Chapter Two

Analytic Functions

[1] Functions of a Complex Variable

Definition:

A function *f* defined on a set *A* to a set *B* is a rule assigns a unique element of *B* to each element of *A*; in this case we call *f* a single function. i.e.: $f: A \to B$, $A, B \subseteq \mathbb{C}$

 $\forall z \in A, \exists ! w \in B \text{ s.t } w = f(z) \in B$

Definition:

The domain of f in the above def. is A and the range is the set R of elements of B

Which f associate with elements of A.

<u>Note</u>: The elements in the domain of *f* are called independent variables and those

In the range of f are called dependent variables.

Definition:

A *f* rule which assigns more than one number of *B* to any number of *A* is called a multiple valued function.

Example:

1. $f(z) = (z)^{1/2}$

Has two roots therefore f(z) is a multiple function.

2.
$$f(z) = (z)^{3/5} = (z^3)^{1/5}$$

Has five roots therefore f(z) is a multiple function. In general, if

 $f(z) = \arg z$ then *f* is a multiple function.

3. If $f(z) = \operatorname{Arg} z$ then *f* is a single function.

Note:

1. Let $f: Z \to W$, if Z and W are complex, then f is called complex variables

2. Function (a complex function) or a complex valued function of a complex

variable.

3. If *A* is a set of complex numbers and *B* is a set of real numbers then f is

Called real-valued function of a complex variable, conversely f is a

Complex-valued function of real variables.

Example: Find the domain of the following functions

1.
$$f(z) = \frac{1}{z}$$

Ans.: $D_f = \mathbb{C} \setminus \{0\}$

2. $f(z) = \frac{1}{z^2+1}$

Ans.: $D_f = \mathbb{C} \setminus \{-i, i\}$

$$3. f(z) = \frac{z + \overline{z}}{2}$$

Ans.: $D_f = \mathbb{C}$, *f* is real-valued.

Definition: A complex function $f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$

is a positive integer and $a_0, a_1 \dots a_n \in \mathbb{C}$, is a polynomial of degree n $n \ (a_n \neq 0)$.

Definition: A function $f(z) = \frac{P(z)}{Q(z)}$, where *P* and *Q* are two polynomials, is called a rational function.

<u>Note</u>: $D_f = \mathbb{C} \setminus \{z : Q(z) \neq 0\}$

• Suppose that:w = u + iv is the value of a function f at z = x + iy

i. e. :
$$f(z) = f(x + iy) = u + iv$$

Each of the real numbers *u* and *v* depends on the real variables *x* and *y*, and it

Follows that f(z) can be expressed in terms of a pair of real-valued functions of real variables *x* and *y*.

$$f(z) = u(x, y) + i v(x, y)$$

If the polar coordinates r and θ are used instead of x and y, then

$$u + i v = f(re^{i\theta})$$

Where w = u + iv and $z = re^{i\theta}$, in that case, we may write

$$f(z) = u(r, \theta) + i v(r, \theta)$$

Example: If $f(z) = z^2$, then

$$f(x + iy) = (x + iy)^2 = x^2 - y^2 + i\,2xy$$

Hence: $u(x, y) = x^2 - y^2$, v(x, y) = 2xy, when polar coordinates are used

$$f(re^{i\theta}) = (re^{i\theta})^{2}$$
$$= r^{2}e^{i2\theta}$$
$$= r^{2}\cos 2\theta + i r^{2}\sin 2\theta$$
Therefore: $u(r, \theta) = r^{2}\cos 2\theta$

Therefore: $u(r, \theta) = r^2 \cos 2\theta$

$$v(r,\theta) = r^2 \sin 2\theta$$

<u>Note</u>: If v(x, y) = 0 then *f* is real, i.e. *f* is real–valued function.

