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Chapter One 

Complex Numbers 

: Definition 

     A complex number z is an ordered pair (a, b) of real numbers 

such that 

ℂ = { ℝ × ℝ } = {(𝑎, 𝑏): 𝑎, 𝑏 ∈ ℝ } 

Where  ℝ  denotes the Real Numbers set. The real numbers a, b 

are called the real 

 and imaginary parts of the complex number  𝑧 = (𝑎, 𝑏) , that is 

𝑎 = 𝑅𝑒(𝑧)  

and 𝑏 = 𝐼𝑚(𝑧).  If 𝑏 = 𝐼𝑚(𝑧) = 0 then 𝑧 = (𝑎, 0) = 𝑎 so that the set 

of complex  

numbers is a natural extension of real numbers, then we have: 

 𝑎 = (𝑎, 0) for any real number 𝑎. Thus 

0 = (0,0), 1 = (1,0), 2 = (2,0), … 

A pair (0, b) is called a pure imaginary number and the pair (0, 1) 

is called the imaginary 𝒊, that is 

(0,1) = 𝑖 

Now any complex number z can be written as: 

(𝑎, 0) + (0, 𝑏) = (𝑎, 𝑏) = 𝑧 

 

s for complex numbersThe operation] 1[ 

Let 𝑧1 = (𝑎1, 𝑏1), 𝑧2 = (𝑎2, 𝑏2), 𝑡ℎ𝑒𝑛:  

(1) The operation of addition (𝑧1 + 𝑧2) is defined as follows: 

𝑧1 + 𝑧2 = (𝑎1, 𝑏1) + (𝑎2, 𝑏2) = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2) 

(2) The operation of multiplication (𝑧1. 𝑧2) is defined as follows 

𝑧1. 𝑧2 = (𝑎1, 𝑏1). ( 𝑎2, 𝑏2) = (𝑎1𝑎2 − 𝑏1𝑏2, 𝑎1𝑏2 + 𝑏1𝑎2) 
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  Note 

(1) 𝑧 = (𝑎, 0) + (0, 𝑏) = (𝑎, 0) + (0,1)(𝑏, 0) 

Hence  (𝑎, 0) + (0,1)(𝑏, 0) = (𝑎, 𝑏) = 𝑧 where (0,1) = 𝑖 

Then  𝑧 = 𝑎 + 𝑖𝑏 

(2) 𝑧2 = 𝑧. 𝑧, 𝑧3 = 𝑧. 𝑧. 𝑧,   𝑧𝑛 = 𝑧. 𝑧 … . . 𝑧 

                                                                𝑛 − times 

(3)𝑖2 = 𝑖. 𝑖 = (0,1). (0,1) = −1  or 𝑖 = √−1 

Then  𝑖2 = −1, 𝑖 = √−1   

 

:Basic Algebraic Properties] 2[ 

The following algebraic properties hold for all  𝑧1, 𝑧2, 𝑧3 ∈ ℂ 

 
1. 𝑧1 + 𝑧2 = 𝑧2 + 𝑧1

2.      𝑧1. 𝑧2 =  𝑧2. 𝑧1
                

(
Commutative laws under addition and

multiplication
) 

 3.  (𝑧1 + 𝑧2) + 𝑧3 = 𝑧1 + (𝑧2 + 𝑧3)          (Associative under 

addition) 

 4. (𝑧1. 𝑧2). 𝑧3 = 𝑧1. (𝑧2. 𝑧3)              (Associative under 

multiplication) 

 5. 𝑧1. (𝑧2 + 𝑧3) = 𝑧1. 𝑧2 + 𝑧1. 𝑧3                                 (Distribution 

laws) 

 
6. 𝑧1 + 𝑧3 = 𝑧3 + 𝑧2  iff  𝑧1 = 𝑧3  
7.  𝑧1. 𝑧2 =  𝑧3. 𝑧2      iff     𝑧1 = 𝑧3

}                               (Cancelation law) 

 

and the multiplication  0 = (0,0) the additive identity Note:

identity  1 = (1,0),  

for any complex number. That is 

𝑧 + 0 = 0 + 𝑧 = 𝑧 

1. 𝑧 = 𝑧. 1 = 𝑧 
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:Definition 

    The additive inverse 𝑧∗ of z is a complex number with the 

property that  

𝑧 + 𝑧∗ = 0 …………….(1) 

It is clear that (1) is satisfied if 𝑧∗ = (−𝑥, −𝑦), has an additive 

inverse. 

is the only additive inverse of a given complex  (−𝑧) :Note

number. 

