
Dr. Auras Khalid Numerical Analysis using MATLAB

1

NUMERICAL ANALYSIS USING MATLAB

MATLAB (an abbreviation of "MAT-LAB", "matrix laboratory") is a programming

language and numeric computing environment which allows matrix manipulations, plotting

of functions and data, implementation of algorithms, creation of user interfaces, and

interfacing with programs written in other languages.

Starting MATLAB

 After logging into your account, you can enter MATLAB by double-clicking on the

MATLAB shortcut icon on your Windows desktop. When you start MATLAB, a special

window called the MATLAB desktop appears. The desktop is a window that contains other

windows. The major tools within or accessible from the desktop are:

1. The Command Window

2. The Command History

3. The Workspace

4. The Current Directory

5. The Help Browser

6. The Start button

Built- in functions, Help:

MATLAB has many built-in functions. It has many mathematical functions, e.g. abs

for absolute value, tan for tangent, etc. The functions are grouped together logically in what

are called “help topics”. The help command can be used in MATLAB to find out what

functions are built-in, and how to use them. Just typing “help” at the prompt will show a list

of the help topics.

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface

Dr. Auras Khalid Numerical Analysis using MATLAB

2

Using MATLAB as a calculator

As an example of a simple interactive calculation, just type the expression you want to

evaluate. Let's start at the very beginning. For example, let's suppose you want to calculate

the expression, 1 + 2 * 3. You type it at the prompt command (>>) as follows,

>> 1+2*3

ans =

7

You will have noticed that if you do not specify an output variable, MATLAB uses a

default variable ans, short for answer, to store the results of the current calculation. Note that

the variable ans is created (or overwritten, if it is already existed). To avoid this, you may

assign a value to a variable or output argument name. For example,

>> x = 1+2*3

x =

7

>> 4*x

ans = 28.0000

Creating MATLAB variables

After learning the minimum MATLAB session, we will now learn to use some

additional operations. MATLAB variables are created with an assignment statement. The

syntax of variable assignment is variable name = a value (or an expression).

For example,

>> x = expression

where expression is a combination of numerical values, mathematical operators, variables,

and function calls. On other words, expression can involve:

1- manual entry

2- built-in functions

3- user-defined functions

Making corrections

To make corrections, we can, of course retype the expressions. But if the expression is

lengthy, we make more mistakes by typing a second time. A previously typed command can

be recalled with the up-arrow key When the command is displayed at the command

prompt, it can be modified if needed and executed.

Controlling the hierarchy of operations or precedence

Let's consider the previous arithmetic operation, but now we will include parentheses.

For example, 1 + 2 * 3 will become (1 + 2) * 3

>> (1+2)*3

ans =

Dr. Auras Khalid Numerical Analysis using MATLAB

3

9

and, from previous example:

>> 1+2*3

ans =7

By adding parentheses, these two expressions give different results: 9 and 7.

Therefore, to make the evaluation of expressions unambiguous, MATLAB has established a

series of rules. The order in which the arithmetic operations are evaluated is given in Table

1.2. MATLAB arithmetic operators obey the same precedence rules as those in most

computer programs. For operators of equal precedence, evaluation is from left to right.

Now, consider another example:

In MATLAB, it becomes

>> 1/(2+3^2)+4/5*6/7

ans =0.7766

or, if parentheses are missing,

>> 1/2+3^2+4/5*6/7

ans =10.1857

So here what we get: two different results. Therefore, we want to emphasize the

importance of precedence rule in order to avoid ambiguity.

PRECEDENCE

Consider the mathematical expression which you might read as "a times b

plus c" which would appear to translate to the MATLAB command . Hopefully you

can see that this actually is equal to . The correct MATLAB command for is

 . The brackets have been used to force MATLAB to first evaluate the expression

 and then to multiply the result by .

Recall that the operation brackets take precedence over exponent and the operations of

division and multiplication take precedence over addition and subtraction.

Example

Determine the value of the expression () , where , , and

 .

Dr. Auras Khalid Numerical Analysis using MATLAB

4

 ()

This gives the answer 124.

 Example

Evaluate the MATLAB expressions

 ⁄ ; ⁄ ⁄ ; ;

 ⁄ ⁄⁄ ; ⁄ ; () ⁄

by hand and then check answer with MATLAB.

H. W.

Use MATLAB to calculate the expression

Where .