[2] Limits

Let f be a function at all points z in some deleted neighborhood of z_0 , the statement that the limit of f(z) as z approaches z_0 is a number w_0 , or that $\lim_{z \to z_0} f(z) = w_0$

Means that for every $\epsilon > 0$ there exists $\delta > 0$ such that

 $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$

And this means: $z \rightarrow z_0$ in z – plane

Properties of Limit:

1. If f(z) = c then $\lim_{z \to z_0} f(z) = c$. 2. If f(z) = z then $\lim_{z \to z_0} f(z) = z_0$. 3. $\lim_{z \to z_0} (f(z) \mp g(z)) = \lim_{z \to z_0} f(z) \mp \lim_{z \to z_0} g(z)$. 4. $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$ 5. $\lim_{z \to z_0} f(z) \cdot g(z) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z)$ **Example:** Find limit f(z) if its exist, such that $f(z) = \frac{2xy}{x^2 + y^2} + \frac{x^2}{1 + y} i$

<u>Proof:</u> Assume that limit f(z) exists.

Let y = 0, we get

$$\lim_{z \to z_0 = 0} f(z) = \lim_{(x,y) \to (0,0)} f(z) = \lim_{x \to 0} x^2 i = 0$$

Let x = 0, we get $\lim f(z) = 0$

Let
$$y = x$$
, then $\lim_{z \to 0} f(z) = \lim_{(x,x) \to (0,0)} f(z) = \lim_{(x,x) \to (0,0)} \left(\frac{2x^2}{2x^2} + \frac{x^2}{1+x}i\right)$
$$\lim_{(x,x) \to (0,0)} \left(1 + \frac{x^2}{1+x}i\right) = 1 + \lim_{(x,x) \to (0,0)} \frac{x^2}{1+x}i = 1 + 0 = 1$$

This is impossible; therefore this limit does not exist.

Exercise: Prove that $\lim_{z \to z_0} z^2 = z_0^2$

Note: The limit in the real numbers is studying the approaches from the right and left, but in the complex numbers is studying from every side of the circle.

<u>Theorem</u>: If $\lim_{z \to z_0} f(z) = w_1$, then $\lim_{z \to z_0} f(z) = w_2$

Then $w_1 = w_2$. (The limit is unique)

Theorem: Let f(z) = u(x, y) + iv(x, y) such that z = x + iy,

Then $z_0 = x_0 + y_0$, $w_0 = u_0 + iv_0$,

$$\lim_{z \to z_0} f(z) = w_0 \text{ iff } \lim_{z \to z_0} u(x, y) = u_0, \lim_{z \to z_0} v(x, y) = v_0$$

<u>Note:</u> $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$ s.t $a_i \in \mathbb{C}, i = 0, 1, \dots, n$

Then $\lim_{z \to z_0} p(z) = p(z_0)$

Example: Find limit of f(z) if it's exist

1.
$$\lim_{z \to 3-4i} \frac{4x^2y^2 - 1 + i(x^2 - y^2) - ix}{\sqrt{x^2 + y^2}}$$

Solution:

$$\lim_{z \to 3-4i} \frac{(4x^2y^2-1)+i(x^2-y^2-x)}{\sqrt{x^2+y^2}} =$$

=115-2i = $\lim_{z \to 3-4i} \frac{4x^2y^2-1}{\sqrt{x^2+y^2}} + i \lim_{z \to 3-4i} \frac{x^2-y^2-x}{\sqrt{x^2+y^2}}$
2. $\lim_{z \to i} \frac{z-i}{z^2+1}$

Solution:

$$\lim_{z \to i} \frac{z-i}{z^2+1} = \lim_{z \to i} \frac{z-i}{z^2-(-1)} = \lim_{z \to i} \frac{z-i}{z^2-i^2} = \lim_{z \to i} \frac{z-i}{(z-i)(z+i)}$$
$$= \lim_{z \to i} \frac{1}{(z+i)} = \frac{1}{2i}$$