:Definition 

    The multiplication inverse 𝑧−1(𝑧 ≠ 0) of z is a complex number 

with the  

property that  

𝑧. 𝑧−1 = 𝑧−1. 𝑧 = 1               (2) 

Such that 𝑧−1 = (
𝑥

𝑥2+𝑦2
,

−𝑦

𝑥2+𝑦2
)     

.additive and multiplication identity are uniquethe   Note: 

then 𝑧2 ≠ 0,  if  Note: 

𝑧1

𝑧2
= (

𝑥1𝑥2+𝑦1𝑦2

𝑥2
2+𝑦2

2 ,
𝑦1𝑥2−𝑥1𝑦2

𝑥2
2+𝑦2

2 )   

𝑧 = 0  iff 𝑅𝑒(𝑧) = 0 and 𝐼𝑚(𝑧) = 0.  show that  :Exercise 

 verify that  Example: 

1. (√𝟐 − 𝒊) − 𝒊(𝟏 − √𝟐 𝒊) 

:Solution 

√2 − 𝑖 − 𝑖 − √2 = −2𝑖  

2. (𝟐, −𝟑)(−𝟐, 𝟏) 

:Solution 

(2, −3)(−2, 1) = (−4 + 3, 2 + 6) = (−1, 8) 
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3. (𝟑, 𝟏)(𝟑, −𝟏) (
𝟏

𝟓
,

𝟏

𝟏𝟎
)  

:Solution 

(3,1)(3, −1) ( 
1

5
,

1

10
) = (9 + 1, −3 + 3) ( 

1

5
,

1

10
)   

                                    = (10, 0) ( 
1

5
,

1

10
)  

                                    = ( 
10

5
− 0,

10

10
+ 0)  

 = (2, 1)                                     

satisfies  𝑧 = 1 ∓ 𝑖 show that each of the two numbers  Example:

the equation 

𝑧2 − 2𝑧 + 2 = 0 

𝑧 = 1 + 𝑖   :  forProof 

(1 + 𝑖)2 − 2(1 + 𝑖) + 2 = 1 + 2𝑖 − 1 − 2 − 2𝑖 + 2 = 0  

for  𝑧 = 1 − 𝑖      (H.w) 

(1 − 𝑖)4 = −4  show that  :Example 

((1 − 𝑖)2)2 = (1 − 2𝑖 − 1)2: Proof 

  

                                   = 4𝑖2 = −4 

 [3] Properties of Complex Numbers: 

1. 𝐼𝑚(𝑖𝑧) = 𝑅𝑒(𝑧) 

2. 𝑅𝑒(𝑖𝑧) = 𝐼𝑚(𝑧) 

3. 
1

1/𝑧
= 𝑧, 𝑧 ≠ 0 

4. (−1)𝑧 = −𝑧 

5. (𝑧1𝑧2)(𝑧3𝑧4) = (𝑧1𝑧3)(𝑧2𝑧4) 
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6. 
𝑧1+𝑧2

𝑧3
=

𝑧1

𝑧3
+

𝑧2

𝑧3
, 𝑧3 ≠ 0  

 

:Note 

 (1 + 𝑧)𝑛 = 1 + 𝑛𝑧 +
𝑛(𝑛+1)

2!
𝑧2 +

𝑛(𝑛−1)(𝑛−2)

3!
𝑧3 + ⋯ + 𝑧𝑛 

 Vectors] 4[  

    It is natural to associate any nonzero complex number 𝑧 = 𝑥 +

𝑖𝑦 with the directed 

 Line segment or vector from the origin to the point (x, y) that 

represents z in the  

Complex plane. In fact, we can often refer to z as the point z or the 

vector z. 

 In Fig. 1 the number 𝑧 = 𝑥 + 𝑖𝑦 and −2 + 𝑖 are displayed 

graphically as both two  

Points and radius vector. 

𝒚 

 

  

        𝒙 

 

                                                Figure 1 

When 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2, the sum 𝑧1 + 𝑧2 = (𝑥1 +

𝑥2) + 𝑖(𝑦1 + 𝑦2) 

Corresponds to the point (𝑥1 + 𝑥2, 𝑦1 + 𝑦2), it is also corresponds 

to a vector with 

 Those coordinate as its components. Hence 𝑧1 + 𝑧2 may be 

obtained vectorially as shown in Fig. 2. 

