without using back-tracking. But, if the associated grammar is

not a left factor, it cannot avoid back-tracking. If this technique does not require

back-tracking, it is known as predicate parsing.

https://www.codingninjas.com/codestudio/library/lr-parsinghttps:/www.codingninjas.com/codestudio/library/context-free-grammars
https://www.codingninjas.com/codestudio/library/lr-parsinghttps:/www.codingninjas.com/codestudio/library/context-free-grammars
https://www.codingninjas.com/codestudio/library/backtracking

Compiler: Lecture 5 Dr. Wildan Jameel

2

5.2.1 Back-tracking

If the derivation of the input string fails in one production of a non-terminal, then

the parser has to return to the place where it has picked the production. And begin

deriving the string likewise using another production of the exact non-terminal. The

process may require repeatedly scanning over the input string, referred to it as back-

tracking.

Compiler: Lecture 5 Dr. Wildan Jameel

3

Drawbacks of Top Down Parsing with Backtracking

1. Left recursion: A production of the form A→Aα may cause a parset to enter

into an infinite loop.

2. Backtracking: if we have more than one option for the same production, so

backtracking is done. This means requires substantial overhead, as the entries

made into symbol table may be need to be erased.

3. Difficulty to locate error point: In this case the compiler reports errors

without describing it.

Compiler: Lecture 5 Dr. Wildan Jameel

4

5.2.2 Predictive parsing (no backtracking)

Predictive parser is a top down parser without backtracking.

Predictive parsing uses a stack and a parsing table to parse the input and generate a

parse tree. Both the stack and the input contains an end symbol $ to denote that the

stack is empty and the input is consumed. The parser refers to the parsing table to

take any decision on the input and stack element combination.

Steps to be involved in Parsing Method:

In recursive descent parsing, the parser may have

more than one production to choose from for a single

instance of input; whereas in predictive parser, each

step has at most one production to choose. There

might be instances where there is no production

matching the input string, making the parsing

procedure to fail.

Compiler: Lecture 5 Dr. Wildan Jameel

5

1. Stack is pushed with $.

2. Construction of parsing table T.

 Computation of FIRST set.

 Computation of FOLLOW set.

 Making entries into the parsing table.

 3. Parsing by parsing routine.

Construction of parsing table

An important part of parser table construction is to create First and Follow sets.

These sets can provide the actual position of any terminal in the derivation.

Essential conditions to check first are as follows:

1. The grammar is free from left recursion.

2. The grammar should not be ambiguous.

3. The grammar has to be left factored in so that the grammar is deterministic

grammar.

FIRST () − It is a function that gives the set of terminals that begin the strings

derived from the production rule.

Algorithm for Calculating First Set

Compiler: Lecture 5 Dr. Wildan Jameel

6

Similarly, this method will be repeated for further Grammar symbols, i.e., for Y4,

Y5, Y6 …. YK.

Algorithm for Calculating Follow Set

Algorithm for Constructing Parse Table

Compiler: Lecture 5 Dr. Wildan Jameel

7

Problem − Consider the following grammar

E → TE′

E′ → +TE′|ε

T′ → FT′

T′ → FT′|ε

F → (E)|id

Solution −

Step1− Elimination of Left Recursion & perform Left Factoring

As there is no left recursion in Grammar so, we will proceed as it is. Also, there is

no need for Left Factoring.

Step2− Computation of FIRST and Follow

Step3- Make a parser table

Compiler: Lecture 5 Dr. Wildan Jameel

8

Blanks are error entries; non blanks indicate a production with which to expand a

nonterminal.

Note:

Predictive parsers, that is, recursive-descent parsers needing no backtracking,

can be constructed for a class of grammars called LL(1). The first "L" in LL(1)

stands for scanning the input from left to right, the second "L" for producing

a leftmost derivation, and the "1" for using one input symbol of lookahead at

each step to make parsing action decisions.

