Chapter -2-

"Methods to solve O.D.E. of the first order"

Introduction

In this chapter we will studied a solution for O.D.E. of the first order.

The general form of O.D.E. of the first order and degree is:

$$
M(x, y) + N(x, y) \frac{dy}{dx} = 0
$$

or
$$
M(x, y)dx + N(x, y)dy = 0
$$

or
$$
\frac{dy}{dx} = \frac{-M(x, y)}{N(x, y)} = f(x, y)
$$

Ex.

$$
1 - (y - x) + x2 \frac{dy}{dx} = 0
$$

$$
2 - (y - x) + xy \frac{dy}{dx} = 0
$$

$$
3 - (x2y + 2x)dx + (3x - cosx)dy
$$

$$
4 - \frac{dy}{dx} = \frac{y}{x} + 2sinx
$$

Remark

- 1- There is no rule to solve all O.D.E.
- 2- We will be solving the following equations:
	- 1- Equations with separated and separable variables

- 2- Exact equations and integrating factors
- 3- Linear equations
- 4- Bernoulli's Equation

1- Equations with separated and separable variables

Definition

A first order O.D.E. of the form:

$$
\frac{dy}{dx} = f_1(x) f_2(y)
$$

Is said to be separable or to have separable variables

Ex.

 $1-\frac{dy}{dx}$ $\frac{dy}{dx} = y^2 x e^{3x+4y}$ Separable variables $2-\frac{dy}{dx}$ $\frac{dy}{dx} = y + \sin x$ not Separable variables

Ex. Solve the following equations:

$$
1 \cdot xy dy + (2x^2 - 1)(y + 2) dx = 0
$$

Solution

$$
\frac{y}{y+2}dy + \frac{2x^2 - 1}{x}dx = 0
$$

$$
\frac{y+2-2}{y+2}dy + [2x - \frac{1}{x}]dx = 0
$$

$$
[1 - \frac{2}{y+2}]dy + [2x - \frac{1}{x}]dx = 0
$$

$$
y - 2\ln(y+2) + x^2 - \ln x + c = 0
$$

 $2 - x dx + y dy = 0$

Solution

$$
\frac{x^2}{2} + \frac{y^2}{2} = \frac{c_1}{2}
$$

x² + y² = c (circles with center at the origin)

$$
3. \frac{dy}{dx} = -\frac{x}{y}, \ y(4) = -3
$$

Solution

ydy=-xdx

$$
\frac{y^2}{2} = \frac{x^2}{2} + \frac{c_1}{2}
$$

x² + y² = c
16+9=c \rightarrow \therefore c = 25

$$
x^2 + y^2 = 25
$$

$$
y = \pm \sqrt{25 - x^2}
$$

$$
y = \varphi_1(x) = \sqrt{25 - x^2}, \qquad y = \varphi_2(x) = -\sqrt{25 - x^2}
$$

Exercises

Solve the following:

1-
$$
(1 + x)dy - ydx = 0
$$

2- $(e^{2y} - y)cosx \frac{dy}{dx} = e^y sin2x$, $y(0) = 0$

2- Exact O.D.E.

Exact differential:- The exact differential for f(x,y) in x,y has the form:

$$
df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy
$$

Exact O.D.E.The differential equation M(x,y)dx+N(x,y)dy=0 is called exact if M(x,y)dx+N(x,y)dy is exact differential for a function f(x,y)

16

i.e. O.D.E.is called exact if there exist a function f(x,y) s.t.

$$
\frac{\partial f}{\partial x} = M \quad \text{and} \quad \frac{\partial f}{\partial y} = N
$$

$$
\therefore df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M dx + N dy
$$

Then we will get the solution of exact O.D.E. by integrating $df=0$

f(x,y)=c is a solution of exact O.D.E.:

Def.:- A differential expression Mdx+Ndy is an exact differential in a region R of the xy-plane if it corresponds to the differential of some function $f(x,y)$ defined in R; A first differential equation $Mdx+Ndy=0$ is said to be an exact equation if the expression on the left –hand side is an exact differential.

