Chapter -3-

(1) Solve O.D.E. of the second order

Reduction of order

The general form of non-homo. linear O.D.E. of second order is:

$$y'' + a_1(x)y' + a_2(x)y = f(x) \dots \dots (*)$$

Where a_1 , a_2 , f are function of x

Let u(x) is a particular solution of homo. linear O.D.E.

$$y'' + a_1(x)y' + a_2(x)y = 0$$

We can reduce of the equation (*) by the following steps:

1- Suppose the solution has the form:-

y=uv

2- by derivative ,obtain:

y=uv

$$y' = uv' + vu'$$

$$y'' = uv'' + u'v' + u'v' + u''v$$

$$= uv'' + 2u'v' + u''v$$

Substituted y, y', y'' in (*)

$$uv'' + 2u'v' + u''v + a_1(x)(uv' + vu') + a_2(x)uv = f(x)$$

$$uv'' + [2u' + a_1(x)u]v' + [u'' + a_1(x)u' + a_2(x)u]v = f(x)$$

$$u'' + a_1(x)u' + a_2(x)u = 0$$

$$uv'' + [2u' + a_1(x)u]v' = f(x) \dots \dots (**)$$

3- Let p = v' then p' = v''

Substituted in (**), obtain:

$$up' + (2u' + a_1(x)u)p = f(x)$$

It is non-homo. linear O.D.E. of the first order with dependent variable p independent x; we can solve it and find the solution of given equation by original variables.

Ex:-1- if $y = e^{-2x}$ is a solution of the homo. equation

$$(1+x)y'' + (4x+5)y' + (4x+6)y = 0$$
then find the solution of the equation

$$(1+x)y'' + (4x+5)y' + (4x+6)y = e^{-2x}$$

Solution:-

Let
$$y = ve^{-2x}$$

$$y' = -2ve^{-2x} + v'e^{-2x}$$

$$y'' = 4ve^{-2x} - 2v'e^{-2x} + v''e^{-2x} - 2v'e^{-2x}$$

Substituted in given equation

$$(1+x)(4ve^{-2x} - 2v'e^{-2x} + v''e^{-2x} - 2v'e^{-2x})$$

$$+ (4x+5)(-2ve^{-2x} + v'e^{-2x}) + (4x+6)ve^{-2x} = e^{-2x}$$

$$(1+x)v''e^{-2x} + v'e^{-2x} = e^{-2x}] \div e^{-2x}$$

$$(1+x)v'' + v' = 1$$

$$p = v'then p' = v''$$

$$\therefore (1+x)v'' + p = 1$$

(O.D.E. of the first order solving by integrating factor): $\frac{dp}{dx} + \frac{p}{1+x} dx = \frac{dx}{1+x}$

I.F. is
$$e^{\int \frac{1}{1+x} dx} = e^{\ln(1+x)} = 1+x$$

$$d(p(1+x))=dx$$

by integrating:

$$p(1+x) = x + c_1$$

$$\therefore p = \frac{x + c_1}{1 + x}$$

$$v' = \frac{x + c_1}{1 + x}$$

$$\therefore dv = \frac{x + c_1}{1 + r} dx$$

By integrating:

$$v = \int \frac{x+1-1+c_1}{1+x} dx + c_2$$

$$v = \int dx + \int \frac{c_1-1}{1+x} dx + c_2$$

$$v = x + (c_1 - 1) \ln|1 + x| + c_2$$

$$y = e^{-2x} [x + (c_1 - 1) \ln|1 + x| + c_2]$$

$$y = xe^{-2x} + (c_1 - 1) \ln|1 + x| e^{-2x} + c_2 e^{-2x}$$

<u>Ex:-2-</u> if $y=x^3$ is a solution of the homo. equation then find the general solution of this equation and find $y''+\frac{1}{x}y'-\frac{9}{x^2}y=0$ the other particular solution of this equation.

