[4] Derivative

Let *f* be a function whose domain of definition contains a neighborhood $|z - z_0| < \epsilon$ of a point z_0 . The derivative of *f* at z_0 is the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

And the function *f* is said to be differentiable at z_0 when $f'(z_0)$ exists. If $\Delta z = z - z_0$, then $\Delta z \to 0$ when $z \to z_0$. Thus

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Theorem: If f is differentiable at z_0 , then f is continuous at z_0 .

Differentiation Formulas:

In the following formulas, the derivative of a function f at a point z_0 is denoted by either $\frac{d}{dz}f(z)$ or $f'(z_0)$.

1.
$$\frac{d}{dz} c = 0$$
, c is constant
2. $\frac{d}{dz} z = 1$
3. $\frac{d}{dz} (c f(z)) = c f'(z)$
4. $\frac{d}{dz} [f + g] = \frac{d}{dz} f + \frac{d}{dz} g = f' + g'$
5. $\frac{d}{dz} [f \cdot g] = f \cdot g' + g \cdot f'$
6. $\frac{d}{dz} [\frac{f}{g}] = \frac{g \cdot f' - f \cdot g'}{g^2}, g \neq 0$
7. $\frac{d}{dz} (z^n) = n z^{n-1}$
8. $(gof)'(z_0) = g'(f(z_0)) \cdot f'(z_0)$

<u>Note</u>: (The Chain rule) If w = f(z) and W = g(w), then $\frac{dW}{dz} = \frac{dW}{dw} \cdot \frac{dw}{dz}$

Example: Find the derivative of $f(z) = (2z^2 + i)^5$

Solution: write $w = 2z^2 + i$ and $W = w^5$ then:

$$\frac{d}{dz} (2z^2 + i)^5 = 5w^4 \cdot 4z = 20 \ z(2z^2 + i)^4$$

Examples: Find f'(z) where $f(z) = z^2$

Solution:

f'(z) = 2z

[5] Cauchy – Riemann Equations (C-R-E)

Theorem: Suppose that f(z) = u(x, y) + iv(x, y) and f'(z) exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
 , $u_y = -v_x$

There is also $f'(z_0) = u_x + iv_x$

Where these partial derivatives are to be evaluated at (x_0, y_0) .

Note:

1.
$$f'(z) = u_x + iv_x$$
 or $f'(z) = u_y - iv_y$.

2. If f'(z) exists then C-R-Eq. are satisfied, but the converse is not true.

The converse of the above theorem is not necessary true.

Example: $f(z) = z^2 = x^2 - y^2 + 2 ixy$

<u>Solution:</u>

$$u(x,y) = x^2 - y^2 \rightarrow u_x = 2x$$

$$v(x,y) = 2xy \quad \rightarrow v_y = 2x$$

$$\rightarrow u_x = v_y$$

$$u_y = -2y, \quad v_x = 2y$$

$$\rightarrow u_y = -v_x$$

$$\therefore f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z$$

Example: $f(z) = \overline{z} = x - iy$
Solution:

Solution:

 $u(x,y) = x \quad \rightarrow \ u_x = 1$

$$v(x, y) = -y \to v_y = -1$$

 $\therefore u_x \neq v_y \rightarrow f$ is not differentiable at z.

Note: The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

Theorem: Let f(z) = u(x, y) + iv(x, y), and

1. *u*, *v*, u_x , v_x , u_y , v_y are continuous at $N_{\epsilon}(z_0)$

2. $u_x = v_y$, $u_y = -v_x$

Then f is differentiable at z_0 and

$$f'(z_0) = u_x + iv_x$$
$$f'(z_0) = v_y - iu_y$$

Example: Show that the function $f(z) = e^{-y} \cos x + i e^{-y} \sin x$

Is differentiable *z* for all and find its derivative.

Solution:

Let $u(x, y) = e^{-y} \cos x$ $\rightarrow u_x = -e^{-y} \sin x$

$$u_{y} = -e^{-y} \cos x$$

$$v(x, y) = e^{-y} \sin x$$

$$\rightarrow v_{x} = e^{-y} \cos x$$

$$v_{y} = -e^{-y} \sin x$$
1. $u_{x} = v_{y}$ and $u_{y} = -v_{x}$
2. $u, v, u_{x}, v_{x}, u_{y}, v_{y}$ are continuous
Then $f'(z)$ exist. To find $f'(z) = u_{x} + iv_{x}$

$$f'(z) = u_{x} + iv_{x} = -e^{-y} \sin x + ie^{-y} \cos x$$

$$= e^{-y}(i \cos x - \sin x)$$

$$= ie^{-y}(\cos x + i \sin x)$$

$$= ie^{-y}e^{ix}$$

$$= ie^{ix-y}$$

$$= ie^{i(x+iy)}$$

$$= ie^{iz}$$

[6] Polar Coordinates of Cauchy – Riemann Equations

Let $f(z) = u(r, \theta) + iv(r, \theta)$, then Cauchy-Riemann equations are:

and
$$f'(z_0) = e^{-i\theta}(u_r + i v_r).u_r = \frac{1}{r}v_\theta$$
, $u_\theta = -r v_r$

Example: Use C-R equations to show that the functions

1.
$$f(z) = |z|^2$$

2. $f(z) = z - \overline{z}$

are not differentiable at any nonzero point.

