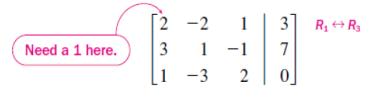
Example: Use Gauss-Jordan method to solve the following linear system:

$$2x_1 - 2x_2 + x_3 = 3$$
$$3x_1 + x_2 - x_3 = 7$$
$$x_1 - 3x_2 + 2x_3 = 0$$

Solution: Write the augmented matrix and follow the steps indicated at the right to produce a reduced form.



Step 1: Choose the leftmost nonzero column and get a 1 at the top.

Need 0's here.
$$\sim \begin{bmatrix} 1 & -3 & 2 & 0 \\ 3 & 1 & -1 & 7 \\ 2 & -2 & 1 & 3 \end{bmatrix} \xrightarrow{(-3)R_1 + R_2 \to R_2} (-2)R_1 + R_3 \to R_3$$

Step 2: Use multiples of the row containing the 1 from step 1 to get zeros in all remaining places in the column containing this 1.

Need a 1 here.
$$\sim \begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 10 & -7 & 7 \\ 0 & 4 & -3 & 3 \end{bmatrix}$$
 0.1 $R_2 \rightarrow R_2$

Step 3: Repeat step 1 with the submatrix formed by (mentally) deleting the top (shaded) row.

The system which has the above augmented matrix is

$$x_1 + 0 + 0 = 2$$

 $0 + x_2 + 0 = 0$
 $0 + 0 + x_1 = -1$

system.

Therefore, $S. S. = \{(2,0,-1)\}.$

Example: Use Gauss-Jordan method to solve the following linear system:

$$2x_1 - 4x_2 + x_3 = -4$$

$$4x_1 - 8x_2 + 7x_3 = 2$$

$$-2x_1 + 4x_2 - 3x_3 = 5$$

Solution:

$$\begin{bmatrix} 2 & -4 & 1 & | & -4 \\ 4 & -8 & 7 & | & 2 \\ -2 & 4 & -3 & | & 5 \end{bmatrix} \xrightarrow[\text{(To get 1 in upper left corner)}]{\textbf{0.5}R_1 \to R_1} \begin{bmatrix} 1 & -2 & 0.5 & | & -2 \\ 4 & -8 & 7 & | & 2 \\ -2 & 4 & -3 & | & 5 \end{bmatrix}$$

$$\xrightarrow[\text{(-4)}R_1 + R_2 \to R_2]{\textbf{1}} \xrightarrow[\text{2}]{\textbf{2}} \xrightarrow[\text{2}]{\textbf{2}}$$

$$\begin{array}{c|ccccc}
(-0.5)R_2 + R_1 \to R_1 & 1 & -2 & 0 & -3 \\
\hline
& \longrightarrow & 0 & 0 & 1 & 2 \\
2R_2 + R_3 \to R_3 & 0 & 0 & 5
\end{array}$$

We stop the Gauss–Jordan elimination, even though the matrix is not in reduced form, since the last row produces a contradiction. The system is inconsistent and has no solution.

Example: Use Gauss-Jordan method to solve the following linear system:

$$3x_1 + 6x_2 - 9x_3 = 15$$

$$2x_1 + 4x_2 - 6x_3 = 10$$

$$-2x_1 - 3x_2 + 4x_3 = -6$$

Solution:

$$\begin{bmatrix}
3 & 6 & -9 & | & 15 \\
2 & 4 & -6 & | & 10 \\
-2 & -3 & 4 & | & -6
\end{bmatrix}
\xrightarrow{\frac{1}{3}R_1 \leftrightarrow R_1}
\begin{bmatrix}
1 & 2 & -3 & | & 5 \\
2 & 4 & -6 & | & 10 \\
-2 & -3 & 4 & | & -6
\end{bmatrix}$$

$$\xrightarrow{(-2)R_1 + R_2 \leftrightarrow R_3}
\begin{bmatrix}
1 & 2 & -3 & | & 5 \\
0 & 0 & 0 & | & 0 \\
0 & 1 & -2 & | & 4
\end{bmatrix}
\xrightarrow{R_2 \leftrightarrow R_3}
\begin{bmatrix}
1 & 2 & -3 & | & 5 \\
0 & 1 & -2 & | & 4 \\
0 & 0 & 0 & | & 0
\end{bmatrix}$$

$$\xrightarrow{(-2)R_2 + R_1 \leftrightarrow R_1}
\begin{bmatrix}
1 & 0 & 1 & | & -3 \\
0 & 1 & -2 & | & 4 \\
0 & 0 & 0 & | & 0
\end{bmatrix}$$