3.
$$\lim_{z \to (-1+i)} \frac{z^2 + (3-i) z + 2 - 2i}{z + 1 - i}$$

Solution:

Note:
$$z^2 + (3 - i) z + 2 - 2i = (z + 1 - i)(z + 2)$$

$$\lim_{z \to (-1+i)} \frac{z^2 + (3-i)z + 2 - 2i}{z + 1 - i} = \lim_{z \to (-1+i)} \frac{(z + 1 - i)(z + 2)}{(z + 1 - i)}$$
$$= \lim_{z \to (-1+i)} (z + 2)$$
$$= -1 + i + 2$$
$$= 1 + i$$

[3] Continuity

Definition:

A function f is continuous at a point z_0 if all of the three following conditions are satisfied:

- 1. $\lim_{z \to z_0} f(z)$ Exists,
- 2. $f(z_0)$ Exists,

3.
$$\lim_{z \to z_0} f(z) = f(z_0)$$

A function of a complex variable is said to be continuous in a region R if it is continuous at each point R.

29

Theorem: If f, g are continuous functions at z_0 then

- 1. f + g is continuous.
- 2. *f* . *g* is continuous.
- 3. $\frac{f}{g}$, $g(z_0) \neq 0$ is continuous.
- 4. *fog* is continuous at z_0 if f is continuous at $g(z_0)$.

Example: $f(z) = z^2$ is continuous in complex plane since $\forall z_0 \in \mathbb{C}$

- 1. $f(z_0) = z_0^2$
- 2. $\lim_{z \to z_0} f(z) = z_0^2$
- 3. $\lim_{z \to z_0} f(z) = f(z_0)$

Example: Is $f(z) = \frac{z^2 - 1}{z - 1}$ continuous at z = 1?

- **Solution:** f is not continuous since f(1) not exist
- $f(z_0) = \frac{z_0^2 1}{z_0 1} = \frac{(z_0 1)(z_0 + 1)}{z_0 1} = z_0 + 1$ $\therefore \lim_{z \to 1} f(z) = 2$ But $f(1) = \frac{0}{0}$ $\therefore \lim_{z \to 1} f(z) \neq f(1)$

<u>Theorem</u>: f(z) = u(x, y) + iv(x, y) is continuous at z_0 iff u(x, y) and v(x, y) are continuous at (x_0, y_0) .

30

<u>*Proof:*</u> Let f be continuous at z_0 , then $\lim_{z \to z_0} f(z) = f(z_0)$

That means:

$$\lim_{z \to z_0} (u(x, y) + iv(x, y)) = u(x_0, y_0) + i v(x_0, y_0)$$

$$\to \lim_{z \to z_0} u(x, y) + i \lim_{z \to z_0} v(x, y) = u(x_0, y_0) + i v(x_0, y_0)$$

$$\therefore \lim_{z \to z_0} u(x, y) = u(x_0, y_0)$$

 $\lim_{z \to z_0} v(x, y) = v(x_0, y_0)$

are continuous at z_0 . $\therefore u, v$

Example: Is $f(x + iy) = x^2 + y^2 + ixy$ continuous at (1, 1)?

Solution: $u(x, y) = x^2 + y^2$, v(x, y) = xy

By the above theorem

$$u(1,1) = 2, \qquad \lim_{\substack{x \to 1 \\ y \to 1}} u(x,y) = 2 = u(1,1)$$
$$v(1,1) = 1, \qquad \lim_{\substack{x \to 1 \\ y \to 1}} v(x,y) = 1 = v(1,1)$$

are continuous at (1,1): u, v

is continuous at (1,1)... f(z)

Example: Find the limit if it's exists $\lim_{z\to 0} \frac{\overline{z}}{z}$

Solution:

 $\lim_{z \to 0} \frac{\bar{z}}{z} = \lim_{z \to 0} \frac{x - iy}{x + iy}$ 1. If $y = 0 \to \lim_{x \to 0} \frac{x}{x} = 1$ 2. If $x = 0 \to \lim_{y \to 0} \frac{-iy}{iy} = -1$

The limit is not exist.∴

Example: Discuss the continuity of $f(z) = \begin{cases} \frac{z-i}{z^2-1} & \text{if } z \neq i, -i \\ 2i & \text{if } z = \mp i \end{cases}$

Solution: Note f is not continuous at $z = \mp i$.