Controlling the appearance of floating point number

MATLAB by default displays only 4 decimals in the result of the calculations, for

example: -163.6667. However, MATLAB does numerical calculations in double precision,

which is 15 digits. The command format controls how the results of computations are

displayed. Here are some examples of the different formats together with the resulting

outputs.

Format: the way in which numbers appear

Before we proceed we stop to discuss this important topic. This can be simply illustrated

by the following example:

>> format short

>> x=-163.6667

If we want to see all 15 digits, we use the command format long:

>> format long

>> x= -1.636666666666667e+002

To return to the standard format, enter format short, or simply format. There are

several other formats. For more details, see the MATLAB documentation, or type help

format.

Note: - Up to now, we have let MATLAB repeat everything that we enter at the prompt (>>).

Sometimes this is not quite useful, in particular when the output is pages in length. To

prevent MATLAB from echoing what we type, simply enter a semicolon (;) at the end of the

command. For example,

>> x=-163.6667;

and then ask about the value of x by typing,

>> x

x = -163.6667.

Dr. Auras Khalid Numerical Analysis using MATLAB

5

Example

Here we give an example of the simple use of brackets:

In this example you should get the answers, 14, 10,

 and

 . Hopefully this gives you

some ideas that brackets make MATLAB perform those calculations first. (The command

format rat has been used to force the results to be shown as rational).

Example

Consider the following code

 [

]

Format short; s

Format long; s

Format rat; s

Format; s

This generates the output

>> Format short; s=[1/2 1/3 pi sqrt(2)]

s =

 0.5000 0.3333 3.1416 1.4142

>> Format long; s

s =

 0.500000000000000 0.333333333333333 3.141592653589793 1.414213562373095

>> Format rat; s

Dr. Auras Khalid Numerical Analysis using MATLAB

6

s =

 1/2 1/3 355/113 1393/985

>> Format; s

s =

 0.5000 0.3333 3.1416 1.4142

The default option is format short. The above options are

Short - 5 digits

Long - 15 digits

Rat - try to represent the answer as a rational.

Managing the workspace

The contents of the workspace persist between the executions of separate commands.

Therefore, it is possible for the results of one problem to have an effect on the next one. To

avoid this possibility, it is a good idea to issue a clear command at the start of each new

independent calculation.

>> clear

The command clear or clear all removes all variables from the workspace. This frees up

system memory. In order to display a list of the variables currently in the memory, type: who.

Entering multiple statements per line

It is possible to enter multiple statements per line. Use commas (,) or semicolons (;) to

enter more than one statement at once. Commas (,) allow multiple statements per line

without suppressing output.

>> a=7; b=cos(a), c=cosh(a)

>> b =

0.6570

>> c =

548.3170

Mathematical functions

MATLAB offers many predefined mathematical functions for technical computing

which contains a large set of mathematical functions. There is a long list of mathematical

functions that are built into MATLAB. These functions are called built-ins. Many standard

mathematical functions, such as sin(x), cos(x), tan(x), e
x
, ln(x), are evaluated by the functions

sin, cos, tan, exp, and log respectively in MATLAB.

Dr. Auras Khalid Numerical Analysis using MATLAB

7

In addition to the elementary functions, MATLAB includes a number of predefined constant

values. A list of the most common values is given in Table 2.2.

Linear spacing

On the other hand, there is a command to generate linearly spaced vectors: linspace. It

is similar to the colon operator (:), but gives direct control over the number of points. For

example,

y = linspace(a,b) generates a row vector y of 100 points linearly spaced between and

including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly spaced between and

including a and b. This is useful when we want to divide an interval into a number of

subintervals of the same length.

Example:

>> theta = linspace(0,2*pi,101)

divides the interval [0; 2π] into 100 equal subintervals, then creating a vector of 101

elements.

We illustrate here some typical examples which related to the elementary functions

previously defined. As a first example, the value of the expression

Dr. Auras Khalid Numerical Analysis using MATLAB

8

Note the difference between the natural logarithm log(x) and the decimal logarithm (base 10)

log10(x).