Solution:

1.
$$|z|^2 = x^2 + y^2$$

$$u(x, y) = x^{2} + y^{2}$$
, $v(x, y) = 0$
 $u_{x} = 2x$, $v_{x} = 0$
 $u_{y} = 2y$, $v_{y} = 2x$

C-R equations are not satisfied, therefore f' is not exist.

$$2. z - \overline{z} = (x + iy) - (x - iy)$$
$$= x + iy - x + iy$$
$$= 2y i$$
$$u(x, y) = 0 , \quad v(x, y) = 2y$$
$$u_x = 0 , \quad v_x = 0$$
$$u_y = 0 , \quad v_y = 2$$

C-R equations are not satisfied, hence f' is not exist.

Example: Use C-R equations to show that f'(z) and f''(z) are exist everywhere $f(z) = z^3$

<u>Solution</u>:

$$f(z) = z^{3} = (x + iy)^{3}$$

$$= x^{3} + 3x^{2}iy + 3x(iy)^{2} + (iy)^{3}$$

$$= x^{3} + 3i x^{2}y - 3xy^{2} - iy^{3}$$

$$= x^{3} - 3xy^{2} + i (3x^{2}y - y^{3})$$

$$u(x, y) = x^{3} - 3xy^{2} \rightarrow u_{x} = 3x^{2} - 3y^{2}$$

$$u_{y} = -6xy$$

$$v(x, y) = 3x^{2}y - y^{3} \rightarrow v_{x} = 6xy$$

$$v_{y} = 3x^{2} - 3y^{2}$$

$$\therefore u_{x} = v_{y}, \qquad u_{y} = -v_{x}$$

C-R equations are satisfied \therefore

$$f'(z) = u_{x} + iv_{x}$$

= $3x^{2} - 3y^{2} + i \, 6xy$
= $3(x^{2} + i^{2}y^{2} + 2i \, xy) = 3(x + iy)^{2} = 3z^{2}$
 $f''(z) = u'_{x} + iv'_{x}$
= $6x + i \, 6y$
= $6(x + iy)$
= $6z$

Example: Let $f(z) = z^3$, write f in polar form and then find f'(z)

Solution:
$$f(z) = z^3 = (re^{i\theta})^3 = r^3 e^{3i\theta}$$

 $= r^3 \cos 3\theta + i r^3 \sin 3\theta$
 $u(r, \theta) = r^3 \cos 3\theta \rightarrow u_r = 3r^2 \cos 3\theta$
 $u_{\theta} = -3r^3 \sin 3\theta$
 $v(r, \theta) = r^3 \sin 3\theta \rightarrow v_r = 3r^2 \sin 3\theta$
 $v_{\theta} = 3r^3 \cos 3\theta$
Now, $u_r = \frac{1}{r} v_{\theta}$, $u_{\theta} = -rv_r$
 $f'(z) = e^{-i\theta}[u_r + i v_r]$
 $= e^{-i\theta}[3r^2 \cos 3\theta + i3r^2 \sin 3\theta]$
 $= 3r^2 e^{-i\theta}[\cos 3\theta + i \sin 3\theta]$
 $= 3r^2 e^{-i\theta}e^{3\theta i}$

[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and f'(z) exists at each point z in the same neighborhood of z_0 .

Note: *f* is analytic in a region *R* if it is analytic at every point in *R*.

Definition:

If *f* is analytic at each point in the entire plane, then we say that *f* is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition: If *f* is analytic at every point in the same neighborhood of z_0 but *f* is not analytic at z_0 , then z_0 is called singular point

Example: Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ ($z \neq 0$)

Then *f* is not analytic at $z_0 = 0$, which is a singular point.

<u>Note</u>: If *f* is analytic in *D*, then *f* is continuous through *D* and C-R equations are satisfied.

<u>Note</u>: A sufficient conditions that *f* be analytic in \mathbb{R} are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in \mathbb{R} .

[8] Harmonic Functions

Definition:

A function *h* of two variables x and y is said to be harmonic in *D* if the first partial derivatives are continuous in *D* and $h_{xx} + h_{yy} = 0$ (Laplace equation)

Example: Show that u(x, y) = 2x(1 - y) is harmonic in some domain *D*.

<u>Solution</u>:

$$u_x = 2(1-y) \to u_{xx} = 0$$

$$u_y = -2x \qquad \rightarrow u_{yy} = 0$$

 $\therefore u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.