Example: Find the principal argument Arg *z* when

Exercises: Find the principal argument $\operatorname{Arg} z$ when z = -i, 1, -1.

Note:

$$\begin{array}{c} 1 \mp i \\ -1 \mp i \end{array} \right\} \quad \text{Angle } 45^{\circ} \\ 1 \mp \sqrt{3} i \\ -1 \mp \sqrt{3} i \end{array} \right\} \text{Angle } 60^{\circ} \\ \hline \sqrt{3} \mp i \\ -\sqrt{3} \mp i \end{array} \right\} \quad \text{Angle } 30^{\circ} \\ \end{array}$$

Properties of arg z :

1.
$$\arg(z_1, z_2) = \arg z_1 + \arg z_2$$

2. $\arg\left(\frac{1}{z}\right) = -\arg z$
3. $\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$
4. $\arg \bar{z} = -\arg z$

Example: Let $z_1 = i$, $z_2 = -1 + \sqrt{3} i$ then find $\arg\left(i\left(1 + \sqrt{3} i\right)\right)$

Solution:

$$\arg\left(i(1+\sqrt{3} i)\right) = \arg i + \arg(1+\sqrt{3} i)$$
$$= \left(\frac{\pi}{2} + 2n\pi\right) + \left(\frac{\pi}{3} + 2m\pi\right)$$
$$= \frac{5}{6}\pi + 2k\pi, \quad k = n + m$$

Example: Let $z_1 = i$, $z_2 = -1 + \sqrt{3} i$
 $\arg z_1 = \left(\frac{\pi}{2} + 2n\pi\right)$, $\arg z_2 = \left(\frac{\pi}{3} + 2n\pi\right)$
Arg $z_1 = \frac{\pi}{2}$, Arg $z_2 = \frac{\pi}{3}$
 $z_1 z_2 = i(-1+\sqrt{3} i) = -\sqrt{3} - i$
 $\arg z_1 z_2 = \pi + \frac{\pi}{6} = \frac{7}{6}\pi + 2n\pi$

$$\therefore \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) = \frac{7}{6} \pi \notin [-\pi, \pi]$$

[7] Powers and Roots

Let $z = re^{i\theta}$ be a nonzero complex number, let *n* be an integer number then

$$z^n = r^n e^{in\theta}$$

Example: Find $(1 + i)^{25}$

Solution: $r = \sqrt{x^2 + y^2} = \sqrt{2}$, $\theta = \frac{\pi}{4}$ $z^{25} = \left(re^{i\theta}\right)^{25}$ $=\left(\sqrt{2}\,e^{i\frac{\pi}{4}}\right)^{25}$ $= (\sqrt{2})^{25} e^{i 25.\frac{\pi}{4}}$ $= 12\sqrt{2}\left(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\right)$ $= 12\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$ = 12(1+i)**Example:** Find $(-1+i)^4$ **Solution:** $r = \sqrt{2}$, $\theta = \pi - \frac{\pi}{4} = \frac{3}{4}\pi$ $z^n = r^n e^{in\theta} = \left(\sqrt{2}\right)^4 e^{i 4 \cdot \frac{3\pi}{4}}$ $= 4e^{i3\pi}$ $= 4(\cos 3\pi + i \sin 3\pi)$ = 4(-1+0) = -4

[8] De Moivre's Theorem

 $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$

<u>Note</u>: If $z^n = z_0$ then $z = z_0^{\frac{1}{n}}$ and $z = re^{i\theta} = \sqrt[n]{r_0} e^{i\left(\frac{\theta_0 + 2k\pi}{n}\right)} = z^{1/n}$ is called nth – root of z. **Example:** Calculate root of $z^3 = i$ Solution: $z^3 = i \rightarrow z = (i)^{1/3}$ $\rightarrow re^{i\theta} = \left(1.e^{i\left(\frac{\pi}{2}+2k\pi\right)}\right)^{1/3}$ s.t $\theta_0 = \frac{\pi}{2} + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$ $\rightarrow re^{i\theta} = e^{i\frac{\pi}{6} + \frac{2}{3}k\pi}$ $\therefore r = 1$, $\theta = \frac{\pi}{6} + 2k\pi$, $k = 0, \pm 1, \pm 2, \dots$ To find the roots: If $k = 0 \rightarrow \theta_1 = \frac{\pi}{\epsilon}$ (in the first quarter) $\rightarrow z_1 = 1.e^{i\frac{\pi}{6}}$ If $k = 1 \rightarrow z_2 = 1.e^{i\frac{\pi}{6} + \frac{2\pi}{3}}$ (in the second quarter) $=\cos\frac{5}{6}\pi + i\sin\frac{5}{6}\pi$ $=\frac{-\sqrt{3}}{6}+\frac{i}{2}$ If $k = 2 \rightarrow z_3 = 1.e^{i\frac{\pi}{6} + \frac{4\pi}{3}}$ $\frac{\pi 9}{6}$ nis $i + \frac{\pi 9}{6}$ soc = = -iNote:

1. If the complex number was raised to a fraction whether it was $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$ then

the number of roots is 3, 4, ..., n. In the above example the number of roots is 3.