Solution:-

Let
$$y = x^3v$$

$$y' = 3vx^2 + v'x^3$$

$$y'' = 3v'x^2 + 6xv + 3v'x^2 + v''x^3$$

$$v'' = 6v'x^2 + 6xv + v''x^3$$

Substituted in given equation; obtain:

$$6v'x^{2} + 6xv + v''x^{3} + \frac{1}{x}(3vx^{2} + v'x^{3}) - \frac{9}{x^{2}}x^{3}v = 0$$

$$(6x^{2} + x^{2})v' + (6x + 3x - 9x)v = 0v''x^{3} + v''x^{3} + 7x^{2}v' = 0 \dots (*)$$

$$let \ p = v' \ then \ p' = v''$$

Substituted in (*); obtain:

$$x^3p' + 7x^2p = 0$$

$$p' + \frac{7}{x}p = 0$$

(O.D.E. of the first order solving by integrating factor) $dp + \frac{7}{x}pdx = 0$

I.F. is
$$e^{\int \frac{7}{x} dx} = e^{7 \ln x} = e^{\ln x^7} = x^7$$

$$d(px^7) = 0$$

$$px^7 = c_1$$

$$p = c_1 x^{-7}$$

$$\therefore v' = c_1 x^{-7}$$

$$dv = c_1 x^{-7} dx$$

By integrating; obtain:

$$v = \frac{-c_1}{6}x^{-6} + c_2$$

$$y = x^3 \left[\frac{-c_1}{6} x^{-6} + c_2 \right]$$

$$y = \frac{-c_1}{6}x^{-3} + c_2x^3$$

is particular solution of homo. equation: $y_1 = x^3$

is particular solution of homo. equation $y_2 = \frac{-1}{6}x^3$

The linearly combination of y_1, y_2 is the general solution of given equation

Exercise

- 1- if $y_1=e^x$ is a solution of the homo. equation $y^{\prime\prime}-y=0$ then use the reduction of order to find a second solution y_2 .
- 2- if y=x is a solution of the homo. equation $x^3y'' + xy' y = 0$ then use the reduction of order to find the general solution.

Remark

We can use the reduction of order to solve O.D.E. of the higher order.

Ex. Solve the following equations:

1-
$$xy''' - 2y'' = 0$$

Solution

Let q = y''

$$\therefore q' = y'''$$

$$\therefore xq' - 2q = 0$$

$$xdq - 2qdx = 0$$

$$\frac{dq}{q} - \frac{2}{x}dx = 0$$

by integrating

lnq-2lnx=lna

 $lnq-lnx^2 = lna$

$$ln\frac{q}{x^2} = lna$$

$$\therefore q = ax^2$$

$$y'' = ax^2$$

By integrating

$$y' = a\frac{x^3}{3} + b$$

By integrating

$$y = a\frac{x^4}{12} + bx + c$$

2-
$$y''' - y'' = 1$$

Solution

Let p = y''

$$\therefore p' = y'''$$

$$\therefore p' - p = 1$$

$$\frac{dp}{dx} - p = 1$$

$$dp - pdx = dx$$

$$dp = (p+1)dx$$

$$\frac{dp}{p+1} = dx$$

by integrating

$$ln|p+1| = x + c_1$$

$$\therefore p + 1 = e^{x + c_1}$$

$$\therefore p = Ae^x - 1$$

$$y^{\prime\prime} = Ae^x - 1$$

By integrating

$$y' = Ae^x - x + B$$

By integrating

$$y = Ae^x - \frac{x^2}{2} + Bx + c$$

Exercise

Solve the equation xy'' = y'

(2) Linear O.D.E. with constant coefficients

<u>Def.</u>:- The functions $y_{1(x)}, y_{2(x)}, \dots, y_{n(x)}$ are linearly dependent on I if there is a set of the constants c_1, c_2, \dots, c_n

Not all zero s.t. $c_1y_1+c_2y_2+\cdots+c_ny_n=0$ In $a\leq x\leq b\ldots\ldots(**)$

And the functions $y_i(x)$, $i=1,2,3,\ldots n$ are linearly independent on I if the constants $c_1,c_2,\ldots \ldots c_n$ all zero $c_1=c_2\ldots \ldots =c_n=0$

[The left member of (**) is called a linear combination of the functions y_1, y_2, \dots, y_n .]

Ex.-1- prove that the functions $y_1 = e^x$, $y_2 = e^{2x}$

Are linear independent.

