تشخيص المركبات بواسطه طيف الرنين النووي للبرتون H-NMR ا.د سناء عبد الصاحب عبد الكريم جامعه بغداد - كليه العلوم للبنات _ قسم الكيمياء

Introduction

□ NMR is the most powerful tool available for organic structure determination.

 \Box It is used to study a wide variety of nuclei:

- ■¹H
- ■¹³C
- ■¹⁵N
- ■¹⁹F
- ■³¹P

Nuclear Spin

The nuclei of some atoms have a property called "Spin".

- Elements with either odd mass or odd atomic number have the property of nuclear "spin".
- Each spin-active nucleus has a number of spins defined by its spin quantum number, I
- The number of spin states is 2I + 1

Spin Quantum Numbers of Some Common Nuclei

Mass No	Atomic No	Ι
Odd	Odd or Even	1/2 , 3/2, 5/2
Even	Even	0
Even	Odd	1,2,3

Element	$^{1}\mathbf{H}$	² H	¹² C	¹³ C	¹⁴ N	¹⁶ O	¹⁷ O	¹⁹ F	³¹ P
Nuclear Spin Quantum No (I)	1/2	1	0	1/2	1	0	5/2	1/2	1/2
No. of Spin States	2	3	0	2	3	0	6	2	2

Nuclear Spin Energy Levels

Absorption of Energy Opposed -1/2 -1/2 DE $DE = h\gamma$ Radiofrequency +1/2+1/2..... Applied Field Aligned

The "Resonance" Phenomenon

Peaks are Measured Relative to TMS (Tetramethylsilane)

Reference compound

Chemists originally thought no other compound would come at a higher field than TMS.

Solvents

Solv	δ value	
Tetrachlorocarbon	CCl_4	-
Carbon disulfide	CS_2	-
Acetone	(CD ₃) ₂ CO	2.0
Dimethysulfoxide	$(CD_3)_2SO$	2.0
Acetonitrile	CD ₃ CN	2.0
Water	D ₂ O	5.0
Chloroform	CDCl ₃	7.2
Benzene	C ₆ D ₆	7.3

IN THE CLASSICAL NMR EXPERIMENT THE INSTRUMENT SCANS FROM "LOW FIELD" TO "HIGH FIELD"

NMR Spectrum of Phenylacetone

All types of hydrogen are excited simultaneously with the single RF pulse.

A mathematical technique that resolves a complex FID signal into the individual frequencies that add together to make it.

NMR—The Spectrum

There are three kinds each of which we will consider each of these separately:

- Position of Signals (Chemical shift)
- Integrations
- Coupling constant

1- Position of Signals (Chemical shift)

• The shift observed for a given proton in Hz also depends on the frequency of the instrument used.

Higher frequencies = larger shifts in Hz.

 We can adjust the shift to a field-independent value, the "chemical shift" in the following way:

Protons Differ in Their Shielding

- All different types of protons in a molecule have a different amounts of shielding.
- They all respond differently to the applied magnetic field and appear at different places in the spectrum.
- This is why an NMR spectrum contains useful information (different types of protons appear in predictable places).

NMR Spectrum of Methylacetic acid

NMR Spectrum of Phenylacetone

Factors Influencing Chemical Shifts

 Three major factors account for the resonance positions (on the ppm scale) of most protons.

1. Deshielding by electronegative elements.

- 2. Anisotropic fields usually due to pi-bonded electrons in the molecule.
- 3. Deshielding due to hydrogen bonding.

1. Deshielding by electronegative elements.

Chlorine "deshields" the proton, that is, it takes valence electron density away from carbon, which in turn takes more density from hydrogen <u>deshielding</u> the proton.

	NMR CHART
"deshielded"	highly shielded
protons appear	protons appear
at low field	at high field

deshielding moves proton resonance to lower field

Electronegativity Dependence of Chemical Shift

Dependence of the Chemical Shift of CH_3X on the Element X

Compound CH ₃ X	CH_3F	CH₃OH	CH ₃ CI	$\mathrm{CH}_3\mathrm{Br}$	CH ₃ I	CH_4	(CH ₃) ₄ Si
Element X	F	0	CI	Br	Ι	н	Si
Electronegativity of X	4.0	3.5	3.1	2.8	2.5	2.1	1.8
Chemical shift δ	4.26	3.40	3.05	2.68	2.16	0.23	0
maat							
deshielded	~	desh elect	ielding ronega	increa itivity o	ses wi f atom	th the X	- TMS

Substitution Effects on Chemical Shift

most deshielded

 $CHCI_3 CH_2CI_2 CH_3CI$ 7.27 5.30 3.05 ppm The effect increases with greater numbers of electronegative atoms.

most deshielded	-CH ₂ -Br	-CH ₂ -CH ₂ Br	-CH ₂ -CH ₂	CH ₂ Br
	3.30	1.69	1.25	ppm

The effect decreases with incresing distance.

