Third Lesson

3.3 Exact Differential Equations

The differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

is *exact* on an open rectangle R if there's a function F = F(x, y) such Fx and Fy are continuous, and

$$F_x(x,y) = M(x,y)$$
 and $F_y(x,y) = N(x,y)$

If and only if $M_v(x,y) = N_x(x,y)$ for all (x,y) in R

Theorem 2.5.1 If F = F(x, y) has continuous partial derivatives F_x and F_y , then

$$F(x, y) = c$$
 (c=constant),

is an implicit solution of the differential equation

$$F_x(x, y) dx + F_y(x, y) dy = 0.$$

Procedure For Solving An Exact Equation

Step 1. Check that the equation

$$M(x, y) dx + N(x, y) dy = 0 (2.5.19)$$

satisfies the exactness condition $M_y = N_x$. If not, don't go further with this procedure.

Step 2. Integrate

$$\frac{\partial F(x,y)}{\partial x} = M(x,y)$$

with respect to x to obtain

$$F(x, y) = G(x, y) + \phi(y), \tag{2.5.20}$$

where G is an antiderivative of M with respect to x, and ϕ is an unknown function of y.

Step 3. Differentiate (2.5.20) with respect to y to obtain

$$\frac{\partial F(x,y)}{\partial y} = \frac{\partial G(x,y)}{\partial y} + \phi'(y).$$

Step 4. Equate the right side of this equation to N and solve for ϕ' ; thus,

$$\frac{\partial G(x,y)}{\partial y} + \phi'(y) = N(x,y), \quad \text{so} \quad \phi'(y) = N(x,y) - \frac{\partial G(x,y)}{\partial y}.$$

Step 5. Integrate ϕ' with respect to y, taking the constant of integration to be zero, and substitute the result in (2.5.20) to obtain F(x, y).

Step 6. Set F(x, y) = c to obtain an implicit solution of (2.5.19). If possible, solve for y explicitly as a function of x.

Example Solve

$$(4x^3y^3 + 3x^2) dx + (3x^4y^2 + 6y^2) dy = 0.$$

Solution (Method 1) Here

$$M(x, y) = 4x^3y^3 + 3x^2$$
, $N(x, y) = 3x^4y^2 + 6y^2$,

and

$$M_{\nu}(x, y) = N_{x}(x, y) = 12x^{3}y^{2}$$

for all (x, y). Therefore

' there's a function F such that

$$F_x(x, y) = M(x, y) = 4x^3y^3 + 3x^2$$
 (2.5.14)

and

$$F_y(x, y) = N(x, y) = 3x^4y^2 + 6y^2$$
 (2.5.15)

for all (x, y). To find F, we integrate (2.5.14) with respect to x to obtain

$$F(x, y) = x^4 y^3 + x^3 + \phi(y), \tag{2.5.16}$$

where $\phi(y)$ is the "constant" of integration. (Here ϕ is "constant" in that it's independent of x, the variable of integration.) If ϕ is any differentiable function of y then F satisfies (2.5.14). To determine ϕ so that F also satisfies (2.5.15), assume that ϕ is differentiable and differentiate F with respect to y. This yields

$$F_y(x, y) = 3x^4y^2 + \phi'(y).$$

Comparing this with (2.5.15) shows that

$$\phi'(y) = 6y^2.$$

We integrate this with respect to y and take the constant of integration to be zero because we're interested only in finding *some* F that satisfies (2.5.14) and (2.5.15). This yields

$$\phi(y) = 2y^3.$$

Substituting this into (2.5.16) yields

$$F(x, y) = x^4 y^3 + x^3 + 2y^3. (2.5.17)$$

Now Theorem 2.5.1 implies that

$$x^4y^3 + x^3 + 2y^3 = c$$

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution

$$y = \left(\frac{c - x^3}{2 + x^4}\right)^{1/3}.$$

Example 2.5.4 Solve the equation

$$(ye^{xy}\tan x + e^{xy}\sec^2 x) dx + xe^{xy}\tan x dy = 0. (2.5.21)$$

Solution We leave it to you to check that $M_y = N_x$ on any open rectangle where $\tan x$ and $\sec x$ are defined. Here we must find a function F such that

$$F_x(x, y) = ye^{xy} \tan x + e^{xy} \sec^2 x$$
 (2.5.22)

and

$$F_{\nu}(x, y) = xe^{xy} \tan x.$$
 (2.5.23)

