2.5.1 Bernoulli Equation

The Bernoulli equation is given by

$$\frac{dy}{dx} + P(x)y = Q(x)y^{n}.$$

Let $z = y^{1-n}$. Then

$$\frac{dz}{dx} = (1 - n) y^{-n} \frac{dy}{dx},$$

giving us

$$y^{-n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x),$$

$$\frac{1}{1-n}\frac{dz}{dx} + P(x)z = Q(x),$$

$$\frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x),$$

which is linear in z.

Example 2.17. Solve $y' + xy = xy^3$.

Solution. Here, we have n=3. Let $z=y^{-2}.$ If $y\neq 0,$ then

$$\frac{dz}{dx} = -2y^{-3}\frac{dy}{dx}.$$

Therefore, our equation becomes

$$-\frac{y^{3}z'}{2} + xy = xy^{3},$$
$$-\frac{z'}{2} + xy^{-2} = x,$$
$$z' - 2xy = -2x.$$

We can readily see that $I = e^{-\int 2x \, dx} = e^{-x^2}$. Thus,

$$e^{-x^2}z' - 2xe^{-x^2} = -2xe^{-x^2},$$

 $e^{-x^2}z = e^{-x^2} + C,$
 $z = 1 + Ce^{x^2},$

where C is an arbitrary constant. But $z=y^{-2}$. So

$$y = \pm \frac{1}{\sqrt{1 + Ce^{x^2}}}.$$

6.16 Solve $y' + xy = xy^2$.

This equation is not linear. It is, however, a Bernoulli differential equation having the form of Eq. (6.4) with p(x) = q(x) = x, and n = 2. We make the substitution suggested by (6.5), namely, $z = y^{1-2} = y^{-1}$, from which follow

$$y = \frac{1}{z}$$
 and $y' = -\frac{z'}{z^2}$

Substituting these equations into the differential equation, we obtain

$$-\frac{z'}{z^2} + \frac{x}{z} = \frac{x}{z^2} \quad \text{or} \quad z' - xz = -x$$

This last equation is linear. Its solution is found in Problem 6.10 to be $z = ce^{x^2/2} + 1$. The solution of the original differential equation is then

$$y = \frac{1}{z} = \frac{1}{ce^{x^2/2} + 1}$$

6.17. Solve $y' - \frac{3}{4}y = x^4y^{1/3}$.

This is a Bernoulli differential equation with p(x) = -3/x, $q(x) = x^4$, and $n = \frac{1}{3}$. Using Eq. (6.5), we make the substitution $z = y^{1-(1/3)} = y^{2/3}$. Thus, $y = z^{3/2}$ and $y' = \frac{3}{2}z^{1/2}z'$. Substituting these values into the differential equation, we obtain

$$\frac{3}{2}z^{1/2}z' - \frac{3}{x}z^{3/2} = x^4z^{1/2}$$
 or $z' - \frac{2}{x}z = \frac{2}{3}x^4$

This last equation is linear. Its solution is found in Problem 6.12 to be $z = cx^2 + \frac{2}{9}x^5$. Since $z = y^{2/3}$, the solution of the original problem is given implicitly by $y^{2/3} = cx^2 + \frac{2}{9}x^5$, or explicitly by $y = \pm (cx^2 + \frac{2}{9}x^5)^{3/2}$.

Solved Problems

In Problems 6.20 through 6.49, solve the given differential equations.

