Editors:

Abigail T. Berman, MD, University of Pennsylvania Jordan Kharofa, MD, Medical College of Wisconsin

Introduction to Radiation Oncology

What Every Medical Student Needs to Know

Objectives

- Introduction to Oncology
 - Epidemiology
- Overview
 - Mechanism of Action
- Production of Radiation
- Delivery of Radiation
- Definitive vs Palliative Therapy
- Dose and Fractionation
- Process of Radiation
- MCW Radiation Oncology Department

Medical Student Goals

- Introduction to oncology basics
- Learn basics of radiation oncology
- Attend Tumor Board and conferences
- Have Fun!

Cancer Epidemiology ⁵

- Uncontrolled growth and spread of abnormal cells
 - If the spread is not controlled, it can result in death
- Approximately 1,660,290 new cancer cases are expected to be diagnosed in 2013

Introduction to Radiation ¹

Radiation oncology is the medical use of ionizing radiation (IR) as part of cancer treatment to control malignant cells.

▶ IR damages DNA of cells either directly or indirectly, through the formation of free radicals and reactive oxygen species.

Mechanism of IR ⁴

Double-Stranded Break

Single-Stranded Break

RT-Induced Cell Death⁴

- Mitotic cell death
 - Double and single-stranded breaks in a cell's DNA prevent that cell from dividing.
- Direct cell killing through apoptosis

Normal Cells vs Cancer Cells⁴

- Cancer cells are usually undifferentiated and have a decreased ability to repair damage
 - Healthy (normal) cells are differentiated and have the ability to repair themselves (cell cycle check points)
 - \rightarrow G0 \rightarrow G1 \rightarrow S \rightarrow G2 \rightarrow M

- DNA damage in cancer cells is inherited through cell division
 - accumulating damage to malignant cells causes them to die

Production of Radiation¹

IR is produced by electron, photon, proton, neutron or ion beams

Beams are produced by linear accelerators (LINAC)

Three Main Types of External Beam

Photons

- X-rays from a linear accelerator
- Light Charged Particles
 - Electrons
- Heavy Charged Particles
 - Protons
 - Carbon ions

Timeline

What is a simulation?

 Custom planning appointment placing patient in reproducible position

Contouring: Advances in Simulation Imaging Really Help!

PET/CT simulation

- Target structures
- Organs at risk (OARs) aka normal tissues

Linear Accelerator (LINAC) ¹

- Delivers a uniform dose of high-energy X-rays to the tumor.
- X-rays can kill the malignant cells while sparing the surrounding normal tissue.
 - Treat all body sites with cancer
- ► LINAC accelerates electrons, which collide with a heavy metal target → high-energy X-rays are produced.
- High energy X-rays directed to tumor
 - > X-rays are shaped as they exit the machine to conform to the shape of the patient's and the tumor.

LINAC¹

- Conformal treatment
 - Blocks placed in the head of the machine
 - Multileaf collimator that is incorporated into the head of the machine.
 - The beam comes out of the gantry, which rotates around the patient.
- Pt lies on a moveable treatment table and lasers are used to make sure the patient is in the proper position.
- RT can be delivered to the tumor from any angle by rotating the gantry and moving the treatment couch.

http://www.varian.com/media/oncology/products/clinac/images/clinac_2100c.jpg

 $http://www.varian.com/media/oncology/products/clinac/images/Stanford270_crop_Web.jpg$

Delivery of Radiation^{1,4}

- External beam RT (outside body)
 - Conventional 3D-RT (using CT based treatment planning)
 - Stereotactic radiosurgery
 - ▶ Ffocused RT beams targeting a well-defined tumor using extremely detailed imaging scans.
 - Cyberknife
 - □ Gamma Knife
 - □ Novalis
 - □ Synergy
 - □ TomoTherapy

Gamma Knife⁶

- Device used to treat brain tumors and other conditions with a high dose of RT in I fraction.
- Tumors or tumor cavities ≤ 4 cm
- ▶ Contains 201 Co-60 sources arranged in a circular array in a heavily shielded device.
 - This aims gamma RT through a target point in the pt's brain.
- Halo surgically fixed to skull for immobilization
- \rightarrow MRI done \rightarrow used for planning purposes.
- Ablative dose of RT is then sent through the tumor in I fraction
 - Surrounding brain tissues are relatively spared.
- ▶ Total time can take up to 45 minutes

Gamma Knife

http://local.ans.org/virginia/meetings/2004/GammaKnifePatientSmall.jpeg

Intensity Modulated Radiotherapy (IMRT)