Solution:-

$$c_1 y_1 + c_2 y_2 = 0$$

$$c_1 e^x + c_2 e^{2x} = 0$$

(derivative w.r.t x) $c_1 e^x + 2c_2 e^{2x} = 0$

$$-c_2e^{2x}=0$$

$$e^{2x} \neq 0 \rightarrow c_2 = 0$$

$$c_1 = 0$$

$$\div c_1 = c_2 = 0$$

The functions are linear independent for any x:

Theorem-1-

Let
$$y_1, y_2,, y_n$$

Be solutions of the homo. n-th order linear O.D.E. on an interval I Then the linear combination

Where c_1, c_2, \dots, c_n Are arbitrary constants

Is a solutio on I.

Corollaries:-

1- A constant multiple $y = c_1 y_1(x)$

Of a solution $y_1(x)$ Of a homo. linear O.D.E.

Is also solution.

2- A homo. linear O.D.E. always has the trivial solution y = 0

Def.:-The function
$$y = c_1y_1 + c_2y_2 + \cdots + c_ny_n$$

Which is a linear combination for solutions is a general solution for homo. linear O.D.E. if y_1, y_2, \dots, y_n is linear independent.

Ex.: The functions
$$y_1 = x^2$$
, $y_2 = x^2 lnx$

Are solution of

$$0x^3y''' - 2xy' + 4y =$$

On $(0, \infty)$ then

$$y = c_1 x^2 + c_2 x^2 \ln x$$

is a solution of this eq. on $(0, \infty)$

Is called the general solution.

<u>Def.</u>:- suppose each of the function $y_1, y_2, \dots y_n$

Has at least (n-1) derivative; the determinate

Where the primes denoted derivative is called the **wronskian** of the functions.

Theorem-2-:-

The solutions y_1, y_2, \dots, y_n for homo. linear O.D.E. are linear dependent iff $w(y_1, y_2, \dots, y_n) = 0$

And y_1, y_2, \dots, y_n are linear independent iff $w(y_1, y_2, \dots, y_n) \neq 0$

Ex.-1-prove that the functions e^x , $4e^x$, $3e^{-2x}$

Are linear dependent for all x.

Solution:

$$w(e^{x}, 4e^{x}, 3e^{-2x}) = \begin{vmatrix} e^{x} & 4e^{x} & 3e^{-2x} \\ e^{x} & 4e^{x} & -6e^{-2x} \\ e^{x} & 4e^{x} & 12e^{-2x} \end{vmatrix}$$

$$\begin{vmatrix}
 e^{x} & e^{x} & 3e^{-2x} \\
 e^{x} & e^{x} & -6e^{-2x} \\
 e^{x} & e^{x} & 12e^{-2x}
\end{vmatrix}$$
=0

The functions e^x , $4e^x$, $3e^{-2x}$ are linear dependent for all x.:

Ex.-2- prove that the functions x^2 , x^3 , x^{-2}

Are linear independent solutions for $x^3y''' - 6xy' + 12y = 0$

Solution:-

$$w(x^{2}, x^{3}, x^{-2}) = \begin{vmatrix} x^{2} & x^{3} & x^{-2} \\ 2x & 3x^{2} & -2x^{-3} \\ 2 & 6x & 6x^{-4} \end{vmatrix}$$
$$= 20$$
$$\neq 0$$

Ex.-3- are the functions sinx ,cosx solution for y'' + y = 0? and are these functions linear independent?

$$y = \sin x \rightarrow y' = \cos x \rightarrow y'' = -\sin x$$

-\sinx+\sinx=0

sinx is a solution for this equation∴

$$y = \cos x \rightarrow y' = -\sin x \rightarrow y'' = -\cos x$$

$$-\cos x + \cos x = 0$$

cosx is a solution for this equation∴

$$w(sinx, cosx) = \begin{vmatrix} sinx & cosx \\ cosx & -sinx \end{vmatrix}$$
$$= -sin^2 x - cos^2 x = -1 \neq 0$$

Sinx,cosx are linear independent

$$y = c_1 sin x + c_2 cos x$$

Is a general solution for this eq.

"Solution of the homo. Linear diff.eq. with constant coefficients"

The general form of homo. linear diff. eq. with constant coefficients is:-

$$\frac{dy}{dx} + a_n y = 0$$
 (n order) $\frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_{n-1}$

Where $a_1, a_2, \dots, a_{n-1}, a_n$ are constants.

