Complex Numbers

Definition:

 A *complex number z* is an ordered pair (*a*, *b*) of real numbers such that

$$
\mathbb{C} = \{ \mathbb{R} \times \mathbb{R} \} = \{ (a, b) : a, b \in \mathbb{R} \}
$$

Where ℝ denotes the Real Numbers set. The real numbers *a, b* are called the real

and imaginary parts of the complex number $z = (a, b)$, that is $a = Re(z)$

and $b = Im(z)$. If $b = Im(z) = 0$ then $z = (a, 0) = a$ so that the set of complex

numbers is a natural extension of real numbers, then we have:

 $a = (a, 0)$ for any real number a. Thus

 $0 = (0.0), \quad 1 = (1.0), \quad 2 = (2.0), \dots$

A pair (0, *b*) is called a pure imaginary number and the pair (0, 1) is called the imaginary \boldsymbol{i} , that is

$$
(0,1)=i
$$

Now any complex number z can be written as:

$$
(a,0) + (0,b) = (a,b) = z
$$

[1] The operations for complex numbers

Let $z_1 = (a_1, b_1), z_2 = (a_2, b_2)$, then:

(1) The operation of addition $(z_1 + z_2)$ is defined as follows:

 $z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$

(2) The operation of multiplication (z_1, z_2) is defined as follows

$$
z_1 \t z_2 = (a_1, b_1) \t (a_2, b_2) = (a_1 a_2 - b_1 b_2, a_1 b_2 + b_1 a_2)
$$

Note

 $(1) z = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0)$ Hence $(a, 0) + (0, 1)(b, 0) = (a, b) = z$ where $(0, 1) = i$ Then $z = a + ib$ (2) $z^2 = z$, z , $z^3 = z$, z , z , $z^n = z$, z z $n -$ times or $i = \sqrt{-1}(3)i^2 = i$. $i = (0,1)$. $(0,1) = -1$ Then $i^2 = -1$, $i = \sqrt{-1}$

[2] Basic Algebraic Properties:

The following algebraic properties hold for all $z_1, z_2, z_3 \in \mathbb{C}$

1. $z_1 + z_2 = z_2 + z_1$ 2. $z_1 \cdot z_2 = z_2 \cdot z_1$ (Commutative laws under addition and multiplication) 3. $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ (Associative under addition) 4. (z_1, z_2) . $z_3 = z_1$. (z_2, z_3) (Associative under multiplication) $5. z_1. (z_2 + z_3) = z_1. z_2 + z_1. z_3$ (Distribution laws) 6. $z_1 + z_3 = z_3 + z_2$ iff $z_1 = z_3$ 7. $z_1 \tcdot z_2 = z_3 \tcdot z_2$ iff $z_1 = z_3$ (Cancelation law)

Note: the additive identity $0 = (0,0)$ and the multiplication identity $1 = (1,0)$,

for any complex number. That is

$$
z + 0 = 0 + z = z
$$

$$
1. z = z. 1 = z
$$

2

Definition:

The additive inverse z^* of z is a complex number with the property that

+ [∗] …………….(1) = 0

It is clear that (1) is satisfied if $z^* = (-x, -y)$, has an additive inverse.

Note: $(-z)$ is the only additive inverse of a given complex number.

Definition:

The multiplication inverse $z^{-1}(z \neq 0)$ of *z* is a complex number with the

property that

 $(2)z \cdot z^{-1} = z^{-1} \cdot z = 1$

Such that $z^{-1} = \left(\frac{x}{z^2}\right)$ $\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}$ $\frac{-y}{x^2+y^2}$

Note: the additive and multiplication identity are unique.

<u>Note:</u> if $z_2 \neq 0$, then

 $\frac{z_1}{z_1}$ \mathbf{z}_2 $=\left(\frac{x_1x_2+y_1y_2}{x_1^2+x_2^2}\right)$ $\frac{x_2+y_1y_2}{x_2^2+y_2^2}$, $\frac{y_1x_2-x_1y_2}{x_2^2+y_2^2}$ $\frac{x_2 - x_1y_2}{x_2^2 + y_2^2}$

Exercise: show that $z = 0$ iff $Re(z) = 0$ and $Im(z) = 0$.