It's difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with respect to y. This yields

$$F(x, y) = e^{xy} \tan x + \psi(x). \tag{2.5.24}$$

Differentiating this with respect to x yields

$$F_x(x, y) = ye^{xy} \tan x + e^{xy} \sec^2 x + \psi'(x).$$

Comparing this with (2.5.22) shows that $\psi'(x) = 0$. Hence, ψ is a constant, which we can take to be zero in (2.5.24), and

$$e^{xy} \tan x = c$$

is an implicit solution of (2.5.21).

Example 2.5.5 Verify that the equation

$$3x^2y^2 dx + 6x^3y dy = 0 (2.5.25)$$

is not exact, and show that the procedure for solving exact equations fails when applied to (2.5.25).

Solution Here

$$M_v(x, y) = 6x^2y$$
 and $N_x(x, y) = 18x^2y$,

so (2.5.25) isn't exact. Nevertheless, let's try to find a function F such that

$$F_x(x, y) = 3x^2y^2 (2.5.26)$$

and

$$F_{\nu}(x,y) = 6x^3y. (2.5.27)$$

Integrating (2.5.26) with respect to x yields

$$F(x, y) = x^3 y^2 + \phi(y),$$

and differentiating this with respect to y yields

$$F_y(x, y) = 2x^3y + \phi'(y).$$

For this equation to be consistent with (2.5.27),

$$6x^3y = 2x^3y + \phi'(y),$$

or

$$\phi'(v) = 4x^3v.$$

This is a contradiction, since ϕ' must be independent of x. Therefore the procedure fails.

Exercises

In Exercises 1–17 determine which equations are exact and solve them.

$$1. \quad 6x^2y^2\,dx + 4x^3y\,dy = 0$$

2.
$$(3y\cos x + 4xe^x + 2x^2e^x) dx + (3\sin x + 3) dy = 0$$

3.
$$14x^2y^3 dx + 21x^2y^2 dy = 0$$

4.
$$(2x-2y^2) dx + (12y^2-4xy) dy = 0$$

5.
$$(x+y)^2 dx + (x+y)^2 dy = 0$$
 6. $(4x+7y) dx + (3x+4y) dy = 0$

7.
$$(-2y^2 \sin x + 3y^3 - 2x) dx + (4y \cos x + 9xy^2) dy = 0$$

8.
$$(2x + y) dx + (2y + 2x) dy = 0$$

9.
$$(3x^2 + 2xy + 4y^2) dx + (x^2 + 8xy + 18y) dy = 0$$

10.
$$(2x^2 + 8xy + y^2) dx + (2x^2 + xy^3/3) dy = 0$$

$$11. \quad \left(\frac{1}{x} + 2x\right) dx + \left(\frac{1}{y} + 2y\right) dy = 0$$

12.
$$(y \sin xy + xy^2 \cos xy) dx + (x \sin xy + xy^2 \cos xy) dy = 0$$

13.
$$\frac{x \, dx}{(x^2 + y^2)^{3/2}} + \frac{y \, dy}{(x^2 + y^2)^{3/2}} = 0$$

14.
$$(e^x(x^2y^2 + 2xy^2) + 6x) dx + (2x^2ye^x + 2) dy = 0$$

15.
$$\left(x^2e^{x^2+y}(2x^2+3)+4x\right)dx+\left(x^3e^{x^2+y}-12y^2\right)dy=0$$

16.
$$(e^{xy}(x^4y + 4x^3) + 3y) dx + (x^5e^{xy} + 3x) dy = 0$$

17.
$$(3x^2\cos xy - x^3y\sin xy + 4x) dx + (8y - x^4\sin xy) dy = 0$$

In Exercises 18-22 solve the initial value problem.