Theorem:- Let $M(x,y)$ and $N(x,y)$ be continuous and have continuous first partial derivative in a rectangular R defined by $a < x < b, c < y < d$.

Then a necessary and sufficient condition that Mdx+Ndy be an exact differential is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ $\frac{\partial N}{\partial x}$ [O. D. E. Mdx + Ndy = 0 is exact iff $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$]

Ex.:- Solve the following equations

(1) ydx+xdy=0

Solution

$$
\frac{\partial M}{\partial y} = 1, \frac{\partial N}{\partial x} = 1
$$

$$
\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
$$

The O.D.E. is exact∴

$$
\exists f(x, y) \ s.t. \ df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M dx + N dy:
$$

$$
\frac{\partial f}{\partial x} = M = y, \frac{\partial f}{\partial y} = N = x:
$$

Integrating $\frac{\partial f}{\partial x} w.r.t. x$

$$
\int_{x} \frac{\partial f}{\partial x} dx = \int_{x} y dx + g(y) \qquad (g(y) \text{ is arbitrary function})
$$

 $f(x,y)=xy+g(y)$ ∂f $\frac{\partial y}{\partial y} = x + g'(y)$ ∂f $\frac{\partial}{\partial y} = N = x$ $x + g'(y) = x$. \therefore g'(y) = 0 $integrating g'(y) w.r.t. y$ $\therefore g(y) = 0$ f(x,y)=xy∴

The solution of O.D.E. is $f(x,y)=c$

xy=c is the general solution ∴

(2)
$$
(6x^2 + 4xy + y^2)dx + (2x^2 + 2xy - 3y^2)dy = 0
$$

Solution

$$
\frac{\partial M}{\partial y} = 4x + 2y, \quad \frac{\partial N}{\partial x} = 4x + 2y
$$

$$
\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
$$

The O.D.E. is exact∴

∃ $f(x, y)$ s. t . $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M dx + N dy$. $\frac{\partial f}{\partial y}$ dy = Mdx + Ndy $\frac{\partial f}{\partial x} = M = 6x^2 + 4xy + y^2$, $\frac{\partial f}{\partial y} = N = 2x^2 + 2xy - 3y^2$. $\frac{\partial f}{\partial y} = N = 2x^2 + 2xy - 3y^2$ Integrating $\frac{\partial f}{\partial x}$ w. r. t. x

$$
f(x,y) = \int_{x} \frac{\partial f}{\partial x} dx = \int_{x} (6x^2 + 4xy + y^2) dx + g(y)
$$

= $2x^3 + 2x^2y + xy^2 + g(y)$ (g(y) is arbitrary function)

$$
\frac{\partial f}{\partial y} = 2x^2 + 2xy + g'(y) = N = 2x^2 + 2xy - 3y^2
$$

\n
$$
\therefore g'(y) = -3y^2
$$

\n
$$
\therefore g(y) = -y^3
$$

the general solution of given equation is∴

 $f(x,y)=c$

$$
\therefore 2x^3 + 2x^2y + xy^2 - y^3 = c
$$

Exercises

(1) are the following equations exact?

- **1**) $(y^2 x)dx + (x^2 y)dy = 0$
	- **2) xcosydx+ycosxdy=0**

(2) solve the following equations:-

$$
1)2xydx + (x^2-1)dy = 0
$$

- **2**) $(3x^2 + 2ysin2x)dx + (2sin^2x + 3y^2)dy = 0$
- **3**) $\left(3x^2 + \frac{2y}{x} \right)$ $\left(\frac{2y}{x}\right)dx + \left(2ln3x + \frac{3}{y}\right)$ **3**) $(3x^2 + \frac{2y}{x})dx + (2\ln 3x + \frac{3}{y})dy = 0$, $x > 0$, $y \neq 0$