This matrix is now in reduced form. Write the corresponding reduced system and solve.

$$x_1 + 0 + x_3 = -3$$
 $\implies x_1 = -x_3 - 3$
 $0 + x_2 - 2x_3 = 4$ $\implies x_2 = 2x_3 + 4$

This dependent system has an infinite number of solutions. We will use a parameter to represent all the solutions.

$$x_3 = t$$

$$x_2 = 2t + 4$$

$$x_1 = -t - 3$$

Where $t \in R$. Therefore, $S.S. = \{(-t - 3.2t + 4, t) | t \in R\}$.

Example: Use Gauss-Jordan method to solve the following linear system:

$$x_1 + 2x_2 + 4x_3 + x_4 - x_5 = 1$$

$$2x_1 + 4x_2 + 8x_3 + 3x_4 - 4x_5 = 2$$

$$x_1 + 3x_2 + 7x_3 + 3x_5 = -2$$

Solution:

$$\begin{bmatrix} 1 & 2 & 4 & 1 & -1 & 1 \\ 2 & 4 & 8 & 3 & -4 & 2 \\ 1 & 3 & 7 & 0 & 3 & -2 \end{bmatrix} \xrightarrow{(-2)R_1 + R_2 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 4 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 3 & -1 & 4 & -3 \end{bmatrix}$$

This matrix is in reduce row echelon form. Write the corresponding reduced system and solve.

$$x_1 - 2x_3 - 3x_5 = 7$$

 $x_2 + 3x_3 + 2x_5 = -3$
 $x_4 - 2x_5 = 0$

Solve for the leftmost variables x_1 , x_2 , and x_4 in terms of the remaining variables x_3 and x_5 :

$$x_1 = 2x_3 + 3x_5 + 7$$

$$x_2 = -3x_3 - 2x_5 - 3$$

$$x_4 = 2x_5$$

If we let $x_3 = s$ and $x_5 = t$, then for any real numbers s and t,

$$x_1 = 2s + 3t + 7$$

 $x_2 = -3s - 2t - 3$
 $x_3 = s$
 $x_4 = 2t$
 $x_5 = t$
 $S.S. = \{(2s + 3t + 7, -3s - 2t - 3, s, 2t, t) | s, t \in R\}.$

H.W.

$$2x + 6y - z = 4$$
 $x + 2y - 4z = -4$
 $3x - 2y - z = 1$ $5x - 3y - 7z = 6$
 $5x + 9y - 2z = 12$ $3x - 2y + 3z = 11$

(2.3) Solving Linear System by Cramer's Rule (determinant)

This method can be used only for square matrix and computationally inefficient for n>4.

Let AX = B be an $n \times n$ linear system, where $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. Then the Cramer's

rule is as follows:

If $|A| \neq 0$, then

$$x_i = \frac{|A_i|}{|A|}, i = 1, 2, \cdots, n$$

where A_i is the matrix obtained from A by replacing the ith column by B. If n = 3 then Cramer's rule as follows:

Given the system

$$\begin{vmatrix} a_{11}x + a_{12}y + a_{13}z = k_1 \\ a_{21}x + a_{22}y + a_{23}z = k_2 \\ a_{31}x + a_{32}y + a_{33}z = k_3 \end{vmatrix} \text{ with } D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0$$

then

$$x = \frac{\begin{vmatrix} k_1 & a_{12} & a_{13} \\ k_2 & a_{22} & a_{23} \\ k_3 & a_{32} & a_{33} \end{vmatrix}}{D} \qquad y = \frac{\begin{vmatrix} a_{11} & k_1 & a_{13} \\ a_{21} & k_2 & a_{23} \\ a_{31} & k_3 & a_{33} \end{vmatrix}}{D} \qquad z = \frac{\begin{vmatrix} a_{11} & a_{12} & k_1 \\ a_{21} & a_{22} & k_2 \\ a_{31} & a_{32} & k_3 \end{vmatrix}}{D}$$

Example:

Solve using Cramer's rule:

$$x + y = 2$$
$$3y - z = -4$$
$$x + z = 3$$

Solution:

$$|A| = D = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 3 & -1 \\ 1 & 0 & 1 \end{vmatrix} = 2$$

$$x = \frac{\begin{vmatrix} 2 & 1 & 0 \\ -4 & 3 & -1 \\ 3 & 0 & 1 \end{vmatrix}}{2} = \frac{7}{2} \qquad y = \frac{\begin{vmatrix} 1 & 2 & 0 \\ 0 & -4 & -1 \\ 1 & 3 & 1 \end{vmatrix}}{2} = \frac{3}{2}$$

$$z = \frac{\begin{vmatrix} 1 & 1 & 2 \\ 0 & 3 & -4 \\ 1 & 0 & 3 \end{vmatrix}}{2} = -\frac{1}{2}$$

H.W.