                                                    𝒚 

 

   

1 

𝑧 = (𝑥, 𝑦) 

 
(−2, 1) 

0 −2 

 𝑧1

   
𝑧1 + 𝑧2  𝑧2

  

𝑧2  
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                                                                                                         𝒙 

                                            

                                            Figure 2 

The distance between two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is |𝑧1 − 𝑧2|, 

 this is clear from Fig. 3, since |𝑧1 − 𝑧2| is the length of the vector 

representing the number  𝑧1 − 𝑧2 = 𝑧1 + (−𝑧2), 

|𝑧1 − 𝑧2| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  

 

                                                    𝒚 

   

   

        

                                                                                                         𝒙 

 

 

                                          Figure 3 

 

represents the circle  |𝑧 − 1 + 3𝑖| = 2 the equation  Example:

whose center is 

 𝑧0 = (1, −3) and whose radius is 𝑅 = 2. 

|𝑧 − 𝑧0| = 𝑅 , where 𝑧0 represents the center of circle with radius 𝑅. 

 

(The Absolute Value)  Definition: 

    The absolute value of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is defined by 

√𝑥2 + 𝑦2  

And also by |𝑧|, such that |𝑧| = √𝑥2 + 𝑦2 

𝑧1  

0 

(𝑥2, 𝑦2) 

 

(𝑥1, 𝑦1)  
|𝑧1 − 𝑧2| 𝑧2  

𝑧1  

−𝑧2

  

𝑧1 − 𝑧2 
0 
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We notice that the absolute value |𝑧| is a distance 

from (0,0) to (𝑥, 𝑦). 

 The statement  |𝑧1| < |𝑧2|  means that  𝑧1 is closer to  (0,0)  

than 𝑧2.  

The distance between 𝑧1 and 𝑧2 is given by |𝑧1 − 𝑧2| =

√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

 

|𝑧 − 𝑖| = 3  :Example 

|𝑥 + 𝑖𝑦 − 𝑖| = 3 as |𝑧 − 𝑖| = 3 we refer to  Solution: 

|𝑥 + 𝑖(𝑦 − 1)| = 3 → √𝑥2 + (𝑦 − 1)2 = 3  

𝑥2 + (𝑦 − 1)2 = 9 ⇔ (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑟2  

The complex number corresponding to the points lying on the 

circle with  

Center (0,1) and radius 3  

𝒚                                                          

 

  

     

                                                                                                              𝒙 

 

 

are related by the  𝐼𝑚(𝑧) and |𝑧|, 𝑅𝑒(𝑧) the real numbers  Note:

equation:  

|𝑧|2 = (𝑅𝑒(𝑧))2 + (𝐼𝑚(𝑧))2 

As follows  

|𝑧| = √𝑥2 + 𝑦2 → |𝑧|2 = 𝑥2 + 𝑦2 = (𝑅𝑒(𝑧))2 + (𝐼𝑚(𝑧))2  

Since 𝑦2 ≥ 0, we have  

4 

3 

2 

1  (0, 1) 

3 -3 0 

2 
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|𝑧|2 ≥ 𝑥2 = (𝑅𝑒(𝑧))
2

= |𝑅𝑒(𝑧)|2  

And since |𝑧| ≥ 0, we get 

|𝑧| ≥ |𝑅𝑒(𝑧)| ≥ 𝑅𝑒(𝑧) 

Similarly  |𝑧| ≥ |𝐼𝑚(𝑧)| ≥ 𝐼𝑚(𝑧). 