3

Example: verify that

1. $(\sqrt{2} - i) - i(1 - \sqrt{2} i)$

*Solution***:**

$$
\sqrt{2} - i - i - \sqrt{2} = -2i
$$

 $2. (2, -3)(-2, 1)$

*Solution***:**

 $(2, -3)(-2, 1) = (-4 + 3, 2 + 6) = (-1, 8)$

3.
$$
(3, 1)(3, -1)\left(\frac{1}{5}, \frac{1}{10}\right)
$$

Solution:

$$
(3,1)(3,-1)\left(\frac{1}{5},\frac{1}{10}\right) = (9+1,-3+3)\left(\frac{1}{5},\frac{1}{10}\right)
$$

$$
= (10,0)\left(\frac{1}{5},\frac{1}{10}\right)
$$

$$
= \left(\frac{10}{5}-0,\frac{10}{10}+0\right)
$$

$$
= (2,1)
$$

Example: show that each of the two numbers $z = 1 \pm i$ satisfies the equation

$$
z^2-2z+2=0
$$

4

Proof: for $z = 1 + i$

 $(1 + i)^2 - 2(1 + i) + 2 = 1 + 2i - 1 - 2 - 2i + 2 = 0$

for $z = 1 - i$ (H.w)

Example: show that $(1 - i)^4 = -4$

 $Proof: ((1 - i)^2)^2 = (1 - 2i - 1)^2$

 $= 4i^2 = -4$

[3] Properties of Complex Numbers:

1. $Im(iz) = Re(z)$ 2. $Re(iz) = Im(z)$ $3 \cdot \frac{1}{11}$ $\frac{1}{1/z} = z, z \neq 0$ $4. (-1)z = -z$ 5. $(z_1 z_2)(z_3 z_4) = (z_1 z_3)(z_2 z_4)$

Note:

$$
(1 + z)^n = 1 + nz + \frac{n(n+1)}{2!}z^2 + \frac{n(n-1)(n-2)}{3!}z^3 + \dots + z^n
$$

[4] Vectors

It is natural to associate any nonzero complex number $z = x +$ iy with the directed

Line segment or vector from the origin to the point (x, y) that represents *z* in the

Complex plane. In fact, we can often refer to *z* as the point *z* or the vector *z.*

In Fig. 1 the number $z = x + iy$ and $-2 + i$ are displayed graphically as both two

Points and radius vector.

 Figure 1

When $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the sum $z_1 + z_2 = (x_1 + y_2)$ $(x_2) + i(y_1 + y_2)$

Corresponds to the point $(x_1 + x_2, y_1 + y_2)$, it is also corresponds to a vector with

Those coordinate as its components. Hence $z_1 + z_2$ may be obtained vectorially as shown in Fig. 2.

Figure 2

The distance between two points (x_1, y_1) and (x_2, y_2) is $|z_1 - z_2|$,

this is clear from Fig. 3, since $|z_1 - z_2|$ is the length of the vector representing the number $z_1 - z_2 = z_1 + (-z_2)$,

 $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

 Figure 3

Example: the equation $|z - 1 + 3i| = 2$ represents the circle whose center is

 $z_0 = (1, -3)$ and whose radius is $R = 2$.

, where z_0 represents the center of circle with radius R . $|z - z_0| = R$

Definition: (The Absolute Value)

The absolute value of a complex number $z = x + iy$ is defined by $\sqrt{x^2+y^2}$

6

And also by |z|, such that $|z| = \sqrt{x^2 + y^2}$

We notice that the absolute value $|z|$ is a distance from $(0,0)$ to (x, y) .

The statement $|z_1| < |z_2|$ means that z_1 is closer to $(0,0)$ than z_2 .