$$6.20. \qquad \frac{dy}{dx} + 5y = 0$$

6.22.
$$\frac{dy}{dx} - 0.01y = 0$$

6.24.
$$y' + 3x^2y = 0$$

6.26.
$$y' - 3x^4y = 0$$

6.28.
$$y' + \frac{2}{x}y = 0$$

6.30.
$$y' - \frac{2}{x^2}y = 0$$

6.32.
$$y' - 7y = 14x$$

6.34.
$$y' + x^2y = x^2$$

6.36.
$$y' = \cos x$$

6.38.
$$xy' + y = xy^3$$

6.40.
$$y' + y = y^2$$

6.42.
$$y' + y = y^2 e^x$$

$$6.44. \qquad \frac{dz}{dt} - \frac{1}{2t}z = 0$$

6.46
$$\frac{dp}{dt} - \frac{1}{t}p = t^2 + 3t - 2$$

$$6.21. \qquad \frac{dy}{dx} - 5y = 0$$

6.23.
$$\frac{dy}{dx} + 2xy = 0$$

6.25.
$$y' - x^2y = 0$$

6.27.
$$y' + \frac{1}{x}y = 0$$

6.29.
$$y' - \frac{2}{x}y = 0$$

6.31.
$$y' - 7y = e^x$$

6.33.
$$y' - 7y = \sin 2x$$

6.35.
$$y' - \frac{3}{x^2}y = \frac{1}{x^2}$$

6.37.
$$y' + y = y^2$$

6.39.
$$y' + xy = 6x\sqrt{y}$$

6.41.
$$y' + y = y^{-2}$$

6.43.
$$\frac{dy}{dt} + 50y = 0$$

6.45.
$$\frac{dN}{dt} = kN, (k = \text{a constant})$$

6.47.
$$\frac{dQ}{dt} + \frac{2}{20 - t}Q = 4$$

Solve the following initial-value problems.

6.50.
$$y' + \frac{2}{x}y = x$$
; $y(1) = 0$

6.52.
$$y' + 2xy = 2x^3$$
; $y(0) = 1$

6.54.
$$\frac{dv}{dt} + 2v = 32; v(0) = 0$$

6.56.
$$\frac{dN}{dt} + \frac{1}{t}N = t; N(2) = 8$$

6.51.
$$y' + 6xy = 0$$
; $y(\pi) = 5$

6.53.
$$y' + \frac{2}{x}y = -x^9y^5$$
; $y(-1) = 2$

6.55.
$$\frac{dq}{dt} + q = 4\cos 2t; q(0) = 1$$

6.57.
$$\frac{dT}{dt} + 0.069T = 2.07; T(0) = -30$$

2.8. Riccati Equations

Definition. A differential equation of the form

$$\frac{dy}{dx} + p(x)y^2 + q(x)y + r(x) = 0 (1)$$

is called Riccati differential equation.

If $p(x) \equiv 0$, then equation (1) is linear;

If $r(x) \equiv 0$, then equation (1) is Bernoulli;

If p, q and r are constants, then equation (1) is separable

$$\frac{dy}{py^2 + qy + r} = dx.$$

Theorem. If $y_1 = y_1(x)$ is a particular solution of equation (1), then substitution

$$y = y_1(x) + \frac{1}{u(x)}$$

converts the Riccati equation into a first order linear equation in u.

Example. Solve the following differential equations.

1)

$$\frac{dy}{dx} = (1 - x)y^2 + (2x - 1)y - x$$

Solution. We observe that the equation is Riccati and a particular solution is $y_1 = 1$. So, from the transformation

$$y = 1 + \frac{1}{u}, \ \frac{dy}{dx} = -\frac{1}{u^2} \frac{du}{dx}$$

we obtain

$$-\frac{1}{u^2}\frac{du}{dx} = (1-x)\left(1 + \frac{2}{u} + \frac{1}{u^2}\right) + (2x-1)\left(1 + \frac{1}{u}\right) - x$$

or

$$\frac{du}{dx} + u = x - 1$$

which is a first order linear differential equation. Integrating factor for linear equation is obtained as

$$\lambda(x) = e^x$$
.

So, the general solution of linear equation is

$$u(x) = x - 2 + ce^{-x}.$$

Since $y = 1 + \frac{1}{u}$, general solution of given Riccati equation is obtained as

$$y = \frac{x - 1 + ce^{-x}}{x - 2 + ce^{-x}}$$

2)
$$xy' - y^2 + (2x+1)y = x^2 + 2x.$$

3)
$$e^{-x}\frac{dy}{dx} + y^2 - 2ye^x = 1 - e^{2x}.$$

In Exercises 56-59, given that y_1 is a solution of the given equation, use the method suggested by Exercise 55 to find other solutions.

