[4] Derivative

Let f be a function whose domain of definition contains a neighborhood $|z - z_0| < \epsilon$ of a point z_0 . The derivative of f at z_0 is the limit

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

And the function f is said to be differentiable at z_0 when $f'(z_0)$ exists. If $\Delta z = z - z_0$, then $\Delta z \to 0$ when $z \to z_0$. Thus

$$
f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
$$

Theorem: If f is differentiable at z_0 , then f is continuous at z_0 .

Differentiation Formulas:

In the following formulas, the derivative of a function f at a point z_0 is denoted by either $\frac{d}{dz} f(z)$ or $f'(z_0)$.

′

1.
$$
\frac{d}{dz} c = 0
$$
, c is constant
\n2. $\frac{d}{dz} z = 1$
\n3. $\frac{d}{dz} (cf(z)) = cf'(z)$
\n4. $\frac{d}{dz} [f + g] = \frac{d}{dz} f + \frac{d}{dz} g = f' + g$
\n5. $\frac{d}{dz} [f \cdot g] = f \cdot g' + g \cdot f'$
\n6. $\frac{d}{dz} [\frac{f}{g}] = \frac{g \cdot f' - f \cdot g'}{g^2}, g \neq 0$
\n7. $\frac{d}{dz} (z^n) = n z^{n-1}$
\n8. $(g \circ f)'(z_0) = g'(f(z_0)) \cdot f'(z_0)$

 dW **<u>Note:</u>** (The Chain rule) If $w = f(z)$ and $W = g(w)$, then $\frac{dw}{dz} =$ dW $\frac{dW}{dw} \cdot \frac{dw}{dz}$ $\frac{dw}{dz}$

Example: Find the derivative of $f(z) = (2z^2 + i)^5$

<u>Solution</u>: write $w = 2z^2 + i$ and $W = w^5$ then:

$$
\frac{d}{dz} (2z^2 + i)^5 = 5w^4.4z = 20 z(2z^2 + i)^4
$$

Examples: Find $f'(z)$ where $f(z) = z^2$

Solution:

 $f'(z) = 2z$

[5] Cauchy – Riemann Equations (C-R-E)

Theorem: Suppose that $f(z) = u(x, y) + iv(x, y)$ and $f'(z)$ exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations

$$
u_x = v_y, \qquad u_y = -v_x
$$

There is also $f'(z_0) = u_x + iv_x$

Where these partial derivatives are to be evaluated at (x_0, y_0) .

Note:

$$
1. f'(z) = u_x + iv_x \text{ or } f'(z) = u_y - iv_y.
$$

2. If $f'(z)$ exists then C-R-Eq. are satisfied, but the converse is not true.

The converse of the above theorem is not necessary true.

<u>Example:</u> $f(z) = z^2 = x^2 - y^2 + 2ixy$

Solution:

$$
u(x,y) = x^2 - y^2 \rightarrow u_x = 2x
$$

$$
v(x, y) = 2xy \rightarrow v_y = 2x
$$

\n
$$
\rightarrow u_x = v_y
$$

\n
$$
u_y = -2y, \quad v_x = 2y
$$

\n
$$
\rightarrow u_y = -v_x
$$

\n
$$
\therefore f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z
$$

\nExample: $f(z) = \overline{z} = x - iy$
\nSolution:

 $u(x, y) = x \rightarrow u_x = 1$

 $v(x, y) = -y \rightarrow v_y = -1$

∴ $u_x \neq v_y$ → f is not differentiable at z.

Note: The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

Theorem: Let $f(z) = u(x, y) + iv(x, y)$, and

1. *u*, *v*, u_x , v_x , u_y , v_y are continuous at $N_{\epsilon}(z_0)$

2. $u_x = v_y$, $u_y = -v_x$

Then f is differentiable at z_0 and

$$
f'(z_0) = u_x + iv_x
$$

$$
f'(z_0) = v_y - iu_y
$$

<u>Example:</u> Show that the function $f(z) = e^{-y} \cos x +$ $i e^{-y} \sin x$

Is differentiable for all and find its derivative.

Solution:

Let
$$
u(x, y) = e^{-y} \cos x
$$

\n $\rightarrow u_x = -e^{-y} \sin x$

$$
u_y = -e^{-y} \cos x
$$

\n
$$
v(x, y) = e^{-y} \sin x
$$

\n
$$
\rightarrow v_x = e^{-y} \cos x
$$

\n
$$
v_y = -e^{-y} \sin x
$$

\n1. $u_x = v_y$ and $u_y = -v_x$
\n2. u, v, u_x, v_x, u_y, v_y are continuous
\nThen $f'(z)$ exist. To find $f'(z) = u_x + iv_x$
\n
$$
f'(z) = u_x + iv_x = -e^{-y} \sin x + ie^{-y} \cos x
$$

\n
$$
= e^{-y} (i \cos x - \sin x)
$$

\n
$$
= ie^{-y} (\cos x + i \sin x)
$$

\n
$$
= ie^{-y} e^{ix}
$$

\n
$$
= ie^{i(x+iy)}
$$

\n
$$
= ie^{iz}
$$

[6] Polar Coordinates of Cauchy – Riemann Equations

Let $f(z) = u(r, \theta) + iv(r, \theta)$, then Cauchy-Riemann equations are:

and
$$
f'(z_0) = e^{-i\theta} (u_r + i v_r) . u_r = \frac{1}{r} v_\theta
$$
, $u_\theta = -r v_r$

Example: Use C-R equations to show that the functions

$$
f(z) = |z|^2
$$

$$
2. f(z) = z - \overline{z}
$$

are not differentiable at any nonzero point.

