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Method of solution of Ordinary differential equations 

Second Lesson  

1. Construction of differential equation by elementrary aribitrary constant 

Let us have the following n-th order differential equation: 

𝑓(𝑥, 𝑦, 𝑦´, 𝑦´´, ⋯ , 𝑦(𝑛)) = 0  

This equation has a general solution containing n arbitrary constants: 

𝜑(𝑥, 𝑦, 𝑐1, 𝑐2, ⋯ , 𝑐𝑛) = 0  

On the other hand, by knowing the general solution, we can construct the differential equation for this 

solution in the following way: 

1. We differentiate the general solution with the number of constants, i.e. we differentiate the general 

solution n times and thus we get n equations. 

2. We eliminate the constants by jointly solving the previous equations. 

Thus, we get the required differential equation. This can be illustrated by the following example: 

Example 1: Find the differential equation that has the following general solution: 

𝑦 = 𝑐1𝑥 + 𝑐2𝑥2                              (1) 

Solution: To find the differential equation, we follow the following steps: 

1. We derive the general solution with the number of constants, i.e. we derive the general solution twice 

because there are two constants c1 and c2, and thus we get the two equations: 

𝑦´ = 𝑐1 + 2𝑐2𝑥                                  (2) 

𝑦´´ = 2𝑐2                                            (3) 

2. We eliminate the constants by jointly solving the two previous equations as follows: 

From equation (3), we find that: 

𝑐2 =
𝑦´´

2
                                            (4) 

Substituting in equation (2), we find: 

𝑦´ = 𝑐1 + 2
𝑦´´

2
𝑥 

⇒ 𝑦´ = 𝑐1 + 𝑦´´𝑥 

⇒ 𝑐1 = 𝑦´ − 𝑦´´𝑥                         (5) 

Substitute (4) and (5) in the general solution (1) We find: 

𝑦 = (𝑦´ − 𝑦´´𝑥)𝑥 +
𝑦´´

2
𝑥2 
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⇒ 𝑦 = 𝑦´𝑥 − 𝑦´´𝑥2 +
1

2
𝑦´´𝑥2 

⇒ 𝑦 = 𝑦´𝑥 −
1

2
𝑦´´𝑥2 

⇒ 𝑦 = 𝑦´𝑥 −
1

2
𝑦´´𝑥2 

This is the required differential equation. 

Example 2: Find the differential equation whose general solution is 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 

 Solution : In this case, to make the solution easier, we use the determinant using the following steps: 

In the determinant, we put the first row as the function y, and in the second row we put the first derivative 

of the function y', and in the third row we put the second derivative of the function y'' 

|

𝑦 𝑒2𝑥 𝑒3𝑥

𝑦′ 2𝑒2𝑥 3𝑒3𝑥

𝑦′′ 4𝑒2𝑥 9𝑒3𝑥

|=0  

|

𝑦 1 1

𝑦′ 2 3

𝑦′′ 4 9
|=0  

y|
2 3
4 9

| − 1 |
𝑦′ 3

𝑦′′ 9
| + |

𝑦′ 2

𝑦′′ 4
| = 0 

𝑦[18 − 12] − [9𝑦′ − 3𝑦′′] + 4𝑦′ − 2𝑦′′ = 0  

6𝑦 − 9𝑦′ + 3𝑦′′ + 4𝑦′ − 2𝑦′′ = 0 , which is the differential equation. 

Exercise :  Find the differential equation whose general solution is 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 + 𝑥 

2. Envelope 

 

A curve which touches each member of a given family of curves is called envelope of that family.  

Procedure to find envelope for the given family of curves:  

Case 1: Envelope of one parameter family of curves Let us consider y = f(x,α) to be the given family of 

curves with ‘α’ as the parameter.  
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Step 1: Differentiate w.r.t to the parameter α partially, and find the value of the parameter  

Step 2: By substituting the value of parameter α in the given family of curves, we get the required envelope. 

Case 2: Envelope of two parameter family of curves.  

Let us consider 𝑦 =  𝑓(𝑥, 𝛼, 𝛽) to be the given family of curves, and a relation connecting the two 

parameters α and 𝛽, 𝑔(𝛼, 𝛽) = 0  

Step 1: Consider α as independent variable and β depends α . Differentiate 𝑦 =  𝑓(𝑥, 𝛼, 𝛽) and  𝑔(𝛼, 𝛽)  =

 0, w.r. to the parameter α partially.  

Step 2: Eliminating the parameters α, β from the equations resulting from step 1 and g(α, β) = 0, we get the 

required envelope. 

