College of science for women Department of Chemistry

Second Stage

Gravimetric Analysis

Teacher Name: Dr.Muna Mahmood

Precipitating Agents

Precipitating Agents: Ideally a gravimetric precipitating agent should react specifically or at least selectively with the analyte. Specific reagents which are rare, react only with a single chemical species. Selective reagents which are more common, react with a limited number of species. In addition to specificity and selectivity, the ideal precipitating reagent would react with analyte to give a precipitate that has the preferred requirements which have been previously discussed.

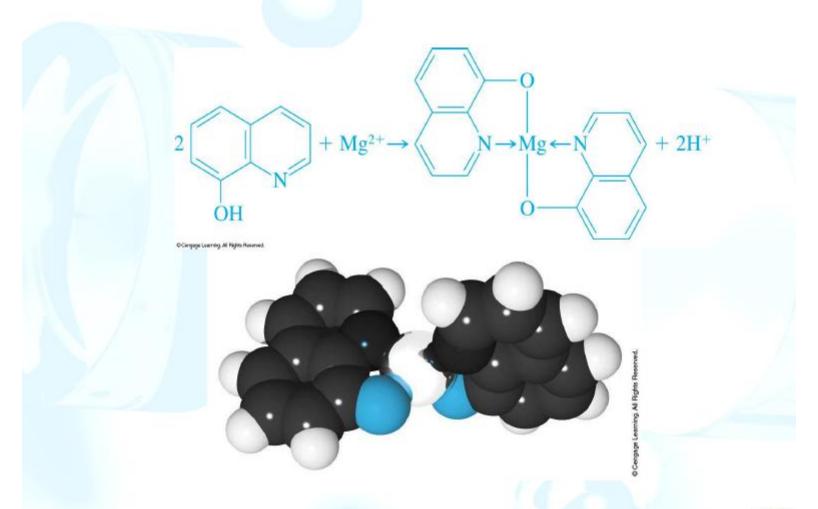
Inorganic precipitating agents:

The inorganic precipitants e.g. S2-, CO32-, PO43-...etc are usually not selective compared to the organic precipitants but it give precipitates with well known formula.

Some I	Inorganic	Precipitating	Agents
--------	-----------	---------------	--------

Precipitating Agent	Element Precipitated*
NH ₃ (aq)	Be (BeO), Al (Al ₂ O ₃), Sc (Sc ₂ O ₃), Cr (Cr ₂ O ₃)†, Fe (Fe ₂ O ₃),
	$Ga (Ga_2O_3), Zr (ZrO_2), In (In_2O_3), Sn (SnO_2), U (U_3O_8)$
H ₂ S	Cu (CuO) \dagger , Zn (ZnO or ZnSO ₄), Ge (GeO ₂), As ($\underline{As_2O_3}$ or $\underline{As_2O_5}$),
	Mo (MoO ₃), Sn (SnO ₂) \dagger , Sb (Sb ₂ O ₃), or Sb ₂ O ₅), Bi (Bi ₂ S ₃)
$(NH_4)_2S$	Hg (HgS), Co (Co ₃ O ₄)
(NH ₄) ₂ HPO ₄	$Mg (Mg_2P_2O_7)$, Al (AlPO ₄), Mn (Mn ₂ P ₂ O ₇), Zn (Zn ₂ P ₂ O ₇),
	$Zr (Zr_2P_2O_7)$, $Cd (Cd_2P_2O_7)$, $Bi (BiPO_4)$
H ₂ SO ₄	Li, Mn, Sr, Cd, Pb, Ba (all as sulfates)
H ₂ PtCl ₆	K (K ₂ PtCl ₆ or Pt), Rb (Rb ₂ PtCl ₆), Cs (Cs ₂ PtCl ₆)
$H_2C_2O_4$	Ca (CaO), Sr (SrO), Th (ThO ₂)
$(NH_4)_2MoO_4$	Cd (CdMoO ₄)†, Pb (PbMoO ₄)
HCl	Ag (AgCl), Hg (Hg ₂ Cl ₂), Na (as NaCl from butyl alcohol), Si (SiO ₂)
AgNO ₃	Cl (AgCl), Br (AgBr), I(AgI)
$(NH_4)_2CO_3$	Bi (Bi ₂ O ₃)
NH ₄ SCN	Cu [Cu ₂ (SCN) ₂]
NaHCO ₃	Ru, Os, Ir (precipitated as hydrous oxides, reduced with H ₂ to metallic state)
HNO ₃	Sn (SnO ₂)
H ₅ IO ₆	Hg [Hg ₅ (IO ₆) ₂]
NaCl, Pb(NO ₃) ₂	F (PbClF)
BaCl ₂	SO₄ ²⁻ (BaSO ₄)
MgCl ₂ , NH ₄ Cl	$PO_4^{3-} (Mg_2P_2O_7)$