56.
$$y' = 1 + x - (1 + 2x)y + xy^2$$
; $y_1 = 1$

57.
$$y' = e^{2x} + (1 - 2e^x)y + y^2$$
; $y_1 = e^x$

58.
$$xy' = 2 - x + (2x - 2)y - xy^2$$
; $y_1 = 1$

59.
$$xy' = x^3 + (1 - 2x^2)y + xy^2$$
; $y_1 = x$

Higher-degree first-order equations

The differential equation of first degree can write as a formula:

$$F\left(x, y, \frac{dy}{dx}\right) = 0$$

Or

$$F(x, y, p) = 0$$
, where $p = \frac{dy}{dx}$

Higher-degree first-order equations can be written as F(x,y,dy/dx) = 0. The most general standard form is

$$p^{n} + a_{n-1}(x, y)p^{n-2} + \dots + a_{1}(x, y)p + a_{0}(x, y) = 0$$

1. Equations soluble for p

Sometime the LHS of Equation above can be factorized into

$$(p-F_1)(p-F_2)...(p-F_n)=0$$

where Fi = Fi(x,y). We are then left with solving the n first-degree equations $p = F_i(x,y)$. Writing the solutions to these first-degree equations as $G_i(x,y) = 0$, the general solution to Equation above is given by the product

$$G_1(x, y)G_2(x, y) \dots G_n(x, y) = 0$$

Example1: Solve $(y')^3 - (y')^2 - 2y' = 0$

Sol:

Let p = y', Then equation rewrite as

$$p^{3} - p^{2} - 2p = 0$$

$$p(p-2)(p+1) = 0$$

$$p = 0 \rightarrow y = c_{1}$$

$$p = 2 \rightarrow y = 2x + c_{2}$$

$$p = -1 \rightarrow y = -x + c_{3}$$

So the general solation as

$$(y - c_1)(y - 2x - c_2)(y + x - c_3) = 0$$

Since, the differential equation is from 1st order, so the general solution must have only one arbitrary constant.

$$(y-c)(y-2x-c)(y+x-c) = 0$$

Example2: Solve $(x^3 + x^2 + x + 1)p^2 - (3x^2 + 2x + 1)yp - 2xy^2 = 0$ Sol.

The equation may be factorized to give

$$[(x+1)p - y][(x^2 + 1)p - 2xy] = 0$$

Turn each bracket in turn we have

$$(x+1)\frac{dy}{dx} - y = 0$$
$$(x^2+1)\frac{dy}{dx} - 2xy = 0$$

Which can give the solution

$$y - c(x + 1) = 0 & y - c(x^2 + 1) = 0$$

So, the general solution is

$$[y - c(x + 1)][y - c(x^2 + 1)] = 0$$

2. Equations soluble for x

Equations that can be solved for x, i.e. such that they may be written in the form

$$x = F(y, p)$$

can be reduced to first-degree first-order equations in *p* by differentiating both sides with respect to y, so that

$$\frac{dx}{dy} = \frac{1}{p} = \frac{dF}{dy} + \frac{\partial F}{\partial p} \frac{\partial p}{\partial y}$$

This results in an equation of the form G(y, p) = 0, which can be used together with x = F(y, p) to eliminate p and give the general solution. Note that often a singular solution to the equation will be found at the same time

Example1: Solve $6y^2p^2 + 3xp - y = 0$ **Sol.**

This equation can be solved for x explicitly to give $3x = (y/p) - 6y^2p$. Differentiating both sides with respect to y, we find

$$3\frac{dx}{dy} = \frac{3}{p} = \frac{1}{p} - \frac{y}{p^2}\frac{dp}{dy} - 6y^2\frac{dp}{dy} - 12py$$

which factorizes to give

$$(1+6yp^2)\left(2p+y\frac{dp}{dy}\right)=0$$

Setting the factor containing dp/dy equal to zero gives a first-degree first-order equation in p, which may be solved to give $py^2 = c$. Substituting for p in the differential equation given then yields the general solution of this equation