2. $z^n = z_0$ has *n* different roots only and they are located on the vertices of a

regular polygon centered at the origin.

Example: $z^2 = 1 + i$ has two different roots

Solution:

$$z^{2} = 1 + i \rightarrow z = (1 + i)^{1/2}$$

$$r_{0} = \sqrt{2}, \ \theta_{0} = \frac{\pi}{4} + 2n\pi$$
Since $z = (1 + i)^{1/2}$

$$\therefore re^{i\theta} = (\sqrt{2})^{\frac{1}{2}} \left(e^{i\frac{\pi}{4} + 2n\pi}\right)^{\frac{1}{2}}$$

$$= \sqrt[4]{2} e^{i\frac{\pi}{8} + n\pi}$$

$$r = \sqrt[4]{2}, \ \theta = \frac{\pi}{8} + k\pi$$
If $k = 0 \rightarrow z_{1} = \sqrt[4]{2} e^{i\frac{\pi}{8}}$

$$= \sqrt[4]{2} \left(\sqrt{\frac{1 + \cos\frac{\pi}{8}}{2}} + i\sqrt{\frac{1 - \cos\frac{\pi}{8}}{2}}\right)$$
If $k = 1 \rightarrow z_{2} = \sqrt[4]{2} e^{i\frac{\pi}{8} + \pi}$

$$= \sqrt[4]{2} \left(\cos\left(\frac{\pi}{8} + \pi\right) + i\sin\left(\frac{\pi}{8} + \pi\right)\right)$$

$$= \sqrt[4]{2} \left(\cos\left(\frac{\pi}{8} + \pi\right) + i\sin\left(\frac{\pi}{8} + \pi\right)\right)$$

$$= -\sqrt[4]{2} \left(\cos\left(\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)\right)$$

Note:

$$\cos\frac{\theta}{2} = \mp \sqrt{\frac{1+\cos\theta}{2}}$$
$$\sin\frac{\theta}{2} = \mp \sqrt{\frac{1-\cos\theta}{2}}$$

<u>Note</u>: Let $m, n \neq 0$ be any integer numbers, let *z* be any complex number then

$$(z)^{m/n} = \left(z^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{r_0} e^{\left(\frac{i\theta_0 + 2k\pi}{n}\right)}\right)^m$$
$$= \left(\sqrt[n]{r_0}\right)^m e^{i\frac{m(\theta_0 + 2k\pi)}{n}}, \ k = 0, \pm 1, \pm 2, \dots$$

Example: Solve the equation $z^{2/3} - i = 0$

Solution: $z^{2/3} = i \rightarrow z = (i)^{2/3} = (i^{1/3})^2$

3⁴) (3¹) (=

That is each one has three roots.

Let
$$w = (i)^{1/3} \to z = w^2$$

Now, we find the roots of w

$$r_{0} = 1, \theta_{0} = \frac{\pi}{2} + 2k\pi, k = 0, \mp 1, \mp 2, ...$$

$$w = re^{i\theta} = 1. \left(e^{i\frac{\pi}{2} + 2k\pi}\right)^{1/3}$$

$$= e^{i\frac{\pi}{6} + \frac{2k\pi}{3}}$$

$$\therefore w_{1} = e^{i\frac{\pi}{6}} = \cos\left(\frac{\pi}{6} + i\sin\frac{\pi}{6}\right), k = 0$$

$$w_{2} = e^{i\frac{\pi}{6} + \frac{2\pi}{3}} = e^{i\frac{5\pi}{6}}, k = 1$$

$$w_{3} = e^{i\frac{\pi}{6} + \frac{4\pi}{3}} = e^{i\frac{3\pi}{2}}, k = 2$$

$$\therefore z = w^{2} \therefore z_{1} = (w_{1})^{2} = \left(e^{i\frac{\pi}{6}}\right)^{2} = e^{i\frac{\pi}{3}} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2} z_{2} = (w_{2})^{2} = \left(e^{i\frac{5\pi}{6}}\right)^{2} = e^{i\frac{5\pi}{3}} = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} z_{3} = (w_{3})^{2} = \left(e^{i\frac{3\pi}{2}}\right)^{2} = e^{i3\pi} = \cos 3\pi + i\sin 3\pi$$

Exercises: solve the equation $z^3 + 1 = 0$

[9] Regions in the Complex Plane

Some definitions and concepts:

Definition: Let *z* be any point in the *z*-plane, let $\epsilon > 0$ then

1. $N_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \epsilon\}$

This set is called a neighborhood of z_0 .

