Chapter -2-

"Methods to solve O.D.E. of the first order"

Introduction

In this chapter we will studied a solution for O.D.E. of the first order.

The general form of O.D.E. of the first order and degree is:

$$M(x, y) + N(x, y)\frac{dy}{dx} = 0$$

or
$$M(x, y)dx + N(x, y)dy = 0$$

or
$$\frac{dy}{dx} = \frac{-M(x, y)}{N(x, y)} = f(x, y)$$

Ex.

$$1 - (y - x) + x^{2} \frac{dy}{dx} = 0$$

$$2 - (y - x) + xy \frac{dy}{dx} = 0$$

$$3 - (x^{2}y + 2x)dx + (3x - \cos x)dy$$

$$4 - \frac{dy}{dx} = \frac{y}{x} + 2\sin x$$

Remark

- 1- There is no rule to solve all O.D.E.
- 2- We will be solving the following equations:
 - 1- Equations with separated and separable variables

14

- 2- Exact equations and integrating factors
- 3- Linear equations
- 4- Bernoulli's Equation

1- Equations with separated and separable variables

Definition

A first order O.D.E. of the form:

$$\frac{dy}{dx} = f_1(x)f_2(y)$$

Is said to be separable or to have separable variables

Ex.

1- $\frac{dy}{dx} = y^2 x e^{3x+4y}$ Separable variables 2- $\frac{dy}{dx} = y + sinx$ not Separable variables

<u>Ex.</u> Solve the following equations:

$$1 - xydy + (2x^2 - 1)(y + 2)dx = 0$$

Solution

$$\frac{y}{y+2}dy + \frac{2x^2 - 1}{x}dx = 0$$

$$\frac{y+2-2}{y+2}dy + [2x - \frac{1}{x}]dx = 0$$

$$[1 - \frac{2}{y+2}]dy + [2x - \frac{1}{x}]dx = 0$$

$$y - 2\ln(y+2) + x^2 - \ln x + c = 0$$

2-xdx+ydy=0

Solution

$$\frac{x^2}{2} + \frac{y^2}{2} = \frac{c_1}{2}$$
$$x^2 + y^2 = c \text{ (circles with center at the origin)}$$

0

3-
$$\frac{dy}{dx} = -\frac{x}{y}$$
, $y(4) = -3$

Solution

ydy=-xdx $\frac{y^2}{2} = \frac{x^2}{2} + \frac{c_1}{2}$ $x^2 + y^2 = c$ $16+9=c \rightarrow \therefore c = 25$ $x^2 + y^2 = 25$ $y = \mp \sqrt{25 - x^2}$ $y = \varphi_1(x) = \sqrt{25 - x^2} , \qquad y = \varphi_2(x) = -\sqrt{25 - x^2}$

Exercises

Solve the following:

1-
$$(1 + x)dy - ydx = 0$$

2- $(e^{2y} - y)cosx\frac{dy}{dx} = e^{y}sin2x$, $y(0) = 0$

2- Exact O.D.E.

Exact differential:- The exact differential for f(x,y) in x,y has the form:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Exact O.D.E. The differential equation M(x,y)dx+N(x,y)dy=0 is called exact if M(x,y)dx+N(x,y)dy is exact differential for a function f(x,y)

i.e. O.D.E.is called exact if there exist a function f(x,y) s.t.

$$\frac{\partial f}{\partial x} = M \text{ and } \frac{\partial f}{\partial y} = N$$

$$\therefore df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = Mdx + Ndy$$

Then we will get the solution of exact O.D.E. by integrating df=0

f(x,y)=c is a solution of exact O.D.E...

Def.:- A differential expression Mdx+Ndy is an exact differential in a region R of the xy-plane if it corresponds to the differential of some function f(x,y) defined in R;A first differential equation Mdx+Ndy=0 is said to be an exact equation if the expression on the left –hand side is an exact differential.

Theorem:- Let M(x,y) and N(x,y) be continuous and have continuous first partial derivative in a rectangular R defined by a < x < b, c < y < d.

Then a necessary and sufficient condition that Mdx+Ndy be an exact differential is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} [0. \text{ D. E. Mdx} + \text{Ndy} = 0 \text{ is exact iff } \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}]$

<u>Ex.:-</u> Solve the following equations

(1) ydx+xdy=0

Solution

$$\frac{\partial M}{\partial y} = 1 \quad , \frac{\partial N}{\partial x} = 1$$
$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

The O.D.E. is exact:

$$\exists f(x,y) \ s.t. df = \frac{\partial f}{\partial x} dx + \frac{\partial t}{\partial y} dy = Mdx + Ndy:$$
$$\frac{\partial f}{\partial x} = M = y, \ \frac{\partial f}{\partial y} = N = x:$$
Integrating $\frac{\partial f}{\partial x} w.r.t.x$
$$\int_{x} \frac{\partial f}{\partial x} dx = \int_{x} y dx + g(y) \qquad (g(y) is \ arbitrary \ function)$$

f(x,y)=xy+g(y) $\frac{\partial f}{\partial y} = x + g'(y)$ $\frac{\partial f}{\partial y} = N = x$ $x + g'(y) = x \therefore$ $\therefore g'(y) = 0$ integrating g'(y)w.r.t.y $\therefore g(y) = 0$ f(x,y)=xy.

The solution of O.D.E. is f(x,y)=c

xy=c is the general solution \therefore

(2)
$$(6x^2 + 4xy + y^2)dx + (2x^2 + 2xy - 3y^2)dy = 0$$

Solution

$$\frac{\partial M}{\partial y} = 4x + 2y , \frac{\partial N}{\partial x} = 4x + 2y$$
$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

The O.D.E. is exact∴

 $\exists f(x,y) \ s.t. df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = Mdx + Ndy:$ $\frac{\partial f}{\partial x} = M = 6x^2 + 4xy + y^2, \ \frac{\partial f}{\partial y} = N = 2x^2 + 2xy - 3y^2:$ Integrating $\frac{\partial f}{\partial x} w.r.t.x$

$$f(x,y) = \int_{x} \frac{\partial f}{\partial x} dx = \int_{x} (6x^{2} + 4xy + y^{2}) dx + g(y)$$
$$= 2x^{3} + 2x^{2}y + xy^{2} + g(y) \quad (g(y) \text{ is arbitrary function})$$

$$\frac{\partial f}{\partial y} = 2x^2 + 2xy + g'(y) = N = 2x^2 + 2xy - 3y^2$$

$$\therefore g'(y) = -3y^2$$

integrating g'(y)w.r.t.y

$$\therefore g(y) = -y^3$$

the general solution of given equation is \therefore

f(x,y)=c

$$\therefore 2x^3 + 2x^2y + xy^2 - y^3 = c$$

Exercises

(1) are the following equations exact?

- 1) $(y^2 x)dx + (x^2 y)dy = 0$
- 2) xcosydx+ycosxdy=0

(2) solve the following equations:-

$$1)2xydx + (x^2 - 1)dy = 0$$

- 2) $(3x^2 + 2y\sin 2x)dx + (2\sin^2 x + 3y^2)dy = 0$
- 3) $\left(3x^2 + \frac{2y}{x}\right)dx + \left(2\ln 3x + \frac{3}{y}\right)dy = 0$, x > 0, $y \neq 0$