2. Anisotropic fields

The presence of a nearby pi bond or pi system greatly affects the chemical shift.

Benzene rings have the greatest effect

Anisotropic fields in an Alkyne

Proton type	Effect	Chemical shift (ppm)
Н	highly deshielded	6.5–8
C=C H	deshielded	4.5–6
—C≡C−H	shielded	~2.5
	31	

>7.278

 CH_2 at ~ -1.2 δ

3. Deshielding due to hydrogen bonding

The chemical shift depends on how much hydrogen bonding is taking place.

R

Alcohols vary in chemical shift from 0.5 ppm (free OH) to about 5.0 ppm (lots of H bonding).

Hydrogen bonding lengthens theO-H bond and reduces the valenceelectron density around the protonit is deshielded and shifteddownfield in the NMR spectrum.

Carboxylic acids have strong hydrogen bonding – they form dimers.

With carboxylic acids the O-H absorptions are found between 10 and 12 ppm very far downfield

In methyl salicylate, which has strong internal hydrogen bonding, the NMR absortion for O-H is at about 14 ppm, very far downfield.

2- Integration of Peak

• The NMR spectrum can also tell the relative numbers of each type of hydrogen by a process called Integration.

Integration = determination of the area under a peak

The integral line rises an amount proportional to the number of H in each peak

NMR - Position of Signals (Chemical shift values)

Chart .1 Chemical shifts of Protons

15	14	-3	-2	-1	10	1 9	8	3	4	5	4	3	8	1	107	9
				51171				3						-	TMS	(-*·)
															1	cyclopropane
							inch	uding	g CH	2 ^{cyc}	lic			-	()	CH-Alkyl
														_		R-SH
												-				CH-Aryl
																$\mathbf{C} = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \mathbf{H}$
					CI14111								_			C = C - CH
CH3	۱,	2.15	8													HC-C-I
CH3	Br.	2.65	8					CH	IBr3	Ċ	12Br	2	Ň	_		HC-C-Br
CH:	, CI ,	3.00	8					сно	CI3	сH2	CI2					HC-C-CI
								1.2.1		CI	I-NC	2	-		8	HC-C-NO2
					CH	3N+.	CI	1 ₃ N	5	1	(5)	-īl		118		CH_3N-X X = R,Ar, $C=$
					ind	cludi	ng 21	y an	nines	1C		1.17				R=NH2
		1							F	15-16		1.000			1	R-OH
					a.											HC-CO-X X = H, R, N, 0
																HC-CO-X X = Ar, OAr
												_				HC-S-X X = R, Ar
																Ar-SH
					including 2ry amines							AL.NH				
				in	cludin	ng 2r	y am	ines	1	100.55	1.001	200				2
		includ	ing the	in pro	cludir ons c	ng 2r		ines S	RC	<u>мер</u> н (с	ыну эн) ₂	34				HC-O-X X = R, Ar, $C =$
		includ	ing the	in 2 pro	ons o	ng 2r of R		ines S S S S S S S	RC RC	ысы н (с	2332 2H) ₂ 7KS					HC-O-X $X = R, Ar, C =$ Ar-OH
		includ	ing the	in pro y ami	cludir tons d des	ng 2r		ines 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 RC ////	мен н (с	DH) ₂					$HC-O-X$ $X = R, Ar, C =$ $Ar-OH$ $-CONH_2$
		includ	ing the	in pro v ami	cludir cons c des	ng 2r of R	y am 2 5+2.	ines 2 	RC RC 7772	н (с н (с , , , , , , , , , , , , , , , , , , ,						$HC-O-X$ $X = R, Ar, C =$ $Ar-OH$ $-CONH_2$ $-COOH$

(**) R = Alkyl, Ar = Aryl

Chart .2 Chemical shifts of Protons

NMR Correlation Chart

It is usually sufficient to know what types of Hydrogens come in selected areas of the NMR Chart.

acid COOH	aldehyde CHO	benzene CH	alkene =C-H	C-H where C is attached to an electronega- tive atom X-C-H	CH on C next to pi bonds X=C-C-H	aliphatic C-H
12 1	0	9 7	6	4 3	3	2 (

Approximate Chemical Shift Ranges (ppm) for Selected Types of Protons.

