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Solving Linear Recurrence Relations

Linear recurrences
1. Linear homogeneous recurrences

2. linear non-homogeneous recurrences

Definition: A linear homogenous recurrence relation of degree k with constant coefficients
Is a recurrence relation of the form
A, = C1Qp_q + 05y + -+ CrQp_k
Where ¢, c5, ..., c), are real numbers, and ¢, # 0.
a, is expressed in terms of the previous k terms of the sequence, so its degree is k. This
recurrence includes k initial conditions
ay, = Cy a,=0C .. a =C¢C.
Example: Determine if the following recurrence relations are linear homogeneous recurrence
relations with constant coefficients.
e P,=011)P,_,
a linear homogeneous recurrence relation of degree one.
o ap=a,1ta;,
not linear
* fu=fa1t fuz
a linear homogeneous recurrence relation of degree two
e H,=2H, +1
not homogeneous because f(x) = 1.
¢ Qn = Qn-6
a linear homogeneous recurrence relation of degree six
e B, =nB,4
does not have constant coefficien
Theorem: Let a, = c;a,_1 + c,a,,_5 + -+ + ca,,_; be a linear homogeneous recurrence.
Assume the sequence a,, satisfies the recurrence and the sequence g, also satisfies the
recurrence. So, b, = a,, + g, and d,, = aa,, are also sequences that satisfy the recurrence. («

IS any constant)



Note: Geometric sequences come up a lot when solving linear homogeneous recurrences.
So, try to find any solution of the form a,, = r™ that satisfies the recurrence relation.
Recurrence relation

A, = C1Qp_q + 05y + =+ + CrQp_k
Try to find a solution of form r™

=" 4 ™2 4t g™

1 2

S — Can_k =0

—m =0 (dividing both sides by r™~*)

r’t—cr"t —cr™

1 2

rk —crk=t — c,rk-
This equation is called the characteristic equation.

Example: The Fibonacci recurrence is F, = F,_; + F,_,. Its characteristic equation is
r’—r—1=0.

Theorem: r is asolution of r* — ¢;7*"1 — ¢,r*=2 — ... — ¢, = 0 ifand only if r™ is a solution
ofa, =cia,_1 +ca,_5+ -+ cran_g.

Example: Consider the characteristic equation r2 — 4r + 4 = 0.
r’—4r+4=00r—-2)>=0

So, r = 2, then 2" satisfies the recurrence F,, = 4F,,_, — 4F,,_,

2" = 4,2n71 — 42n2

2" — 4.2 4 4n"2 =0

2n"2(22 —424+4)=0

2"2(4—-8+4) =0

Theorem: Consider the characteristic equation r* — ¢;r*=1 — ¢,r*"2 — ... — ¢, = 0 and the
recurrence a, = ¢;a,_q + Cyap_p + -+ + CxAp_. ASSUME 14,75, ... ,1%, all satisfy the

equation. Let a4, a5, ... , a,, by any constants. So, a,, = a;r{* + a,r}' + -+ + a,,, 1 Satisfies
the recurrence.

Example: What is the solution of the recurrence relation f, = f,_1 + fn—, With
fo =0andf1 =1?
Since it is linear homogeneous recurrence, first find its characteristic equation

1+v5 1—/5
2

r’—r—1=0,1 = andr, =



1+v5
2

So, by theorem f, = a4( )"+a2(1_2—\/§)” Is a solution. Now, we should find

a, and a, using initial conditions

f0:a1+a2=0

(1445 1-+5\
a5 (5

1
and a, = NG

L
V5

_ 1 k5 1 1-V5, . .

a, = \/g.( - ) \/E'(_z )™ is a solution.

Example: What is the solution of the recurrence relation a,, = —a,_; + 4a,_, + 4a,_3 with

SO, a, =

a, =8,a, = 6and a, = 267

Since it is linear homogeneous recurrence, first find its characteristic equation

r3+1r2—4r—4=0

r+1D)r+2)r-2)=0r,= -1, = —2andr; = 2

So, by theorem a,, = a; (—1)" + a,(—2)" + a3(2)" is a solution. Now, we should find

a,, a, and as using initial conditions.

ag =0, +a, +az =8

a, =—a,—2a, + 203 =6

a, = a, +4a, +4a; =26

So,a; =2,a, =1and az = 5.

a, =2(—=D"+ (—=2)" + 5(2)™ is a solution.