بوضع الحد الذي يحتاوي
$$dp/dy$$
 مساوي الى صفر, يعطي معادله من الدرجه الاولى ل p والتي ممكن ان تحل لتعطي $p^2 = c$ والتي ممكن ان تحل لتعطي $p^2 = c$ والتي ممكن ان تحل لتعطي $p^2 = c$ والتي ممكن ان تحل $p^3 = 3cx + 6c^2$

If we now consider the first factor in the primary solution of the differential equation after factories, we find $6p^2y = -1$ as a possible solution. Substituting for p in the differential equation we find the singular solution

اذا اخذنا بالاعتبار العامل الاول في الحل الابتدائي للمعادله التفاضليه بعد التحليل, نحن نجد $6p^2y=-1$ كحل محتمل. وبتعويض p في المعادله التفاضليه نجد الحل المنفر د

$$8y^3 + 3x^2 = 0$$

Note that the singular solution contains no arbitrary constants and cannot be found from the general solution the differential equation by any choice of the constant c.

Solution method. Write the equation in the form x = F(y,p) and differentiate both sides with respect to y. Rearrange the resulting equation into the form G(y,p)=0, which can be used together with the original ODE to eliminate p and so give the general solution. If G(y,p) can be factorized then the factor containing dp/dy should be used to eliminate p and give the general solution. Using the other factors in this fashion will instead lead to singular solutions.

طريقة الحل: اكتب المعادله بالصيغة واشتق الطرفين بالنسبه ل x = F(y,p)y. اعد ترتيب الداله الناتجه بالصيغه طريقة الحل: مممكن ان تستخدام مع المعادله التفاضليه الاعتيادية لاستبعاد p وهكذا الحصول على الحل العام. اذا G(y,p)=0 ممكن ان تحلل , ثم الحد الذي يحتوي dp/dy يجب ان يستخدام لاستبعاد p واعطاء الحل العام. باستخدام الحد الثاني بنفس الطريقة سيؤدي بدلا من ذلك إلى حلول منفر ده.

3 Equations soluble for y

Equations that can be solved for y, i.e. such that they may be written in the form

$$y = F(x, p)$$

can be reduced to first-degree first-order equations in p by differentiating both sides with respect to x, so that

$$\frac{dy}{dx} = \frac{1}{p} = \frac{dF}{dx} + \frac{\partial F}{\partial p} \frac{\partial p}{\partial x}$$

This results in an equation of the form G(x, p) = 0, which can be used together with y = F(x, p) to eliminate p and give the general solution. Note that often a singular solution to the equation will be found at the same time.

Example1: Solve $xp^2 + 2xp - y = 0$ Sol.

This equation can be solved for x explicitly to give $y = xp^2 + 2xp$. Differentiating both sides with respect to \times , we find

$$\frac{dy}{dx} = p = 2xp\frac{dp}{dx} + p^2 + 2x\frac{dp}{dx} + 2p$$

which factorizes to give

$$(p+1)\left(p+2x\frac{dp}{dx}\right) = 0$$

To obtain the general solution of the differential equation, we first consider the factor containing dp/dx. This first-degree first-order equation in p has the solution $xp^2 = c$, which we then use to eliminate p from the differential equation. We therefore find that the general solution to the differential equation is

$$(y-c)^2 = 4cx$$
.

If we now consider the first factor in the equation above, we find this has the simple solution p = -1. Substituting this into the differential equation then gives

$$x + y = 0$$

which is a singular solution to the differential equation.

UNSOLVED EXAMPLES:

Solve the following ODEs:

EXAMPLE-1:
$$xp^2 + x = 2yp$$

EXAMPLE-2:
$$x(1 + p^2) = 1$$

EXAMPLE-3:
$$x^2p^2 + xyp - 6y^2 = 0$$

EXAMPLE-4:
$$y = px + p^3$$