R-CH₃	0.7 - 1.3	R-N-Ċ-H	2.2 - 2.9	R-Ċ=Ċ-H
R-CH ₂ -R	1.2 - 1.4	R-S-C-H	2.0 - 3.0	4.5 - 6.5
R₃CH	1.4 - 1.7	I-C-H	2.0 - 4.0	
R-Ċ=Ċ-Ċ-H	1.6 - 2.6		27.11	<u>к_/-н</u>
P		ы-ç-п	2.7 - 4.1	6.5 - 8.0
R-Ċ-Ċ-H	2.1 - 2.4	CI-Ċ-H	3.1 - 4.1	P
የ		RO-Ċ-H	3.2 - 3.8	R-C-N-H
ко-с́-с҉-н	2.1 - 2.5		20.20	5.0 - 9.0
የ		HO-Ç-H	3.2 - 3.8	P
но-с-с-с-н	2.1 - 2.5	_ Щ _ i		R-C-H 9.0 - 10.0
	21-30	R-C-O-Ç-H	3.5 - 4.8	Q
	2.1-0.0	O₂N-Ċ-H	4.1 - 4.3	R-C-O-H
R-C=C-Ç-H	2.1 - 3.0	F-Ċ-H	4.2 - 4.8	10.0 - 12.0
// У _с́-н	2.3 - 2.7			
		R-N-H 0.5-4.0		3.0-5.0 K-5-H
R-CΞC-H	1.7 - 2.7	43 43	AF-U-M	4.0 - 7.0 1.0 - 4.0

Spin-Spin Splitting

- Often a group of hydrogens will appear as a multiplet rather than as a single peak.
- Multiplets are named as follows:

Single Doublet	Sextet Septet
Triplet	Octet
Quartet	Nonet
Quintet	

 This happens because of interaction with neighboring hydrogens and is called Spin-Spin Splitting

1,1,2-Trichloroethane

The two kinds of hydrogens do not appear as single peaks, rather there is a "triplet" and a "doublet".

The subpeaks are due to spin-spin splitting and are predicted by the n+1 rule. 45

this hydrogen's peak is split by its two neighbors

these hydrogens are split by their single neighbor

two neighbors n+1 = 3 triplet

one neighbor n+1 = 2 doublet Multiplets

singlet doublet triplet quartet quintet sextet septet

Exceptions to the n+1 Rule

IMPORTANT !

1) Protons that are <u>equivalent by symmetry</u> usually do not split one another.

X-CH-CH-Y

X-CH₂-CH₂-Y no splitting if x=y

2) Protons in the <u>same group</u> usually do not split one another.

3) The n+1 rule applies principally to protons in aliphatic (saturated) chains or on saturated rings.

but does not apply (in the simple way shown here) to protons on double bonds or on benzene rings.

Intensities of multiplet peaks

PASCAL'S TRIANGLE

singlet doublet The interior entries are 2 triplet the sums of the two 331 quartet numbers immediately 464 quintet above. 1 5 10 10 5 1 sextet 1 6 15 20 15 6 1 septet 1 7 21 35 35 21 7 1 - octet

The Origin of ¹H NMR—Spin-Spin Splitting

The Chemical Shift of Proton H_A is affected by the Spin of its Neighbors.

Observed splitting in signal of Ha

52

Some Example Spectra with Splitting

NMR Spectrum of Bromoethane

NMR Spectrum of 2-Nitropropane

NMR Spectrum of Acetaldehyde

NMR Spectrum of 3-Methyl-butan-2-one

Coupling Constants

- Distance between the peaks of multiplet
- Measured in Hz
- J is a measure of the amount of interaction between the two sets of hydrogens creating the multiplet.
- Not dependent on strength of the external field

Types of Coupling Constants

1. $\frac{^{2}J}{J}$ or geminal coupling

It is designated ${}^{2}J$ since two bonds intervene between the two hydrogens but the two hydrogens are not equivalent

2. $\frac{{}^{3}J}{J}$ or vicinal coupling

It is designated ${}^{3}J$ since three bonds intervene between the two hydrogens

3. $\frac{4J - nJ}{J}$ or Long Range Coupling

Couplings larger than ${}^{3}J$ since more than three bonds intervene between the two hydrogens

