Example: Find the principal argument Arg z when

Exercises: Find the principal argument Arg z when $z =$ $-i, 1, -1.$

Note:

$$
\begin{array}{c}\n1 \mp i \\
-1 \mp i\n\end{array}
$$
\nAngle 45°
\n
$$
\begin{array}{c}\n1 \mp \sqrt{3} i \\
-1 \mp \sqrt{3} i\n\end{array}
$$
\nAngle 60°
\n
$$
\begin{array}{c}\n\sqrt{3} \mp i \\
-\sqrt{3} \mp i\n\end{array}
$$
\nAngle 30°

Properties of arg z:

1.
$$
\arg(z_1, z_2) = \arg z_1 + \arg z_2
$$

\n2.
$$
\arg\left(\frac{1}{z}\right) = -\arg z
$$

\n3.
$$
\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2
$$

\n4.
$$
\arg \bar{z} = -\arg z
$$

Example: Let $z_1 = i$, $z_2 = -1 + \sqrt{3} i$ then find $\arg(i(1 + \sqrt{3} i))$

Solution:

$$
\arg\left(i(1+\sqrt{3} i)\right) = \arg i + \arg(1+\sqrt{3} i)
$$

= $\left(\frac{\pi}{2} + 2n\pi\right) + \left(\frac{\pi}{3} + 2m\pi\right)$
= $\frac{5}{6}\pi + 2k\pi$, $k = n + m$
Example: Let $z_1 = i$, $z_2 = -1 + \sqrt{3} i$

$$
\arg z_1 = \left(\frac{\pi}{2} + 2n\pi\right), \arg z_2 = \left(\frac{\pi}{3} + 2n\pi\right)
$$

Arg $z_1 = \frac{\pi}{2}$, Arg $z_2 = \frac{\pi}{3}$
 $z_1 z_2 = i(-1 + \sqrt{3} i) = -\sqrt{3} - i$

$$
\arg z_1 z_2 = \pi + \frac{\pi}{6} = \frac{7}{6}\pi + 2n\pi
$$

 $\frac{7}{6}$ $\pi + 2n\pi$

$$
\therefore \text{Arg}(z_1) + \text{Arg}(z_2) = \frac{7}{6} \pi \notin [-\pi, \pi]
$$

[7] Powers and Roots

Let $z = re^{i\theta}$ be a nonzero complex number, let *n* be an integer number then

$$
z^n = r^n e^{in\theta}
$$

Example: Find $(1 + i)^{25}$

 $r = \sqrt{x^2 + y^2} = \sqrt{2}$, $\theta = \frac{\pi}{4}$ **Solution:** $r = \sqrt{x^2 + y^2} = \sqrt{2}$, $\theta = \frac{\pi}{4}$ $z^{25} = (re^{i\theta})^{25}$ $=\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)$ 25 $=\left(\sqrt{2}\right)^{25}e^{i25\frac{\pi}{4}}$ 4 $= 12\sqrt{2}\left(\cos{\frac{\pi}{4}}\right)$ $\frac{\pi}{4}$ + i sin $\frac{\pi}{4}$ $= 12\sqrt{2} \left(\frac{1}{\sqrt{2}} \right)$ $\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $= 12(1 + i)$ **Example:** Find $(-1 + i)^4$ $r = \sqrt{2}$, $\theta = \pi - \frac{\pi}{4}$ $\frac{\pi}{4} = \frac{3}{4}$ **Solution:** $r = \sqrt{2}$, $\theta = \pi - \frac{\pi}{4} = \frac{3}{4}\pi$ $z^n = r^n e^{in\theta} = (\sqrt{2})^4 e^{i 4 \cdot \frac{3\pi}{4}}$ 4 $= 4e^{i3\pi}$ $= 4(\cos 3\pi + i \sin 3\pi)$

$$
=4(-1+0)=-4
$$

[8] De Moivre's Theorem

 $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

 $z^n = z_0$ then $z = z_0^n$ 1 $\frac{1}{n}$ and $z = re^{i\theta} = \sqrt[n]{r_0} e^{i\left(\frac{\theta_0 + 2k\pi}{n}\right)}$ **Note:** If $z^n = z_0$ then $z = z_0^{\overline{n}}$ and $z = re^{i\theta} = \sqrt[n]{r_0} e^{i(\frac{\theta_0 + z_0}{n})} = z^{1/n}$ is called nth $-$ root of z.

