University of Baghdad College of Science for Women Department of Computer Science

Computer Mathematics

Ahmed J. Kadhim, M. Sc.

Solving Linear Recurrence Relations

Linear recurrences

- 1. Linear homogeneous recurrences
- 2. linear non-homogeneous recurrences

Definition: A linear homogenous recurrence relation of degree k with constant coefficients

is a recurrence relation of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

Where $c_1, c_2, ..., c_k$ are real numbers, and $c_k \neq 0$.

 a_n is expressed in terms of the previous k terms of the sequence, so its degree is k. This recurrence includes k initial conditions

 $a_0 = C_0 \qquad a_1 = C_1 \quad \dots \quad a_k = C_k.$

Example: Determine if the following recurrence relations are linear homogeneous recurrence relations with constant coefficients.

•
$$P_n = (1.11)P_{n-1}$$

a linear homogeneous recurrence relation of degree one.

• $a_n = a_{n-1} + a_{n-2}^2$

not linear

• $f_n = f_{n-1} + f_{n-2}$

a linear homogeneous recurrence relation of degree two

• $H_n = 2H_{n-1} + 1$

not homogeneous because f(x) = 1.

• $a_n = a_{n-6}$

a linear homogeneous recurrence relation of degree six

• $B_n = nB_{n-1}$

does not have constant coefficien

Theorem: Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$ be a linear homogeneous recurrence. Assume the sequence a_n satisfies the recurrence and the sequence g_n also satisfies the recurrence. So, $b_n = a_n + g_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence. (α is any constant) <u>Note:</u> Geometric sequences come up a lot when solving linear homogeneous recurrences. So, try to find any solution of the form $a_n = r^n$ that satisfies the recurrence relation. Recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Try to find a solution of form r^n

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}$$

$$r^{n} - c_{1}r^{n-1} - c_{2}r^{n-2} - \dots - c_{k}r^{n-k} = 0$$

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k} = 0$$
(dividing both sides by r^{n-k})

This equation is called the characteristic equation.

Example: The Fibonacci recurrence is $F_n = F_{n-1} + F_{n-2}$. Its characteristic equation is $r^2 - r - 1 = 0$.

Theorem: *r* is a solution of $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$ if and only if r^n is a solution of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$. **Example:** Consider the characteristic equation $r^2 - 4r + 4 = 0$. $r^2 - 4r + 4 = (r - 2)^2 = 0$ So, r = 2, then 2^n satisfies the recurrence $F_n = 4F_{n-1} - 4F_{n-2}$ $2^n = 4 \cdot 2^{n-1} - 42^{n-2}$ $2^n - 4 \cdot 2^{n-1} + 42^{n-2} = 0$ $2^{n-2}(2^2 - 4 \cdot 2 + 4) = 0$ $2^{n-2}(4 - 8 + 4) = 0$

Theorem: Consider the characteristic equation $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$. Assume r_1, r_2, \dots, r_m all satisfy the equation. Let $\alpha_1, \alpha_2, \dots, \alpha_m$ by any constants. So, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_m r_m^n$ satisfies

the recurrence.

Example: What is the solution of the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with $f_0 = 0$ and $f_1 = 1$?

Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^2 - r - 1 = 0, r_1 = \frac{1 + \sqrt{5}}{2} \text{ and } r_2 = \frac{1 - \sqrt{5}}{2}$$

So, by theorem $f_n = \alpha_1 (\frac{1+\sqrt{5}}{2})^n + \alpha_2 (\frac{1-\sqrt{5}}{2})^n$ is a solution. Now, we should find α_1 and α_2 using initial conditions

$$f_{0} = \alpha_{1} + \alpha_{2} = 0$$

$$f_{1} = \alpha_{1} \left(\frac{1 + \sqrt{5}}{2}\right) + \alpha_{2} \left(\frac{1 - \sqrt{5}}{2}\right) = 1$$
So, $\alpha_{1} = \frac{1}{\sqrt{5}}$ and $\alpha_{2} = -\frac{1}{\sqrt{5}}$.

 $a_n = \frac{1}{\sqrt{5}} \cdot (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} \cdot (\frac{1-\sqrt{5}}{2})^n$ is a solution.

Example: What is the solution of the recurrence relation $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$ with $a_0 = 8, a_1 = 6$ and $a_2 = 26$? Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^{3} + r^{2} - 4r - 4 = 0$$

 $(r+1)(r+2)(r-2) = 0 r_{1} = -1, r_{2} = -2 \text{ and } r_{3} = 2$
So, by theorem $a_{n} = \alpha_{1}(-1)^{n} + \alpha_{2}(-2)^{n} + \alpha_{3}(2)^{n}$ is a solution. Now, we should find

 α_1, α_2 and α_3 using initial conditions.