Some Representative Coupling Constants

Hax, Hax = 8 to 14		
Hax, $Heq = 0$ to 7	three bond	^{3}J
Heq, Heq = 0 to 5		
<i>cis</i> 6 to 12 Hz	three bond	^{3}J
<i>trans</i> 4 to 8 Hz		

0 to 3 Hz four bond

H−C≡C−C ́H

0 to 3 Hz four bond 4J

 4J

Spectra of Aromatic Compounds The *mono*-substituted Pattern Alkyl - Substituted Rings NMR Spectrum of Toluene

NMR Spectrum of Ethyl-benzene

Substituents with Unshared Pairs

 Electronegative elements with unshared pairs shield the *o*- and *p*- ring positions

NMR Spectrum of Anisole

The Effect of Carbonyl Substituents

 When a carbonyl group is attached to the ring the *o*- and *p*- protons are deshielded by the anisotropic field of C=O

• The same effect is sometimes seen with C=C bonds.

NMR Spectrum of Nitrobenzene

Coupling Constants in Aromatic Rings

The *p*-Disubstituted Rings

1,4-Disubstituted benzene rings will show a pair of doublets, when the two groups on the ring are very different

NMR Spectrum of 1-iodo-4-methoxybenzene

70

NMR Spectrum of *p*-Xylene (1,4-dimethylbenzene)

Estimation of Proton Chemical shifts in Substituted Benzene

ΣZ _i حيث	$\delta_{\mathrm{H}}=7.27+$ ثابت الحجب	х		
للم	جموعة X المجموعة X	Zortha	Zmeta	Zmara
1	R	-0.14	0.06	0.17
2	-CH-OHCH-NH-	-0.07	-0.07	0.17
3	-CF1	0.32	0.14	0.20
4	-CCh	0.64	0.13	0.20
5	-C=C	0.06	-0.03	0.10
6	-Ph	0.37	0.20	0.10
7	-СНО	0.56	0.20	0.29
8	-COR	0.62	0.14	0.25
9	-CONH ₂	0.61	0.14	0.17
10	-COOH	0.85	0.18	0.27
11	-COOR	0.71	0.10	0.27
12	-C≡C	0.15	-0.02	-0.01
13	-C≡N	0.36	0.18	0.28
14	-NH2	-0.75	-0.25	-0.65
15	-NR ₂	-0.66	-0.18	-0.67
10	-NHCOR	0.12	-0.07	-0.28
17	-NO ₂	0.95	0.26	0.38
18	-ОН	-0.56	-0.12	-0.45
19	-OR	-0.48	-0.09	-0.44
20	-OCOR	-0.25	0.03	-0.13
2	F	-0.26	0.00	-0.04
2	-CI	0.03	-0.02	-0.09
2.	-Br	0.18	-0.08	-0.04
24	I	0.39	-0.21	0.00
2	-SR	0.37	0.20	0.10

NMR Spectrum of Furan

Hydroxyl and Amino Protons

 Hydroxyl and amino protons can appear almost anywhere in the spectrum (H-bonding).

- These absorptions are usually broader than other proton peaks and can often be identified because of this fact.
- Carboxylic acid protons generally appear far downfield near 10 to 12 ppm.

O-H Proton

Ultrapure samples of ethanol show splitting.

Ethanol with a small amount of acidic or basic impurities will not show splitting.

NMR Spectrum of 2-Chloropropanoic Acid

Unequal Coupling Tree Diagrams

Splitting Diagrams aka "Tree Diagrams "

The Typical Situation where the n+1 Rule Applies

The n+1 rule is followed

What happens when the J values are not equal?

A "Splitting Tree" is constructed

LEVEL ONE

The largest J value is usually used first.

Two neighbors gives a triplet.

Each level of the splitting uses the n+1 rule.

The next splittings will be added to <u>each leg</u> of the first splitting.

Simple and Complex Spectra

Classification of splitting systems

•AX pattern

•ABC pattern

•ABX pattern

•AMX pattern

AB and AX patterns

AMX pattern

NMR Spectrum of Vinyl Acetate

2,4-Dinitroanisole

Simplification of Complex ¹H-NMR Spectra

- Increasing the Frequency of the Instrument
- Deuteration
- •Change the Solvent
- Double resonance
- Shift reagents

Increasing the Frequency of the Instrument

Change the Solvent

Double resonance

95