High-precision RT that improves the ability to conform the treatment volume to concave tumor shapes

Image-Guided RT (IGRT)

- Repeated imaging scans (CT, MRI or PET) are performed daily while pt is on treatment table.
- Allows to identify changes in a tumor's size and/or location and allows the position of the patient or dose to be adjusted during treatment as needed.
- Can increase the accuracy of radiation treatment (reduction in the planned volume of tissue to be treated) → decrease radiation to normal tissue

Tomotherapy

- Form of image-guided IMRT
 - Combination of CT imaging scanner and an external-beam radiation therapy machine.
 - Can rotate completely around the patient in the same manner as a normal CT scanner.
- ▶ Obtain CT images of the tumor before treatment → precise tumor targeting and sparing of normal tissue.

Tomotherapy

http://www.mcw.edu/FileLibrary/Groups/RadiationOncology/images/Tomo.jpg

Proton Therapy

- Protons are positively charged particles located in the nucleus of a cell.
- Deposit energy in tissue differently than photons
 - Photons: Deposit energy in small packets all along their path through tissue
 - Protons deposit much of its energy at the end of their path
 - Bragg peak (see next slide)

Bragg Peak

http://web2.lns.infn.it/CATANA/images/News/toppag1.jpg

http://images.iop.org/objects/phw/world/16/8/9/pwhad2_08-03.jpg

Brachytherapy

- Sealed radioactive sources placed in area of treatment
- Low dose (LDR) vs High Dose (HDR)
 - LDR: Continuous low-dose radiation from the source over a period of days
 - Ex) Radioactive seeds in prostate cancer
- HDR: Robotic machine attached to delivery tubes placed inside the body guides radioactive sources into or near a tumor.
 - Sources removed at the end of each treatment session.
 - ▶ HDR can be given in one or more treatment sessions.
 - Ex. Intracavitary implants for gynecologic cancer

Temporary vs. Permanent Implants

- Permanent: Sources are surgically sealed within the body and remain there after radiation delivered
- Example: Prostate seed implants (see next slide)

Prostate Seed Implants

http://roclv.com/img/treatments/brachytherapy-245.jpg

▶ Temporary: Catheters or other "carriers" deliver the RT sources (see next slide)

- Catheters and RT sources removed after treatment.
- Can be either LDR or HDR

Breast multi-catheter placement

Uses of RT²

- Definitive Treatment
 - Aid in killing both gross and microscopic disease
- Palliative Treatment
 - Relieve pain or improve function or in pts with widespread disease or other functional deficits
 - Cranial nerve palsies
 - Gynecologic bleeding
 - ▶ Airway obstruction.
- Primary mode of therapy
- Combine radiotherapy with surgery, chemotherapy and/or hormone therapy.

Dose³

- Amount of RT measured in gray (Gy)
 - Varies depending on the type and stage of cancer being treated.
 - Ex. Breast cancer: 50-60 Gy (definitive)
 - Ex. SC compression: 30 Gy (palliative)
- Dose Depends on site of disease and if other modalities of treatment are being used in conjunction with RT
- Delivery of particular dose is determined during treatment planning

Fractionation³

- Total dose is spread out over course of days-weeks (fractionation)
 - Allows normal cells time to recover, while tumor cells are generally less efficient in repair between fractions
 - Allows tumor cells that were in radio-resistant phase of the cell cycle during one treatment to cycle into a sensitive phase of the cycle before the next tx is given.
- ▶ RT given M-F/ 5 days per week.
 - For adults usually administer 1.8 to 2 Gy/day, depending on tumor type
- In some cases, can give 2 tx (2 fractions) per day

Radiosensitivity³

- Different cancers respond differently to RT
- Highly radiosensitive cancer cells are rapidly killed by modest doses of RT
 - Lymphomas (30-36 Gy)
 - Seminomas (25-30 Gy)
- More radio-resistant tumors require higher doses of RT
 - H&N CA (70 Gy/35 fx)
 - Prostate CA (70-74 Gy)
 - → GBM (60 Gy/30 fx)

Process of RT

- ▶ 74 y/o pt with CC of prostate cancer
 - ▶ TIc, PSA 10, GS 7 (intermediate risk prostate cancer)
- Pt opts for RT
- ► CT simulation → CT scan to identify the tumor and surrounding normal structures.
 - Placed in molds/vac fixes that immobilize pt, skin marks placed, so position can be recreated during treatment