* These reagents typically form slightly soluble salts or hydrous oxides with the analyte. As you can see from the many entries for each reagent, few inorganic reagents are selective.


- Organic precipitating agents :
- The organic precipitants such as dimethglyoxime and 8-hydroxyquinoline are more selective than inorganic precipitants. They produce with the analyte less soluble precipitate (small Ksp). They also have high molecular weight so that the weighing error is redued. The disadvantage of organic precipitants is that they usually form with the analyte a precipitate of unknown formula, therefore the precipitate is burned to the metal oxide.

12C-3 Organic Precipitating Agents

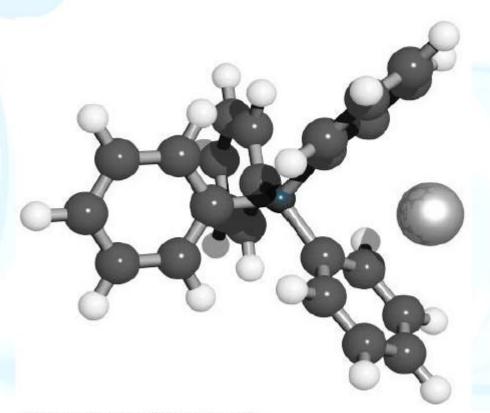
- ✓ Some organic reagents react with metal ions then produce insoluble coordination cmpds.
- ✓ Reagents that form coordination compounds of this type are called chelating agents, and their products are called chelates.
- ✓ Those metal chelates are relatively nonpolar and have low solubilities in water.
- ✓ Usually, these compounds possess low densities and are often intensely colored. Because they are not wetted by water, coordination compounds are easily freed of moisture at low temperatures.


Common organic precipitating	agents		CH=CH ₂ CH ₃
Name	Structure	Ions precipitated	CH=CI
Dimethylglyoxime	N—OH	Ni ²⁺ , Pd ²⁺ , Pd ²⁺	у Ре
Cupferron	$ \bigcirc -N = 0 $ $ O^{-}NH_{4}^{+} $	Fe ³⁺ , VO ₂ +, Ti ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Ga ³⁺ , Sn ⁴⁺	сн, сн,соон
8-Hydroxyquinoline (oxine)	OH OH	Mg ²⁺ , Za ²⁺ , Cu ²⁺ , Cd ²⁺ , Pb ²⁺ , Al ³⁺ , Fe ³⁺ , Bi ³⁺ Ga ³⁺ , Th ⁴⁺ , Zr ⁴⁺ , UO ² ₂ +, TiO ²⁺	
Salicylaldoxime	OH-OH	Cu ²⁺ , Pb ²⁺ , Bi ³⁺ , Zu ²⁺ , Ni ²⁺ , Pd ²⁺	
1-Nitroso-2-naphthol	ООООН	Co ²⁺ , Fe ³⁺ , Pd ²⁺ , Zr ⁴⁺	
Nitron	C_6H_5 N_{\bullet} N_{\bullet} N_{\bullet} N_{\bullet} N_{\bullet} N_{\bullet}	NO ₃ , ClO ₄ , BF ₄ , WO ₄ ²	
Sodium tetraphenylborate	$Na^+B(C_6H_5)_4^-$	K ⁺ , Rb ⁺ , Cs ⁺ , NH ₄ ⁺ , Ag ⁺ , organic ammonium ions	
Tetraphenylar sonium chloride	(C ₆ H ₅) ₄ As+Cl-	Cr ₂ O ₄ ⁻ , MnO ₄ , ReO ₄ , MoO ₄ ⁻ , WO ₄ ⁻ , ClO ₄ , I ₃ ⁻	31/3