2. $S_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| = \epsilon\}$

This set is called sphere with center z_0 .

3. $D_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| \le \epsilon\}$

This set is called the Disk with center z_0 and radius ϵ .

Definition: Let $U \subseteq \mathbb{C}$, we say that U is open set if

 $\forall w \in U, \exists N_{\epsilon}(w) \text{ s.t } N_{\epsilon}(w) \subseteq U.$

For example: \emptyset , \mathbb{C} are open sets.

Definition: Let $F \subseteq \mathbb{C}$, we say that *F* is closed set if $\mathbb{C} - F$ is open set.

Definition: An open set $S \subseteq \mathbb{C}$ is connected if each pair of points z_1, z_2 in it can be joined by a polygon line, consisting of a finite number of line segments joined end to

end that lies entirely in *S*.

Definition: Let $S \subseteq \mathbb{C}$, we say that *S* is Region if it is open and connected.

Example:

1. |z| > 1, |z| < 1 is Region.

2. Let |z| = 0 is not Region, since it is connected but not open set.

3. $\mathbb{R} \subset \mathbb{C}$ is connected but not open, since $\forall r \in \mathbb{R}$, $\exists N_{\epsilon}(r)$ contain some of complex points.

Definition: Let $z_0 \in S$, we say that z_0 is interior point if there exist a neighborhood $N_{\epsilon}(z_0)$ s.t $N_{\epsilon}(z_0) \subseteq S$.

Definition: Let $z_0 \in S$, we say that z_0 is exterior point if there exist a neighborhood $N_{\epsilon}(z_0)$ s.t $N_{\epsilon}(z_0) \cap S = \emptyset$.

<u>Example</u>: |z| > 1

 \otimes

<u>Definition</u>: Let $z_0 \in S$, we say that z_0 is Boundary point if $\forall N_{\epsilon}(z_0)$ contain points

from inside S and outside it.

Boundary point

Note: *S* is close set iff it contains all the boundary points.

Example: $S = \{ \mp i, \mp 2i \}$, is *S* open set ?

Note $N_{\epsilon}(i) \not\subseteq S$, therefore *S* is not open.

<u>Example</u>: $S = \{z \in \mathbb{C} : 1 < |z| < 2\}$

0 is exterior point of *S*1, 2 are boundary points of *S*is interior point of *S*

<u>Example</u>: $D = \{z \in \mathbb{C} : 2 < |z| \le 3\}$

is not open set since it contain all the boundary points. D

Example: $S = \{z \in \mathbb{C} : |z| < 1\} \cup \{z \in \mathbb{C} : |z - 2| \le 1\}$

S is connected set.

But if

, $S = \{z \in \mathbb{C} : |z| < 1\} \cup \{z \in \mathbb{C} : |z - 2| < 1\}$

Then *S* is not a connected set.

Definition: Let $S \subseteq \mathbb{C}$, we say that S is bounded set if \exists Disk D,

such that $S \subseteq D.D = \{z : |z| \le \mathbb{R}\}$

<u>Example</u>: $S = \left\{ z \in \mathbb{C} : r \ge 1, \ 0 \le \theta \le \frac{\pi}{4} \right\}$

is not bounded set since ∄ Disk contain S.S

Example: |z| = 1 is bounded set

 \otimes

Example: $S = \{ \mp i, \mp 2i \}$

- 1. *S* is not open set since every point of *S* is boundary point.
- 2. *S* is close set since every point of *S* is boundary point.
- 3. *S* is not connected set.
- 4. *S* is not bounded set.

Definition: Let $z_0 \in S$, we say that z_0 is limit point if

$$N_{\epsilon}(z_0) \cap (S - z_0) \neq \emptyset$$

<u>Example</u>: $S = \left\{ z \in \mathbb{C} : z = \frac{1}{n}, n = 1, 2, \dots \right\}$, 0 is the only limit point