 

 

Complex Conjugates] 5[  

    The complex conjugate of z = 𝑥 + 𝑖𝑦 is defined by  𝑧̅ = 𝑥 − 𝑖𝑦  

The number is  𝑧̅ represented by the point (𝑥, −𝑦), which is the 

reflection in the  

real axis of the point (𝑥, 𝑦) representing 𝑧 (Fig. 4), note that 

𝑧̿ = 𝑧  and  |𝑧̅| = |𝑧|, for all 𝑧 

                                                                  𝒚                 

 

  

    x      

 

 

Figure 4                                                           

                                                    

:Some Properties of Complex Conjugates 

1. 𝑧̿ = 𝑧 

2. 𝑧1 + 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ + 𝑧2̅,    𝑧1 − 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ − 𝑧2̅ 

3. 𝑧1. 𝑧2̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅. 𝑧2̅ 

4. (
𝑧1

𝑧2
)

̅̅ ̅̅ ̅
=

�̅�1

�̅�2
   , 𝑧2 ≠ 0 

 

(𝑥, 𝑦)  
𝑧 

𝑧̅ 

0 

(𝑥, −𝑦)  
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:Note 

1. 𝑧 + 𝑧̅ = 𝑥 + 𝑖𝑦 + 𝑥 − 𝑖𝑦 = 2𝑥 = 2𝑅𝑒(𝑧) 

𝑅𝑒(𝑧) =  
𝑧+�̅�

2
 

2. 𝑧 − 𝑧̅ = 𝑥 + 𝑖𝑦 − 𝑥 + 𝑖𝑦 = 2𝑖𝑦 = 2𝐼𝑚(𝑧) 

𝐼𝑚(𝑧) =  
𝑧−�̅�

2
 

the absolute valueSome Properties of  

1. |𝑧1𝑧2| = |𝑧1||𝑧2| 

2. |
𝑧1

𝑧2
| = 

|𝑧1|

|𝑧2|
  , 𝑧2 ≠ 0 

3. |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

4. |𝑧1 + 𝑧2 + ⋯ 𝑧𝑛| ≤ |𝑧1| + |𝑧2| ⋯ |𝑧𝑛| 

5. ||𝑧1| − |𝑧2|| ≤ |𝑧1 + 𝑧2| 

6. ||𝑧1| − |𝑧2|| ≤ |𝑧1 − 𝑧2| 

 

about the  |𝑧| = 1 lies on the unite circle 𝑧 If a point  :Example

origin, show that  |𝑧2 + 𝑧 + 1| ≤ 3 and |𝑧3 − 2| ≥ ||𝑧|3 − 2| 

 

|𝑧2 − 𝑧 + 1| = |(𝑧2 + 1) + 𝑧| ≤ |𝑧2 + 1| + |𝑧| :Proof 

                                  ≤ |𝑧2| + 1 + |𝑧|  

                                  = |𝑧|2 + 1 + |𝑧| 

                                 = 12 + 1 + 1 

                                   = 3 

                        →  |𝑧2 − 𝑧 + 1| ≤ 3 

  :Note 

1. (|𝑥| − |𝑦|)2 ≥ 0 

→  |𝑥|2 + |𝑦|2 − 2|𝑥||𝑦| ≥ 0  
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→  𝑥2 + 𝑦2 ≥ 2|𝑥||𝑦|     … () 

 2. 𝑧  is real iff  𝑧̅ = 𝑧  

3. 𝑧  is either real or pure imaginary iff  (𝑧̅ )2 = 𝑧2 

4. if  |𝑧2| ≠ |𝑧𝟑| then |
𝑧1

𝑧2+𝑧3
|  ≤  

|𝑧1|

||𝑧2|−|𝑧3||
 

then show  |𝑧| = 2 lies on the unite circle 𝑧 If a point  :Example

that  

1

|𝑧4−4𝑧3+3|
  ≤  

1

3
                         

 |𝑧4 − 4𝑧3 + 3| = |(𝑧2 − 1)(𝑧2 − 3)|  :Proof 

                                         = |𝑧2 − 1||𝑧2 − 3| 

                                             ≥ ||𝑧|2 − 1| ||𝑧|2 − 3| 

                                            = |4 − 1| |4 − 3|            

         

                                            = 3          

∴  |𝑧4 − 4𝑧3 + 3| ≥ 3 

→  
1

 |𝑧4−4𝑧3+3|
 ≤  

1

3
 

 

:Exercises 

1. Find |𝑧| where  

      a.z=3-4i 

      b. 𝑧 = −2 + √12 𝑖 

2. If z=x+iy then show that  

      a.  
1

𝑧
=

𝑥

𝑥2+𝑦2
− 𝑖

𝑦

𝑥2+𝑦2
 

b. 𝑖�̅� = −𝑖𝑧̅       

 𝑦 =
𝑧−�̅�

2𝑖
= 𝐼𝑚(𝑧)  