Example for case1 : Find the envelope of 𝑦  𝑚𝑥  𝑎𝑚𝑝 where m is the parameter and a, p are constants  

Solution : Differentiate 𝑦  𝑚𝑥  𝑎𝑚𝑝  (1) with respect to the parameter m, we get, 

0 = 𝑥 + 𝑝𝑎𝑚𝑝−1  

⟹ 𝑚 = (
−𝑥

𝑝𝑎
)

1

𝑝−1
   (2) 

Using (2) eliminate m from (1) 

𝑦 = (
−𝑥

𝑝𝑎
)

1

𝑝−1
𝑥 + 𝑎 (

−𝑥

𝑝𝑎
)

1

𝑝−1
  

⟹  𝑦𝑝−1 = (
−𝑥

𝑝𝑎
) 𝑥𝑝−1 + 𝑎𝑝−1  (

−𝑥

𝑝𝑎
)

𝑝

  

i.e. 𝑎𝑝𝑝𝑦𝑝−1 = −𝑥𝑝𝑝𝑝−1 + (−𝑥)𝑝 

which is the required equation of envelope of (1). 

Example for case 2 : Find the envelope of family of straight lines  𝑎𝑥 + 𝑏𝑦 = 1, where a and b are 

parameters connected by the relation ab = 1  

Solution : 𝑎𝑥 + 𝑏𝑦 1   (1) 

ab = 1                           (2) 

Differentiating (1) with respect to a (considering ‘a’ as independent variable and ‘b’ depends on a ). 

𝑥 +
𝑑𝑏

𝑑𝑎
𝑦 = 0  

i.e. 
𝑑𝑏

𝑑𝑎
= −

𝑥

𝑦
                 (3) 

Differentiating (2) with respect to a 

𝑏 + 𝑎
𝑑𝑏

𝑑𝑎
= 0  

i.e. 
𝑑𝑏

𝑑𝑎
= −

𝑏

𝑎
                (4) 
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From (3) and (4), we have 

𝑥

𝑦
=

𝑏

𝑎
  

i.e. 
𝑎𝑥

1
=

𝑏𝑦

1
=

𝑎𝑥+𝑏𝑦

2
=

1

2
 

∴ 𝑎 =
1

2𝑥
  and 𝑏 =

1

2𝑦
           (5) 

Using (5) in (2), we get the envelope as 4xy = 1 

Exercises : 

1.  Determine the envelope of 𝑛  𝑦 𝑐𝑜𝑠  𝑎 , where 𝜃 being the parameter. 

2. Find the envelope of family of straight lines √
𝑥

𝑎
+ √

𝑦

𝑏
= 1, where a and b are parameters connected 

by the relation √𝑎 + √𝑏  1 

 

3. First Order Ordinary Differential Equations 

The complexity of solving de’s increases with the order. We begin with first order de’s. 

3.1 Separable Equations 

A first order ode has the form 𝐹(𝑥, 𝑦, 𝑦′) =  0. In theory, at least, the methods of algebra can be used to 

write it in the form (We use the notation 
𝑑𝑦

𝑑𝑥
=  𝐺(𝑥, 𝑦) and 𝑑𝑦 =  𝐺(𝑥, 𝑦)𝑑𝑥 interchangeably )                 

y′ = G(x, y). If G(x, y) can be factored to give 𝐺(𝑥, 𝑦) =  𝑀 (𝑥)𝑁(𝑦), then the equation is called 

separable. To solve the separable equation 𝑦′ =  𝑀(𝑥)𝑁(𝑦), we rewrite it in the form 𝑓(𝑦)𝑦′ =  𝑔(𝑥). 

Integrating both sides gives ∫ 𝑓(𝑦)𝑦′𝑑𝑥   =  ∫ 𝑔(𝑥)𝑑𝑥 , 

                  ∫ 𝑓(𝑦) 𝑑𝑦   = ∫ 𝑓(𝑦)
𝑑𝑦

𝑑𝑥
 𝑑𝑥 .    

Example 1. Solve 2𝑥𝑦 + 6𝑥 +  (𝑥2 − 4) 𝑦′ =  0 

Solution. Rearranging, we have 

(𝑥2 −  4) 𝑦′ =  −2𝑥𝑦 −  6𝑥,  
                      =  −2𝑥(𝑦 + 3),  

𝑦′

𝑦 + 3
= −

2𝑥

𝑥2 − 4
, 𝑥 ≠  ±2  

ln(|𝑦 +  3|) =  − ln(|𝑥2 −  4  |) +  𝐶,  
 𝑙𝑛(|𝑦 +  3|)  +  𝑙𝑛 (|𝑥2 −  4|)   =  𝐶, 

where C is an arbitrary constant. Then 

|(𝑦 +  3)(𝑥2  −  4)|  =  𝐴,   
(𝑦 +  3)(𝑥2  −  4) =  𝐴,  
𝑦 +  3 =  𝐴/(𝑥2  −  4) , 
where A is a constant (equal to ±𝑒𝐶) and 𝑥 ≠ ±2. Also y = -3 is a solution 

(corresponding to A = 0) and the domain for that solution is R. 

Example 2. Solve the IVP 𝑠𝑖𝑛(𝑥) 𝑑𝑥 +  𝑦 𝑑𝑦 =  0, 𝑤ℎ𝑒𝑟𝑒 𝑦(0)  =  1.  

Solution. Note: 𝑠𝑖𝑛(𝑥) 𝑑𝑥 +  𝑦 𝑑𝑦 =  0 is an alternate notation meaning the same as sin(x)  +
 y dy/dx =  0. 

