Chapter Two

Analytic Functions

[1] Functions of a Complex Variable

Definition:

A function f defined on a set A to a set B is a rule assigns a unique element of *B* to each element of *A*; in this case we call *f* a single function. i.e.: $f: A \rightarrow B$, $A, B \subseteq \mathbb{C}$

 $\forall z \in A, \exists! w \in B \text{ s.t } w = f(z) \in B$

Definition:

The domain of f in the above def. is A and the range is the set R of elements of B

Which f associate with elements of A .

Note: The elements in the domain of f are called independent variables and those

In the range of f are called dependent variables.

Definition:

A f rule which assigns more than one number of B to any number of A is called a multiple valued function.

Example:

1. $f(z) = (z)^{1/2}$

Has two roots therefore $f(z)$ is a multiple function.

$$
2. f(z) = (z)^{3/5} = (z^3)^{1/5}
$$

Has five roots therefore $f(z)$ is a multiple function. In general, if

24

 $f(z) = \arg z$ then f is a multiple function.

3. If $f(z) = \text{Arg } z$ then f is a single function.

Note:

1. Let $f: Z \to W$, if Z and W are complex, then f is called complex variables

2. Function (a complex function) or a complex valued function of a complex

variable.

3. If A is a set of complex numbers and B is a set of real numbers then f is

Called real–valued function of a complex variable, conversely f is a

Complex−valued function of real variables.

Example: Find the domain of the following functions

$$
1. f(z) = \frac{1}{z}
$$

Ans.: $D_f = \mathbb{C} \setminus \{0\}$

2. $f(z) = \frac{1}{z^2}$ z^2+1

Ans.: $D_f = \mathbb{C} \setminus \{-i, i\}$

$$
3 \cdot f(z) = \frac{z + \overline{z}}{2}
$$

Ans.: $D_f = \mathbb{C}$, f is real–valued.

Definition: A complex function $f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$

is a positive integer and $a_0, a_1 ... a_n \in \mathbb{C}$, is a polynomial of degree n $n (a_n \neq 0).$

Definition: A function $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are two polynomials, is called a rational function.

25

<u>Note:</u> $D_f = \mathbb{C} \setminus \{z : Q(z) \neq 0\}$

• Suppose that: $w = u + iv$ is the value of a function f at $z = x + iy$

i.e.:
$$
f(z) = f(x + iy) = u + iv
$$

Each of the real numbers u and v depends on the real variables x and y , and it

Follows that $f(z)$ can be expressed in terms of a pair of real–valued functions of real variables x and y .

$$
f(z) = u(x, y) + i v(x, y)
$$

If the polar coordinates r and θ are used instead of x and y , then

$$
u + i v = f(re^{i\theta})
$$

Where $w = u + iv$ and $z = re^{i\theta}$, in that case, we may write

$$
f(z) = u(r, \theta) + i v(r, \theta)
$$

Example: If $f(z) = z^2$, then

$$
f(x + iy) = (x + iy)^2 = x^2 - y^2 + i 2xy
$$

Hence: $u(x, y) = x^2 - y^2$, $v(x, y) = 2xy$, when polar coordinates are used

$$
f(re^{i\theta}) = (re^{i\theta})^2
$$

$$
= r^2 e^{i2\theta}
$$

$$
= r^2 \cos 2\theta + i r^2 \sin 2\theta
$$

Therefore: $u(r, \theta) = r^2 \cos 2\theta$

$$
v(r,\theta)=r^2\sin 2\theta
$$

Note: If $v(x, y) = 0$ then f is real, i.e. f is real–valued function.