𝑧+�̅�

2
= 𝑅(𝑧), 𝑥 = :Note 

𝑥2 − 𝑦2 = 1   



 
11 

(
𝑧+�̅�

2
)

2
− (

𝑧−�̅�

2𝑖
)

2
= 1  

𝑧2+2𝑧�̅�+�̅�2

4
−

𝑧2−2𝑧�̅�+�̅�2

4𝑖2 = 1 

𝑧2+2𝑧�̅�+�̅�2

4
+

𝑧2−2𝑧�̅�+�̅�2

4
 = 1  

→ 2𝑧2 + 2𝑧̅2 = 4  

→ 2(𝑧2 + 𝑧̅2) = 4  

→ 𝑧2 + 𝑧̅2 = 2  

 

[6] Polar Form of Complex Numbers: (Exponential 

Form) 

     Let 𝑟 and 𝜃 be polar coordinates of the point (𝑥, 𝑦) that 

corresponds to a nonzero complex number 𝑧 = 𝑥 + 𝑖𝑦, 

𝑥 = 𝑟 cos 𝜃      ,     𝑦 = 𝑟 sin 𝜃 

     The number  𝑧 can be written in polar form as  

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟𝑒𝑖𝜃 

𝑡𝑎𝑛𝜃 = 
𝑦

𝑥
  ,  𝑥 ≠ 0, 𝑟2 = 𝑥2 + 𝑦2, 𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 

    This implies that for any complex number  𝑧 = 𝑥 + 𝑖𝑦,  we have  

|𝑧| = √𝑥2 + 𝑦2 = √𝑟2 = 𝑟 

    In fact 𝑟 is the length of the vector represent 𝑧. In particular, 

since 𝑧 = 𝑥 + 𝑖𝑦 

 We may express 𝑧 in polar form by 

𝑧 = 𝑟 cos 𝜃 + 𝑖 𝑟 sin 𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

    The real number 𝜃 represents the angle, measured in radians, 

that 𝑧  makes with 

 The positive real axis (Fig. 5). 

                                                                  𝒚  

 
𝑧 = 𝑥 + 𝑖𝑦  

𝑟 
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   x                     

                                                                                                                          

                         

 

                                                    Figure 5 

Each value of  𝜃 is called an argument of  𝑧 and the set of all such 

values is denoted by arg 𝑧 = 𝜃. 

.is not unique 𝑎𝑟𝑔 𝑧  :Note 

arg 𝑧 (Arg 𝑧) The principal value of  Definition: 

    If  −𝜋 < 𝜃 < 𝜋 and satisfy  

arg 𝑧 =  Arg 𝑧 + 2𝑛𝜋, 𝑛 = 0, ∓1, ∓2, …   

Then this value of 𝜃 (which is unique) is called the principal value 

of arg 𝑧 and  

denoted by Arg 𝑧. 

in polar form  𝑧 = 1 − 𝑖 Write  :Example 

𝑟 = √𝑥2 + 𝑦2 = √1 + 1 = √2  :Solution 

𝑥 = 𝑟 cos 𝜃 → 1 = √2 cos 𝜃 → cos 𝜃 =
1

√2
  

 

 

𝑦 = 𝑟 sin 𝜃 → −1 = √2 sin 𝜃 → sin 𝜃 =
−1

√2
 

tan 𝜃 =
𝑦

𝑥
=

−1

1
= −1  

𝜃 = tan−1(−1) =
−𝜋

4
  

𝑧 = 1 − 𝑖 = √2 (cos
−𝜋

4
+ 𝑖 sin

−𝜋

4
)   

                 = √2 (cos (
−𝜋

4
+ 2𝑛𝜋) + 𝑖 sin (

−𝜋

4
+ 2𝑛𝜋)) 

in polar form  𝑧 = 1 + 𝑖 Write  :Example 

𝜃 

  (1, −1) 
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  𝑟 = √2 ,   tan 𝜃 =
𝑦

𝑥
= 1  :Solution 

→ 𝜃 = tan−1(1) =
𝜋

4
  

∴ 𝜃 = 𝑎𝑟𝑔 𝑧 =
𝜋

4
+ 2𝑛𝜋  

∴ 1 + 𝑖 = √2 (cos (
 𝜋

4
+ 2𝑛𝜋) + 𝑖 sin (

 𝜋

4
+ 2𝑛𝜋))  

 

  (1, 1) 

θ 