We can write this eq. by using polynomial's operator:-

$$F(D)y = (D^n + a_1D^{n-1} + a_2D^{n-2} + \dots + a_{n-1}D + a_n)y = 0$$

Let
$$F(m) = m^n + a_1 m^{n-1} + a_2 m^{n-2} + \dots + a_{n-1} m + a_n$$

Let
$$F(m) = 0$$

$$m^{n} + a_{1}m^{n-1} + a_{2}m^{n-2} + \dots + a_{n-1}m + a_{n} = 0$$
:

Characteristic eq. for the homo. linear diff. eq.

$$(m - m_1)(m - m_2)(m - m_3) \dots \dots (m - m_n) = 0$$
:

are roots for Characteristic eq. $m_1, m_2, \dots \dots m_n$

Remark-1-

The general form the homo. linear diff. eq. with constant coefficients of the second order is:-

$$\frac{dy}{dx} + a_2 y = 0 \dots (*) \frac{d^2 y}{dx^2} + a_1$$

$$D^2y + a_1\mathrm{D}y + a_2y = 0$$

$$(D^2 + a_1D + a_2)y = 0$$

$$F(D)y = 0$$
 where $F(D) = D^2 + a_1D + a_2$:

$$F(m) = m^2 + a_1 m + a_2$$

Let F(m)=0

$$\therefore m^2 + a_1 m + a_2 = 0$$

$$(m-m_1)(m-m_2)=0$$

Where m_1 , m_2 are roots

We can solve the homo. linear O.D.E. with constant coefficients by the following:-

Case-1-

If the roots are real and $m_1 \neq m_2$; then the general solution for(*) is:-

$$y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Case-2-

If the roots are real and $m_1=m_2=m$;then the general solution for(*) is:-

$$y(x) = (c_1 x + c_2)e^{mx}$$

Case-3-

If the roots are complex $m_1=a+ib$, $m_2=a-ib$; then the general solution for(*) is:-

$$y(x) = e^{ax}(Acosbx + Bsinbx)$$

Ex.:- solve the following eq.'s:-

$$1-y'' + y' - 2y = 0$$

Solution:-

$$D^2y + Dy - 2y = 0$$

$$(D^2 + D - 2)y = 0$$

$$F(D)y = (D^2 + D - 2)y = 0$$

$$F(m) = m^2 + m - 2$$

Let F(m)=0

$$\therefore m^2 + m - 2 = 0$$

$$(m-1)(m+2)=0$$

are roots
$$m_1=1$$
 , $m_2=-2$

 $m_1 \neq m_2$

$$\therefore y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

$$\therefore y(x) = c_1 e^x + c_2 e^{-2x}$$

$$2-y'' - 4y' + 4y = 0$$

Solution:-

$$D^2y - 4Dy + 4y = 0$$

$$(D^2 - 4D + 4)y = 0$$

$$F(D)y = (D^2 - 4D + 4)y = 0$$

$$F(m) = m^2 - 4m + 4$$

Let F(m)=0

$$\therefore m^2 - 4m + 4 = 0$$

$$(m-2)(m-2)=0$$

are roots $m_1=2$, $m_2=2$

$$m_1 = m_2$$

$$\therefore y(x) = e^{mx}(c_1x + c_2)$$

$$\therefore y(x) = e^{2x}(c_1x + c_2)$$

$$3-y'' + 2y' + 2y = 0$$

Solution:-

$$D^2y + 2Dy + 2y = 0$$

$$(D^2 + 2D + 2)y = 0$$

$$F(D) = D^2 + 2D + 2F(D)y = (D^2 + 2D + 2)y = 0 \rightarrow$$

$$F(m) = m^2 + 2m + 2$$

Let F(m)=0

$$\therefore m^2 + 2m + 2 = 0$$

$$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$m = \frac{-2 \pm \sqrt{4 - 8}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2 \pm 2i}{2} = \frac{2(-1 \pm i)}{2} = -1 \pm i$$

are roots
$$% \left(\mathbf{a=-1,\,b=1}\right) m_{1}=-1+i$$
 , $m_{2}=-1-i$

$$\therefore y(x) = e^{ax}(Acosbx + Bsinbx)$$

$$\therefore y(x) = e^{-x}(A\cos x + B\sin x)$$

Exercises:- solve the following eq.'s:-

$$1-y'' - 4y' + 3y = 0$$

$$2-y^{\prime\prime}+y^{\prime}=0$$

$$3-y''-2y'+y=0$$

$$4-y'' + y' + y = 0$$