[2] Limits

Let f be a function at all points z in some deleted neighborhood of z_0 , the statement that the limit of $f(z)$ as z approaches z_0 is a number w_0 , or that lim $\lim_{z\to z_0} f(z) = w_0$

26

Means that for every $\epsilon > 0$ there exists $\delta > 0$ such that

 $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$

And this means: $z \rightarrow z_0$ in z – plane

1. If $f(z) = c$ then lim $z \rightarrow z_0$ $f(z) = c.$ 2. If $f(z) = z$ then lim $\lim_{z \to z_0} f(z) = z_0.$ 3. lim $z \rightarrow z_0$ $(f(z) \mp g(z)) = \lim$ $z \rightarrow z_0$ $f(z) \mp \lim$ $z \rightarrow z_0$ $g(z)$. 4. lim $z \rightarrow z_0$ $f(z)$ $\frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$ $\lim_{z\to z_0} g(z)$ 5. lim $z \rightarrow z_0$ $f(z)$. $g(z) = \lim$ $z \rightarrow z_0$ $f(z)$. lim $z \rightarrow z_0$ $g(z)$ $f(z) = \frac{2xy}{x^2 + 2}$ $rac{2xy}{x^2+y^2} + \frac{x^2}{1+y^2}$ **Example:** Find limit $f(z)$ if its exist, such that $f(z) = \frac{2xy}{x^2 + y^2} + \frac{x}{1+y}$ i

Proof: Assume that limit $f(z)$ exists.

Let $y = 0$, we get

$$
\lim_{z \to z_0 = 0} f(z) = \lim_{(x,y) \to (0,0)} f(z) = \lim_{x \to 0} x^2 i = 0
$$

Let $x = 0$, we get $\lim f(z) = 0$

Let
$$
y = x
$$
, then $\lim_{z \to 0} f(z) = \lim_{(x,x) \to (0,0)} f(z) = \lim_{(x,x) \to (0,0)} \left(\frac{2x^2}{2x^2} + \frac{x^2}{1+x} i \right)$

$$
\lim_{(x,x) \to (0,0)} \left(1 + \frac{x^2}{1+x} i \right) = 1 + \lim_{(x,x) \to (0,0)} \frac{x^2}{1+x} i = 1 + 0 = 1
$$

This is impossible; therefore this limit does not exist.

lim $z \rightarrow z_0$ **Exercise:** Prove that $\lim_{x \to 2} z^2 = z_0^2$

Note: The limit in the real numbers is studying the approaches from the right and left, but in the complex numbers is studying from every side of the circle.

lim **Theorem:** If $\lim_{z \to z_0} f(z) = w_1$, then $\lim_{z \to z_0} f(z) = w_2$

Then $w_1 = w_2$. (The limit is unique)

Theorem: Let $f(z) = u(x, y) + iv(x, y)$ such that $z = x + iy$,

Then $z_0 = x_0 + y_0$, $w_0 = u_0 + iv_0$,

$$
\lim_{z \to z_0} f(z) = w_0 \text{ iff } \lim_{z \to z_0} u(x, y) = u_0, \lim_{z \to z_0} v(x, y) = v_0
$$

<u>Note:</u> $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$ s. t $a_i \in \mathbb{C}, i = 0, 1, \dots, n$

Then lim $\lim_{z \to z_0} p(z) = p(z_0)$

Example: Find limit of $f(z)$ if it's exist

1. $\lim_{z\to 3-4i}$ $4x^2y^2-1+i(x^2-y^2)-ix$ $\sqrt{x^2+y^2}$

Solution:

$$
\lim_{z \to 3-4i} \frac{(4x^2y^2-1)+i(x^2-y^2-x)}{\sqrt{x^2+y^2}} =
$$
\n=115-2i =
$$
\lim_{z \to 3-4i} \frac{4x^2y^2-1}{\sqrt{x^2+y^2}} + i \lim_{z \to 3-4i} \frac{x^2-y^2-x}{\sqrt{x^2+y^2}}
$$
\n2.
$$
\lim_{z \to i} \frac{z-i}{z^2+1}
$$

Solution:

$$
\lim_{z \to i} \frac{z - i}{z^2 + 1} = \lim_{z \to i} \frac{z - i}{z^2 - (-1)} = \lim_{z \to i} \frac{z - i}{z^2 - i^2} = \lim_{z \to i} \frac{z - i}{(z - i)(z + i)}
$$

$$
= \lim_{z \to i} \frac{1}{(z + i)} = \frac{1}{2i}
$$

3.
$$
\lim_{z \to (-1+i)} \frac{z^2 + (3-i)z + 2 - 2i}{z+1-i}
$$

Solution:

Note:
$$
z^2 + (3 - i) z + 2 - 2i = (z + 1 - i)(z + 2)
$$

$$
\therefore \lim_{z \to (-1+i)} \frac{z^2 + (3-i)z + 2 - 2i}{z + 1 - i} = \lim_{z \to (-1+i)} \frac{(z+1-i)(z+2)}{(z+1-i)}
$$

=
$$
\lim_{z \to (-1+i)} (z+2)
$$

=
$$
-1 + i + 2
$$

=
$$
1 + i
$$

[3] Continuity

Definition:

A function f is continuous at a point z_0 if all of the three following conditions are satisfied:

- 1. lim $z \rightarrow z_0$ $f(z)$ Exists,
- 2. $f(z_0)$ Exists,

3.
$$
\lim_{z \to z_0} f(z) = f(z_0)
$$

A function of a complex variable is said to be continuous in a region R if it is continuous at each point R .

Theorem: If f , g are continuous functions at z_0 then

- 1. $f + g$ is continuous.
- 2. f . g is continuous.
- $3.\frac{f}{f}$ $\frac{1}{g}$, $g(z_0) \neq 0$ is continuous.
- 4. fog is continuous at z_0 if f is continuous at $g(z_0)$.

Example: $f(z) = z^2$ is continuous in complex plane since $\forall z_0 \in \mathbb{C}$

- 1. $f(z_0) = z_0^2$
- 2. lim $\lim_{z \to z_0} f(z) = z_0^2$
- 3. lim $\lim_{z \to z_0} f(z) = f(z_0)$

 $f(z) = \frac{z^2-1}{z-1}$ continuous at $z = 1$? **Example:** Is $f(z) = \frac{z-1}{z-1}$

- **Solution:** f is not continuous since $f(1)$ not exist
- $f(z_0) = \frac{z_0^2 1}{z_0 1}$ $\overline{z_0-1}$ $=\frac{(z_0-1)(z_0+1)}{z_0}$ $\frac{z_{0}+1}{z_{0}-1}=z_{0}+1$ $\therefore \lim_{z \to 1} f(z) = 2$ But $f(1) = \frac{0}{0}$ 0 $\therefore \lim_{z \to 1} f(z) \neq f(1)$

Theorem: $f(z) = u(x, y) + iv(x, y)$ is continuous at z_0 iff $u(x, y)$ and $v(x, y)$ are continuous at (x_0, y_0) .

30

lim <u>*Proof:*</u> Let *f* be continuous at z_0 , then $\lim_{z \to z_0} f(z) = f(z_0)$

That means:

$$
\lim_{z \to z_0} (u(x, y) + iv(x, y)) = u(x_0, y_0) + i v(x_0, y_0)
$$

\n
$$
\to \lim_{z \to z_0} u(x, y) + i \lim_{z \to z_0} v(x, y) = u(x_0, y_0) + i v(x_0, y_0)
$$

\n
$$
\therefore \lim_{z \to z_0} u(x, y) = u(x_0, y_0)
$$

 lim $\lim_{z \to z_0} v(x, y) = v(x_0, y_0)$

are continuous at z_0 . ∴ u, v

Example: Is $f(x + iy) = x^2 + y^2 + ixy$ continuous at $(1, 1)$?