VECTORS AND MATRICES IN MATLAB

Entering a vector

A vector is a special case of a matrix. The purpose of this section is to show how to

create vectors and matrices in MATLAB. As discussed earlier, an array of dimension 1*n is

called a row vector, whereas an array of dimension m* 1 is called a column vector. The

elements of vectors in MATLAB are enclosed by square brackets and are separated by

spaces or by commas. For example, to enter a row vector, v, type:

>> v = [1 4 7 10 13]

v =

1 4 7 10 13

Column vectors are created in a similar way; however, semicolon (;) must separate the

components of a column vector,

>> w = [1;4;7;10;13]

w =

1

4

7

10

13

MATLAB is written to work with vectors and matrices; A matrix looks like a table

with rows and columns; an m by n (or m x n) matrix has m rows by n columns (these are the

Dr. Auras Khalid Numerical Analysis using MATLAB

9

dimensions of the matrix). A scalar is an even simpler case; it is a 1 by 1 matrix, or in other

words, a single value.

Transposing a vector:

Transposing a vector or a matrix is done either by the function (transpose) or by

adding dot-prime (') after the matrix. A row vector is converted to a column vector using the

transpose operator. The transpose operation is:

>> v=[1 4 7 10 13]

>>w = v'

w =

1

4

7

10

13

Thus, v(1) is the first element of vector v, v(2) its second element, and so on.

Furthermore, to access blocks of elements, we use MATLAB's colon notation (:). For

example, to access the first three elements of v, we write:

>> v(1:3)

ans =1 4 7

If v is a vector, writing

>> v(:) produces a column vector, whereas writing

>> v(1:end) produces a row vector, such that:

>> v(:)

ans =

 1

 4

 7

 10

 13

>> v(1:end)

ans =

 1 4 7 10 13

Entering a matrix

A matrix is an array of numbers. To type a matrix into MATLAB you must

 begin with a square bracket, [

 separate elements in a row with spaces or commas (,)

 use a semicolon (;) to separate rows

 end the matrix with another square bracket].

https://en.wikipedia.org/wiki/Transpose

Dr. Auras Khalid Numerical Analysis using MATLAB

11

Note that the use of semicolons (;) here is different from their use mentioned earlier to

suppress output or to write multiple commands in a single line. Once we have entered the

matrix, it is automatically stored and remembered in the Workspace. We can refer to it

simply as matrix A. We can then view a particular element in a matrix by specifying its

location. We write:

>> A(2,1)

ans =

4

A(2,1) is an element located in the second row and first column. Its value is 4.

Matrix indexing

We select elements in a matrix just as we did for vectors, but now we need two

indices. The element of row i and column j of the matrix A is denoted by A(i,j). Thus, A(i,j)

in MATLAB refers to the element Aij of matrix A. The first index is the row number and the

second index is the column number. For example, A(1,3) is an element of first row and third

column. Here, A(1,3)=3.

Correcting any entry is easy through indexing. Here we substitute A(3,3)=9 by A(3,3)=0, the

result is:

Colon operator in a matrix

The colon operator can also be used to pick out a certain row or column. For example,

the statement A(m:n,k:l) specifies rows m to n and column k to l. Subscript expressions refer

to portions of a matrix. For example,

Dr. Auras Khalid Numerical Analysis using MATLAB

11

Creating a sub-matrix

To extract a submatrix B consisting of rows 2 and 3 and columns 1 and 2 of the matrix

A, do the following

>> B = A([2 3],[1 2])

B =

4 5

7 8

Another example:

>> a=[1:4;5:8;9:12]

a =

 1 2 3 4

 5 6 7 8

 9 10 11 12

>> b=a([1 2],[3 4])

b =

 3 4

 7 8

Dimension

To determine the dimensions of a matrix or vector, use the command size. For example,

>> size(A)

ans 3 3 means 3 rows and 3 columns.

Dr. Auras Khalid Numerical Analysis using MATLAB

12

Transposing a matrix

The transpose operation is denoted by an apostrophe or a single quote ('). It flips a

matrix about its main diagonal and it turns a row vector into a column vector, if

A=[1:3;4:6;7:9], then:

>> A'

ans =

1 4 7

2 5 8

3 6 9

By using linear algebra notation, the transpose of m * n real matrix A is the n * m

matrix that results from interchanging the rows and columns of A. The transpose matrix is

denoted A
T
. It is possible to refer to a whole row (or column) of a matrix.

For example

ans =

 4 5 6

Returns the second row of the matrix A. here the colon indicates all the elements along a

particular row. Alternatively to refer to a particular column:

ans =

 3

 6

 9 which refers to the third column of the matrix A.

Example: Compute A+B, A-B, 5+A, A*B, A
2
 for:

>> A = [1 2 ; 3 4];

>> B = [5 6 ; 7 8];

>>A+B

ans =

 6 8

 10 12

>> A + 5

ans = 6 7

 8 9.