18.
$$(4x^3y^2 - 6x^2y - 2x - 3) dx + (2x^4y - 2x^3) dy = 0, y(1) = 3$$

19.
$$(-4y\cos x + 4\sin x\cos x + \sec^2 x) dx + (4y - 4\sin x) dy = 0$$
, $y(\pi/4) = 0$

20.
$$(y^3 - 1)e^x dx + 3y^2(e^x + 1) dy = 0$$
, $y(0) = 0$

21.
$$(\sin x - y \sin x - 2 \cos x) dx + \cos x dy = 0, \quad y(0) = 1$$

22.
$$(2x-1)(y-1) dx + (x+2)(x-3) dy = 0$$
, $y(1) = -1$

INTEGRATING FACTORS

In general, Eq. (5.1) is not exact. Occasionally, it is possible to transform (5.1) into an exact differential equation by a judicious multiplication. A function I(x, y) is an *integrating factor* for (5.1) if the equation

$$I(x, y)[M(x, y)dx + N(x, y)dy] = 0$$
(5.7)

is exact. A solution to (5.1) is obtained by solving the exact differential equation defined by (5.7). Some of the more common integrating factors are displayed in Table 5-1 and the conditions that follow:

If
$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = g(x)$$
, a function of x alone, then

$$I(x, y) = e^{\int g(x)dx}$$
 (5.8)

If $\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = h(y)$, a function of y alone, then

$$I(x, y) = e^{-[h(y)dy}$$
 (5.9)

5.21. Convert y' = 2xy - x into an exact differential equation.

Rewriting this equation in differential form, we have

$$(-2xy + x)dx + dy = 0 (1)$$

Here M(x, y) = -2xy + x and N(x, y) = 1. Since

$$\frac{\partial M}{\partial y} = -2x$$
 and $\frac{\partial N}{\partial x} = 0$

are not equal, (1) is not exact. But

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{(-2x) - (0)}{1} = -2x$$

is a function of x alone. Using Eq. (5.8), we have $I(x,y) = e^{\int -2x \, dx} = e^{-x^2}$ as an integrating factor. Multiplying (1) by e^{-x^2} , we obtain

$$(-2xye^{-x^2} + xe^{-x^2}) dx + e^{-x^2} dy = 0$$
 (2)

which is exact.

5.22. Convert $y^2 dx + xy dy = 0$ into an exact differential equation.

Here $M(x, y) = y^2$ and N(x, y) = xy. Since

$$\frac{\partial M}{\partial y} = 2y$$
 and $\frac{\partial N}{\partial x} = y$

are not equal, (1) is not exact. But

$$\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{2y - y}{y^2} = \frac{1}{y}$$

is a function of y alone. Using Eq. (5.9), we have as an integrating factor $I(x, y) = e^{-\int (1/y)dy} = e^{-\ln y} = 1/y$. Multiplying the given differential equation by I(x, y) = 1/y, we obtain the exact equation $y \, dx + x \, dy = 0$.

5.23. Convert $y' = \frac{xy^2 - y}{x}$ into an exact differential equation.

Rewriting this equation in differential form, we have

$$y(1-xy) dx + x dy = 0 (1)$$

Here M(x, y) = y(1 - xy) and N(x, y) = x. Since

$$\frac{\partial M}{\partial y} = 1 - 2xy$$
 and $\frac{\partial N}{\partial x} = 1$

are not equal, (1) is not exact. Equation (5.10), however, is applicable and provides the integrating factor

$$I(x, y) = \frac{1}{x[y(1-xy)] - yx} = \frac{-1}{(xy)^2}$$

Multiplying (1) by I(x, y), we obtain

$$\frac{xy-1}{x^2y}dx - \frac{1}{xy^2}dy = 0$$

which is exact.

3.4 Linear First Order Differential Equation

METHOD OF SOLUTION

A first-order *linear* differential equation has the form

$$y' + p(x)y = q(x) \tag{6.1}$$

An integrating factor for Eq. (6.1) is

$$I(x) = e^{\int p(x) dx} \tag{6.2}$$

which depends only on x and is independent of y. When both sides of (6.1) are multiplied by I(x), the resulting equation

$$I(x)y' + p(x)I(x)y = I(x)q(x)$$
(6.3)

is exact. This equation can be solved by the method described in Chapter 5. A simpler procedure is to rewrite (6.3) as

$$\frac{d(yI)}{dx} = Iq(x)$$

integrate both sides of this last equation with respect to x, and then solve the resulting equation for y.