Solution: $u(x, y) = x^2 + y^2$, $v(x, y) = xy$

By the above theorem

$$
u(1,1) = 2, \qquad \lim_{x \to 1} u(x,y) = 2 = u(1,1)
$$

$$
v(1,1) = 1, \qquad \lim_{x \to 1} v(x,y) = 1 = v(1,1)
$$

$$
v \to 1
$$

are continuous at $(1,1)$ ∴ u, v

is continuous at $(1,1)$.∴ $f(z)$

lim
z→0 ̅ **<u>Example:</u>** Find the limit if it's exists $\lim_{z\to 0} \frac{z}{z}$

Solution:

lim
z→0 \bar{Z} Z $=\lim_{z\to 0}$ $x - iy$ $x + iy$ 1. If $y = 0 \rightarrow \lim_{x \to 0}$ \mathcal{X} $\frac{x}{x} = 1$ 2. If $x = 0 \rightarrow \lim_{y \rightarrow 0}$ $-iy$ $\frac{dy}{iy} = -1$

The limit is not exist.∴

 $f(z) = \{$ $z-i$ $\frac{z-i}{z^2-1}$ if $z\neq i,-i$ **Example:** Discuss the continuity of $f(z) = \begin{cases} \frac{z^2-1}{z^2-1} & \text{if } z=t, \\ 2i & \text{if } z=\pm i \end{cases}$

Solution: Note f is not continuous at $z = \pm i$.

(Since $f(\pm i)$ is undefined)

$$
f(z) = 2i
$$
 and $\lim_{z \to -i} f(z) = \lim_{z \to -i} \frac{z - i}{(z - i)(z + i)} = \lim_{z \to -i} \frac{1}{(z + i)} = \frac{1}{2i}$

But *f* is not defined at $z = -i$, therefore *f* is not continuous at $z = i$, that is f is continuous at $\{z \in \mathbb{C} \setminus \{-i, i\}\}\$

31

 $f(z) = \{$ z^2+4 $\frac{z+i}{z+2i}$ if $z \neq -2i$ **Example:** Discuss the continuity of $f(z) = \begin{cases} \frac{z+zi}{z+zi} & \text{if } z \neq -z \\ -4i & \text{if } z = \pm i \end{cases}$

Solution: f is continuous at $\forall z \neq -2i$.

When $z = -2i$ $\lim_{z \to -2i} f(z) = f(-2i) = -4i$ $\lim_{z \to -2i} f(z) = \lim_{z \to -2i}$ $(z - 2i)(z + 2i)$ $(z + 2i)$ $=-4i$ But *f* is not defined at $z = -2i$ is not continuous at $z = -2i$.∴ f Then is f is continuous at $\{z \in \mathbb{C} : z \neq -2i\}$ $z+2i$

 $f(z) = \{$ $\frac{z+2i}{z^2+4}$ if $z \neq \pm 2i$ $\frac{1}{4}$ i if z=-2i 4 **Exercise:** Discuss the continuity of

[4] Derivative

Let f be a function whose domain of definition contains a neighborhood $|z - z_0| < \epsilon$ of a point z_0 . The derivative of f at z_0 is the limit

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

And the function f is said to be differentiable at z_0 when $f'(z_0)$ exists. If $\Delta z = z - z_0$, then $\Delta z \rightarrow 0$ when $z \rightarrow z_0$. Thus

$$
f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
$$

Theorem: If f is differentiable at z_0 , then f is continuous at z_0 .

Differentiation Formulas:

In the following formulas, the derivative of a function f at a point z_0 is denoted by either $\frac{d}{dz} f(z)$ or $f'(z_0)$.

1.
$$
\frac{d}{dz} c = 0
$$
, c is constant
2. $\frac{d}{dz} z = 1$
3. $\frac{d}{dz} (cf(z)) = cf'(z)$

4.
$$
\frac{d}{dz} [f + g] = \frac{d}{dz} f + \frac{d}{dz} g = f' + g'
$$

\n5. $\frac{d}{dz} [f \cdot g] = f \cdot g' + g \cdot f'$
\n6. $\frac{d}{dz} [\frac{f}{g}] = \frac{g \cdot f' - f \cdot g'}{g^2}, g \neq 0$
\n7. $\frac{d}{dz} (z^n) = n z^{n-1}$
\n8. $(g \circ f)' (z_0) = g' (f(z_0)) \cdot f'(z_0)$

 $\frac{dW}{dx} = \frac{dW}{dx} \cdot \frac{dw}{dx}$ $\frac{dW}{dz} = \frac{dW}{dw}$ $\frac{dW}{dw} \cdot \frac{dw}{dz}$ **<u>Note:</u>** (The Chain rule) If $w = f(z)$ and $W = g(w)$, then $\frac{dw}{dz} = \frac{dw}{dw} \cdot \frac{dw}{dz}$.