(Since $f(\mp i)$ is undefined)

$$f(z) = 2i$$
 and $\lim_{z \to -i} f(z) = \lim_{z \to -i} \frac{z - i}{(z - i)(z + i)} = \lim_{z \to -i} \frac{1}{(z + i)} = \frac{1}{2i}$

But *f* is not defined at z = -i, therefore *f* is not continuous at z = i, that is *f* is continuous at $\{z \in \mathbb{C} \setminus \{-i, i\}\}$

Example: Discuss the continuity of $f(z) = \begin{cases} \frac{z^2+4}{z+2i} & \text{if } z\neq-2i \\ -4i & \text{if } z=\mp i \end{cases}$

Solution: f is continuous at $\forall z \neq -2i$.

When z = -2i $\lim_{z \to -2i} f(z) = f(-2i) = -4i$ $\lim_{z \to -2i} f(z) = \lim_{z \to -2i} \frac{(z-2i)(z+2i)}{(z+2i)} = -4i$ But f is not defined at z = -2iis not continuous at z = -2i... fThen is f is continuous at $\{z \in \mathbb{C} : z \neq -2i\}$ **Exercise:** Discuss the continuity of $f(z) = \begin{cases} \frac{z+2i}{z^2+4} & \text{if } z \neq \mp 2i \\ \frac{1}{i} & \text{if } z = -2i \end{cases}$

[4] Derivative

Let *f* be a function whose domain of definition contains a neighborhood $|z - z_0| < \epsilon$ of a point z_0 . The derivative of *f* at z_0 is the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

And the function *f* is said to be differentiable at z_0 when $f'(z_0)$ exists. If $\Delta z = z - z_0$, then $\Delta z \to 0$ when $z \to z_0$. Thus

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

<u>Theorem</u>: If *f* is differentiable at z_0 , then *f* is continuous at z_0 .

Differentiation Formulas:

In the following formulas, the derivative of a function f at a point z_0 is denoted by either $\frac{d}{dz}f(z)$ or $f'(z_0)$.

1.
$$\frac{d}{dz} c = 0$$
, *c* is constant
2. $\frac{d}{dz} z = 1$
3. $\frac{d}{dz} (c f(z)) = c f'(z)$

$$4 \cdot \frac{d}{dz} [f + g] = \frac{d}{dz} f + \frac{d}{dz} g = f' + g'$$

$$5 \cdot \frac{d}{dz} [f \cdot g] = f \cdot g' + g \cdot f'$$

$$6 \cdot \frac{d}{dz} \left[\frac{f}{g} \right] = \frac{g \cdot f' - f \cdot g'}{g^2}, g \neq 0$$

$$7 \cdot \frac{d}{dz} (z^n) = n z^{n-1}$$

$$8 \cdot (gof)'(z_0) = g'(f(z_0)) \cdot f'(z_0)$$

<u>Note</u>: (The Chain rule) If w = f(z) and W = g(w), then $\frac{dW}{dz} = \frac{dW}{dw} \cdot \frac{dw}{dz}$

Example: Find the derivative of $f(z) = (2z^2 + i)^5$

Solution: write $w = 2z^2 + i$ and $W = w^5$ then:

$$\frac{d}{dz} (2z^2 + i)^5 = 5w^4 \cdot 4z = 20 \ z(2z^2 + i)^4$$

Examples: Find f'(z) where $f(z) = z^2$

Solution:

f'(z) = 2z

[5] Cauchy – Riemann Equations (C-R-E)

Theorem: Suppose that f(z) = u(x, y) + iv(x, y) and f'(z) exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations

 $u_x = v_y$, $u_y = -v_x$

There is also $f'(z_0) = u_x + iv_x$

Where these partial derivatives are to be evaluated at (x_0, y_0) .

