Ultraviolet and Visible Spectroscopy

تشخيص المركبات بواسطه الاشعه فوق البنفسجيه اد سناء عبد الصاحب عبد الكريم جامعه بغداد-كليه العلوم للبنات قسم الكيمياء

The Ultraviolet and Visible Spectrum

Ultraviolet and Visible Spectroscopy

- The absorption of ultraviolet and visible radiation by molecules is dependent upon the electronic structure of the molecule.
- □ So the ultraviolet and visible spectrum is called:

Electronic Spectrum

The absorption of light energy by organic compounds in the visible and ultraviolet region involves the promotion of electrons in σ, π, and n-orbitals from the ground state to higher energy states. This is also called

Energy Transition

Electron Transitions

Electron transitions

The region of the electronic spectrum and the type of transitions that occur in each.

Some of the most important transitions:

- $\sigma \rightarrow \sigma^*$ In alkanes
- $\sigma \longrightarrow \pi^*$ In carbonyl compounds
- $\pi \longrightarrow \pi^*$ In unsaturated compounds
- $n \rightarrow \sigma^*$ In O, N, S and halogen compounds
- $n \rightarrow \pi^*$ In carbonyl compounds

Spectrometer

An instrument which can measure the absorbance of a sample at any wavelength.

Absorption laws Beer – Lambert Law

Absorbance (A) = Log
$$\frac{I_0}{I}$$

A = ECL

 I_0 = Original light intensity I = Transmitted light intensity E = Molar Extinction Coefficient C = Concentration (moles/L) L = Length of sample cell (cm)

Solvents

Common solvents :

solvent	λnm
acetonitrile	190
chloroform	240
cyclohexane	195
1,4-dioxane	215
95% ethanol	205
n-hexane	201
methanol	205
isooctane	195
water	190

Terms describing UV absorptions

1. Chromophores: functional groups that give electronic transitions.

Group	Structure	nm
Carbonyl	> C = O	280
Azo	-N = N-	262
Nitro	-N=O	270
Thioketone	-C = S	330
Nitrite	-NO2	230
Conjugated Diene	-C=C-C=C-	233
Conjugated Triene	-C=C-C=C-C=C-	268
Conjugated Tetraene	-C=C-C=C-C=C-C	315
Benzene		261

11

2. Auxochromes: substituents with unshared paire's like OH, NH, SH ..., when attached to π chromophore they generally move the absorption max. to longer λ .

- **3.** Bathochromic shift: shift to longer λ , also called red shift.
- 4. Hypsochromic shift: shift to shorter λ , also called blue shift.
- 5. Hyperchromic effect: increase in absorption intensity.
- 6. Hypochromic effect: decrease in absorption intensity.

Absorption of Ultraviolet and Visible Radiation in Organic Compounds

1- Saturated compounds

Alkanes – only posses σ -bonds and no lone pairs of electrons, so only the high energy $\sigma \rightarrow \sigma^*$ transition is observed in the far UV.

2. Saturated compounds with unshared e⁻

Alcohols, ethers, amines and sulfur compounds – in the cases of simple, aliphatic examples of these compounds the $n \rightarrow \sigma^*$ is the most often observed transition; like the alkane $\sigma \rightarrow \sigma^*$ it is most often at shorter λ than 200 nm.

- 3. Unsaturated compounds
 - Alkenes– in the case of isolated examples of these compounds the π → π* is observed at 175 nm.

$$CH_2 = CH_2$$
 at 175 nm

• Even though this transition is of lower energy than $\sigma \rightarrow \sigma^*$, it is still in the far UV – however, the transition energy is sensitive to substitution.

Substituent Effects

CH ₂ =CHR	at 180 nm
<i>cis</i> CHR=CHR	at 183 nm
trans CHR=CHR	at 180 nm
$CR_2 = CR_2$	at 200 nm

- This effect is thought to be through what is termed "hyperconjugated" or sigma bond resonance
- Similarly, the lone pairs of electrons on N, O, S, X can extend conjugated systems

Substituent	Increment of Substituent
-SR	45
-NR ₂	40
-OR	30
-Cl	5

- Dienes– in the case of isolated examples of these compounds the $\pi \rightarrow \pi^*$ is observed in the far UV.
- Conjugated dienes—The observed shifts from conjugation imply that an increase in conjugation decreases the energy required for electronic excitation.