The distance between z_1 and z_2 is given by $|z_1 - z_2|$ = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Example: $|z - i| = 3$

<u>Solution:</u> we refer to $|z - i| = 3$ as $|x + iy - i| = 3$

$$
|x + i(y - 1)| = 3 \to \sqrt{x^2 + (y - 1)^2} = 3
$$

$$
x^2 + (y - 1)^2 = 9 \Leftrightarrow (x - x_0)^2 + (y - y_0)^2 = r^2
$$

The complex number corresponding to the points lying on the circle with

Center (0,1) and radius 3

Note: the real numbers $|z|$, $Re(z)$ and $Im(z)$ are related by the equation:

$$
|z|^2 = (Re(z))^2 + (Im(z))^2
$$

7

As follows

$$
|z| = \sqrt{x^2 + y^2} \rightarrow |z|^2 = x^2 + y^2 = (Re(z))^2 + (Im(z))^2
$$

Since $y^2 \geq 0$, we have

 $|z|^2 > x^2 = (Re(z))^2 = |Re(z)|^2$

And since $|z| \geq 0$, we get $|z| \geq |Re(z)| \geq Re(z)$ Similarly $|z| \ge |Im(z)| \ge Im(z)$.

[5] Complex Conjugates

The complex conjugate of $z = x + iy$ is defined by $\bar{z} = x - iy$

The number is \bar{z} represented by the point $(x, -y)$, which is the reflection in the

real axis of the point (x, y) representing z (Fig. 4), note that

 Figure 4

8

Some Properties of Complex Conjugates:

1.
$$
\bar{z} = z
$$

\n2. $\overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}, \quad \overline{z_1 - z_2} = \bar{z_1} - \bar{z_2}$
\n3. $\overline{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
\n4. $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z_1}}{\bar{z_2}}$, $z_2 \neq 0$

1.
$$
z + \bar{z} = x + iy + x - iy = 2x = 2Re(z)
$$

\n
$$
\frac{z + \bar{z}}{2}Re(z) =
$$
\n2. $z - \bar{z} = x + iy - x + iy = 2iy = 2Im(z)$
\n
$$
\frac{z - \bar{z}}{2}Im(z) =
$$

Some Properties of the absolute value

1.
$$
|z_1 z_2| = |z_1||z_2|
$$

\n2. $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, z_2 \neq 0$
\n3. $|z_1 + z_2| \le |z_1| + |z_2|$
\n4. $|z_1 + z_2 + \cdots z_n| \le |z_1| + |z_2| \cdots |z_n|$
\n5. $||z_1| - |z_2|| \le |z_1 + z_2|$
\n6. $||z_1| - |z_2|| \le |z_1 - z_2|$

Example: If a point *z* lies on the unite circle $|z| = 1$ about the origin, show that $|z^2 + z + 1| \le 3$ and $|z^3 - 2| \ge ||z|^3 - 2|$

9

Proof:
$$
|z^2 - z + 1| = |(z^2 + 1) + z| \le |z^2 + 1| + |z|
$$

\n $\le |z^2| + 1 + |z|$
\n $= |z|^2 + 1 + |z|$
\n $= 1^2 + 1 + 1$
\n $= 3$
\n→ $|z^2 - z + 1| \le 3$

Note:

1.
$$
(|x| - |y|)^2 \ge 0
$$

\n→ $|x|^2 + |y|^2 - 2|x||y| \ge 0$

 $\rightarrow x^2 + y^2 \ge 2|x||y|$... (*)

2. *z* is real iff $\bar{z} = z$

3. *z* is either real or pure imaginary iff $(\bar{z})^2 = z^2$

4. if
$$
|z_2| \neq |z_3|
$$
 then $\left| \frac{z_1}{z_2 + z_3} \right| \leq \frac{|z_1|}{||z_2| - |z_3||}$

Example: If a point *z* lies on the unite circle $|z| = 2$ then show that

$$
\leq \frac{1}{3|z^4 - 4z^3 + 3|}
$$

Proof: $|z^4 - 4z^3 + 3| = |(z^2 - 1)(z^2 - 3)|$ $= |z^2 - 1||z^2 - 3|$ \geq $||z|^2 - 1|| ||z|^2 - 3||$ $= |4 - 1| |4 - 3|$

 $= 3$

$$
\therefore |z^4 - 4z^3 + 3| \ge 3
$$

$$
\le \frac{1}{3} \Rightarrow \frac{1}{|z^4 - 4z^3 + 3|}
$$

Exercises:

1. Find $|z|$ where

 a.z=3-4i b. $z = -2 + \sqrt{12}i$

2. If z=x+iy then show that

a.
$$
\frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}
$$

b. $\overline{z} = -i\overline{z}$

Note:
$$
x = \frac{z + \bar{z}}{2} = R(z)
$$
, $y = \frac{z - \bar{z}}{2i} = Im(z)$
 $x^2 - y^2 = 1$

$$
\frac{(z+\bar{z})^2}{2} \quad (z-\bar{z})^2
$$
\n
$$
= 1^{\frac{z^2+2z\bar{z}+\bar{z}^2}{4}} - \frac{z^2-2z\bar{z}+\bar{z}^2}{4i^2}
$$
\n
$$
= 1^{\frac{z^2+2z\bar{z}+\bar{z}^2}{4}} + \frac{z^2-2z\bar{z}+\bar{z}^2}{4}
$$
\n
$$
\to 2z^2 + 2\bar{z}^2 = 4
$$
\n
$$
\to 2(z^2 + \bar{z}^2) = 4
$$
\n
$$
\to z^2 + \bar{z}^2 = 2
$$

[6] Polar Form of Complex Numbers: (Exponential Form)

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero complex number $z = x + iy$,

 $x = r \cos \theta$, $y = r \sin \theta$

The number z can be written in polar form as

 $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$

 $\frac{y}{x}$, $x \ne 0$, $r^2 = x^2 + y^2$, $i\theta = \cos \theta + i \sin \theta \tan \theta =$ $\frac{y}{x}$, $x \neq 0$, $r^2 = x^2 + y^2$, $i\theta = \cos \theta + i \sin \theta$

This implies that for any complex number $z = x + iy$, we have

$$
|z| = \sqrt{x^2 + y^2} = \sqrt{r^2} = r
$$

In fact r is the length of the vector represent z . In particular, since $z = x + iy$

We may express z in polar form by

 $z = r \cos \theta + i r \sin \theta = r(\cos \theta + i \sin \theta)$

The real number θ represents the angle, measured in radians, that z makes with

The positive real axis (Fig. 5).

 $\hat{\bm{\theta}}$

Each value of θ is called an argument of z and the set of all such values is denoted by arg $z = \theta$.

Note: $arg z$ is not unique.

Definition: The principal value of arg *z* (Arg *z*)

x

If $-\pi < \theta < \pi$ and satisfy

 $\arg z = \text{Arg } z + 2n\pi, \; n = 0, \pm 1, \pm 2, \ldots$

Then this value of θ (which is unique) is called the principal value of arg z and

denoted by Arg z.

Example: Write $z = 1 - i$ in polar form

Solution: $r = \sqrt{x^2 + y^2} = \sqrt{1+1} = \sqrt{2}$

 $x = r \cos \theta \rightarrow 1 = \sqrt{2} \cos \theta \rightarrow \cos \theta = \frac{1}{\sqrt{2}}$ $\sqrt{2}$

 $y = r \sin \theta \rightarrow -1 = \sqrt{2} \sin \theta \rightarrow \sin \theta =$ −1 $\sqrt{2}$ $\tan \theta = \frac{y}{x}$ $\frac{y}{x} = \frac{-1}{1}$ $\frac{1}{1} = -1$ $\theta = \tan^{-1}(-1) = \frac{-\pi}{4}$ 4 $z = 1 - i = \sqrt{2} \left(\cos \frac{-\pi}{4} \right)$ $z = 1 - i = \sqrt{2} \left(\cos \frac{-\pi}{4} + i \sin \frac{-\pi}{4} \right)$ $=\sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right)\right)$ $\left(\frac{-\pi}{4} + 2n\pi\right) + i \sin\left(\frac{-\pi}{4}\right)$ $\frac{-n}{4}+2n\pi\big)\big)$

12

Example: Write $z = 1 + i$ in polar form

 $r = \sqrt{2}$, tan $\theta = \frac{y}{x}$ **Solution:** $r = \sqrt{2}$, $\tan \theta = \frac{y}{r} = 1$