 $a_{0} = \alpha_{1} + \alpha_{2} + \alpha_{3} = 8$ $a_{1} = -\alpha_{1} - 2\alpha_{2} + 2\alpha_{3} = 6$ $a_{2} = \alpha_{1} + 4\alpha_{2} + 4\alpha_{3} = 26$ So, $\alpha_{1} = 2, \alpha_{2} = 1$ and $\alpha_{3} = 5$. $a_{n} = 2(-1)^{n} + (-2)^{n} + 5(2)^{n}$ is a solution.

<u>**Theorem:**</u> Consider the characteristic equation $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$. Assume the characteristic equation has $t \le k$ distinct solutions. Let $\forall i (1 \le i \le t) r_i$ with multiplicity m_i be a solution of the equation and let $\forall i, j (1 \le i \le t \text{ and } 0 \le j \le m_i - 1) \alpha_{ij}$ be a constant. So,

$$a_n = (\alpha_{10} + \alpha_{11}n + \dots + \alpha_{1m_1-1}n^{m_1-1}) r_1^n + (\alpha_{20} + \alpha_{21}n + \dots + \alpha_{2m_2-1}n^{m_2-1}) r_2^n + \dots + (\alpha_{t0} + \alpha_{t1}n + \dots + \alpha_{tm_t-1}n^{m_t-1}) r_t^n$$

satisfies the recurrence.

Example: What is the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

First find its characteristic equation

 $r^2 - 6r + 9 = 0 \rightarrow (r - 3)^2 \rightarrow r_1 = 3$ (Its multiplicity is 2) So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n)(3)^n$ is a solution. Now, we should find α_{10} and α_{11} using initial conditions.

$$a_0 = \alpha_{10} = 1$$

 $a_1 = 3\alpha_{10} + 3\alpha_{11} = 6$
Hence, $\alpha_{10} = 1$ and $\alpha_{11} = 1$.
 $a_n = (3)^n + n(3)^n$ is a solution.

Linear non-homogeneous recurrences

Definition: A linear non-homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

Where $c_1, c_2, ..., c_k$ are real numbers, and f(n) is a function depending only on n.

The recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

is called the associated homogeneous recurrence relation.

This recurrence includes k initial conditions

 $a_0 = C_0 \qquad a_1 = C_1 \quad \dots \quad a_k = C_k.$

Example: The following recurrence relations are linear nonhomogeneous recurrence relations.

- $a_n = a_{n-1} + 2^n$
- $a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$
- $a_n = a_{n-1} + a_{n-2} + n!$
- $a_n = a_{n-6} + n2^n$

Theorem: Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$ be a linear nonhomogeneous recurrence. Assume the sequence b_n satisfies the recurrence and another sequence a_n also satisfies the non-homogeneous recurrence if and only if $h_n = a_n - b_n$ is also sequences that satisfies the associated homogeneous recurrence.

Example: What is the solution of the recurrence relation $a_n = a_{n-1} + a_{n-2} + 3n + 1$ for $n \ge 2$ with $a_0 = 2$ and $a_1 = 3$?

Since it is linear non-homogeneous recurrence, b_n is similar to f(n)Guess: $b_n = cn + d$

$$b_n = b_{n-1} + b_{n-2} + 3n + 1$$

$$cn + d = c(n-1) + d + c(n-2) + d + 3n + 1$$

$$cn + d = cn - c + d + cn - 2c + d + 3n + 1$$

$$(c - 2c)n + (d - 2d) = -3c + 3n + 1$$

$$-cn - d = 3n - 3c + 1$$

$$c = -3 \qquad d = -10$$

So, $b_n = -3n - 10$

 $(b_n \text{ only satisfies the recurrence, it does not satisfy the initial conditions.})$

We are looking for an that satisfies both recurrence and initial conditions. $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = h_{n-1} + h_{n-2}$ By previous example, we know $h_n = \alpha_1 (\frac{1+\sqrt{5}}{2})^n + \alpha_2 (\frac{1-\sqrt{5}}{2})^n$

$$a_n = b_n + h_n$$

= $-3n - 10 + \alpha_1 (\frac{1 + \sqrt{5}}{2})^n + \alpha_2 (\frac{1 - \sqrt{5}}{2})^n$

Now we should find constants using initial conditions

$$a_{0} = -10 + \alpha_{1} + \alpha_{2} = 2$$

$$a_{1} = -13 + \alpha_{1} \left(\frac{1+\sqrt{5}}{2}\right) + \alpha_{2} \left(\frac{1-\sqrt{5}}{2}\right) = 3$$
Hence, $\alpha_{1} = 6 + 2\sqrt{5}$ and $\alpha_{2} = 6 - 2\sqrt{5}$.
So, $a_{n} = -3n - 10 + (6 + 2\sqrt{5}) \left(\frac{1+\sqrt{5}}{2}\right)^{n} + (6 - 2\sqrt{5}) \left(\frac{1-\sqrt{5}}{2}\right)^{n}$.