 Extending this effect out to longer conjugated systems the energy gap becomes progressively smaller.

Wavelength, nm

• Alkynes- in the case of isolated examples of these compounds the $\pi \rightarrow \pi^*$ is observed in the far UV.

CH=CH at 170 nm

Carbonyl compounds – unsaturated systems incorporating N or O can undergo n → π* transition (~280 nm) in addition to π → π* transition (190 nm). Most n → π* transitions are forbidden and hence are of low intensity.

• For auxochromic substitution on the carbonyl, such as $-NR_2$, -OH, -OR, -X, gives a pronounced hypsochromic effect on the $n \rightarrow \pi^*$ transition and a lesser bathochromic effect on the $\pi \rightarrow \pi^*$ transition.

Hypsochromic effect on the $n \rightarrow \pi^*$ transition

• Enones compounds – Conversely, if the C=O system is conjugated both the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ bands are bathochromically shifted.

4. Aromatic Compounds

• On first inspection, benzene has six π -MOs, 3 filled π , 3 unfilled π *

The spectrum of Benzene has two bands at 204, 254 nm and transition is fleetingly allowed due to the disruption of symmetry by the vibrational energy states, the overlap of which is observed in what is called fine structure

- Substituent Effects
 - Polynuclear aromatics
 - When the number of fused aromatic rings increases, the λ for the primary and secondary bands also increase

- Substituent Effects
 - Substituents with Unshared Electrons
 - •If the group attached to the ring bears *n* electrons, they can induce a shift in the primary and secondary absorption bands.
 - •Non-bonding electrons extend the π -system through resonance – lowering the energy of transition $\pi \rightarrow \pi^*$
 - •More available n-pairs of electrons give greater shifts.

- Substituent Effects
 - Electron-donating and electron-withdrawing effects

		Primary		Primary Secondary		ndary
	Substituent	λ_{max}	Е	λ_{max}	ε	
ating	-Н	203.5	7,400	254	204	
	-CH ₃	207	7,000	261	225	
u dor	-Cl	210	7,400	264	190	
ctror	-Br	210	7,900	261	192	
ng Ele	-OH	211	6,200	270	1,450	
	-OCH ₃	217	6,400	269	1,480	
	-NH ₂	230	8,600	280	1,430	
	-CN	224	13,000	271	1,000	
rawi	C(O)OH	230	11,600	273	970	
on withd	-C(O)H	250	11,400			
	-C(O)CH ₃	224	9,800			
Electr	-NO ₂	269	7,800			

Substituent Effects

• pH effects

	Primary		Secondary	
Substituent	λ (nm)	ε	λ (nm)	ε
—Н	203.5	7,400	254	204
-OH	210.5	6,200	270	1,450
-O ⁻	235	9,400	287	2,600
$-NH_2$	230	8,600	280	1,430
$-NH_3^+$	203	7,500	254	169
-COOH	230	11,600	273	970
-COO ⁻	224	8,700	268	560

- Substituent Effects
 - Di-substituted and multiple group effects

•If the two electonically dissimilar groups are ortho- or meta- to one another, the effect is usually the sum of the two individual effects (meta- no resonance; ortho-steric hind).

•If both groups are electron donating or withdrawing, the effect is similar to the effect of the stronger of the two groups as if it were a mono-substituted ring.

•If one group is electron withdrawing and one group electron donating and they are para- to one another, the magnitude of the shift is greater than the sum of both the group effects

Parent Chromophore		λ_{max}
R = alkyl or ring residue		246
R = H		250
R = OH or O-Alkyl		230
	O R G	

Substituent increment

G	0	т	p
Alkyl or ring residue	3	3	10
-O-Alkyl, -OH, -O-Ring	7	7	25
-O ⁻	11	20	78
-Cl	0	0	10
-Br	2	2	15
-NH ₂	13	13	58
-NHC(O)CH ₃	20	20	45
-NHCH ₃			73
-N(CH ₃) ₂	20	20	85

_