Example: Find the derivative of $f(z) = (2z^2 + i)^5$

<u>Solution</u>: write $w = 2z^2 + i$ and $W = w^5$ then:

$$
\frac{d}{dz}(2z^2+i)^5 = 5w^4.4z = 20 z(2z^2+i)^4
$$

Examples: Find $f'(z)$ where $f(z) = z^2$

Solution:

 $f'(z) = 2z$

[5] Cauchy – Riemann Equations (C-R-E)

Theorem: Suppose that $f(z) = u(x, y) + iv(x, y)$ and $f'(z)$ exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations

 $u_x = v_y$, $u_y = -v_x$

There is also $f'(z_0) = u_x + iv_x$

Where these partial derivatives are to be evaluated at (x_0, y_0) .

Note:

 $1.f'(z) = u_x + iv_x \text{ or } f'(z) = u_y - iv_y.$

2. If $f'(z)$ exists then C-R-Eq. are satisfied, but the converse is not true.

33

The converse of the above theorem is not necessary true.

Example: $f(z) = z^2 = x^2 - y^2 + 2ixy$ *Solution:* $u(x, y) = x^2 - y^2 \to u_x = 2x$ $v(x, y) = 2xy \rightarrow v_y = 2x$ $\rightarrow u_x = v_y$ $u_y = -2y$, $v_x = 2y$ $\rightarrow u_{\nu} = -v_{\nu}$ $\therefore f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z$ **Example:** $f(z) = \overline{z} = x - iy$ *Solution:* $u(x, y) = x \rightarrow u_x = 1$ $v(x, y) = -y \rightarrow v_y = -1$

 $\therefore u_x \neq v_y \rightarrow f$ is not differentiable at z.

Note: The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

Theorem: Let $f(z) = u(x, y) + iv(x, y)$, and

1. *u*, *v*, u_x , v_x , u_y , v_y are continuous at $N_e(z_0)$

2.
$$
u_x = v_y
$$
, $u_y = -v_x$

 \int

Then f is differentiable at z_0 and

$$
f'(z_0) = u_x + iv_x
$$

$$
f'(z_0) = v_y - iu_y
$$

<u>Example:</u> Show that the function $f(z) = e^{-y} \cos x + i e^{-y} \sin x$

34

Is differentiable for all and find its derivative.

Solution:

Let
$$
u(x, y) = e^{-y} \cos x
$$

\n $\rightarrow u_x = -e^{-y} \sin x$
\n $u_y = -e^{-y} \cos x$
\n $v(x, y) = e^{-y} \sin x$
\n $\rightarrow v_x = e^{-y} \cos x$
\n $v_y = -e^{-y} \sin x$
\n1. $u_x = v_y$ and $u_y = -v_x$
\n2. u, v, u_x, v_x, u_y, v_y are continuous
\nThen $f'(z)$ exist. To find $f'(z) = u_x + iv_x$
\n $f'(z) = u_x + iv_x = -e^{-y} \sin x + ie^{-y} \cos x$
\n $= e^{-y} (i \cos x - \sin x)$
\n $= ie^{-y} e^{ix}$
\n $= ie^{i(x+y)}$
\n $= ie^{iz}$

[6] Polar Coordinates of Cauchy – Riemann Equations

Let $f(z) = u(r, \theta) + iv(r, \theta)$, then Cauchy-Riemann equations are:

35

 $u_r = \frac{1}{r}$ and $f'(z_0) = e^{-i\theta} (u_r + i v_r) . u_r = \frac{1}{r} v_\theta$, $u_\theta = -r v_r$

Example: Use C-R equations to show that the functions

$$
f(z) = |z|^2
$$

$$
2. f(z) = z - \bar{z}
$$

are not differentiable at any nonzero point.