Example: Calculate root of $z^3 = i$

Solution:
$$
z^3 = i \rightarrow z = (i)^{1/3}
$$

\n $\rightarrow re^{i\theta} = (1. e^{i(\frac{\pi}{2} + 2k\pi)})^{1/3}$
\ns.t $\theta_0 = \frac{\pi}{2} + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$
\n $\rightarrow re^{i\theta} = e^{i\frac{\pi}{6} + \frac{2}{3}k\pi}$
\n $\therefore r = 1, \theta = \frac{\pi}{6} + 2k\pi, k = 0, \pm 1, \pm 2, ...$

To find the roots:

If $k = 0 \rightarrow \theta_1 = \frac{\pi}{6}$ 6 (in the first quarter) $\rightarrow z_1 = 1. e^{i \frac{\pi}{6}}$ 6 If $k = 1 \rightarrow z_2 = 1. e^{i \frac{\pi}{6}}$ $\frac{\pi}{6} + \frac{2\pi}{3}$ (in the second quarter) $=$ cos $\frac{5}{6}$ $\frac{5}{6}\pi + i \sin \frac{5}{6}\pi$ $=\frac{-\sqrt{3}}{6}$ $\frac{\sqrt{3}}{6} + \frac{i}{2}$ 2 If $k = 2 \rightarrow z_3 = 1. e^{i \frac{\pi}{6}}$ $\frac{\pi}{6} + \frac{4\pi}{3}$ 3 $\frac{\pi}{6}$ soc = $\frac{\pi}{6}$ nis $i + \frac{\pi}{6}$ 6 $=-i$

Note:

1.If the complex number was raised to a fraction whether it was 1 $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}$, ..., $\frac{1}{n}$ $\frac{1}{n}$ then

the number of roots is $3, 4, ..., n$. In the above example the number of roots is 3.

2. $z^n = z_0$ has *n* different roots only and they are located on the vertices of a

regular polygon centered at the origin.

Example: $z^2 = 1 + i$ has two different roots

Solution:

$$
z^{2} = 1 + i \rightarrow z = (1 + i)^{1/2}
$$
\n
$$
r_{0} = \sqrt{2}, \ \theta_{0} = \frac{\pi}{4} + 2n\pi
$$
\n
$$
\text{Since } z = (1 + i)^{1/2}
$$
\n
$$
\therefore r e^{i\theta} = (\sqrt{2})^{\frac{1}{2}} \left(e^{i\frac{\pi}{4} + 2n\pi} \right)^{\frac{1}{2}}
$$
\n
$$
= \sqrt[4]{2} e^{i\frac{\pi}{8} + n\pi}
$$
\n
$$
r = \sqrt[4]{2}, \ \ \theta = \frac{\pi}{8} + k\pi
$$
\n
$$
\text{If } k = 0 \rightarrow z_{1} = \sqrt[4]{2} e^{i\frac{\pi}{8}}
$$
\n
$$
= \sqrt[4]{2} \left(\sqrt{\frac{1 + \cos\frac{\pi}{8}}{2}} + i \sqrt{\frac{1 - \cos\frac{\pi}{8}}{2}} \right)
$$
\n
$$
\text{If } k = 1 \rightarrow z_{2} = \sqrt[4]{2} e^{i\frac{\pi}{8} + \pi}
$$
\n
$$
= \sqrt[4]{2} \left(\cos\left(\frac{\pi}{8} + \pi\right) + i \sin\left(\frac{\pi}{8} + \pi\right) \right)
$$
\n
$$
= \sqrt[4]{2} \left(-\cos\frac{\pi}{8} - i \sin\frac{\pi}{8} \right)
$$
\n
$$
= -\sqrt[4]{2} \left(\cos\frac{\pi}{8} + i \sin\frac{\pi}{8} \right)
$$

Note:

$$
\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}
$$

$$
\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}
$$

<u>Note:</u> Let $m, n \neq 0$ be any integer numbers, let *z* be any complex number then

$$
(z)^{m/n} = \left(z^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{r_0} e^{\left(\frac{i\theta_0 + 2k\pi}{n}\right)}\right)^m
$$

$$
= \left(\sqrt[n]{r_0}\right)^m e^{i\frac{m(\theta_0 + 2k\pi)}{n}}, \ k = 0, \mp 1, \mp 2, \dots
$$

<u>Example:</u> Solve the equation $z^{2/3} - i = 0$

 $z^{2}/3 = i \rightarrow z = (i)^{2}/3 = (i^{1}/3)$ 2 *Solution:*

 3^{7} **)** $($ ^{*†*} **)** $($ $=$

That is each one has three roots.

Let
$$
w = (i)^{1/3} \rightarrow z = w^2
$$

Now, we find the roots of w

$$
r_0 = 1, \theta_0 = \frac{\pi}{2} + 2k\pi, k = 0, \pm 1, \pm 2, ...
$$

\n
$$
w = re^{i\theta} = 1. (e^{i\frac{\pi}{2} + 2k\pi})^{1/3}
$$

\n
$$
= e^{i\frac{\pi}{6} + \frac{2k\pi}{3}}
$$

\n
$$
\therefore w_1 = e^{i\frac{\pi}{6}} = \cos\left(\frac{\pi}{6} + i\sin\frac{\pi}{6}\right), k = 0
$$