Note:

1. $f'(z) = u_x + iv_x$ or $f'(z) = u_y - iv_y$.

2. If f'(z) exists then C-R-Eq. are satisfied, but the converse is not true.

The converse of the above theorem is not necessary true.

Example: $f(z) = z^2 = x^2 - y^2 + 2 ixy$ Solution:

 $u(x, y) = x^{2} - y^{2} \rightarrow u_{x} = 2x$ $v(x, y) = 2xy \rightarrow v_{y} = 2x$ $\rightarrow u_{x} = v_{y}$ $u_{y} = -2y, \quad v_{x} = 2y$ $\rightarrow u_{y} = -v_{x}$ $\therefore f'(z) = u_{x} + iv_{x} = 2x + i2y = 2(x + iy) = 2z$ **Example:** $f(z) = \overline{z} = x - iy$ **Solution:** $u(x, y) = x \rightarrow u_{x} = 1$ $v(x, y) = -y \rightarrow v_{y} = -1$

 $\therefore u_x \neq v_y \rightarrow f$ is not differentiable at *z*.

Note: The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

Theorem: Let f(z) = u(x, y) + iv(x, y), and

1. *u*, *v*, u_x , v_x , u_y , v_y are continuous at $N_{\epsilon}(z_0)$

2.
$$u_x = v_y$$
, $u_y = -v_x$

Then *f* is differentiable at z_0 and

$$f'(z_0) = u_x + iv_x$$

34

$$f'(z_0) = v_y - iu_y$$

Example: Show that the function $f(z) = e^{-y} \cos x + i e^{-y} \sin x$

Is differentiable *z* for all and find its derivative.

Solution:

Let
$$u(x, y) = e^{-y} \cos x$$

 $\rightarrow u_x = -e^{-y} \sin x$
 $u_y = -e^{-y} \cos x$
 $v(x, y) = e^{-y} \sin x$
 $\rightarrow v_x = e^{-y} \cos x$
 $v_y = -e^{-y} \sin x$
1. $u_x = v_y$ and $u_y = -v_x$
2. u, v, u_x, v_x, u_y, v_y are continuous
Then $f'(z)$ exist. To find $f'(z) = u_x + iv_x$
 $f'(z) = u_x + iv_x = -e^{-y} \sin x + ie^{-y} \cos x$
 $= e^{-y}(i \cos x - \sin x)$
 $= ie^{-y}(\cos x + i \sin x)$
 $= ie^{-y}e^{ix}$
 $= ie^{ix-y}$
 $= ie^{i(x+iy)}$
 $= ie^{iz}$

[6] Polar Coordinates of Cauchy – Riemann Equations

Let $f(z) = u(r, \theta) + iv(r, \theta)$, then Cauchy-Riemann equations are:

35

and $f'(z_0) = e^{-i\theta}(u_r + i v_r).u_r = \frac{1}{r}v_\theta$, $u_\theta = -r v_r$

Example: Use C-R equations to show that the functions

1.
$$f(z) = |z|^2$$

$$\mathbf{2.} f(\mathbf{z}) = \mathbf{z} - \overline{\mathbf{z}}$$

are not differentiable at any nonzero point.

<u>Solution</u>:

1. $|z|^2 = x^2 + y^2$

 $u(x, y) = x^{2} + y^{2} , v(x, y) = 0$ $u_{x} = 2x , v_{x} = 0$ $u_{y} = 2y , v_{y} = 2x$ C-R equations are not satisfied, therefore *f*' is not exist. 2. $z - \overline{z} = (x + iy) - (x - iy)$

$$= x + iy - x + iy$$
$$= 2y i$$
$$u(x, y) = 0 , v(x, y) = 2y$$
$$u_x = 0 , v_x = 0$$
$$u_y = 0 , v_y = 2$$

C-R equations are not satisfied, hence f' is not exist.