Dr. Auras Khalid Numerical Analysis using MATLAB

13

This adds 5 to each element of A.

>> A-B

ans =

 -4 -4

 -4 -4

>> A*B

ans =

 19 22

 43 50

>> A^2

ans =

 7 10

 15 22

Error messages

If we enter an expression incorrectly, MATLAB will return an error message. For

example, in the following, we left out the multiplication sign, *, in the following expression

>> x = 10;

>> 5x

Error: Unexpected MATLAB expression.

 An error message appears if we have two vectors a and b, we cannot multiply them

because they have the same dimension. Suppose however that what we really want to

achieve is to multiply the elements of vector a by the elements of vector b in an element by

element sense. We can also do a term by term division , for example:
 []

 [];

ans=

Dr. Auras Khalid Numerical Analysis using MATLAB

14

The answer shows that MATLAB has returned a vector containing the elements

[].

We can also do a term by term division with

 []

 [];

ans=

The result is, as we would expect,

[

]

Example

We shall create two vectors running from one to six and from six to one and then

demonstrate the use of the dot arithmetical operations:

>> s=1:6;

>> t=6:-1:1;

>> s+t

ans =

 7 7 7 7 7 7

>> s-t

ans =

 -5 -3 -1 1 3 5

>> s.*t

ans =

 6 10 12 12 10 6

>> s./t

ans =

 0.1667 0.4000 0.7500 1.3333 2.5000 6.0000

>> s.^2

Dr. Auras Khalid Numerical Analysis using MATLAB

15

ans =

 1 4 9 16 25 36

>> 1./s

ans =

 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

Special matrices

MATLAB provides a number of special matrices (see Table 2.5). These matrices have

interesting properties that make them useful for constructing examples and for testing

algorithms.

 Table 2.5 Special matrices

hilb Hilbert matrix

invhilb Inverse Hilbert matrix

magic Magic matrix

For example:

>> hilb(2)

ans =

 1.0000 0.5000

 0.5000 0.3333

>> invhilb(2)

ans =

 4 -6

 -6 12

>> magic(3)

ans =

 8 1 6

 3 5 7

 4 9 2

Matrix generators

MATLAB provides functions that generate elementary matrices. The matrix of zeros,

the matrix of ones, and the identity matrix are returned by the functions zeros, ones, and eye,

respectively.

Dr. Auras Khalid Numerical Analysis using MATLAB

16

Moreover, many other important functions also available in MATLAB, thus:

round(x) Round towards nearest integer. round(X) rounds the elements of X

ceil(x) Round towards plus infinity. ceil(X) rounds the elements of X to the nearest

integers towards infinity.

floor(x) rounds a number down to the nearest integer

fix(x) rounds a number to the nearest integer towards zero

rem(x, y) the remainder left after division

mod(x, y) the signed remainder left after division

abs(x) the absolute value of x

sign(x) Signum function. For each element of X, sign(X) returns 1 if the element is

greater than zero, 0 if it equals zero and -1 if it is less than zero.

factor(x) the prime factors of x

Example:

Calculate the expressions:

floor ([-2.33 2.66]), round ([-2.33 2.66]), fix ([-2.33 2.66]), rem (23, 4), factor (24) and

g c d (18, 81).

Solution:

>>floor ([-2.33 2.66])

ans =

 -3 2

>>round ([-2.33 2.66])

ans = -2 3

>> ceil([-2.33 2.66])

ans =

 -2 3

fix ([-2.33 2.66])

ans =

Dr. Auras Khalid Numerical Analysis using MATLAB

17

 -2 2

rem (23, 4)

ans =

 3

>> factor(24)

ans =

 2 2 2 3

g c d (18, 81)=

ans= 9 where g c d is the greatest common divisor.

>> eye(2)

ans =

 1 0

 0 1

>> eye(3,3)

ans =

 1 0 0

 0 1 0

 0 0 1

>> zeros(2,3)

ans =

 0 0 0

 0 0 0

>> ones(3,4)

ans =

 1 1 1 1

 1 1 1 1

 1 1 1 1

>> a=[1:3;4:6]

a =

 1 2 3

 4 5 6

>> diag(a)

Dr. Auras Khalid Numerical Analysis using MATLAB

18

ans =

 1

 5

>> rand(3,2)

ans =

 0.8147 0.9134

 0.9058 0.6324

 0.1270 0.0975

Mathematical Functions

Trigonometric functions such as sin(sine), cos(cosine) and tan(tangent)(with their

inverses) being obtained by appending an a letter: asin, acos or atan. These functions

measured in radians. It should be noted that these functions should operate on an input; the

syntax of the commands is sin(x) rather than sin x. Exponential functions exp, log, log10 and

power functions ^. Notice that the default in MATLAB for a logarithm is the natural

logarithm lnx. The final command takes two arguments (and hence is a binary operation) so

that a^b gives .

