
Compiler: Lecture 6 Dr. Wildan Jameel

1

Bottom up parsing

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction

till it reaches the root node. Here, we start from a sentence and then apply production

rules in reverse manner in order to reach the start symbol.

 In this technique, parsing starts from the leaf node of the parse tree to the

start symbol of the parse tree in a bottom-up manner.

 Bottom-up parsing attempts to construct a parse tree by reducing input string

and using Right Most Derivation.

 Bottom-up parsing starts with the input symbol and constructs the parse tree

up to the start symbol using a production rule to reduce the string to get the

starting symbol.

Compiler: Lecture 6 Dr. Wildan Jameel

2

Example:

Parse Tree representation of input string "id * id" is as follows:

6.1 Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar

symbols and an input buffer holds the rest of the string to be parsed. Shift reduce

parsing performs the two actions: shift and reduce. This is why it is known as shift-

reduce parsing.

 The current symbol in the input string is pushed to a stack at the shift action.

At each reduction, the symbols will be replaced by the non-terminals.

 The non-terminal is the left side of the output, and the symbol is the right side

of the production.

 $ is used to mark the bottom of the stack and also the right end of the

input as follows:

 During a left-to-right scan of the input string, the parser shifts zero or more

input symbols onto the stack, until it is ready to reduce a string β of

grammar symbols on top of the stack.

Compiler: Lecture 6 Dr. Wildan Jameel

3

 The parser repeats this cycle until it has detected an error or until the

stack contains the start symbol and the input is empty.

Example:

The actions a shift-reduce parser might take in parsing the input string idl *id2 as

shown below:

Compiler: Lecture 6 Dr. Wildan Jameel

4

Example:

Parse it using shift reduce parsing:

Compiler: Lecture 6 Dr. Wildan Jameel

5

6.2 LR Parser

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class

of context-free grammar which makes it the most efficient syntax analysis technique.

LR parsers are also known as LR(k) parsers, where L stands for left-to-right scanning

of the input stream; R stands for the construction of right-most derivation in reverse,

and k denotes the number of lookahead symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

 SLR(1) – Simple LR Parser:

o Works on smallest class of grammar

o Few number of states, hence very small table

o Simple and fast construction

 LR(1) – LR Parser:

o Works on complete set of LR(1) Grammar

o Generates large table and large number of states

o Slow construction

 LALR(1) – Look-Ahead LR Parser:

o Works on intermediate size of grammar

o Number of states are same as in SLR(1)