*Solution***:**

1.
$$
|z|^2 = x^2 + y^2
$$

$$
u(x, y) = x^{2} + y^{2} , v(x, y) = 0
$$

$$
u_{x} = 2x , v_{x} = 0
$$

$$
u_{y} = 2y , v_{y} = 2x
$$

C-R equations are not satisfied, therefore f' is not exist.

$$
2. z - \overline{z} = (x + iy) - (x - iy)
$$

$$
= x + iy - x + iy
$$

$$
= 2y i
$$

$$
u(x, y) = 0 \qquad , \quad v(x, y) = 2y
$$

$$
u_x = 0 \qquad , \qquad v_x = 0
$$

$$
u_y = 0 \qquad , \qquad v_y = 2
$$

C-R equations are not satisfied, hence f' is not exist.

<u>Example</u>: Use C-R equations to show that $f'(z)$ **and** $f''(z)$ are exist everywhere $f(z) = z^3$

*Solution***:**

$$
f(z) = z3 = (x + iy)3
$$

= x³ + 3x²iy + 3x(iy)² + (iy)³
= x³ + 3i x²y - 3xy² - iy³
= x³ - 3xy² + i (3x²y - y³)
u(x, y) = x³ - 3xy² + 3y²
u_y = -6xy

v(x, y) = 3x²y - y³ + v_x = 6xy

v_y = 3x² - 3y²

... u_x = v_y , u_y = -v_x

C-R equations are satisfied∴

$$
f'(z) = u_x + iv_x
$$

= 3x² - 3y² + i 6xy
= 3(x² + i²y² + 2i xy) = 3(x + iy)² = 3z²

$$
f''(z) = u'_x + iv'_x
$$

= 6x + i 6y
= 6(x + iy)
= 6z

<u>Example:</u> Let $f(z) = z^3$, write f in polar form and then $\mathbf{find}\ f'(\mathbf{z})$

Solution:
$$
f(z) = z^3 = (re^{i\theta})^3 = r^3e^{3i\theta}
$$

\n
$$
= r^3 \cos 3\theta + i r^3 \sin 3\theta
$$
\n
$$
u(r, \theta) = r^3 \cos 3\theta \rightarrow u_r = 3r^2 \cos 3\theta
$$
\n
$$
u_{\theta} = -3r^3 \sin 3\theta
$$
\n
$$
v(r, \theta) = r^3 \sin 3\theta \rightarrow v_r = 3r^2 \sin 3\theta
$$
\n
$$
v_{\theta} = 3r^3 \cos 3\theta
$$
\nNow, $u_r = \frac{1}{r} v_{\theta}$, $u_{\theta} = -rv_r$
\n
$$
f'(z) = e^{-i\theta}[u_r + i v_r]
$$
\n
$$
= e^{-i\theta}[3r^2 \cos 3\theta + i3r^2 \sin 3\theta]
$$
\n
$$
= 3r^2e^{-i\theta} [\cos 3\theta + i \sin 3\theta]
$$
\n
$$
= 3r^2e^{-i\theta} e^{3\theta i}
$$

[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and $f'(z)$ exists at each point z in the same neighborhood of z_0 .

Note: f is analytic in a region R if it is analytic at every point in R .

Definition:

If f is analytic at each point in the entire plane, then we say that f is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition: If f is analytic at every point in the same neighborhood of z_0 but f is not analytic at z_0 , then z_0 is called singular point

 $f'(z) = \frac{-1}{z^2}$ Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ $(z \neq 0)$ **Example:** Let $f(z) = \frac{1}{z}$,

Then f is not analytic at $z_0 = 0$, which is a singular point.

Note: If f is analytic in D , then f is continuous through D and $C-R$ equations are satisfied.

Note: A sufficient conditions that *f* be analytic in ℝ are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in ℝ.

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D if the first partial derivatives are continuous in D and $h_{xx} + h_{yy} =$ 0 (Laplace equation)

Example: Show that $u(x, y) = 2x(1 - y)$ **is harmonic in some domain .**

*Solution***:**

$$
u_x = 2(1-y) \rightarrow u_{xx} = 0
$$

$$
u_y = -2x \qquad \to u_{yy} = 0
$$

 $u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.