We have 
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y dy =  − sin(x) dx, 

∫ y dy  =  ∫ − sin(x) dx , 
𝑦2

2
=  𝑐𝑜𝑠(𝑥)  + 𝐶1, 

𝑦 = √2 𝑐𝑜𝑠(𝑥)  + 𝐶2, 

where 𝐶1 is an arbitrary constant and 𝐶2  =  2𝐶1. Considering y(0) = 1, we have 

1 =  √2 + 𝐶2 ⇒ 1 =  2 +  𝐶2 ⇒ 𝐶2  =  −1. 

Therefore, 𝑦 =  √2 𝑐𝑜𝑠(𝑥)  −  1 on the domain (-π/3, π/3), since we need cos(x) ≥ 

1/2 and cos(± π/3) = ½ 

Example 3. Solve 𝑦4𝑦′ +  𝑦′ + 𝑥2  +  1 =  0.  

Solution. We have 

𝑦4  +  1 𝑦′ =  −𝑥2  −  1, 
𝑌5

5
+  𝑦 =  −

𝑥3

3
− 𝑥 + 𝐶  

where C is an arbitrary constant. This is an implicit solution which we cannot 

easily solve explicitly for y in terms of x. 

3.2 Homogeneous Equations 

Definition (Homogeneous function of degree n) 

A function F(x, y) is called homogeneous of degree n if 𝐹(𝜆𝑥, 𝜆𝑦)  =  𝜆𝒏𝐹(𝑥, 𝑦). For a polynomial, 

homogeneous says that all of the terms have the same degree. 

Example 1: The following are homogeneous functions of various degrees: 

3𝑥6 +
5𝑥4𝑦2        

3𝑥6 +
5𝑥3𝑦2  

,homogeneous of 

degree ,not 

homogeneous 

𝑥√𝑥2  + 𝑦2        , homogeneous of degree 2 

sin(
𝑦

𝑥
)                  , homogeneous of degree 0 

1

 𝑥 + 𝑦
                    , homogeneous of degree -1. ∗ 

If F is homogeneous of degree n and G is homogeneous of degree k, then F/G is homogeneous of degree 

n - k. 

Proposition  

If F is homogeneous of degree 0, then F is a function of y/x. 

Proof. We have F(λx, λy) = F(x, y) for all λ. Let λ = 1/x. Then F(x, y) = 

F(1, y/x). 

Procedure Consider M(x, y) dx + N(x, y) dy = 0. Suppose M and N are both homogeneous and of the 

same degree. Then 

𝑑𝑦

𝑑𝑥
 =  −

𝑀

𝑁
  

This suggests that v = y/x (or equivalently, y = vx) might help. In fact, write 

−
𝑀(𝑥,𝑦)

𝑁(𝑥,𝑦)
 =  𝑅 (

𝑦

𝑥
) . 

Then 
𝑑𝑦

𝑑𝑥
= 𝑅 (

𝑦

𝑥
) = 𝑅(𝑣)  

 

𝑣 + 𝑥 𝑑𝑣 𝑑𝑥  
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Therefore, 

𝑥
𝑑𝑣

𝑑𝑥
 =  𝑅(𝑣) −  𝑣,  

𝑑𝑣

𝑅(𝑣)− 𝑣
 =

𝑑𝑥

𝑥
  

which is separable. We conclude that if M and N are homogeneous of the same degree, setting y = vx will 

give a separable equation in v and x. 

Example  2.  Solve 𝑥𝑦2 𝑑𝑦 =  𝑥3  +  𝑦3 dx.  

Solution. Let y = vx. Then dy = v dx + x dv, and our equation becomes  

𝑥𝑣2𝑥2 (𝑣 𝑑𝑥 +  𝑥 𝑑𝑣)  =  𝑥3  +  𝑣3𝑥2 𝑑𝑥, 

𝑥3𝑣3 𝑑𝑥 +  𝑥4𝑣2 𝑑𝑣 =  𝑥3 𝑑𝑥 +  𝑣3𝑥3 𝑑𝑥. 

Therefore, 𝑥 =  0 𝑜𝑟 𝑣2 𝑑𝑣 =  𝑑𝑥/𝑥. So we have  
𝑣3

3
=  𝑙𝑛(|𝑥|)  +  𝐶 =  𝑙𝑛(|𝑥|)  +  𝑙𝑛(|𝐴|) =  𝑙𝑛(|𝐴𝑥|)  =  𝑙𝑛(𝐴𝑥) 

                                                          C                            . 

where the sign of A is the opposite of the sign of x. Therefore, the general solution is              

 𝑦 =  𝑥 (3 𝑙𝑛(𝐴𝑥))
1/3

 , where A is a nonzero constant. Every A > 0 yields a solution on the domain (0, 

∞); every A < 0 yields a solution on (-∞, 0). 

In addition, there is the solution y = 0 on the domain R. 

Example 3. 
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Example 4.  

 

Exercise 1 
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Exercise 2 

 

 

 

 

 

 

 

 

 

 