\n
$$
w_2 = e^{i\frac{\pi}{6} + \frac{2\pi}{3}} = e^{i\frac{5\pi}{6}}, k = 1
$$

\n
$$
w_3 = e^{i\frac{\pi}{6} + \frac{4\pi}{3}} = e^{i\frac{3\pi}{2}}, k = 2
$$

$$
\therefore z = w^2
$$

\n
$$
\therefore z_1 = (w_1)^2 = (e^{i\frac{\pi}{6}})^2 = e^{i\frac{\pi}{3}}
$$

\n
$$
= cos \frac{\pi}{3} + i sin \frac{\pi}{3}
$$

\n
$$
= \frac{1}{2} + i \frac{\sqrt{3}}{2}
$$

\n
$$
z_2 = (w_2)^2 = (e^{i\frac{5\pi}{6}})^2 = e^{i\frac{5\pi}{3}}
$$

\n
$$
= cos \frac{5\pi}{3} + i sin \frac{5\pi}{3}
$$

\n
$$
z_3 = (w_3)^2 = (e^{i\frac{3\pi}{2}})^2 = e^{i3\pi} = cos 3\pi + i sin 3\pi
$$

Exercises: solve the equation $z^3 + 1 = 0$

[9] Regions in the Complex Plane

Some definitions and concepts:

Definition: Let *z* be any point in the *z*-plane, let $\epsilon > 0$ then

1. $N_{\epsilon}(z_0) = \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}$

This set is called a neighborhood of z_0 .

2. $S_{\epsilon}(z_0) = \{ z \in \mathbb{C} : |z - z_0| = \epsilon \}$

This set is called sphere with center z_0 .

3. $D_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| \le \epsilon\}$

This set is called the Disk with center z_0 and radius ϵ .

Definition: Let $U \subseteq \mathbb{C}$, we say that U is open set if

 $\forall w \in U, \exists N_{\epsilon}(w) \text{ s.t } N_{\epsilon}(w) \subseteq U.$

For example: ∅, ℂ are open sets.

Definition: Let $F \subseteq \mathbb{C}$, we say that F is closed set if $\mathbb{C} - F$ is open set.

Definition: An open set $S \subseteq \mathbb{C}$ is connected if each pair of points z_1, z_2 in it can be joined by a polygon line, consisting of a finite number of line segments joined end to

end that lies entirely in S .

Definition: Let $S \subseteq \mathbb{C}$, we say that S is Region if it is open and connected.

Example:

1. $|z| > 1$, $|z| < 1$ is Region.

2. Let $|z| = 0$ is not Region, since it is connected but not open set.

3. $\mathbb{R} \subset \mathbb{C}$ is connected but not open, since ∀ $r \in \mathbb{R}$, ∃ $N_{\epsilon}(r)$ contain some of complex points.

Definition: Let $z_0 \in S$, we say that z_0 is interior point if there exist a neighborhood $N_{\epsilon}(z_0)$ s.t $N_{\epsilon}(z_0) \subseteq S$.

Definition: Let $z_0 \in S$, we say that z_0 is exterior point if there exist a neighborhood $N_{\epsilon}(z_0)$ s.t $N_{\epsilon}(z_0) \cap S = \emptyset$.

Example: $|z| > 1$

<u>Definition:</u> Let $z_0 \in S$, we say that z_0 is Boundary point if $\forall N_{\epsilon}(z_0)$ contain points

from inside S and outside it.

Boundary \otimes point

Note: *S* is close set iff it contains all the boundary points.

Example: $S = \{\mp i, \mp 2i\}$, is S open set ?

Note $N_{\epsilon}(i) \nsubseteq S$, therefore S is not open.

Example: $S = \{ z \in \mathbb{C} : 1 < |z| < 2 \}$

0 is exterior point of S 1, 2 are boundary points of S is interior point of S

Example: $D = \{ z \in \mathbb{C} : 2 < |z| \leq 3 \}$

is not open set since it contain all the boundary points.

Example: $S = \{ z \in \mathbb{C} : |z| < 1 \} \cup \{ z \in \mathbb{C} : |z - 2| \leq 1 \}$

S is connected set.

But if

, $S = \{ z \in \mathbb{C} : |z| < 1 \}$ ∪ $\{ z \in \mathbb{C} : |z - 2| < 1 \}$

Then S is not a connected set.

<u>Definition:</u> Let $S \subseteq \mathbb{C}$, we say that S is bounded set if ∃ Disk D ,

such that $S \subseteq D.D = \{z : |z| \leq \mathbb{R}\}\$

 $S = \{ z \in \mathbb{C} : r \geq 1, 0 \leq \theta \leq \frac{\pi}{4} \}$ **Example**: $S = \{ z \in \mathbb{C} : r \ge 1, 0 \le \theta \le \frac{\pi}{4} \}$

is not bounded set since \exists Disk contain S.S

Example: $|z| = 1$ is bounded set

 \otimes

 $r \geq \frac{1}{2}$

 θ

Example: $S = \{\overline{+}i, \overline{+}2i\}$

- 1. S is not open set since every point of S is boundary point.
- 2. S is close set since every point of S is boundary point.
- $3. S$ is not connected set.
- 4. *S* is not bounded set.

Definition: Let $z_0 \in S$, we say that z_0 is limit point if

$$
N_{\epsilon}(z_0) \cap (S - z_0) \neq \emptyset
$$

 $S = \{ z \in \mathbb{C} : z = \frac{1}{z} \}$ **Example**: $S = \{ z \in \mathbb{C} : z = \frac{1}{n}, n = 1, 2, ...\}$, 0 is the only limit point