Example

Calculate the expressions: sin60 (and the same quantity squared), exp(ln(4)), cos45-sin45, ln

exp(2+cos)and tan30/(tan(

 tan(

).

Dr. Auras Khalid Numerical Analysis using MATLAB

19

 ()

 (

) (

)

The values of these expressions should be
√

 √ .

BASIC PLOTTING

MATLAB has an excellent set of graphic tools. Plotting a given data set or the results

of computation is possible with very few commands. You are highly encouraged to plot

mathematical functions and results of analysis as often as possible.

Creating simple plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector of x-

coordinates, x = (x1,…., xN), and a vector of y-coordinates, y = (y1,…., yN), locate the points

(xi; yi), with i = 1,2,…, n and then join them by straight lines. You need to prepare x and y in

an identical array form; namely, x and y are both row arrays or column arrays of the same

length. The MATLAB command to plot a graph is plot(x,y). The vectors x = (1; 2; 3; 4; 5;

6) and y = (3;¡1; 2; 4; 5; 1) produce the picture shown in Figure below.

>> x = [1 2 3 4 5 6];

>> y = [3 -1 2 4 5 1];

>> plot(x,y)

NOTE:
The plot functions have different forms depending on the input arguments. If y is a

vector plot(y) produces a piecewise linear graph of the elements of y versus the index of the

elements of y. If we specify two vectors, as mentioned above, plot(x,y) produces a graph of y

versus x. For example, to plot the function sin (x) on the interval [0; 2π], we first create a

vector of x values ranging from 0 to 2π, then compute the sine of these values, and finally

plot the result:

Dr. Auras Khalid Numerical Analysis using MATLAB

21

>> x = 0:pi/100:2*pi;

>> y = sin(x);

>> plot(x,y)

Notes:

 0:pi/100:2*pi yields a vector that:

- starts at 0,

- takes steps (or increments) of π/100,

- stops when 2π is reached.

 If you omit the increment, MATLAB automatically increments by 1.

Adding titles, axis labels, and annotations

MATLAB enables you to add axis labels and titles. For example, using the graph from the

previous example, add x- and y-axis labels. Now label the axes and add a title. The character

pi creates the symbol π. An example of 2D plot is shown in Figure below.

The color of a single curve is, by default, blue, but other colors are possible. The

desired color is indicated by a third argument. For example, red is selected by plot(x,y,'r').

Note the single quotes, ' ', around r.

Multiple data sets in one plot

Multiple (x; y) pairs arguments create multiple graphs with a single call to plot. For

example, these statements plot three related functions of x: y1 = 2 cos(x), y2 = cos(x), and y3

=0:5 * cos(x), in the interval 0 ≤ x ≤2π.

Dr. Auras Khalid Numerical Analysis using MATLAB

21

By default, MATLAB uses line style and color to distinguish the data sets plotted in

the graph. However, you can change the appearance of these graphic components or add

annotations to the graph to help explain your data for presentation.

Specifying line styles and colors

It is possible to specify line styles, colors, and markers (e.g., circles, plus signs, . . .)

using the plot command:

plot(x,y,'style_color_marker') where style_color_marker is a triplet of values from Table 2.3.

Example:

Create a two-dimensional line plot using the plot function. For example, plot the value of the

sine function from 0 to 2 .

>>x = linspace(0, 2*pi, 100);

>>y = sin(x);

Dr. Auras Khalid Numerical Analysis using MATLAB

22

>>plot(x, y, 'r')

>> xlabel('x=2pi')

>> ylabel('y=sinx')

>> title('Graph of sinx')

Example: x = linspace(0, 2*pi, 100); y = sin(x); plot(x,y, '--')

Example: x = linspace(0, 2*pi, 100); y = exp(x); plot(x, y, 'r')

xlabel('x=2pi')

ylabel('y=exp(x)')

title('Graph of exp(x)')