Example: Use C-R equations to show that f'(z) and f''(z) are exist everywhere $f(z) = z^3$

36

Solution:

$$f(z) = z^{3} = (x + iy)^{3}$$

$$= x^{3} + 3x^{2}iy + 3x(iy)^{2} + (iy)^{3}$$

$$= x^{3} + 3i x^{2}y - 3xy^{2} - iy^{3}$$

$$= x^{3} - 3xy^{2} + i (3x^{2}y - y^{3})$$

$$u(x, y) = x^{3} - 3xy^{2} \rightarrow u_{x} = 3x^{2} - 3y^{2}$$

$$u_{y} = -6xy$$

$$v(x, y) = 3x^{2}y - y^{3} \rightarrow v_{x} = 6xy$$

$$v_{y} = 3x^{2} - 3y^{2}$$

$$\therefore u_{x} = v_{y}, \quad u_{y} = -v_{x}$$

C-R equations are satisfied \therefore

$$f'(z) = u_x + iv_x$$

$$= 3x^{2} - 3y^{2} + i \, 6xy$$

= $3(x^{2} + i^{2}y^{2} + 2i \, xy) = 3(x + iy)^{2} = 3z^{2}$
 $f''(z) = u'_{x} + iv'_{x}$
= $6x + i \, 6y$
= $6(x + iy)$
= $6z$

Example: Let $f(z) = z^3$, write *f* in polar form and then find f'(z)

Solution: $f(z) = z^3 = (re^{i\theta})^3 = r^3 e^{3i\theta}$ $= r^3 \cos 3\theta + i r^3 \sin 3\theta$ $u(r, \theta) = r^3 \cos 3\theta \rightarrow u_r = 3r^2 \cos 3\theta$ $u_{\theta} = -3r^3 \sin 3\theta$ $v(r, \theta) = r^3 \sin 3\theta \rightarrow v_r = 3r^2 \sin 3\theta$ $v_{\theta} = 3r^3 \cos 3\theta$ Now, $u_r = \frac{1}{r} v_{\theta}$, $u_{\theta} = -rv_r$ $f'(z) = e^{-i\theta}[u_r + i v_r]$ $= e^{-i\theta}[3r^2 \cos 3\theta + i3r^2 \sin 3\theta]$ $= 3r^2 e^{-i\theta}[\cos 3\theta + i \sin 3\theta]$ $= 3r^2 e^{-i\theta}e^{3\theta i}$

[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and f'(z) exists at each point z in the same neighborhood of z_0 .

Note: *f* is analytic in a region *R* if it is analytic at every point in *R*.

Definition:

If f is analytic at each point in the entire plane, then we say that f is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition: If *f* is analytic at every point in the same neighborhood of z_0 but *f* is not analytic at z_0 , then z_0 is called singular point

Example: Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ $(z \neq 0)$

Then *f* is not analytic at $z_0 = 0$, which is a singular point.

Note: If *f* is analytic in *D*, then *f* is continuous through *D* and C-R equations are satisfied.

<u>Note</u>: A sufficient conditions that *f* be analytic in \mathbb{R} are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in \mathbb{R} .

[8] Harmonic Functions

Definition:

A function *h* of two variables x and y is said to be harmonic in *D* if the first partial derivatives are continuous in *D* and $h_{xx} + h_{yy} = 0$ (Laplace equation)

Example: Show that u(x, y) = 2x(1 - y) is harmonic in some domain *D*.

<u>Solution</u>:

 $u_x = 2(1-y) \to u_{xx} = 0$

 $u_y = -2x \qquad \rightarrow u_{yy} = 0$

 $\therefore u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.