*Solution***:**

1. $|z|^2 = x^2 + y^2$

 $u(x, y) = x^2 + y^2$, $v(x, y) = 0$ $u_x = 2x$, $v_x = 0$ $u_y = 2y$, $v_y = 2x$ C-R equations are not satisfied, therefore f' is not exist. 2. $z - \bar{z} = (x + iy) - (x - iy)$ $= x + iy - x + iy$ $= 2y i$

 $u(x, y) = 0$, $v(x, y) = 2y$ $u_x = 0$, $v_x = 0$

$$
u_y = 0 \qquad , \qquad v_y = 2
$$

C-R equations are not satisfied, hence f' is not exist.

<u>Example</u>: Use C-R equations to show that $f'(z)$ **and** $f''(z)$ **are exist everywhere** $f(z) = z^3$

36

*Solution***:**

$$
f(z) = z3 = (x + iy)3
$$

= $x3 + 3x2iy + 3x(iy)2 + (iy)3$
= $x3 + 3i x2y - 3xy2 - iy3$
= $x3 - 3xy2 + i (3x2y - y3)$
 $u(x, y) = x3 - 3xy2 \rightarrow u_x = 3x2 - 3y2$
 $u_y = -6xy$
 $v(x, y) = 3x2y - y3 \rightarrow v_x = 6xy$
 $v_y = 3x2 - 3y2$
 $\therefore u_x = v_y$, $u_y = -v_x$

C-R equations are satisfied∴

$$
f'(z) = u_x + iv_x
$$

$$
= 3x2 - 3y2 + i 6xy
$$

= 3(x² + i²y² + 2i xy) = 3(x + iy)² = 3z²

$$
f''(z) = u'_x + iv'_x
$$

= 6x + i 6y
= 6(x + iy)
= 6z

<u>Example:</u> Let $f(z) = z^3$, write f in polar form and then find $f'(z)$

 $Solution: f(z) = z^3 = (re^{i\theta})^3 = r^3e^{3i\theta}$ $= r$ $3 \cos 3\theta + i r^3 \sin 3\theta$ $u(r, \theta) = r^3 \cos 3\theta \rightarrow u_r = 3r^2 \cos 3\theta$ $u_{\theta} = -3r^3 \sin 3\theta$ $v(r, \theta) = r^3 \sin 3\theta \rightarrow v_r = 3r^2 \sin 3\theta$ $v_{\theta} = 3r^3 \cos 3\theta$ Now, $u_r = \frac{1}{r}$ $\frac{1}{r} v_{\theta}$, $u_{\theta} = -r v_{r}$ $f'(z) = e^{-i\theta} [u_r + i v_r]$ $= e^{-i\theta} [3r^2 \cos 3\theta + i3r^2 \sin 3\theta]$ $= 3r^2e^{-i\theta}$ [cos 3 $\theta + i \sin 3\theta$] $= 3r^2e^{-i\theta}e^{3\theta i}$

[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and $f'(z)$ exists at each point z in the same neighborhood of z_0 .

37

Note: f is analytic in a region R if it is analytic at every point in R .

Definition:

If f is analytic at each point in the entire plane, then we say that f is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition: If f is analytic at every point in the same neighborhood of z_0 but f is not analytic at z_0 , then z_0 is called singular point

 $f'(z) = \frac{-1}{z^2}$ Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ $(z \neq 0)$ **Example:** Let $f(z) = \frac{1}{z}$,

Then f is not analytic at $z_0 = 0$, which is a singular point.

Note: If f is analytic in D , then f is continuous through D and $C-R$ equations are satisfied.

Note: A sufficient conditions that *f* be analytic in ℝ are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in ℝ.

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D if the first partial derivatives are continuous in D and $h_{xx} + h_{yy} = 0$ (Laplace equation)

Example: Show that $u(x, y) = 2x(1 - y)$ is harmonic in some **domain .**

*Solution***:**

 $u_x = 2(1 - y) \rightarrow u_{xx} = 0$

 $u_y = -2x \rightarrow u_{yy} = 0$

 $u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.