Solve using determinants:

1)
$$2x - 3y = 7$$
 $2x - 4y = 7$
 $3x + 5y = 1$ $3x - 6y = 5$

$$2x + y - z = 3$$
2) $x + y + z = 1$
 $x - 2y - 3z = 4$

(2.4) Solving Linear System Using Inverses

Using reduced row echelon form to find the inverse of matrix

Steps for finding the inverse of a matrix of dimension $n \times n$:

STEP 1: Form the augmented matrix A|In.

STEP 2: Using row operations, write A|In in reduced row echelon form.

STEP 3: If the resulting matrix is of the form In|B that is, if the identity matrix appears on the left side of the bar, then B is the inverse of A. Otherwise, A has no inverse.

Example:

Find the inverse of

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix}$$

Solution:

STEP 1 Since A is of dimension 3×3 , use the identity matrix I_3 . The matrix $[A|I_3]$ is

$$\begin{bmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
1 & 2 & 2 & 0 & 0 & 1
\end{bmatrix}$$

STEP 2 Proceed to obtain the reduced row echelon form of this matrix:

Use
$$R_2 = -2r_1 + r_2$$
 to obtain
$$\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & -4 & -2 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

Use
$$R_2 = -1r_2$$
 to obtain
$$\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

Use
$$R_1 = -1r_2 + r_1$$
 to obtain
$$\begin{bmatrix} 1 & 0 & -2 & -1 & 1 & 0 \\ 0 & 1 & 4 & 2 & -1 & 0 \\ 0 & 0 & -4 & -3 & 1 & 1 \end{bmatrix}$$

Use
$$R_3 = -\frac{1}{4}r_3$$
 to obtain
$$\begin{bmatrix} 1 & 0 & -2 & -1 & 1 & 0 \\ 0 & 1 & 4 & 2 & -1 & 0 \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

Use
$$R_1 = 2r_3 + r_1$$
 to obtain $R_2 = -4r_3 + r_2$ to obtain $R_3 = -4r_3 + r_3$ to obtain $R_4 = -4r_3 + r_4$ to obtain $R_5 = -4r_3 + r_4$ to obtain $R_5 = -4r_3 + r_4$ to obtain $R_6 = -4r_3 + r_4$

The matrix $[A|I_3]$ is in reduce row echelon form.

STEP 3: Since the identity matrix I_3 appears on the left side, the matrix appearing on the right is the inverse. That is,

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & 1 \\ \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

Remark: If A is 2×2 matrix, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then A is invertible if f

$$ad - bc \neq 0$$
, then the inverse of A is $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Ex. If possible, find the inverse of each matrix:

$$(1) \ A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} \qquad (2)B = \begin{bmatrix} 4 & -1 \\ -8 & 2 \end{bmatrix}$$

Solution

(1) ad-bc=6-2=4 then A is invertible

$$\therefore A^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$$

(2) ad-bc=0 then B is noninvertible

H.W. Show that if A has inverse or not

$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}.$$

Solving Linear System AX=B Using Inverses

$$AX = B$$
 A has an inverse A^{-1} .

$$A^{-1}(AX) = A^{-1}B$$
 Multiply both sides by A^{-1} .

$$(A^{-1}A)X = A^{-1}B$$
 Apply the Associative Property on the left side.

$$I_n X = A^{-1} B$$
 Apply the Inverse Property: $A^{-1} A = I_n$.

$$X = A^{-1}B$$
 Apply the Identity Property: $I_nX = X$.

Example:

Solve the system of equations:

$$x + y + 2z = 1$$

$$2x + y = 2$$

$$x + 2y + 2z = 3$$

Solution:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & 1 \\ \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

the solution X of the system is

$$X = A^{-1}B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & 1 \\ \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -\frac{1}{2} \end{bmatrix}$$

Therefore, $S.S. = \{(0,2,\frac{-1}{2})\}.$

H.W.

1- Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$$
 then find A^{-1}

2- Use an inverse matrix to solve the following system:

$$2x+3y+z=-1$$

$$3x+3y+z=1$$

$$2x+4y+z=-2$$