Theorem: Consider the characteristic equation r* — c;7*™1 — ¢,r*72 — ... — ¢, = 0 and the

recurrence a,, = ¢1a,_1 + C,ay_, + *+ + cxa,_,. Assume the characteristic equation has

t < k distinct solutions. Let Vi(1 < i < t)r; with multiplicity m; be a solution of the equation

and letVvi,j(1<i<tand 0 <j<m; —1)a;; beaconstant. So,

an = (A0 + Ay + 4 Ay, V™M) I+ (A F A+ o+ Qg™ 1+
vt (Ao +apn+ -+ gy, o™ ) 1

satisfies the recurrence.

Example: What is the solution of the recurrence relation a, = 6a,_; —9a,_,with

a, =1and a, = 6?7

First find its characteristic equation



r’2—6r+9=0 - (r—3)2 - r =3 (Its multiplicity is 2)
So, by theorem a, = (a;p+ a;1n)(3)" is a solution. Now, we should find
a,o and a4, using initial conditions.
ag = a9 =1
a, =3a19+ 3011 =6
Hence, a,o = land a,; = 1.
a, = (3)" +n(3)™ is a solution.

Linear non-homogeneous recurrences

Definition: A linear non-homogenous recurrence relation of degree k with constant
coefficients is a recurrence relation of the form
Ay = C1An-1 F C2ap—p + -+ Cpap_ + f(N)
Where ¢4, ¢, ..., ¢j, are real numbers, and f'(n) is a function depending only on n.
The recurrence relation
Ay, = C10y_1 +Cxap_5 + -+ COp_k

is called the associated homogeneous recurrence relation.
This recurrence includes k initial conditions
ay, = Cy a,=0C .. a=C.
Example: The following recurrence relations are linear nonhomogeneous recurrence relations.

e a,=a,_,+2"

e a,=a,,+ta, ,+n*+n+1

e a,=0au_1ta,,+n!

® a,=0a,_¢+n2"
Theorem: Let a, = c;a,_1 + C2a5_5 + -+ cra,— + f(n) be a linear nonhomogeneous
recurrence. Assume the sequence b,, satisfies the recurrence and another sequence a,, also
satisfies the non-homogeneous recurrence if and only if h,, = a,, — b,, is also sequences that
satisfies the associated homogeneous recurrence.
Example: What is the solution of the recurrence relation a,, = a,_; + a,,_, + 3n + 1 for
n>2 witha, =2 and a; = 3?
Since it is linear non-homogeneous recurrence, b, is similar to f(n)

Guess: b, = cn + d



b, =b,_1+b,_,+3n+1

cn+d=cn-1)+d+cn—-2)+d+ 3n+1
cn+d=cn—c+d+cmnm—2c+d+3n+1

(c—2cn+(d—-2d)=—-3c+3n+1

—cn—d=3n—3c+1

c=-3 d=-10

So, b, = —3n—10

(b,, only satisfies the recurrence, it does not satisfy the initial conditions.)

We are looking for an that satisfies both recurrence and initial conditions. a,, = b,, + h,

where h, is a solution for the associated homogeneous recurrence: h, = h,_4 + h,_,

1+V5
2

By previous example, we know h,, = a; (—)"+a, (_1—2\/3)11

a, = b, + h,

1+/5
2

=-3n—-10 + ay (—)"+a;, (1_7\/5)”

Now we should find constants using initial conditions

a0:_10+a1+a2:2

1+/5 1-/5
=13 +a (55) v, (5) =3
Hence, a; = 6 + 2v5 and a, = 6 — 24/5.

S0,a, = —3n—10+ (6+2V5) (“f)n +(6—2V5) (1_7@)71