Magnesium complex with 8-hydroxyquinoline.

$$\begin{array}{c} \text{CH}_{3}\text{-C} - \text{C} - \text{CH}_{3} \\ \text{CH}_{3} - \text{C} - \text{C} - \text{CH}_{3} \\ \text{OH} & \text{OH} & \text{OH} & \text{ON} & \text{Ni} \\ \text{OH} & \text{OH} & \text{OH} & \text{Ni} \\ \text{OH} & \text{OH} & \text{OH} & \text{OH} \\ \text{OH} \\ \text{OH} & \text{OH} \\ \text{OH} & \text{OH} \\ \text{OH} \\ \text{OH} & \text{OH} \\ \text{OH} \\ \text{OH} & \text{OH} \\ \text{OH}$$

Nickel dimethylglyoxime is spectacular in appearance. As shown in color plate 7, it has a beautiful vivid red color.



© Cengage Learning. All Rights Reserved.

sodium tetraphenylborate.

© Cengage Learning. All Rights Reserved.

12C-4 Organic Functional Group Analysis

- ➤ Several reagents react selectively with certain organic functional groups and thus can be used for the determination of most compounds containing these groups.
- Many of the reactions shown can also be used for volumetric and spectrophotometric

Gravimetric Methods for Organic Functional Groups

Functional Group	Basis for Method	Reaction and Product Weighed*
Carbonyl	Mass of precipitate with	RCHO + $H_2NNHC_6H_3(NO_2)_2 \rightarrow$
	2,4-dinitrophenylhydrazine	R — $CH = NNHC_6H_3(NO_2)_2(s) + H_2O (RCOR' reacts similarly)$
Aromatic carbonyl	Mass of CO2 formed at 230°C	ArCHO $\stackrel{230^{\circ}\text{C}}{\text{CuCO}}$ Ar + $\stackrel{\text{CO}_2(g)}{\text{CO}_2(g)}$
the state of the s	in quinoline; CO2 distilled,	CuCO ₁
	absorbed, and weighed	
Methoxyl and ethoxyl	Mass of AgI formed after	$ROCH_3 + HI \rightarrow ROH + CH_3I$ $CH_3I + Ag^+ + H_2O \rightarrow$
	distillation and decomposition	$RCOOH_3 + HI \rightarrow RCOOH + CH_3I$ $ApI(s) + CH_3OH$
	of CH ₃ I or C ₂ H ₅ I	$ROC_2H_5 + HI \rightarrow ROH + C_2H_5I$
Aromatic nitro	Mass loss of Sn	$RNO_2 + \frac{3}{2}Sn(s) + 6H^+ \rightarrow RNH_2 + \frac{3}{2}Sn^{4+} + 2H_2O$
Azo	Mass loss of Cu	$RN = NR' + 2Cu(s) + 4H^+ \rightarrow RNH_2 + R'NH_2 + 2Cu^{2+}$
Phosphate	Mass of Ba salt	0 0
		$ ROP(OH)_2 + Ba^{2+} \rightarrow ROPO_2Ba(s) + 2H^+$
Sulfamic acid	Mass of BaSO ₄ after oxidation with HNO ₂	$RNHSO_3H + HNO_2 + Ba^{2+} \rightarrow ROH + BaSO_4(s) + N_2 + 2H^+$
Sulfinic acid	Mass of Fe ₂ O ₃ after ignition of	$3ROSOH + Fe^{3+} \rightarrow (ROSO)_3Fe(s) + 3H^+$
	Fe(III) sulfinate	$(ROSO)_3Fe \rightarrow CO_2 + H_2O + SO_2 + Fe_2O_3(s)$

^{*}The substance weighed is underlined.

- Organic ppting agents have the advantages
- 1- Som of organic ppting agents are very selsctive and very broad in the number of elements they will ppt.
- 2- Giving pptes with very low solubility in water
- 3- Give a favorable gravimetric factor