6.1. Find an integrating factor for y' - 3y = 6.

The differential equation has the form of Eq. (6.1), with p(x) = -3 and q(x) = 6, and is linear. Here

$$\int p(x) dx = \int -3 dx = -3x$$

so (6.2) becomes

$$I(x) = e^{\int p(x) \, dx} = e^{-3x} \tag{1}$$

6.2. Solve the differential equation in the previous problem.

Multiplying the differential equation by the integrating factor defined by (1) of Problem 6.1, we obtain

$$e^{-3x}y' - 3e^{-3x}y = 6e^{-3x}$$
 or $\frac{d}{dx}(ye^{-3x}) = 6e^{-3x}$

Integrating both sides of this last equation with respect to x, we have

$$\int \frac{d}{dx} (ye^{-3x}) dx = \int 6e^{-3x} dx$$
$$ye^{-3x} = -2e^{-3x} + c$$
$$y = ce^{3x} - 2$$

6.3. Find an integrating factor for y' - 2xy = x.

The differential equation has the form of Eq. (6.1), with p(x) = -2x and q(x) = x, and is linear. Here

$$\int p(x) dx = \int (-2x) dx = -x^2$$

so (6.2) becomes

$$I(x) = e^{\int p(x) \, dx} = e^{-x^2} \tag{1}$$

6.4. Solve the differential equation in the previous problem.

Multiplying the differential equation by the integrating factor defined by (1) of Problem 6.3, we obtain

$$e^{-x^2}y' - 2xe^{-x^2}y = xe^{-x^2}$$
 or $\frac{d}{dx}[ye^{-x^2}] = xe^{-x^2}$

Integrating both sides of this last equation with respect to x, we find that

$$\int \frac{d}{dx} (ye^{-x^2}) dx = \int xe^{-x^2} dx$$
$$ye^{-x^2} = -\frac{1}{2}e^{-x^2} + c$$
$$y = ce^{x^2} - \frac{1}{2}$$

6.9. Solve y' - 5y = 0.

Here p(x) = -5 and $I(x) = e^{\int (-5) dx} = e^{-5x}$. Multiplying the differential equation by I(x), we obtain

$$e^{-5x}y' - 5e^{-5x}y = 0$$
 or $\frac{d}{dx}(ye^{-5x}) = 0$

Integrating, we obtain $ye^{-5x} = c$ or $y = ce^{5x}$.

Note that the differential equation is also separable.

In Problems 6.20 through 6.49, solve the given differential equations.

6.20.
$$\frac{dy}{dx} + 5y = 0$$

6.22.
$$\frac{dy}{dx} - 0.01y = 0$$

6.24.
$$y' + 3x^2y = 0$$

6.26.
$$y' - 3x^4y = 0$$

6.28.
$$y' + \frac{2}{x}y = 0$$

6.30.
$$y' - \frac{2}{x^2}y = 0$$

6.32.
$$y' - 7y = 14x$$

6.34.
$$y' + x^2y = x^2$$

6.36.
$$y' = \cos x$$

6.38.
$$xy' + y = xy^3$$

6.40.
$$y' + y = y^2$$

6.42.
$$y' + y = y^2 e^x$$

6.44.
$$\frac{dz}{dt} - \frac{1}{2t}z = 0$$

6.46
$$\frac{dp}{dt} - \frac{1}{t}p = t^2 + 3t - 2$$

6.21.
$$\frac{dy}{dx} - 5y = 0$$

$$6.23. \qquad \frac{dy}{dx} + 2xy = 0$$

6.25.
$$y' - x^2y = 0$$

6.27.
$$y' + \frac{1}{x}y = 0$$

6.29.
$$y' - \frac{2}{x}y = 0$$

6.31.
$$y' - 7y = e^x$$

6.33.
$$y' - 7y = \sin 2x$$

6.35.
$$y' - \frac{3}{x^2}y = \frac{1}{x^2}$$

6.37.
$$y' + y = y^2$$

6.39.
$$y' + xy = 6x\sqrt{y}$$

6.41.
$$y' + y = y^{-2}$$

6.43.
$$\frac{dy}{dt} + 50y = 0$$

6.45.
$$\frac{dN}{dt} = kN, (k = \text{a constant})$$

6.47.
$$\frac{dQ}{dt} + \frac{2}{20 - t}Q = 4$$