Process of RT

- CT scan loaded onto computers with planning software
- Prostate (gross tumor volume-GTV) and adjacent structures are drawn (contoured) on planning software

http://www.phoenix5.org/Infolink/Michalski/image/fig6_contours.JPG

Process of RT Planning

- Margins are placed around gross tumor volume to encompass microscopic disease spread (clinical tumor volume-CTV)
- Margins are placed around CTV
 - This is the planning tumor volume
- Want highest doses to GTV, CTV and PTV
 - Relatively lower doses to bladder, rectum, small bowel, femoral heads, etc
- Fields placed
- Dose-volume histogram reviewed
 - Graphically summarizes the simulated radiation distribution within a volume of interest of a patient which would result from a proposed radiation treatment plan.

http://www.phoenix5.org/Infolink/Michalski/image/fig6_contours.JPG

http://www.phoenix5.org/Infolink/Michalski/image/fig6_contours.JPG

Process of RT Planning

Pt returns to RT department to initiate RT approx 7-14 days later

Undergo a "dry-run"

After dry-run, pt starts treatment

http://www.insidestory.iop.org/images/linear_accelerator.jpg

Side-Effects³

- Acute vs Long term side-effects
 - Side effects usually localized
 - ▶ Ex. Acute side effects of prostate cancer
 - □ Diarrhea
 - □ Increased frequency of urination
 - Dysuria
 - ☐ Skin erythema
 - LT side-effects
 - □ Decreased sexual functioning
 - □ Approx I% risk of injury to bowel or bladder
 - Systemic side effects
 - Fatigue

Intraparenchymal Brain Metastasis

Clinical Incidence

- Lung 30-40%
- ▶ Breast 15-25%
- Melanoma 12-20%
- Unknown primary 3-8%
- Colorectal 3-7%
- ▶ Renal 2-6%

Symptoms

- Headache 50%
- Focal weakness 30%
- Mental disturbance 30%
- Gait disturbance 20%
- Seizures 18%

Signs

- Altered mental status 60%
- Hemiparesis 60%
- Hemisensory loss 20%
- Papilledema 20%
- Gait ataxia 20%
- Aphasia 18%

NCCN

Management of Brain Metastases

Steroids

Anticonvulsants

- Used to manage seizures in patients with brain tumors
- ▶ A significant fraction [40-50%] of such patients do not require AEDs
- Associated with inherent morbidity
- Monotherapy preferable
- May complicate administration of chemotherapy [p450 inducers]
- Surgery
- Radiation therapy
 - Whole brain radiation
 - Stereotactic radiosurgery

Whole brain radiation

Adverse events:

- Short term:
 - fatigue, hair loss, erythema
- Long term:
 - decreased neurocognitive effects (short term memory, altered executive function)
 - somnolence
 - leukoencephalopathy
 - brain atrophy
 - normal pressure hydrocephalus
 - cataracts
 - RT necrosis

Spinal Cord Compression

- Back pain
- Radicular symptoms
- Neurologic signs and symptoms
 - Often neurologic signs and symptoms are permanent
 - Ambulation and bowel/bladder function at the time of starting therapy correlates highly with ultimate functional outcome
- Plain films
 - 60-80% of patients with epidural disease/spinal cord compression have abnormal plain films
- MRI
 - Order with gad
 - Will show intramedullary lesions
 - Need to obtain a full screening MRI of the spine
- Myelogram/Metrizamide C

Spinal Cord Compression - Treatment

- **Steroids** are recommended for any patient with neurologic deficits suspected or confirmed to have CC. 10 mg IV/po and then 4-6 mg po q6 hrs
- Surgery should be considered for patients with a good prognosis who are medically and surgically operable
 - Radiotherapy after surgery
- RT should be given to nonsurgical patients
- Therapies should be initiated prior to neurological deficits when possible

References

- I. Gunderson, et. al. Clinical Radiation Oncology. 2nd edition. "Radiation Oncology Physics."
- 2. Hansen, E; Roach, M. Handbook of Evidenced-based Radiation Oncology. 2007
- 2. http://en.wikipedia.org/wiki/Radiation_therapy
- 3. http://www.cvmbs.colostate.edu/erhs/XRT/Frames/OVERVIEW
 W/OVERVIEW.TherapeuticModalities.htm
- 4. http://www.cancer.gov/cancertopics/factsheet/Therapy/radia-tion
- 5. http://www.cancer.org/acs/groups/content/@nho/document/s/document/acspc-024113.pdf
- 6. Gunderson, et.al. Clinical Radiation Oncology. 2nd edition. "Central Nervous System Tumors."

